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Abstract

The paper introduces a new class of functions from [0, 1]n to [0, n] called d-Choquet integrals. These functions
are a generalization of the “standard” Choquet integral obtained by replacing the difference in the definition
of the usual Choquet integral by a dissimilarity function. In particular, the class of all d-Choquet integrals
encompasses the class of all “standard” Choquet integrals. We show that some d-Choquet integrals are
aggregation/pre-aggregation/averaging/functions and some of them are not. The conditions under which
this happens are stated and other properties of the d-Choquet integrals are studied.

Keywords: Choquet integral, d-Choquet integral, dissimilarity, pre-aggregation function, aggregation
function, monotonicity, directional monotonicity

1. Introduction

The problem of finding an appropriate model of aggregation is crucial in many fields. One of the simplest
tools to aggregate data is an additive aggregation function, i.e., a weighted arithmetic mean (a convex
combination of the input values). However, in some cases, such functions are not appropriate to model even
quite simple situations, which, on the other hand, can be treated with Choquet integrals [3, 11, 19, 20, 26, 27].
The origin of the Choquet integrals arises from Choquet beliefs, or capacities that generalize the notion of
probability by relaxing additivity [10], and can be regarded as a generalization of additive aggregation
functions replacing the requirement of additivity by that of comonotone additivity.

Some generalizations of the Choquet integral were proposed in the recent years. In [28] the product
operator was replaced by a more general function and the authors studied the requirements that this func-
tion must satisfy so that the obtained generalization of the Choquet integral would be a pre-aggregation
function [12, 29]. In the same pattern, using the distributivity of the product operator and then replacing its
two instances by two different functions under some constraints, in [13, 30], generalizations of the Choquet
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integral were obtained as either aggregation, pre-aggregation or ordered directionally increasing functions
[5], depending on the properties satisfied by such two functions. Some Choquet-like integrals defined in
terms of pseudo-addition and pseudo-multiplication are studied in [31]. A fuzzy t-conorm integral that is a
generalization of Choquet integral (as well as of Sugeno integral) and is based on continuous t-conorms and
continuous t-norms is introduced in [32]. A non-linear integral that need not be increasing is introduced
in [36] and a concave integral generalizing the Choquet integral is introduced in [25]. A level dependent
Choquet integral was also introduced in [21]. For a general review on the state-of-art on the generalizations
of the Choquet Integral see [17].

In this paper, in order to generalize the Choquet integral, i.e. the n-ary function

Cµ(x1, . . . , xn) =

n∑
i=1

(xσ(i) − xσ(i−1))µ
(
Aσ(i)

)
we replace the difference xσ(i) − xσ(i−1) by δ(xσ(i), xσ(i−1)), where δ : [0, 1]2 → [0, 1] is a restricted dissimi-
larity function [6, 7], and refer to the obtained function as d-Choquet integral. This approach allows us to
construct a wide class of new functions, d-Choquet integrals, which, unlike the “standard” Choquet integral,
may be possibly outside of the scope of aggregation functions, since the monotonicity may be violated for
some δ, and also the range of such functions can be wider than [0, 1].

The “standard” Choquet integral is known to be an averaging aggregation function which is comonotone
additive, idempotent, self-dual for self-dual fuzzy measures, shift-invariant and positively homogeneous.
According to the choice of a restricted dissimilarity function, the obtained d-Choquet integral possesses (or
does not) some of the mentioned properties. In such a way we have a wide possibility to construct a function
with desired properties.

The aim of the paper is to bring a theoretical study of the above described wide class of functions, that
is the class of all d-Choquet integrals. Moreover, our work can be seen as the first step to the generalization
of the Choquet integral to various settings where the difference cause problems (for example, intervals).

The structure of the paper is as follows. First, we present some preliminary concepts that help making
the paper self-contained. In Section 3, we introduce the notion of d-Choquet integral, describe various
construction methods and study its properties, such as comonotone additivity, idempotency, self-duality,
shift-invariancy and homogeneity. We discuss the relation of the class of d-Choquet integrals with the
classes of aggregation functions, averaging aggregation functions and pre-aggregation functions in Section
4. Finally, some important conclusions and future research are described in Section 5.

2. Preliminaries

In this section, we recall some basic notions and terminology that are necessary for our subsequent
developments.

Definition 2.1. [6] A function δ : [0, 1]2 → [0, 1] is called a restricted dissimilarity function on [0, 1] if it
satisfies, for all x, y, z ∈ [0, 1], the following conditions:

1. δ(x, y) = δ(y, x);

2. δ(x, y) = 1 if and only if {x, y} = {0, 1};
3. δ(x, y) = 0 if and only if x = y;

4. if x ≤ y ≤ z, then δ(x, y) ≤ δ(x, z) and δ(y, z) ≤ δ(x, z).

Note that there is no the greatest neither the smallest restricted dissimilarity function. The minimal
range of a restricted dissimilarity function consists of 3 values {0, a, 1}, where a ∈]0, 1[, attained for δ = δa :
[0, 1]2 → [0, 1] given by

δa(x, y) =


1 iff {x, y} = {0, 1}
0 iff x = y

a otherwise.
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Definition 2.2. [4] An n-ary aggregation function is a mapping A : [0, 1]n → [0, 1] satisfying the following
properties:

(A1) A is increasing1 in each argument: for each i ∈ {1, . . . , n}, if xi ≤ y, then

A(x1, . . . , xn) ≤ A(x1, . . . , xi−1, y, xi+1, . . . , xn);

(A2) The boundary conditions: A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

A conjunctive aggregation function is an aggregation function A : [0, 1]n → [0, 1] such that A ≤ min.
A 0-positive aggregation function is an aggregation functionA : [0, 1]n → [0, 1] such that ifA(x1, . . . , xn) =

0 then there exists i ∈ {1, . . . , n} such that xi = 0. On the other hand, if A is also conjunctive, then whenever
there exists i ∈ {1, . . . , n} such that xi = 0 one has that A(x1, . . . , xn) = 0.

Definition 2.3. [22] An aggregation function T : [0, 1]2 → [0, 1] is a t-norm if the following conditions
hold, for all x, y, z ∈ [0, 1]:

(T1) Commutativity: T (x, y) = T (y, x);

(T2) Associativity: T (x, T (y, z)) = T (T (x, y), z);

(T3) Neutral element: T (x, 1) = x.

An element x ∈]0, 1] is said to be a non-trivial zero divisor of T if there exists y ∈]0, 1] such that
T (x, y) = 0. A t-norm is positive if and only if it has no non-trivial zero divisors, that is, if T (x, y) = 0 then
either x = 0 or y = 0.

Example 2.4. Examples of t-norms are the Minimum, the Product, the  Lukasiewicz t-norm, the Hamacher
Product and the Drastic t-norm TM , TP , T L, THP , TD : [0, 1]2 → [0, 1], defined, respectively, for each x, y ∈
[0, 1], by [22]:

TM (x, y) = min{x, y};
TP (x, y) = xy;

T L(x, y) = max{0, x+ y − 1};

THP (x, y) =

 0 if x = y = 0
xy

x+y−xy otherwise;

TD(x, y) =


y if x = 1

x if y = 1

0 otherwise.

Observe that the TM , TP and THP are positive t-norms, and any t-norm T is conjunctive, since it always
happens that T ≤ min.

Definition 2.5. [8] A function O : [0, 1]2 → [0, 1] is said to be an overlap function if the following conditions
hold, for all x, y, z ∈ [0, 1]:

(O1) O is commutative;

(O2) O(x, y) = 0 if and only if xy = 0;

1We consider that an increasing function may not be strictly increasing (and analogously for decreasing functions).
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(O3) O(x, y) = 1 if and only if xy = 1;

(O4) O is increasing;

(O5) O is continuous.

Example 2.6. Examples of overlap functions are the Cuadras-Augé family of copulas OB,α : [0, 1]2 → [0, 1],
for α ∈ [0, 1], used in [8, Theorem 8] and [33], OmM : [0, 1]2 → [0, 1], presented in [14, Ex. 3.1.(i)], [15, Ex.
4] and [16, Ex. 3.1], the Eyraud-Farlie-Gumbel-Morgenstern (EFGM) 2-copulas Oα : [0, 1]2 → [0, 1], with
α ∈ [−1, 1], found in [33], [1, Apendix A (A.2.1)] and [26], and the Geometric Mean GM : [0, 1]2 → [0, 1],
used in [18, Ex. 1], defined, respectively, for all x, y ∈ [0, 1] by:

OB,α(x, y) = (TM (x, y))α · (TP (x, y))(1−α), for α ∈ [0, 1];

OmM (x, y) = min{x, y}max{x2, y2};
Oα(x, y) = xy(1 + α(1− x)(1− y)), for α ∈ [−1, 1]; (1)

GM(x, y) =
√
xy.

Definition 2.7. A function N : [0, 1]→ [0, 1] is a negation function if it is a decreasing function such that
N(0) = 1 and N(1) = 0. A negation N is called strong if N(N(x)) = x for all x ∈ [0, 1]; it is called
non-filling if N(x) = 1 if and only if x = 0; and it is called non-vanishing if N(x) = 0 if and only if x = 1.

Definition 2.8. [2] An implication function is a mapping I : [0, 1]2 → [0, 1] satisfying the boundary condi-
tions I(0, 0) = I(0, 1) = I(1, 1) = 1, I(1, 0) = 0 and the following properties:

• (I1) x ≤ z implies I(x, y) ≥ I(z, y), for all y ∈ [0, 1];

• (I2) y ≤ z implies I(x, y) ≤ I(x, z), for all x ∈ [0, 1].

We also recall some possible properties of implication functions that will be needed in the paper:

• (OP ) I(x, y) = 1 if and only if x ≤ y (ordering property);

• (CS) I(x, y) = I(N(y), N(x)), where N is a strong negation (N -contrapositive symmetry);

• (NV ) I(x, y) = 0 if and only if x = 1 and y = 0 (non-vanishing).

Note that for an arbitrary restricted dissimilarity function δ, the function Iδ : [0, 1]2 → [0, 1] given by

Iδ(x, y) =

{
1 if x ≤ y
1− δ(x, y) otherwise.

is an implication function satisfying (OP) and (NV).

Definition 2.9. An automorphism of [0, 1] is a continuous, strictly increasing function ϕ : [0, 1] → [0, 1]
such that ϕ(0) = 0 and ϕ(1) = 1. Moreover, the identity on [0, 1] is denoted by Id.

It is well-known that a function f : [0, 1]n → [0, 1] is additive if

f(x1 + y1, . . . , xn + yn) = f(x1, . . . , xn) + f(y1, . . . , yn) (2)

for all (x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n such that (x1 + y1, . . . , xn + yn) ∈ [0, 1]n. From now on, [n] denotes
the set {1, . . . , n}.

Definition 2.10. Vectors (x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n are comonotone if there exists a permutation
σ : [n]→ [n] such that xσ(1) ≤ . . . ≤ xσ(n) and yσ(1) ≤ . . . ≤ yσ(n).
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Definition 2.11. A function f : [0, 1]n → [0, 1] is called comonotone additive if Equality (2) holds for all
comonotone vectors (x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n such that (x1 + y1, . . . , xn + yn) ∈ [0, 1]n.

Definition 2.12. A function µ : 2[n] → [0, 1] is called a fuzzy measure on [n] if µ(∅) = 0, µ([n]) = 1 and
µ(A) ≤ µ(B) for all A ⊆ B ⊆ [n].

Definition 2.13. [9] Let ~r = (r1, . . . , rn) be a real n-dimensional vector such that ~r 6= ~0. A function
f : [0, 1]n → [0, 1] is ~r-increasing if, for all (x1, . . . , xn) ∈ [0, 1]n and for all c ∈]0, 1] such that (x1 +
cr1, . . . , xn + crn) ∈ [0, 1]n, it holds

f(x1 + cr1, . . . , xn + crn) ≥ f(x1, . . . , xn).

Definition 2.14. [29] A function f : [0, 1]n → [0, 1] is said to be an n-ary pre-aggregation function if
f(0, . . . , 0) = 0, f(1, . . . , 1) = 1 and f is ~r-increasing for some real n-dimensional vector ~r = (r1, . . . , rn)
such that ~r 6= ~0 and ri ≥ 0 for every i = 1, . . . , n. In this case, we say that f is an ~r-pre-aggregation function.

Finally, we recall some well-known properties of functions that will be used in the paper. A function
f : [0, 1]n → [0, 1] is called:

• idempotent if f(x, . . . , x) = x, for all x ∈ [0, 1];

• averaging if min{x1, . . . , xn} ≤ f(x1, . . . , xn) ≤ max{x1, . . . , xn}, for all x1, . . . , xn ∈ [0, 1];

• shift-invariant if f(x1 + y, . . . , xn + y) = y + f(x1, . . . , xn), for all y, x1, . . . , xn ∈ [0, 1] such that
x1 + y, . . . , xn + y ∈ [0, 1];

• positively homogeneous if f(rx1, . . . , rxn) = rf(x1, . . . , xn), for all r, x1, . . . , xn ∈ [0, 1];

• self-dual if f(x1, . . . , xn) = 1− f(1− x1, . . . , 1− xn), for all x1, . . . , xn ∈ [0, 1].

3. d-Choquet integral

In this section, we introduce the notion of d-Choquet integral and study its properties such as comonotone
additivity, idempotency, self-duality, shift-invariancy and homogeneity. Moreover, construction of restricted
dissimilarity function in terms of automorphisms and implications is considered and its influence on the
obtained d-Choquet integral is discussed.

3.1. Definition of d-Choquet integral

The discrete Choquet integral on [0, 1] with respect to a fuzzy measure µ : 2[n] → [0, 1] is defined as a
mapping Cµ : [0, 1]n → [0, 1] such that

Cµ(x1, . . . , xn) =

n∑
i=1

(xσ(i) − xσ(i−1))µ
(
Aσ(i)

)
(3)

where σ is a permutation on [n] satisfying xσ(1) ≤ . . . ≤ xσ(n), with the convention xσ(0) = 0 and Aσ(i) =
{σ(i), . . . , σ(n)}.

In order to generalize the Choquet integral, we replace the difference xσ(i) − xσ(i−1) by δ(xσ(i), xσ(i−1)),
where δ is a restricted dissimilarity function.

Definition 3.1. Let n be a positive integer and µ : 2[n] → [0, 1] be a fuzzy measure on [n]. Let δ : [0, 1]2 →
[0, 1] be a restricted dissimilarity function. An n-ary discrete d-Choquet integral on [0, 1] with respect to µ
and δ is defined as a mapping Cµ,δ : [0, 1]n → [0, n] such that

Cµ,δ(x1, . . . , xn) =

n∑
i=1

δ(xσ(i), xσ(i−1))µ
(
Aσ(i)

)
(4)

where σ is a permutation on [n] satisfying xσ(1) ≤ . . . ≤ xσ(n), with the convention xσ(0) = 0 and Aσ(i) =
{σ(i), . . . , σ(n)}.
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Remark 3.2. (i) The property δ(x, x) = 0 for all x ∈ [0, 1] ensures that if there exist several possible
permutations such that xσ(1) ≤ . . . ≤ xσ(n), the result for any of them when applying (4) is the same.
Moreover, since the ranges of δ and µ are subsets of [0, 1], the range of Cµ,δ is a subset of [0, n]. Hence, Cµ,δ
is well-defined.

(ii) Observe that, without loss of generality, it would be possible to replace in the above definition a
restricted dissimilarity function δ by a pseudo-difference 	 : [0, 1]2 → [0, 1] characterized axiomatically as
follows:

1. x	 y = 0 if and only if x ≤ y;

2. x	 y = 1 if and only if x = 1 and y = 0;

3. for any x ≤ y ≤ z it holds that y 	 x ≤ z 	 x, and z 	 y ≤ z 	 x.

Note that there is no δ, µ and x1, . . . , xn ∈ [0, 1] such that Cµ,δ(x1, . . . , xn) = n. However, for any
x1, . . . , xn ∈ [0, 1] such that card(x1, . . . , xn) = n, and for any a ∈]0, 1[, for the greatest fuzzy measure
µ>, see (6), it holds Cµ>,δa(x1, . . . , xn) = na, and the range of Cµ>,δa is contained in [0,max{1, na}].
Consequently, for any n > u = n− ε ≥ 1, the value u is attained by Cµ>,δa for a = u/n.

Then the related δ is given by δ(x, y) = max{x, y} 	 min{x, y}. For several appropriate 	 operations
derived from nilpotent t-conorms one can refer to [37]. Observe that there are several alternative approaches
to pseudo-differences, see, e.g. [[24, 32, 37] which are related to restricted dissimilarity functions only in
particular cases.

Observe that, in general, the range of Cµ,δ is a subset of [0, n]. Since, for some applications, it may be
desired that the range of Cµ,δ would be [0, 1], we often impose the following condition:

(P1) δ(0, x1) + δ(x1, x2) + . . .+ δ(xn−1, xn) ≤ 1 for all x1, . . . , xn ∈ [0, 1] where x1 ≤ . . . ≤ xn.

Next proposition shows that the condition (P1) assures that the range of Cµ,δ is a subset of [0, 1], i.e.
we obtain Cµ,δ : [0, 1]n → [0, 1].

Proposition 3.3. Let Cµ,δ : [0, 1]n → [0, n] be an n-ary discrete d-Choquet integral on [0, 1] with respect to
µ and δ given by Definition 3.1. If δ satisfies the condition (P1), then

Cµ,δ(x1, . . . , xn) ∈ [0, 1]

for all x1, . . . , xn ∈ [0, 1] and for any measure µ.

Proof. Straightforwardly follows from (4).

Note that if δ satisfies (P1) and is continuous as a real function of two variables, then the range of Cµ,δ
is equal to [0, 1].

Proposition 3.4. If δ : [0, 1]2 → [0, 1] is a restricted dissimilarity function satisfying (P1) then each
restricted dissimilarity function δ′ : [0, 1]2 → [0, 1] such that δ′ ≤ δ also satisfy (P1).

Proof. Consider 0 = x0 ≤ x1 ≤ . . . ≤ xn ≤ 1. Then, since δ′ ≤ δ and δ satisfy (P1), we have that
n∑
i=1

δ′(xi−1, xi) ≤
n∑
i=1

δ(xi−1, xi) ≤ 1.

Now we give a sufficient condition under which a restricted dissimilarity function satisfies the condition
(P1).

Proposition 3.5. Let δ : [0, 1]2 → [0, 1] be a restricted dissimilarity function and f : [0, 1] → [0, 1] be an
increasing function such that f(0) = 0 and f(1) = 1. If δ(x, y) ≤ |f(x)− f(y)| for all x, y ∈ [0, 1], then the
following statements hold:

(i) f is strictly increasing;

(ii) δ satisfies (P1);
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(iii) δ(0, x) + δ(x, y) ≤ f(y) whenever x ≤ y.

Proof. (i) Suppose that f is not strictly increasing. Then, there exists x′, y′ ∈ [0, 1], with x′ 6= y′ and
f(x′) = f(y′). Therefore, δ(x′, y′) ≤ |f(x′) − f(y′)| = 0 leads to a contradiction with condition (3) of Def.
2.1.

(ii) Let n be a positive integer and 0 ≤ x1 ≤ . . . ≤ xn ≤ 1. Then

δ(0, x1)+δ(x1, x2)+. . .+δ(xn−1, xn) ≤ −f(0)+f(x1)−f(x1)+f(x2)−. . .−f(xn−1)+f(xn) = f(xn)−f(0) ≤ 1.

(iii) Take x, y ∈ [0, 1] such that x ≤ y. Then it holds that δ(0, x) ≤ |f(0) − f(x)| = f(x) and δ(x, y) ≤
|f(x)− f(y)| = f(y)− f(x). Therefore, one has that δ(0, x) + δ(x, y) ≤ f(y).

Example 3.6. Let µ be a fuzzy measure on {1, 2, 3} defined by µ({1}) = µ({2}) = µ({3}) = 0.3, µ({1, 2}) =
0.75, µ({2, 3}) = 0.55 and µ({1, 3}) = 0.6.

(i) Then
Cµ(0.2, 0.9, 0.6) = 0.2 · 1 + 0.4 · 0.55 + 0.3 · 0.3 = 0.51.

It is easy to see that for δ(x, y) = |x− y| it holds Cµ,δ = Cµ for any possible inputs and any measure µ (as
will be shown in Theorem 3.24).

(ii) However, if δ(x, y) = (x− y)2 we have

Cµ,δ(0.2, 0.9, 0.6) = 0.04 · 1 + 0.16 · 0.55 + 0.09 · 0.3 = 0.155.

(iii) Finally, taking

δ(x, y) =

 0, if x = y;
|x−y|+1

2 , otherwise,

we obtain
Cµ,δ(0.2, 0.9, 0.6) = 0.6 · 1 + 0.7 · 0.55 + 0.65 · 0.3 = 1.18,

where we can see that Cµ,δ(0.2, 0.9, 0.6) > 1. This may happen since for any increasing f : [0, 1] → [0, 1]

with f(0) = 0 and f(1) = 1 there exist x, y ∈ [0, 1] such that |x−y|+1
2 > |f(x) − f(y)|, hence (P1) is not

satisfied.

Remark 3.7. Clearly, for any fuzzy measure µ and restricted dissimilarity function δ, the ’boundary’
conditions hold:

Cµ,δ(0, . . . , 0) = 0 and Cµ,δ(1, . . . , 1) = 1.

Note that, in fact, the second one should be called boundary condition only if the range of Cµ,δ is a subset
of [0, 1], although the equality holds in any case, even if the range is not a subset of [0, 1] - clearly, in this
case, Cµ,δ is not increasing (we study monotonicity of Cµ,δ in Section 4).

Theorem 3.8. Let δ : [0, 1]2 → [0, 1] be a restricted dissimilarity function. Consider fδ : [0, 1] → [0, 1],
defined, for each x ∈ [0, 1], by

fδ(x) = δ(x, 0)

and δ∗ : [0, 1]2 → [0, 1], defined, for each x, y ∈ [0, 1], by

δ∗(x, y) = |fδ(x)− fδ(y)|.

Then δ∗ is a restricted dissimilarity function which satisfies (P1) if and only if fδ is injective.
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Proof. (⇒) Take x 6= y and suppose that fδ(x) = fδ(y). Then one has that δ∗(x, y) = |fδ(x) − fδ(y)| = 0,
which is in contradiction with Condition 3. of Def. 2.1. Therefore, fδ is injective.
(⇐) Observe first that fδ is increasing. In fact, if x < y then by Condition 4. of Def. 2.1, one has that
δ(0, x) ≤ δ(0, y) and, therefore, fδ(x) = δ(0, x) ≤ δ(0, y) = fδ(y). So, if fδ(x) = 1 then fδ(1) ≥ fδ(x) = 1
and, therefore, once fδ is injective, fδ(x) = 1 if and only if x = 1. Analogously, it is possible to prove that
fδ(x) = 0 if and only if x = 0.

Clearly δ∗ is symmetric and since fδ is injective, then δ∗(x, y) = 0 if and only if δ(x, 0) = δ(y, 0) if and
only if fδ(x) = fδ(y) if and only if x = y. Analogously, δ∗(x, y) = 1 if and only if either fδ(x) = 1 and
fδ(y) = 0 or fδ(x) = 0 and fδ(y) = 1 if and only if either x = 1 and y = 0 or x = 0 and y = 1 if and only if
{x, y} = {0, 1}.

If x ≤ y ≤ z then fδ(x) ≤ fδ(y) ≤ fδ(z). Therefore fδ(y) − fδ(x) ≤ fδ(z) − fδ(x) and fδ(z) − fδ(y) ≤
fδ(z) − fδ(x). So, δ∗(x, y) ≤ δ∗(x, z) and δ∗(y, z) ≤ δ∗(x, z). Consequently, δ∗ is a restricted dissimilarity
function and once fδ satisfies the conditions of Proposition 3.5, we have that δ∗ satisfies (P1).

Proposition 3.9. Let δ : [0, 1]2 → [0, 1] be a restricted dissimilarity function. If, for each x, y ∈ [0, 1] such
that x ≤ y it holds that δ(0, x) + δ(x, y) ≤ δ(0, y), then δ satisfy (P1).

Proof. For n = 2 it is straightforward from the premise that δ(0, x1)+δ(x1, x2) ≤ δ(0, x2) whenever x1 ≤ x2.
Consider k > 2 and suppose that, for each x1, . . . , xk ∈ [0, 1] such that x1 ≤ . . . ≤ xk, it holds that

δ(0, x1) + δ(x1, x2) + . . .+ δ(xk−1, xk) ≤ δ(0, xk).

Then, for any xk+1 ∈ [0, 1] such that xk ≤ xk+1, we have that

δ(0, x1) + δ(x1, x2) + . . .+ δ(xk−1, xk) + δ(xk, xk+1) ≤ δ(0, xk) + δ(xk, xk+1).

So, by the basic case, one has that δ(0, xk) + δ(xk, xk+1) ≤ δ(0, xk+1), and then

δ(0, x1) + δ(x1, x2) + . . .+ δ(xk, xk+1) ≤ δ(0, xk+1).

Therefore, by induction, we have that for each n ≥ 2,

δ(0, x1) + δ(x1, x2) + . . .+ δ(xn−1, xn) ≤ δ(0, xn) ≤ 1

which means that δ satisfies (P1).

Remark 3.10. Observe that if δ(x, 0) = x then δ∗(x, y) = |x− y|.

3.2. d-Choquet integral based on restricted dissimilarity function constructed in terms of automorphisms

In [6], a construction method for restricted dissimilarity functions in terms of automorphisms was intro-
duced.

Proposition 3.11. [6] If ϕ1, ϕ2 are two automorphisms of [0, 1], then the function δ : [0, 1]2 → [0, 1] defined
by

δ(x, y) = ϕ−11

(
|ϕ2(x)− ϕ2(y)|

)
is a restricted dissimilarity function.

Note that if the restricted dissimilarity function δ is given in terms of automorphisms ϕ1, ϕ2 as in
Proposition 3.11, we write Cµ,ϕ1,ϕ2

instead of Cµ,δ.

Proposition 3.12. Let n be a positive integer, δ : [0, 1]2 → [0, 1] be a restricted dissimilarity function given
in terms of automorphisms ϕ1, ϕ2 as in Proposition 3.11. If ϕ1 ≥ Id for all x ∈ [0, 1], then δ satisfies (P1).

Proof. It is enough to set f = ϕ2 in Proposition 3.5 and observe that ϕ1 ≥ Id implies ϕ−11 ≤ Id.
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Remark 3.13. (i) For instance the restricted dissimilarity functions δ(x, y) = (x−y)2, δ(x, y) = |
√
x−√y|,

δ(x, y) = |x2 − y2| and δ(x, y) = (
√
x−√y)2 satisfy the condition δ(x, y) ≤ |f(x)− f(y)| of Proposition 3.5

for f = Id, f(x) =
√
x, f(x) = x2 and f(x) =

√
x, respectively (as well as the condition ϕ1 ≥ Id of

Proposition 3.12), hence they satisfy the (P1). This means that the corresponding d-Choquet integrals have
the ranges in [0, 1].

(ii) However, for the restricted dissimilarity function δ(x, y) =
√
|x− y|, there does not exist a function f

demanded in Proposition 3.5, hence it may happen that (P1) is violated. For instance, δ(0, 0.1)+δ(0.1, 1) =
1.2649 > 1.

Given an automorphism ϕ and a restricted dissimilarity functions δ, the function δϕ : [0, 1]2 → [0, 1]
defined, for all x, y ∈ [0, 1], by δϕ(x, y) = ϕ−1(δ(ϕ(x), ϕ(y))) is called of conjugate of δ.

Proposition 3.14. Let ϕ be an automorphism and δ be a restricted dissimilarity function. Then the function
δϕ is also a restricted dissimilarity function. In addition, if δ satisfies (P1) and ϕ ≥ Id then δϕ satisfies
(P1).

Proof. Trivially, δϕ is commutative, and since ϕ and their inverse are bijective and increasing then δϕ(x, y) =
0 if and only if δ(ϕ(x), ϕ(y)) = 0 if and only if ϕ(x) = ϕ(y) if and only if x = y. Analogously, it holds
that δϕ(x, y) = 1 if and only if δ(ϕ(x), ϕ(y)) = 1 if and only if {ϕ(x), ϕ(y)} = {0, 1} if and only if
{x, y} = {0, 1}. Finally, if x ≤ y ≤ z then one has that ϕ(x) ≤ ϕ(y) ≤ ϕ(z) and therefore, it holds that
δ(ϕ(x), ϕ(y)) ≤ δ(ϕ(x), ϕ(z)) and δ(ϕ(y), ϕ(z)) ≤ δ(ϕ(x), ϕ(z)). Hence, one has that δϕ(x, y) ≤ δϕ(x, z)
and δϕ(y, z) ≤ δϕ(x, z). Therefore, δϕ is also a restricted dissimilarity function. In addition, if δ satisfies
(P1), ϕ ≥ Id and 0 = x0 ≤ x1 ≤ . . . ≤ xn then one has that 0 = ϕ(x0) ≤ ϕ(x1) ≤ . . . ≤ ϕ(xn) and since δ
satisfies (P1) and ϕ−1 ≤ Id, then

n∑
i=1

δϕ(xi−1, xi) ≤
n∑
i=1

δ(ϕ(xi−1), ϕ(xi)) ≤ 1.

Remark 3.15. Observe that if δϕ satisfies (P1) it does not mean that δ satisfies (P1). For example, consider
the restricted dissimilarity function given in Remark 3.13 (ii) and the automorphism ϕ(x) =

√
x. Then, by

Proposition 3.14, δϕ(x, y) = |
√
x−√y| is also a restricted equivalence function. However, δϕ satisfies (P1)

whereas δ does not satisfy (P1) as observed before in Remark 3.13 (ii). Indeed, if x1 ≤ . . . ≤ xn and x0 = 0
then it holds that

∑n
i=1 δ

ϕ(xi−1, xi) = xn.

3.3. d-Choquet integral based on restricted dissimilarity function constructed in terms of strictly increasing
functions f satisfying boundary conditions

In the following, we provide construction methods of restricted dissimilarity functions satisfying (P1)
based on more general functions than automorphisms, namely, strictly increasing functions f satisfying
boundary conditions.
Proposition 3.16. Let f : [0, 1]→ [0, 1] be a strictly increasing function such that f(0) = 0 and f(1) = 1.
Then, δf : [0, 1]2 → [0, 1], defined, for all x, y ∈ [0, 1] by δf (x, y) = |f(x)− f(y)| is a restricted dissimilarity
function satisfying (P1).

Proof. Observe that (1) δf is trivially commutative. Moreover:
(2) Suppose that δf (x, y) = 1. It follows that either f(x) = 1 and f(y) = 0, or f(x) = 0 and f(y) = 1, and,
since f is strictly increasing, one has that either x = 1 and y = 0, or x = 0 and y = 1. Conversely, one has
that δf (0, 1) = δf (1, 0) = |f(1)− f(0)| = 1.
(3) Suppose that δf (x, y) = 0. It follows that f(x) = f(y). Since f is strictly increasing, it follows that
x = y. Conversely, δf (x, x) = |f(x)− f(x)| = 0.
(4) Suppose that x ≤ y ≤ z. Then, it holds that f(x) ≤ f(y) ≤ f(z). It follows that f(y)−f(x) ≤ f(z)−f(x)
and f(z)− f(y) ≤ f(z)− f(x). Therefore one has that δf (x, y) ≤ δf (x, z) and δf (y, z) ≤ δf (x, z).

Finally, by Proposition 3.5, δf satisfies (P1).

9



Theorem 3.17. Let f : [0, 1] → [0, 1] be a strictly increasing function such that f(0) = 0 and f(1) = 1,
δ : [0, 1]2 → [0, 1] be a restricted dissimilarity function and M : [0, 1]2 → [0, 1] a 0-positive conjunctive
aggregation function. Then, δf,δ,M : [0, 1]2 → [0, 1], defined, for all x, y ∈ [0, 1] by δf,δ,M (x, y) = M(|f(x)−
f(y)|, δ(x, y)) is a restricted dissimilarity function satisfying (P1).

Proof. (1) One has that δf,δ,M is trivially commutative. Moreover:
(2) Suppose that δf,δ,M (x, y) = 1, that is, M(|f(x)− f(y)|, δ(x, y)) = 1. Since M is conjunctive, then

M(|f(x)− f(y)|, δ(x, y)) = 1 ≤ min{|f(x)− f(y)|, δ(x, y)}.

It follows that both |f(x) − f(y)| = 1 and δ(x, y) = 1. Since δ is a restricted dissimilarity function, then
{x, y} = {0, 1}. Conversely, one has that

δf,δ,M (0, 1) = δf,δ,M (1, 0) = M{|f(1)− f(0)|, δ(1, 0)} = M(1, 1) = 1.

(3) Suppose that δf,δ,M (x, y) = 0, that is, M(|f(x) − f(y)|, δ(x, y)) = 0. Since M is 0-positive, then it
follows that either (i) |f(x) − f(y)| = 0 or (ii) δ(x, y) = 0. In the case (i), one has that f(x) = f(y), and,
thus, x = y, since f is strictly increasing. Now, in the case (ii), it is immediate that x = y. Conversely, one
has that:

δf,δ,M (x, x) = M(|f(x)− f(x)|, δ(x, x)) = M(0, 0) = 0.

(4) Suppose that x ≤ y ≤ z. Then, δ(x, y) ≤ δ(x, z), δ(y, z) ≤ δ(x, z) and f(x) ≤ f(y) ≤ f(z). It follows
that (i) f(y)− f(x) ≤ f(z)− f(x) and (ii) f(z)− f(y) ≤ f(z)− f(x). Considering (i), one has that:

δf,δ,M (x, y) = M(|f(x)− f(y)|, δ(x, y)) ≤M(|f(z)− f(x)|, δ(x, z)) = δf,δ,M (x, z).

Now, for (ii), it follows that:

δf,δ,M (y, z) = M(|f(y)− f(z)|, δ(y, z)) ≤M(|f(x)− f(z)|, δ(x, z)) = δf,δ.M (x, z).

Finally, since M is conjunctive, then

δf,δ,M (x, y) = M(|f(x)− f(y)|, δ(x, y)) ≤ min{|f(x)− f(y)|, δ(x, y)} ≤ |f(x)− f(y)|.

Then, by Propositions 3.5, δf,δ,M satisfies (P1).

Example 3.18. Some examples of restricted dissimilarity functions obtained by the construction method
given by Theorem 3.17 are:

(i) Consider the discussion given in Example 2.4. Then, any positive t-norm T may play the role of M , as
TM , TP and THP .

(ii) Observe that any overlap function is positive. Then, taking into account the overlap functions given in
Example 2.6, the conjunctive overlap functions are OmM , OB,α (with α ∈ [0, 1]), Oα (with α ∈ [−1, 1]),
and thus they can be used as the function M .

3.4. d-Choquet integral based on restricted dissimilarity function constructed in terms of implication function

Restricted equivalence function was constructed in terms of implication functions in [6].

Proposition 3.19. [6] Let N : [0, 1] → [0, 1] be a strong negation. A function δ : [0, 1]2 → [0, 1] is a
restricted equivalence function such that δ(x, y) = δ (N(x), N(y)) for all x, y ∈ [0, 1] if and only if there
exists a function I : [0, 1]2 → [0, 1] satisfying (I1), (OP ), (CS) and (NV ), such that

δ(x, y) = max {N(I(x, y)), N(I(y, x))} .
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We are going to construct restricted dissimilarity functions in a more simple way with weaker assumptions
on the used negation.

Theorem 3.20. Let N : [0, 1]→ [0, 1] be a non-filling and non-vanishing negation and I : [0, 1]2 → [0, 1] be a
function satisfying (I1), (OP ), (CS) and (NV ). Let M : [0, 1]2 → [0, 1] be a symmetric aggregation function
such that M(x, y) = 1 if and only if 1 ∈ {x, y}, M(x, y) = 0 if and only if x = y = 0 and M(u, v) ≥M(p, q)
whenever max{u, v} ≥ max{p, q}. Then a function δ : [0, 1]2 → [0, 1] defined, for all x, y ∈ [0, 1], by

δ(x, y) = M (N(I(x, y)), N(I(y, x)))

is a restricted equivalence dissimilarity function.

Proof. 1. The symmetry of δ follows from the symmetry of M .

2. By the assumptions of the theorem, δ(x, y) = 1 if and only if I(x, y) = 0 or I(y, x) = 0 which only
holds if {x, y} = {0, 1}.

3. δ(x, y) = 0 if and only if I(x, y) = I(y, x) = 1 which only holds if x = y.

4. Let x ≤ y ≤ z. Then I(z, x) ≤ I(y, x) ≤ I(x, y) ≤ I(x, z), hence

δ(x, y) = M (N(I(x, y)), N(I(y, x))) ≤M (N(I(x, z)), N(I(z, x))) = δ(x, z).

Similarly for δ(y, z) ≤ δ(x, z).

Remark 3.21. Note that M considered in Theorem 3.20 can be easily shown to have form M(x, y) =
M(max{x, y},max{x, y}), that is M(x, y) = dM (max{x, y}) where dM : [0, 1] → [0, 1] is the diagonal
section of M . Clearly, dM is increasing, dM (x) = 0 if and only if x = 0, and dM (x) = 1 if and only if x = 1.

Remark 3.22. Observe that if M ′ is a bivariate aggregation function such that M ′(x, x) ∈ {0, 1} implies
that x ∈ {0, 1}, then M(x, y) = M ′(max{x, y},max{x, y}) satisfies the conditions of the Theorem 3.20.
Therefore, each positive t-norm and each overlap function generate such aggregation function.

From now on, the d-Choquet integral with respect to a restricted dissimilarity function δ given as in
Theorem 3.20 will be denoted by Cµ,N,I,M , where µ is a fuzzy measure.

Example 3.23. Recall that the d-Choquet integral Cµ,δ has range in [0, 1] if δ satisfies the condition (P1).
Hence, in terms of N , I and M the following hold:

(i) It is easy to check (the justification is made in Corollary 3.27) that Cµ,N,I,M has range in [0, 1] for
I(x, y) = min{1, 1 − x + y}, N(x) = 1 − x and M = max. Note that in this case we obtain the
“standard” Choquet integral.

(ii) Cµ,N,I,M has range in [0, 1] for the same implication as in item (i) with any non-filling and non-
vanishing negation N(x) ≤ 1 − x, for instance N(x) = 1 −

√
x; and any symmetric aggregation

function M(x, y) ≤ max{x, y} satisfying the assumptions of Theorem 3.20, for instance

M(x, y) =

 1, if max{x, y} = 1;

αmax{x, y}, otherwise,

where α ∈]0, 1]. Or, in more general, M(x, y) = g(max{x, y}) where g : [0, 1]→ [0, 1] is an increasing
function such that g(x) = 0 if and only if x = 0, g(x) = 1 if and only if x = 1 and g(x) ≤ x for all
x ∈ [0, 1].

(iii) Cµ,N,I,M has range in [0, 1] for the same N and M as in item (ii) and

I(x, y) =

 1, if x < 1;

y, if x = 1.

11



3.5. Relation between d-Choquet integrals and the “standard” Choquet integral

Clearly, Cµ,δ for the restricted dissimilarity function δ(x, y) = |x−y| is equal to the “standard” Choquet
integral.

Theorem 3.24. Let n be a positive integer, µ : 2[n] → [0, 1] be a fuzzy measure on [n], δ : [0, 1]2 → [0, 1]
be the function δ(x, y) = |x− y|, Cµ,δ : [0, 1]n → [0, 1] be an n-ary discrete d-Choquet integral on [0, 1] with
respect to µ and δ given by Definition 3.1 and Cµ : [0, 1]n → [0, 1] be an n-ary discrete Choquet integral on
[0, 1] with respect to µ given by Equation (3). Then

Cµ,δ(x1, . . . , xn) = Cµ(x1, . . . , xn)

for all x1, . . . , xn ∈ [0, 1].

Proof. Straightforwardly follows from Equations (3) and (4).

Corollary 3.25. Let n be a positive integer, µ : 2[n] → [0, 1] be a fuzzy measure on [n] and δ : [0, 1]2 → [0, 1]
be a restricted equivalence function such that fδ = Id. Then

Cµ,δ∗(x1, . . . , xn) = Cµ,δfδ (x1, . . . , xn) = Cµ(x1, . . . , xn)

for all x1, . . . , xn ∈ [0, 1].

Corollary 3.26. Let n be a positive integer, µ : 2[n] → [0, 1] be a fuzzy measure on [n]. Then

Cµ,Id,Id(x1, . . . , xn) = Cµ(x1, . . . , xn)

for all x1, . . . , xn ∈ [0, 1].

We can also recover the “standard” Choquet integral for appropriate choice ofN , I andM when restricted
dissimilarity function δ is given in terms of implications.

Corollary 3.27. Let n be a positive integer, µ be a fuzzy measure on [n], N : [0, 1] → [0, 1] be defined by
N(x) = 1 − x for all x ∈ [0, 1], M : [0, 1]2 → [0, 1] be the maximum and I : [0, 1]2 → [0, 1] be defined by
I(x, y) = min{1, 1− x+ y} for all x, y ∈ [0, 1]. Then

Cµ,N,I,M (x1, . . . , xn) = Cµ(x1, . . . , xn)

for all x1, . . . , xn ∈ [0, 1].

Proof. The proof follows from Theorem 3.24 and the observation:

δ(x, y) = max {N(I(x, y)), N(I(y, x))} = N (I (max{x, y},min{x, y})) = max{x, y} −min{x, y} = |x− y|.

3.6. Properties of d-Choquet integrals

It is well-known that each Choquet integral is comonotone additive, however, a d-Choquet integral is
comonotone additive only if δ is comonotone additive.

Theorem 3.28. Let n ≥ 2 be an integer. An n-ary d-Choquet integral Cµ,δ given by Definition 3.1 is
comonotone additive for any fuzzy measure µ on [n] if and only if the restricted dissimilarity function δ is
comonotone additive.
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Proof. ⇐ Let δ be comonotone additive. Then for any comonotone vectors (x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n

such that (x1 + y1, . . . , xn + yn) ∈ [0, 1]n we have

Cµ,δ(x1 + y1, . . . , xn + yn) =

n∑
i=1

δ(xσ(i) + yσ(i), xσ(i−1) + yσ(i−1))µ
(
Aσ(i)

)

=

n∑
i=1

δ(xσ(i), xσ(i−1))µ
(
Aσ(i)

)
+

n∑
i=1

δ(yσ(i), yσ(i−1))µ
(
Aσ(i)

)
= Cµ,δ(x1, . . . , xn) + Cµ,δ(y1, . . . , yn).

⇒ Since Cµ,δ is comonotone additive for each fuzzy measure µ then, in particular, it is comonotone
additive for the fuzzy measures µ⊥, µ> : 2[n] → [0, 1] defined, respectively, by:

µ⊥(A) =

 1 if A = [n];

0 if A 6= [n]
(5)

µ>(A) =

 1 if A 6= ∅;
0 if A = ∅.

(6)

Let (x1, x2), (y1, y2) ∈ [0, 1]2 be comonotone ordered pairs such that (x1+y1, x2+y2) ∈ [0, 1]2. Then, one has
that (x1, . . . , x1, x2), (y1, . . . , y1, y2) ∈ [0, 1]n are comonotone vectors such that (x1+y1, . . . , x1+y1, x2+y2) ∈
[0, 1]n. It follows that

δ(xσ(1), 0) + δ(yσ(1), 0) = Cµ⊥,δ(x1, . . . , x1, x2) + Cµ⊥,δ(y1, . . . , y1, y2)

= Cµ⊥,δ(x1 + y1, . . . , x1 + y1, x2 + y2) (since Cµ⊥,δ is comonotone additive)

= δ(xσ(1) + yσ(1), 0)

On the other hand, one has that

δ(x1, x2) + δ(y1, y2) = Cµ>,δ(x1, . . . , x1, x2) + Cµ⊥,δ(y1, . . . , y1, y2)− (δ(xσ(1), 0) + δ(yσ(1), 0))

= Cµ>,δ(x1 + y1, . . . , x1 + y1, x2 + y2)− (δ(xσ(1), 0) + δ(yσ(1), 0))

(since Cµ>,δ is comonotone additive)

= Cµ>,δ(x1 + y1, . . . , x1 + y1, x2 + y2)− δ(xσ(1) + yσ(1), 0))

= δ(x1 + y1, x2 + y2)

Therefore, δ is comonotone additive.

Corollary 3.29. Let n ≥ 2 be an integer. An n-ary d-Choquet integral Cµ,δ given by Definition 3.1 is
comonotone additive, for any fuzzy measure µ on [n] if and only if δ(x, y) = |x− y| for all x, y ∈ [0, 1].

Proof. ⇒ Observe that binary monotone function is additive if and only if it is a polynomial of degree 1, see
[23]. Hence, on the domain S1 = {[x, y] |x ≤ y}, δ is additive if and only if δ(x, y) = ax+ by + c and from
the conditions δ(0, 0) = δ(1, 1) = 0, δ(0, 1) = 1 it follows that δ(x, y) = y − x on S1. From the symmetry of
δ it follows that δ(x, y) = x− y on the domain S2 = {[x, y] | y ≤ x}, hence δ(x, y) = |x− y| on [0, 1]2.
⇐ The proof in this direction is obvious.

Remark 3.30. (i) It is worth pointing out that according to Corollary 3.29 and Theorem 3.24 the only
comonotone additive d-Choquet integral with respect to an arbitrary considered fuzzy measure µ on [n]
given by Definition 3.1 is the “standard” Choquet integral, i.e. the d-Choquet integral w.r.t. the restricted
dissimilarity function δ(x, y) = |x− y|. However, we point out that there may exist a restricted dissimilarity
function δ′ different from δ(x, y) = |x− y|, such that, for some specific fuzzy measure µ′, it holds that Cµ′,δ′
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is comonotone additive. For example, this happens when one considers the fuzzy measure µ⊥ defined in
Equation (5) and the restricted dissimilarity function δ√(x, y) = (

√
x−√y)2. In fact, for the fuzzy measure

µ⊥, the corresponding Cµ⊥,δ is comonotone additive if and only if δ(0, x + y) = δ(0, x) + δ(0, y), for all
x, y ∈ [0, 1] such that x + y ∈ [0, 1]. In particular, if δ(x, 0) = x, for all x ∈ [0, 1], then Cµ⊥,δ is minimum,
i.e., it is a “standard” Choquet integral with respect to µ⊥

(ii) For any δ and µ, the d-Choquet integral gives back the measure, i.e., for any subset E of [n],
Cµ,δ(1E) = µ(E), where 1E denotes the n-tuple which takes the value 1 at position i if i ∈ E and 0
otherwise.

(iii) If δ(x, y) = |g(x) − g(y)| for some g : [0, 1] → [0, 1] strictly increasing, such that g(x) = 0 and
g(1) = 1, then Cµ,δ(x1, . . . , xn) = Cµ(g(x1), . . . , g(xn))

Another property of the Choquet integral is idempotency. In the following theorem we show that Cµ,δ
is idempotent only if δ has neutral element 0.

Theorem 3.31. Let n be a positive integer. An n-ary d-Choquet integral Cµ,δ given by Definition 3.1 is
idempotent for any fuzzy measure µ on [n] if and only if the restricted dissimilarity function δ satisfies
δ(0, x) = x for all x ∈ [0, 1].

Proof. Observe that
Cµ,δ(x, . . . , x) = δ(0, x)µ ({1, . . . , n}) = δ(0, x)

and the proof is obvious.

Corollary 3.32. Let δ be a restricted dissimilarity function, n be a positive integer and µ be a fuzzy measure
on [n]. The following statements are equivalent:

1. Cµ,δ is idempotent;

2. fδ = Id; and

3. Cµ,δ∗ = Cµ.

Proof. (1⇒ 2) For each x ∈ [0, 1], by Theorem 3.31, it holds that fδ(x) = δ(x, 0) = x = Id(x).

(2⇒ 3) For each x1, . . . , xn ∈ [0, 1], one has that

Cµ,δ∗(x1, . . . , xn) =

n∑
i=1

δ∗(xσ(i), xσ(i−1))µ(Aσ(i))

=

n∑
i=1

|fδ(xσ(i))− fδ(xσ(i−1))|µ(Aσ(i))

=

n∑
i=1

(xσ(i) − xσ(i−1))µ(Aσ(i))

= Cµ(x1, . . . , xn).

(3⇒ 1) For each x ∈ [0, 1], it holds that

Cµ,δ(x, . . . , x) = δ(x, 0) = fδ(x) = Cµ,δ∗(x, . . . , x) = Cµ(x, . . . , x) = x.

Corollary 3.33. Let n be a positive integer and ϕ1, ϕ2 : [0, 1]→ [0, 1] be automorphisms of [0, 1]. An n-ary
d-Choquet integral Cµ,ϕ1,ϕ2

is idempotent for any fuzzy measure µ on [n] if and only if ϕ1 = ϕ2.
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Proof. The proof follows from the observation:

δ(0, x) = ϕ−11

(
ϕ2(x)− ϕ2(0)

)
= ϕ−11

(
ϕ2(x)

)
.

Corollary 3.34. Let n be a positive integer, N : [0, 1] → [0, 1] a strong negation and I : [0, 1]2 → [0, 1] an
implication function. An n-ary d-Choquet integral Cµ,N,I,max given as in Theorem 3.20 is idempotent for
any fuzzy measure µ on [n] if and only if I(x, 0) = N(x) for all x ∈ [0, 1].

Proof. The proof follows from the observation:

δ(0, x) = max
{
N (I(0, x)) , N (I(x, 0))

}
= N (I(x, 0)) .

Now observe that a d-Choquet integral Cµ,δ is self-dual whenever the fuzzy measure µ is self-dual, i.e.
µ ([n] \A) = 1− µ(A) for all A ⊆ [n], and the restricted dissimilarity function δ satisfies certain conditions.

Theorem 3.35. Let n be a positive integer. An n-ary d-Choquet integral Cµ,δ given by Definition 3.1
is self-dual if the fuzzy measure µ on [n] is self-dual and the restricted dissimilarity function δ satisfies
δ(1−x, 1−y) = δ(x, y) for all x, y ∈ [0, 1] and δ(0, x1)+δ(x1, x2)+. . .+δ(xn, 1) = 1 for all x1, . . . , xn ∈ [0, 1]
such that x1 ≤ . . . ≤ xn.

Proof. The proof for n = 1 is obvious. Now let n ≥ 2 and let σ be a permutation on [n] with xσ(1) ≤ . . . ≤
xσ(n), with the convention xσ(0) = 0, xσ(n+1) = 1, Aσ(i) := {σ(i), . . . , σ(n)} and Aσ(n+1) = ∅. Consider yi =
1−xi, σ′(i) = σ(n+1−i) and Bσ′(i) := {σ′(i), . . . , σ′(n)} for each i ∈ [n]. Observe that, yσ′(i) = 1−xσ(n+1−i)
and therefore yσ′(1) ≤ . . . ≤ yσ′(n). So, one has that Bσ′(i) = {σ(1), . . . , σ(n+ 1− i)} = [n] \ Aσ(n+2−i). In
addition, consider that, by convention, yσ′(0) = 0 or, equivalently, that xσ(n+1) = 1. Then we have

Cµ,δ(1− x1, . . . , 1− xn) = Cµ,δ(y1, . . . , yn)

=

n∑
i=1

δ(yσ′(i), yσ′(i−1))µ
(
Bσ′(i)

)
=

n∑
i=1

δ(1− xσ(n+1−i), 1− xσ(n+2−i))µ
(
[n] \Aσ(n+2−i)

)
= δ

(
1− xσ(n), 1− xσ(n+1)

)
µ
(
[n] \Aσ(n+1)

)
+ δ

(
1− xσ(n−1), 1− xσ(n)

)
µ
(
[n] \Aσ(n)

)
+ . . .

+δ
(
1− xσ(2), 1− xσ(3)

)
µ
(
[n] \Aσ(3)

)
+ δ

(
1− xσ(1), 1− xσ(2)

)
µ
(
[n] \Aσ(2)

)
=

(
δ
(
xσ(n), xσ(n+1)

))
(1− µ (∅)) + δ

(
xσ(n−1), xσ(n)

) (
1− µ

(
Aσ(n)

))
+ . . .

+δ
(
xσ(2), xσ(3)

) (
1− µ

(
Aσ(3)

))
+ δ

(
xσ(1), xσ(2)

) (
1− µ

(
Aσ(2)

))
=

(
δ
(
xσ(1), xσ(2)

)
+ . . .+ δ

(
xσ(n), xσ(n+1)

) )
−
(
δ
(
xσ(n−1), xσ(n)

)
µ
(
Aσ(n)

)
+ . . .

+δ
(
xσ(1), xσ(2)

)
µ
(
Aσ(2)

) )
=

(
δ
(
xσ(0), xσ(1)

)
+ δ

(
xσ(1), xσ(2)

)
+ . . .+ δ

(
xσ(n), xσ(n+1)

) )
−
(
δ
(
xσ(n−1), xσ(n)

)
µ
(
Aσ(n)

)
+ . . .

+δ
(
xσ(1), xσ(2)

)
µ
(
Aσ(2)

)
+ δ

(
xσ(0), xσ(1)

)
µ
(
Aσ(1)

) )
= 1− Cµ,δ(x1, . . . , xn).

Corollary 3.36. Let n be a positive integer and δ be a restricted dissimilarity function such that fδ is
injective and self-dual. Then Cµ,δ∗ is self-dual if the fuzzy measure µ on [n] is self-dual.
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Proof. Since fδ is injective then, by Theorem 3.8, δ∗ is a restricted dissimilarity function. Consider x, y ∈
[0, 1]. Then, since fδ is self-dual, δ∗(x, y) = |fδ(x)− fδ(y)| = |fδ(1− x)− fδ(1− y)|δ∗(1− x, 1− y) and

δ∗(0, x1)+δ∗(x1, x2)+ . . .+δ∗(xn, 1) = δ(x1, 0)+δ(x2, 0)−δ(x1, 0)+ . . .+δ(1, 0)−δ(xn, 0) = δ(1, 0) = 1,

for all x1, . . . , xn ∈ [0, 1] such that x1 ≤ . . . ≤ xn. Therefore, from Theorem 3.35, Cµ,δ∗ is self-dual.

Corollary 3.37. Let n be a positive integer and ϕ1, ϕ2 : [0, 1]→ [0, 1] be automorphisms of [0, 1]. An n-ary
d-Choquet integral Cµ,ϕ1,ϕ2 is self-dual if the fuzzy measure µ on [n] satisfies µ ([n] \A) = 1− µ(A) for all
A ⊆ [n], ϕ1 = Id and

ϕ2(x) =

 ϕ(x), if x ∈ [0, 1/2];

1− ϕ(1− x), if x ∈]1/2, 1],

where ϕ is an automorphism of [0, 1/2].

Proof. It is easy to check that ϕ1 = Id implies δ(0, x1) + δ(x1, x2) + . . .+ δ(xn, 1) = 1 for all 0 ≤ x1 ≤ . . . ≤
xn ≤ 1. Moreover, since

• ϕ2(1/2) = 1/2;

• if x ∈ [0, 1/2[, then ϕ2(x) = ϕ(x) and ϕ2(1− x) = 1− ϕ(x);

• if x ∈]1/2, 1], then ϕ2(x) = 1− ϕ(1− x) and ϕ2(1− x) = ϕ(1− x),

we have ϕ2(1− x) = 1− ϕ2(x) for all x ∈ [0, 1]. Then

δ(1− x, 1− y) = ϕ−11

(
|ϕ2(1− x)− ϕ2(1− y)|

)
= |1− ϕ2(x)− 1 + ϕ2(y)| = δ(x, y).

Remark 3.38. Note that from the geometrical point of view, the point (1/2, 1/2) is the center of symmetry
of the function ϕ2 in Corollary 3.37. Moreover, ϕ2 is a generator of the standard negation, that is

ϕ−12

(
1− ϕ2(x)

)
= 1− x.

Lemma 3.39. Let n ≥ 2 be an integer, µ be a fuzzy measure on [n] and δ be a restricted dissimilarity
function. If Cµ,δ given by Definition 3.1 is shift-invariant then δ(x+ y, 0) = y+ δ(x, 0), for each x, y ∈ [0, 1]
such that x+ y ∈ [0, 1].

Proof. Consider x, y ∈ [0, 1] such that x+ y ∈ [0, 1]. Then one has that

Cµ,δ(x+ y, . . . , x+ y) = δ(x+ y, 0)µ
(
Aσ(1)

)
+

n∑
i=2

δ(x+ y, x+ y)µ
(
Aσ(i)

)
= δ(x+ y, 0)

and, similarly, Cµ,δ(x, . . . , x) = δ(x, 0). Then, since Cµ,δ is an n-ary shift-invariant d-Choquet integral, it
follows that:

δ(x+ y, 0) = Cµ,δ(x+ y, . . . , x+ y) = y + Cµ,δ(x, . . . , x) = y + δ(x, 0).

In the following theorem, the shift-invariancy of the d-Choquet integral is studied and demanded prop-
erties of the restricted dissimilarity measure δ are stated.

Theorem 3.40. Consider the fuzzy measure µ⊥ defined by Equation (5). Let n ≥ 2 be an integer, µ be a
fuzzy measure on [n] such that µ 6= µ⊥ and δ be a restricted dissimilarity function. The n-ary d-Choquet
integral Cµ,δ given by Definition 3.1 is shift-invariant if and only if
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1. δ(x1 + y, x2 + y) = δ(x1, x2), for all x1, x2, y ∈ [0, 1] such that x1 + y, x2 + y ∈ [0, 1];

2. δ(x, 0) = x, for all x ∈ [0, 1].

Proof. First observe that any permutation σ on [n] which order the vector (x1, . . . , xn) also order the vector
(x1 + y, . . . , xn + y).
⇐ Let δ satisfy the two properties and µ be a fuzzy measure on [n] such that µ 6= µ⊥. Then it follows that

Cµ,δ(x1 + y, . . . , xn + y) = δ(xσ(1) + y, 0)µ
(
Aσ(1)

)
+

n∑
i=2

δ(xσ(i) + y, xσ(i−1) + y)µ
(
Aσ(i)

)
=

(
y + δ(xσ(1), 0)

)
µ
(
Aσ(1)

)
+

n∑
i=2

δ(xσ(i), xσ(i−1))µ
(
Aσ(i)

)
= y + δ(xσ(1), 0) +

n∑
i=2

δ(xσ(i), xσ(i−1))µ
(
Aσ(i)

)
= y +

n∑
i=1

δ(xσ(i), xσ(i−1))µ
(
Aσ(i)

)
= y + Cµ,δ(x1, . . . , xn),

and, thus, Cµ,δ is shift-invariant.
⇒ From Lemma 3.39, since Cµ,δ is shift-invariant, then, for each x ∈ [0, 1], one has that δ(0 + x, 0) =
x+ δ(0, 0) = x. Now, consider x1, x2, y ∈ [0, 1] such that x1 + y, x2 + y ∈ [0, 1]. Without loss of generality,
since δ is commutative, we can assume that x1 ≤ x2. Then, one has that

Cµ,δ(x2 + y, . . . , x2 + y, x1 + y, x2 + y, . . . , x2 + y)

= δ(x1 + y, 0)µ
(
Aσ(1)

)
+ δ(x1 + y, x2 + y)µ

(
Aσ(2)

)
+

n∑
i=3

δ(x2 + y, x2 + y)µ
(
Aσ(i)

)
= δ(x1 + y, 0) + δ(x1 + y, x2 + y)µ

(
Aσ(2)

)
= y + δ(x1, 0) + δ(x1 + y, x2 + y)µ

(
Aσ(2)

)
by Lemma 3.39

and, similarly,

Cµ,δ(x2, . . . , x2, x1, x2 . . . , x2) = δ(x1, 0) + δ(x1, x2)µ
(
Aσ(2)

)
. (7)

Since µ 6= µ⊥, then there exists i0 ∈ [n] such that µ([n] − {i0}) > 0. So, consider zi = x2 if i 6= i0 and
zi0 = x1. Then any permutation σ on [n] ordering (z1, . . . , zn) (and therefore also (z1 + y, . . . , zn + y))
is such that σ(1) = i0, which implies that Aσ(2) = [n] − {i0}, that is µ(Aσ(2)) > 0. Then, since Cµ,δ is
shift-invariant, it follows that:

δ(x1 + y, x2 + y) = δ(zσ(1) + y, zσ(2) + y)

=
Cµ,δ(z1 + y, . . . , zn + y)− δ(zσ(1) + y, 0)

µ
(
Aσ(2)

)
=

y + Cµ,δ(z1, . . . , z2)− y − δ(zσ(1), 0)

µ
(
Aσ(2)

) by Lemma 3.39

=
δ(zσ(1), 0) + δ(zσ(1), zσ(2))µ

(
Aσ(2)

)
− δ(zσ(1), 0)

µ
(
Aσ(2)

) by Eq. (7)

= δ(zσ(1), zσ(2))

= δ(x1, x2).
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Corollary 3.41. Let n ≥ 2 be an integer, µ be a fuzzy measure on [n] and δ be a restricted equivalence
function. The n-ary d-Choquet integral Cµ,δ given by Definition 3.1 is shift-invariant if and only if Cµ,δ =
Cµ.

Proof. It follows that:
⇐ Straightforward, since each Choquet integral is shift-invariant for any fuzzy measure µ.
⇒ Let δ be a restricted equivalence function and µ be a fuzzy measure on [n] such that Cµ,δ is an n-ary
shift-invariant d-Choquet integral. If µ = µ⊥ then, by Lemma 3.39, for each x1, . . . , xn ∈ [0, 1], it holds that
δ(xσ(1), 0) = xσ(1) + δ(0, 0) = xσ(1). Thus, we have that

Cµ⊥,δ(x1, . . . , xn) = δ(xσ(1), 0) = xσ(1) = Cµ⊥(x1, . . . , xn).

Therefore, Cµ,δ = Cµ. Now, if µ 6= µ⊥ then, by Theorem 3.40, for each x1, x2, y ∈ [0, 1] such that
x1 + y, x2 + y ∈ [0, 1], we have that δ(x1, 0) = x1 and δ(x1 + y, x2 + y) = δ(x1, x2). So, taking x2 = 0, we
obtain δ(x1 + y, y) = δ(x1, 0) = x1, for all x1, y ∈ [0, 1] with x1 + y ≤ 1. Hence, one has that δ(x, y) = x− y,
for all x, y ∈ [0, 1] with x ≥ y. Similarly, it can be shown that δ(x, y) = y−x, for all x, y ∈ [0, 1] with x ≤ y,
and, thus δ(x, y) = |x− y|, for all x, y ∈ [0, 1]. Therefore, Cµ,δ = Cµ.

Remark 3.42. (i) According to Corollary 3.41, the situation with shift-invariancy is the same as with the
comonotone additivity. The only shift-invariant d-Choquet integral Cµ,δ is the “standard” Choquet integral,
i.e. the d-Choquet integral w.r.t. the restricted dissimilarity function δ(x, y) = |x− y|.

(ii) With respect to automorphisms, the only shift-invariant d-Choquet integral Cµ,ϕ1,ϕ2 is Cµ,Id,Id. This
can be shown by the following: for x1 ≥ x2 the condition δ(x1 + y, x2 + y) = δ(x1, x2) is equivalent with

ϕ−11

(
ϕ2(x1 + y)− ϕ2(x2 + y)

)
= ϕ−11

(
ϕ2(x1)− ϕ2(x2)

)
(8)

which is equivalent with ϕ2(x1 + y) − ϕ2(x2 + y) = ϕ2(x1) − ϕ2(x2). For x2 = 0 we obtain ϕ2(x1 + y) =
ϕ2(x1) + ϕ2(y), thus Equation (8) holds if and only if ϕ2 is additive, i.e., ϕ2 = Id. The case x1 ≤ x2 is
similar. Now observe that δ(x+ y, 0) = y + δ(x, 0) is equivalent with

ϕ−11

(
ϕ2(x+ y)

)
= y + ϕ−11

(
ϕ2(x)

)
. (9)

Setting x = 0 we obtain ϕ−11

(
ϕ2(y)

)
= y, hence, Equation (9) holds if and only if ϕ1 = ϕ2. Note that the

assertions also straightforwardly follows from Corollary 3.41.

The homogeneity of a d-Choquet integral is strongly related to the homogeneity of the relevant restricted
dissimilarity function.

Theorem 3.43. Let n be a positive integer. An n-ary d-Choquet integral Cµ,δ given by Definition 3.1 is
positively homogeneous for any fuzzy measure µ on [n] if and only if the restricted dissimilarity function δ
is positively homogeneous.

Proof. The proof is straightforward.

Corollary 3.44. Let n be a positive integer and δ be a restricted dissimilarity function. If δ is positively
homogeneous then Cµ,δ∗ = Cµ, and, therefore, it is positively homogeneous for any fuzzy measure µ on [n].

Proof. Immediate, since whenever δ is positively homogeneous then fδ = Id.

Lemma 3.45. Let ϕ be an automorphism of [0, 1]. Then the following assertions are equivalent:

(i) ϕ(cx) = ϕ(c)ϕ(x) for all c, x ∈ [0, 1];

(ii) ϕ−1 (ϕ(cx)− ϕ(cy)) = cϕ−1 (ϕ(x)− ϕ(y)) for all c, x, y ∈ [0, 1] where x ≥ y.
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Proof. (i) ⇒ (ii) Since (i) is Cauchy equation and its unique solutions are ϕ(x) = xa where a ∈]0,∞[, we
have:

ϕ−1 (ϕ(cx)− ϕ(cy)) = ((cx)a − (cy)a)
1
a = c (xa − ya)

1
a cϕ−1 (ϕ(x)− ϕ(y)) .

(ii) ⇒ (i) Let (ii) holds and let us consider a fixed c. Then

ϕ

(
1

c
ϕ−1 (ϕ(cx)− ϕ(cy))

)
= ϕ(x)− ϕ(y),

setting u = cx and v = cy we obtain

ϕ

(
1

c
ϕ−1 (ϕ(u)− ϕ(v))

)
= ϕ

(
1

c
u

)
− ϕ

(
1

c
v

)
and setting t = ϕ(u), r = ϕ(v) we have

ϕ

(
1

c
ϕ−1 (t− r)

)
= ϕ

(
1

c
ϕ−1(t)

)
− ϕ

(
1

c
ϕ−1(r)

)
.

Now let as denote gc(z) = ϕ
(
1
c ϕ
−1 (z)

)
. Hence,

gc (t− r) = gc(t)− gc(r)

and denoting a = t− r we obtain
gc (a) + gc(r) = gc(a+ r).

Since the last formula is Cauchy equation, we have gc(a) = pca for all a ∈ [0, 1] and from gc(ϕ(cx)) = ϕ(x) it
follows ϕ(x) = pcϕ(cx). For a = 1 we receive pc = gc(1) = ϕ

(
1
c

)
, thus ϕ(x) = ϕ

(
1
c

)
ϕ(cx). Finally, setting

r = 1
c and s = cx, it follows ϕ(rs) = ϕ(r)ϕ(s) and the proof is complete.

Corollary 3.46. Let n be a positive integer. An n-ary d-Choquet integral Cµ,ϕ1,ϕ2
is positively homogeneous

for any fuzzy measure µ on [n] if and only if ϕ1 = ϕ2 and ϕ2(λx) = ϕ2(λ)ϕ2(x) for all λ, x ∈ [0, 1].

Proof. The homogeneity of δ, i.e.,
δ(λx, λy) = λδ(x, y)

is, for x ≥ y, equivalent to

ϕ−11

(
ϕ2(λx)− ϕ2(λy)

)
= λϕ−11

(
ϕ2(x)− ϕ2(y)

)
Setting x = 1 and y = 0 we obtain

ϕ−11

(
ϕ2(λ)

)
= λϕ−11

(
1
)

= λ,

for all λ ∈ [0, 1], hence ϕ1 = ϕ2. Moreover, by Lemma 3.45, it follows that

ϕ−12

(
ϕ2(λx)− ϕ2(λy)

)
= λϕ−12

(
ϕ2(x)− ϕ2(y)

)
is equivalent to ϕ2(λx) = ϕ2(λ)ϕ2(x) for all λ, x ∈ [0, 1].

The proof for x ≤ y is similar.

Remark 3.47. (i) Note that ϕ2(λx) = ϕ2(λ)ϕ2(x) is a Cauchy equation with the only solutions ϕ2(x) = xp

for some p > 0. Then δp(x, y) = |xp−yp|
1
p . Observe that, in particular, δp satisfies (P1) if and only if p ≤ 1.

(ii) From Corollary 3.46 and Corollary 3.33 it follows that a d-Choquet integral Cµ,ϕ1,ϕ2
is idempotent

whenever it is positively homogeneous.
(iii) The only d-Choquet integral Cµ,δ (or Cµ,ϕ1,ϕ2) which is idempotent, comonotone additive, self-dual,

shift-invariant and positively homogeneous is the one for δ(x, y) = |x − y| (or Cµ,Id,Id) where the fuzzy
measure µ satisfies µ ([n] \A) = 1−µ(A) for all A ⊆ [n], that is, “standard” Choquet integral w.r.t. a fuzzy
measure µ being self-dual.
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Example 3.48. (i) Let us consider the restricted dissimilarity function δ(x, y) =
(√
x−√y

)2
. Since δ can

be obtained in terms of automorphisms ϕ1(x) = ϕ2(x) =
√
x, it is easy to check that the d-Choquet integral

Cµ,
√
x,
√
x is idempotent and positively homogeneous for any fuzzy measure µ.

(ii) Now let µ(A) = |A|
n for all A ⊆ [n], ϕ1 = Id and

ϕ2(x) =

 2x2, if x ∈ [0, 1/2];

−2x2 + 4x− 1, if x ∈]1/2, 1].

Then Cµ,Id,ϕ2
is self-dual. For instance,

Cµ,Id,ϕ2
(0.9, 0.2, 0.4) = 0.46

and
Cµ,Id,ϕ2

(0.1, 0.8, 0.6) = 0.54.

(iii) Let us consider the smallest fuzzy measure µ⊥ given by µ⊥([n]) = 1 and µ⊥(A) = 0 for any A ⊂ [n].
Then

Cµ⊥,δ(x1, . . . , xn) = δ(min{x1, . . . , xn}, 0)

for any restricted dissimilarity function δ.
If we take the biggest fuzzy measure µ> given by µ>(∅) = 0 and µ>(A) = 1 for any non-empty subset

A of [n], we have that

Cµ>,δ(x1, . . . , xn) =
∑

δ(xσ(i), xσ(i−1))

for any restricted dissimilarity function δ.
(iv) For n = 3, let µmed be the fuzzy measure defined by µmed(E) = 0 if the cardinal of E is smaller

than or equal to 1, and µmed(E) = 1 otherwise. Then

Cµmed,δ(x1, x2, x3) = δ(min{x1, x2, x3}, 0) + δ(med(x1, x2, x3),min{x1, x2, x3})

for any restricted dissimilarity function δ, where med denotes the median of the considered inputs.

4. Averageness and monotonicity of d-Choquet integrals

In this section we show that unlike “standard” Choquet integrals, the d-Choquet integrals are neither
averaging nor monotone in general. We also deal with directional monotonicity and study conditions under
which the d-Choquet integrals are pre-aggregation functions.

4.1. Averageness

Theorem 4.1. Let n be a positive integer, µ be a fuzzy measure on [n], δ be a restricted dissimilarity
function and Cµ,δ be the n-ary d-Choquet integral with respect to µ and δ. Then the following assertions are
equivalent:

(i) There exist x1, . . . , xn ∈ [0, 1] such that Cµ,δ(x1, . . . , xn) < min{x1, . . . , xn}.
(ii) There exists x ∈ [0, 1] such that δ(x, 0) < x.

Proof. (ii) ⇒ (i) Let x ∈ [0, 1] be such that δ(x, 0) < x. Then Cµ,δ(x, . . . , x) = δ(x, 0) < x.
(i)⇒ (ii) Let x1, . . . , xn ∈ [0, 1] be such that Cµ,δ(x1, . . . , xn) < min{x1, . . . , xn}. The proof follows from

the observations that

Cµ,δ(x1, . . . , xn) = δ(xσ(1), 0) +

n∑
i=2

δ(xσ(i), xσ(i−1))µ
(
Aσ(i)

)
≥ δ(xσ(1), 0)

and
Cµ,δ(x1, . . . , xn) < xσ(1).
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Corollary 4.2. Let n be a positive integer, µ be a fuzzy measure on [n] and let δ : [0, 1]2 → [0, 1] be a
restricted dissimilarity function given in terms of automorphisms ϕ1, ϕ2 as in Proposition 3.11. Let Cµ,ϕ1,ϕ2

be the n-ary d-Choquet integral with respect to µ and δ. Then the following assertions are equivalent:

(i) There exist x1, . . . , xn ∈ [0, 1] such that Cµ,ϕ1,ϕ2(x1, . . . , xn) < min{x1, . . . , xn}.
(ii) There exists x ∈ [0, 1] such that ϕ1(x) > ϕ2(x).

Proof. The proof follows from Theorem 4.4, the equality δ(x, 0) = ϕ−11 (ϕ2(x)) and the fact that ϕ−11 (ϕ2(x)) <
x if and only if ϕ1(x) > ϕ2(x).

Theorem 4.3. Let n be a positive integer, µ be a fuzzy measure on [n], δ be a restricted dissimilarity
function and Cµ,δ be the n-ary d-Choquet integral with respect to µ and δ. Then the property:

(i) There exist x1, . . . , xn ∈ [0, 1] such that Cµ,δ(x1, . . . , xn) > max{x1, . . . , xn}.

holds whenever the following property holds:

(ii) There exists x ∈ [0, 1] such that δ(x, 0) > x.

Moreover, if Cµ,δ(x1, . . . , xn) ≤ Cµ,δ(y1, . . . , yn) whenever x1 ≤ y1, . . . , xn ≤ yn, then (i) and (ii) are
equivalent.

Proof. (ii) ⇒ (i) Let x ∈ [0, 1] be such that δ(x, 0) > x. Then Cµ,δ(x, . . . , x) = δ(x, 0) > x.
(i) ⇒ (ii) Let x1, . . . , xn ∈ [0, 1] be such that Cµ,δ(x1, . . . , xn) > max{x1, . . . , xn}. The proof follows

from the observations that

xσ(n) < Cµ,δ(x1, . . . , xn) ≤ Cµ,δ(xσ(n), . . . , xσ(n)) = δ(xσ(n), 0).

Corollary 4.4. Let n be a positive integer, µ be a fuzzy measure on [n] and let δ : [0, 1]2 → [0, 1] be a
restricted dissimilarity function given in terms of automorphisms ϕ1, ϕ2 as in Proposition 3.11. Let Cµ,ϕ1,ϕ2

be the n-ary d-Choquet integral with respect to µ and δ. Then the property:

(i) There exist x1, . . . , xn ∈ [0, 1] such that Cµ,ϕ1,ϕ2
(x1, . . . , xn) > max{x1, . . . , xn}.

holds whenever the following property holds:

(ii) There exists x ∈ [0, 1] such that ϕ1(x) < ϕ2(x).

Moreover, if Cµ,δ(x1, . . . , xn) ≤ Cµ,δ(y1, . . . , yn) whenever x1 ≤ y1, . . . , xn ≤ yn, then (i) and (ii) are
equivalent.

Proof. The proof follows from Theorem 4.1, the equality δ(x, 0) = ϕ−11 (ϕ2(x)) and the fact that ϕ−11 (ϕ2(x)) >
x if and only if ϕ1(x) < ϕ2(x).

Having these results in hands we can state the sufficient and necessary condition under which a d-Choquet
integral is averaging.

Theorem 4.5. Let n be a positive integer, µ be a fuzzy measure on [n], δ be a restricted dissimilarity function
and Cµ,δ be the n-ary d-Choquet integral with respect to µ and δ such that Cµ,δ(x1, . . . , xn) ≤ Cµ,δ(y1, . . . , yn)
whenever x1 ≤ y1, . . . , xn ≤ yn. Then the following assertions are equivalent:

(i) min{x1, . . . , xn} ≤ Cµ,δ(x1, . . . , xn) ≤ max{x1, . . . , xn} for all x1, . . . , xn ∈ [0, 1].

(ii) δ(x, 0) = x for all x ∈ [0, 1].

Proof. Immediately follows from Theorem 4.1 and Theorem 4.3.

Corollary 4.6. Let n be a positive integer, µ be a fuzzy measure on [n] and let δ : [0, 1]2 → [0, 1] be a
restricted dissimilarity function. Then min ≤ Cµ,δ ≤ max if and only if Cµ,δ∗ = Cµ.
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Proof. Straightforward from Theorem 4.5 and the fact that δ(x, 0) = x for all x ∈ [0, 1] if and only if
δ∗(x, y) = |x− y|.

Theorem 4.7. Let n be a positive integer, µ be a fuzzy measure on [n] and let δ : [0, 1]2 → [0, 1] be a
restricted dissimilarity function given in terms of automorphisms ϕ1, ϕ2 as in Proposition 3.11. Let Cµ,ϕ1,ϕ2

be the n-ary d-Choquet integral with respect to µ and δ such that Cµ,ϕ1,ϕ2(x1, . . . , xn) ≤ Cµ,ϕ1,ϕ2(y1, . . . , yn)
whenever x1 ≤ y1, . . . , xn ≤ yn. Then the following assertions are equivalent:

(i) min{x1, . . . , xn} ≤ Cµ,ϕ1,ϕ2
(x1, . . . , xn) ≤ max{x1, . . . , xn} for all x1, . . . , xn ∈ [0, 1].

(ii) ϕ1(x) = ϕ2(x) for all x ∈ [0, 1].

Proof. Immediately follows from Corollary 4.2 and Corollary 4.4.

Note that in this case Cµ,ϕ1,ϕ2
can be represented as a ϕ1-transform of the standard Choquet integral

Cµ.

4.2. Monotonicity

Now we give the sufficient and necessary condition under which a d-Choquet integral is increasing. Note
that, since, by Remark 3.7, the boundary conditions are satisfied, any increasing d-Choquet integral is an
aggregation function.

Theorem 4.8. Let n be a positive integer, δ be a restricted dissimilarity function and Cµ,δ be an n-ary
d-Choquet integral with respect to µ and δ. Then the following assertions are equivalent:

(i) For any fuzzy measure µ on [n], Cµ,δ(x1, . . . , xn) ≤ Cµ,δ(y1, . . . , yn) whenever x1 ≤ . . . ≤ xn, y1 ≤
. . . ≤ yn, x1 ≤ y1, . . . , xn ≤ yn.

(ii) δ(0, x1) + δ(x1, x2) + . . . + δ(xm−1, xm) ≤ δ(0, y1) + δ(y1, y2) + . . . + δ(ym−1, ym) for all m ∈ [n] and
x1, . . . , xm, y1, . . . , ym ∈ [0, 1] where x1 ≤ . . . ≤ xm, y1 ≤ . . . ≤ ym, x1 ≤ y1, . . . ,≤ xm ≤ ym.

Proof. (ii) ⇒ (i) Let x1, . . . , xn, y1, . . . , yn ∈ [0, 1] be such that x1 ≤ . . . ≤ xn, y1 ≤ . . . ≤ yn, x1 ≤
y1, . . . , xn ≤ yn. For simplicity let us denote µ({k, k + 1, . . . , n}) by µk for all k ∈ [n]. From (ii) it follows
(µ1 − µ2)δ(0, x1) ≤ (µ1 − µ2)δ(0, y1) and (µ2 − µ3)(δ(0, x1) + δ(x1, x2)) ≤ (µ2 − µ3)(δ(0, y1) + δ(y1, y2)),
hence

(µ1 − µ3)δ(0, x1) + (µ2 − µ3)δ(x1, x2) ≤ (µ1 − µ3)δ(0, y1) + (µ2 − µ3)δ(y1, y2).

Since (µ3 − µ4)(δ(0, x1) + δ(x1, x2) + δ(x2, x3)) ≤ (µ3 − µ4)(δ(0, y1) + δ(y1, y2) + δ(y2, y3)), we have

(µ1−µ4)δ(0, x1)+(µ2−µ4)δ(x1, x2)+(µ3−µ4)δ(x2, x3) ≤ (µ1−µ4)δ(0, y1)+(µ2−µ4)δ(y1, y2)+(µ3−µ4)δ(y2, y3).

Repeating a similar procedure we obtain

(µ1 − µn)δ(0, x1) + (µ2 − µn)δ(x1, x2) + . . .+ (µn−1 − µn)δ(xn−2, xn−1)

≤ (µ1 − µn)δ(0, y1) + (µ2 − µn)δ(y1, y2) + . . .+ (µn−1 − µn)δ(yn−2, yn−1)

and, finally, from µn(δ(0, x1) + δ(x1, x2) + . . .+ δ(xn−1, xn)) ≤ µn(δ(0, y1) + δ(y1, y2) + . . .+ δ(yn−1, yn)),
it follows that

µ1δ(0, x1) + µ2δ(x1, x2) + . . .+ µnδ(xn−1, xn) ≤ µ1δ(0, y1) + µ2δ(y1, y2) + . . .+ µnδ(yn−1, yn), (10)

i.e., Cµ,δ(x1, . . . , xn) ≤ Cµ,δ(y1, . . . , yn).
(i) ⇒ (ii) Now let x1, . . . , xm, y1, . . . , ym ∈ [0, 1] be such that x1 ≤ . . . ≤ xm, y1 ≤ . . . ≤ ym, x1 ≤

y1, . . . ,≤ xm ≤ ym. Then Cµ,δ(x1, . . . , xn) ≤ Cµ,δ(y1, . . . , yn), i.e., Equation (10) holds, and taking the
fuzzy measure µm, for any m ∈ [n], given by

µm(A) =

 1, if |A| ≥ n−m+ 1;

0, otherwise,

22



we have that µm([n]k) = 1 for each k ≤ m and µm([n]k) = 0 for each k > m, with [n]k = {k, . . . , n}. So, it
holds that

Cµm,δ(x1, . . . , xn) = δ(0, x1)µm([n]1) + δ(x1, x2)µm([n]2) + . . .+ δ(xn−1, xn)µm([n]n)

= δ(0, x1) + δ(x1, x2) + . . .+ δ(xm−1, xm)

and, analogously, we have that Cµm,δ(y1, . . . , yn) = δ(0, y1)+δ(y1, y2)+. . .+δ(ym−1, ym). Therefore, it holds
that δ(0, x1) + δ(x1, x2) + . . .+ δ(xm−1, xm) ≤ δ(0, y1) + δ(y1, y2) + . . .+ δ(ym−1, ym), for all m ∈ [n].

Corollary 4.9. Let n be a positive integer, δ be a restricted dissimilarity function and Cµ,δ be an n-
ary d-Choquet integral with respect to µ and δ. If for all m ∈ [n] there exists an increasing function
fm : [0, 1] → [0, 1] such that δ(0, x1) + δ(x1, x2) + . . . + δ(xm−1, xm) = fm(xm) for all x1, . . . , xm ∈ [0, 1]
where x1 ≤ . . . ≤ xm, then for any fuzzy measure µ on [n], Cµ,δ(x1, . . . , xn) ≤ Cµ,δ(y1, . . . , yn) whenever
x1 ≤ y1, . . . , xn ≤ yn.

Proof. The proof directly follows from Theorem 4.8.

Corollary 4.10. Let n be a positive integer, δ : [0, 1]2 → [0, 1] be a restricted dissimilarity function given
in terms of automorphisms ϕ1, ϕ2 as in Proposition 3.11. Let Cµ,ϕ1,ϕ2 be an n-ary d-Choquet integral with
respect to µ and δ. If ϕ1 = Id, then for any fuzzy measure µ on [n], Cµ,δ(x1, . . . , xn) ≤ Cµ,δ(y1, . . . , yn)
whenever x1 ≤ y1, . . . , xn ≤ yn.

Proof. The proof directly follows from Corollary 4.9 taking f = ϕ2.

Remark 4.11. It is worth pointing out that taking ϕ1 = Id, as in Corollary 4.10, we obtain:

Cµ,Id,ϕ2(x1, . . . , xn) =

n∑
i=1

(
ϕ2

(
xσ(i)

)
− ϕ2

(
xσ(i−1)

) )
µ
(
Aσ(i)

)
= Cµ(ϕ2 (x1) , . . . , ϕ2 (xn)),

that is, Cµ,Id,ϕ2 is fully determined by a “standard” Choquet integral Cµ, which also means that Cµ,Id,ϕ2

is an aggregation function (note that also (P1) is satisfied according to Proposition 3.12).

Theorem 4.12. Let n be a positive integer and consider the fuzzy measure µ⊥ defined in Equation (5). Then,
for any restricted dissimilarity function δ, the n-ary d-Choquet integral Cµ⊥,δ satisfies Cµ⊥,δ(x1, . . . , xn) ≤
Cµ⊥,δ(y1, . . . , yn) whenever x1 ≤ y1, . . . , xn ≤ yn.

Proof. The proof immediately follows from the monotonicity of δ.

Example 4.13. We give examples of d-Choquet integrals that are not averaging or/and increasing, i.e.
these functions are not averaging aggregation functions (hence, they are not “standard” Choquet integrals)
and the ones that are not increasing (hence they are even not aggregation functions). Let Cµ,δ be an n-ary d-
Choquet integral given by Definition 3.1 with respect to the fuzzy measure µ and the restricted dissimilarity
function:

• δ(x, y) = (x− y)2, then Cµ,δ is neither averaging (it is not above minimum) nor increasing for some µ;

• δ(x, y) =
√
|x− y|, then Cµ,δ is neither averaging (it is not under maximum) nor increasing for some

µ, note that in this case, in contrast to all the other cases of this example, the range of Cµ,δ is not a
subset of [0, 1];

• δ(x, y) = |
√
x − √y|, then Cµ,δ is not averaging (it is not under maximum) for some µ, but it is

increasing for any µ;

• δ(x, y) = |x2−y2|, then Cµ,δ is not averaging for some µ (it is not above minimum), but it is increasing
for any µ;

• δ(x, y) = (
√
x−√y)2, then Cµ,δ is averaging for any µ, but it is not increasing for some µ;
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• δ given as in Example 3.48 (ii), then Cµ,δ is not averaging for some µ (it is neither above minimum
nor under maximum), but it is increasing for any µ. Note that in this case δ can be expressed:

δ(x, y) =


2|x2 − y2|, if x, y ∈

[
0, 12
]

;

2|2x− x2 − 2y + y2|, if x, y ∈
]
1
2 , 1
]

;

−2y2 + 4y − 1− 2x2, if x ∈
[
0, 12
]
, y ∈

]
1
2 , 1
]

;

−2x2 + 4x− 1− 2y2, if x ∈
]
1
2 , 1
]
, y ∈

[
0, 12
]
.

4.3. Directional monotonicity

From the results of the previous subsection it is clear that, in general, an n-ary d-Choquet integral is not
~r-increasing for a vector ~r = (r1, . . . , rn) such that there exists k ∈ {1, . . . , n} such that ri 6= 0 if and only if
i = k. Now we study the situation for the vector ~r = (1, . . . , 1).

Theorem 4.14. Let n be a positive integer and Cµ,δ : [0, 1]n → [0, n] be an n-ary d-Choquet integral with
respect to a fuzzy measure µ and a restricted dissimilarity function δ. Then

(i) Cµ,δ is ~1-increasing (i.e., weakly increasing in the sense of [38])for any fuzzy measure µ whenever

δ(x+ c, y + c) ≥ δ(x, y)

for all x, y, c ∈ [0, 1] such that x+ c, y + c ∈ [0, 1];

(ii) Cµ,δ is ~1-increasing for any fuzzy measure µ whenever for all m ∈ [n] there exists an increasing function
fm : [0, 1]→ [0, 1] such that

δ(0, x1) + δ(x1, x2) + . . .+ δ(xm−1, xm) = fm(xm)

for all x1, . . . , xm ∈ [0, 1] where x1 ≤ . . . ≤ xm.

Proof. (i)

Cµ,δ(x1 + c, . . . , xn + c)

= δ
(
xσ(1) + c, 0

)
+

n∑
i=2

δ
(
xσ(i) + c, xσ(i−1) + c

)
µ
(
Aσ(i)

)
≥ δ

(
xσ(1), 0

)
+

n∑
i=2

δ
(
xσ(i), xσ(i−1)

)
µ
(
Aσ(i)

)
= Cµ,δ(x1, . . . , xn).

(ii) Directly follows from Corollary 4.9.

Corollary 4.15. Let n be a positive integer, δ : [0, 1]2 → [0, 1] be a restricted dissimilarity function given in
terms of automorphisms ϕ1, ϕ2 as in Proposition 3.11. Let Cµ,ϕ1,ϕ2

: [0, 1]n → [0, n] be an n-ary d-Choquet

integral with respect to µ and δ. Then Cµ,δ is ~1-increasing for any fuzzy measure µ whenever at least one of
the following conditions is satisfied:

(i) ϕ2 is convex;

(ii) ϕ1 = Id.

24



Proof. (i) Let x, y, c ∈ [0, 1] be such that x + c, y + c ∈ [0, 1] and x > y (the proof for x < y is similar).
Then, since ϕ2 is convex, we have ϕ2(x+ c)− ϕ2(x) ≥ ϕ2(y + c)− ϕ2(y), hence

δ(x+ c, y + c) = ϕ−11 (ϕ2(x+ c)− ϕ2(y + c)) ≥ ϕ−11 (ϕ2(x)− ϕ2(y)) = δ(x, y)

and finally, by Theorem 4.14 (i) it follows that Cµ,δ is ~1-increasing for any fuzzy measure µ.
(ii) Directly follows from Corollary 4.10.

Now we give the conditions under which an n-ary d-Choquet integral is ~1-pre-aggregation function.

Corollary 4.16. Let n be a positive integer, δ : [0, 1]2 → [0, 1] be a restricted dissimilarity function given in
terms of automorphisms ϕ1, ϕ2 as in Proposition 3.11. Then the n-ary d-Choquet integral with respect to µ
and δ is a ~1-pre-aggregation function for any fuzzy measure µ on [n] whenever at least one of the following
conditions is satisfied:

(i) ϕ1 = Id;

(ii) ϕ1 > Id and ϕ2 is convex.

Proof. Immediately follows from Corollary 4.15 and Proposition 3.12.

Example 4.17. We give examples of d-Choquet integrals that are (or are not) aggregation functions/~1-
pre-aggregation functions. Let Cµ,δ be an n-ary d-Choquet integral given by Definition 3.1 with respect to
the fuzzy measure µ and the restricted dissimilarity function:

• δ(x, y) = (x−y)2, then Cµ,δ is a ~1-pre-aggregation function for any µ, however it is not an aggregation
function for some µ (since it is not increasing);

• δ(x, y) =
√
|x− y|, then Cµ,δ is ~1-increasing for any µ, however it is neither a ~1-pre-aggregation

function nor an aggregation function for some µ (since its range is not a subset of [0, 1]) and it is not
increasing for some µ;

• δ(x, y) = |
√
x − √y|, then Cµ,δ is an aggregation function for any µ (hence also a ~1-pre-aggregation

function);

• δ(x, y) = |x2 − y2|, then Cµ,δ is an aggregation function for any µ (hence also a ~1-pre-aggregation
function);

• δ(x, y) =
√
|
√
x−√y|, then Cµ,δ is not ~1-increasing for some µ (hence it is not increasing as well) and

its range is not a subset of [0, 1] for some µ.

The fact that the last one, namely Cµ,δ, is not ~1-increasing for some µ follows from the following counterex-
ample: let n = 6, c = 0.1 and µ(A) = 1 for all nonempty A ⊆ [n], then

Cµ,δ(0.1, 0.2, 0.3, 0.4, 0.5, 0.6)
.
= 0.562341 ≥ 0.555946

.
= Cµ,δ(0.2, 0.3, 0.4, 0.5, 0.6, 0.7).

Moreover, for x1 = 0.1, x2 = 0.2, x3 = 0.3 we have:√√
x1 −

√
0 +

√√
x2 −

√
x1 +

√√
x3 −

√
x2

.
= 1.24129 > 1,

hence the condition (P1) is not satisfied, so the range of Cµ,δ is not a subset of [0, 1] for some fuzzy measures
µ.
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5. Conclusions

We have proposed a generalization of the Choquet integral in terms of replacing the standard difference
by a restricted dissimilarity function. This approach results in a class of functions, d-Choquet integrals,
that encompasses the class of all “standard” Choquet integrals, but is much wider and, based on the choice
of a restricted dissimilarity function, the d-Choquet integral satisfies or does not satisfy the characteristic
properties of the “standard” Choquet integrals such as increasingness, pre-increasingness, range in [0, 1],
comonotone additivity, idempotency, self-duality, shift-invariancy and positive homogeneity.

Note that this class of functions can be useful in all those applications where fuzzy integrals, and specially
Choquet integrals, have shown themselves valuable, ranging from image processing to decision making or
classification. In particular, these new functions can be used to replace the standard Choquet integral where
comparison between inputs using the usual difference is not possible either because it is difficult to define it
properly, as in the case of intervals.

In this sense, in our future work we intend to make a research of possibilities to apply our results in image
processing, multi-criteria decision making and classification problems, and, specially, to use them to extend
to the interval-valued setting the notion of Choquet integral in such a way that classical fuzzy algorithms
which make use of the Choquet integral can be appropriately defined.
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monotone functions. justification and application, IEEE Transactions on Fuzzy Systems 26 (4) (2017) 2237–2250.
[6] H. Bustince, E. Barrenechea, M. Pagola, Relationship between restricted dissimilarity functions, restricted equivalence

functions and normal en-functions: Image thresholding invariant, Pattern Recognition Letters 29 (4) (2008) 525 – 536.
[7] H. Bustince, A. Jurio, A. Pradera, R. Mesiar, G. Beliakov, Generalization of the weighted voting method using penalty

functions constructed via faithful restricted dissimilarity functions, European Journal of Operational Research 225 (3)
(2013) 472 – 478.

[8] H. Bustince, J. Fernandez, R. Mesiar, J. Montero, R. Orduna, Overlap functions, Nonlinear Analysis: Theory, Methods
& Applications 72 (3-4) (2010) 1488–1499.
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