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Abstract

In this paper, we make some considerations about admissible orders on the
set of closed subintervals of the unit interval I[0, 1], i.e., linear orders that
refine the product order on intervals. We propose a new way to generate
admissible orders on I[0, 1] which is more general than those we find in the
current literature. Also, we deal with the possibility of an admissible order
on I[0, 1] to be isomorphic to the usual order on [0, 1]. We prove that some
orders constructed by our method are not isomorphic to the usual one and
we make some considerations about the question: is there some admissible
order on I[0, 1] isomorphic to the usual order on [0, 1]?

Keywords: Interval-Valued Fuzzy Sets, Order Isomorphism, Admissible
Order, Cantor’s Bijection

1. Introduction

In [9] the concept of an admissible order on the set of closed subintervals
of the unit interval was introduced. Admissible orders on I[0, 1] = {[a, b] ⊆
[0, 1]}, or just admissible orders when the context is clear, are linear orders
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that refine the product order ≤2 on I[0, 1], where [a, b] ≤2 [c, d] iff a ≤ c and
b ≤ d. It is work of note that this order agree with the underlying order to
the interval lattice generated by the lattice 〈[0, 1],≤〉 [20, 21, 31]. Motiva-
tions for studying admissible orders comes from the theory of interval-valued
fuzzy sets [33] and the fact that they find applications in areas such as image
processing [8, 14], classification [27], clustering [29], decision making [10, 18],
games [2], etc. If we think, as in [26], of an interval as representing uncertain
information about a real number, the product order is a very natural exten-
sion of the usual order on R to the set of all intervals. Unfortunately, ≤2 is
not a linear order, e.g. [0, 1] and [0.3, 0.4] are not ≤2-comparable, and this
can be problematic in some applications. For example, in a simple clustering
algorithm that uses interval data [30], we must set the objects to a cluster
represented by the prototype of which it is nearest. If the algorithm uses in-
terval distance [25, 30] as the similarity measure, than some distance values
can be not comparable. For these situations, an admissible order could be
useful, since intervals that are comparable by ≤2 remain comparable in the
same way by the admissible order and it can also deal with the remaining
cases. In the first section, we propose a way to generate admissible orders
which is more general that the one found in [9].

In [9], besides the introduction of the concept, a theoretical approach on
admissible orders was started. From this seminal paper, some research on
admissible orders had been made containing a range of theoretical contribu-
tions, such as [1, 10, 34]. Since both orders are linear and there exist bijections
between I[0, 1] and [0, 1], from a theoretical point of view, a natural question
that arises is: are all the admissible orders isomorphic to the usual order on
[0, 1]? If the answer to this is yes, the theoretical approaches to these orders
would be useless because all results on admissible orders would be simple
adaptations of the ones on [0, 1] with its usual order. In the second section,
we prove that some of the admissible orders constructed by the method we
propose are not isomorphic to the usual order on I[0, 1], including the lexi-
cographical, antilexicographical, and Xu and Yager ([32]) orders. From this,
we can conclude that the theory of admissible orders is not “empty”, i.e., it
is more than a simple rewriting of the theory of the usual order.

In the final section, we discuss the possibility of some admissible order
to be isomorphic to the usual order on [0, 1]. Our analysis is based on the
Cantor-Schroeder-Bernstein theorem [5, 7, 11, 28].
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2. Generating admissible orders

We denote by I[0, 1] the set of all closed intervals with end-points lying
in the interval [0, 1], i.e., I[0, 1] = {[a, b] : 0 ≤ a ≤ b ≤ 1}; and by ≤2 the
product order on I[0, 1], i.e., [a, b] ≤2 [c, d] ⇔ a ≤ c and b ≤ d. Besides, we
identify the sets I[0, 1] and K[0, 1] = {(a, b) ∈ [0, 1]2 : a ≤ b}, via the trivial
isomorphism.

In [9] the authors introduced the concept of admissible orders as linear
orders in I[0, 1] which refines the product order.

Example 1. The following relations are admissible orders:

• [a, b] ≤Lex1 [c, d]⇔ (a < c)∨ [(a = c)∧ (b ≤ d)] (Lexicographical order)

• [a, b] ≤Lex2 [c, d] ⇔ (b < d) ∨ [(b = d) ∧ (a ≤ c)] (Antilexicographical
order)

• [a, b] ≤XY [c, d]⇔ (a + b < c + d) ∨ [(a + b = c + d) ∧ (b− a ≤ d− c)]
(Xu and Yager’s order[32])

The concept of admissible order can be immediately generalized for orders
in [0, 1]2, based on the product order in [0, 1]2. In this case, the three orders
above (adapted to [0, 1]2) are admissible orders in [0, 1]2.

In the same paper ([9]), they present a way to generate linear orders
on I[0, 1] which refines the product order on I[0, 1], the so-called admissible
orders, from aggregation functions. If A,B : [0, 1]2 −→ [0, 1] are aggregation
functions such that A(x, y) = A(z, t) and B(x, y) = B(z, t) if, and only if,
(x, y) = (z, t), then the relation ≤AB defined by:

[x, y] ≤AB [z, t]⇔ (A(x, y) < A(z, t))∨(A(x, y) = A(z, t)∧B(x, y) ≤ B(z, t))

is an admissible order.
This order ≤AB is clearly based on the order ≤Lex1 combined with the

functions A and B. Based on this, we present the following result that
shows ways to construct new admissible orders on I[0, 1] from admissible
orders on [0, 1]2 and functions A,B : I[0, 1] −→ [0, 1]. For this, we will
denote by hAB the function hAB : I[0, 1] −→ [0, 1]2 defined by hAB([x, y]) =
(A([x, y]), B([x, y])).
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Theorem 1. Let A,B : I[0, 1] −→ [0, 1] be functions and E be an admissible
order on [0, 1]2. The relation �ABE defined by:

[x, y] �ABE [z, t]⇔ (A([x, y]), B([x, y]))E (A([z, t]), B([z, t]))

is an admissible order on I[0, 1] if, and only if, hAB is an injective and isotonic
function between the posets 〈I[0, 1],≤2〉 and 〈[0, 1]2,E〉.

Proof. (⇒) Suppose that�ABE is an admissible order and take [x, y], [z, t] ∈
I[0, 1] such that hAB([x, y]) = hAB([z, t]). So, [x, y] �ABE [z, t] and [z, t] �ABE

[x, y]. Therefore, since �ABE is an order, [x, y] = [z, t]. Whence, hAB is in-
jective.

Now, suppose that [x, y] ≤2 [z, t]. Since �ABE refines ≤2, we have
[x, y] �ABE [z, t] ⇔ hAB([x, y]) E hAB([z, t]). So, hAB is an isotonic func-
tion between 〈I[0, 1],≤2〉 and 〈[0, 1]2,E〉.
(⇐) Suppose that hAB is injective and isotonic. The reflexivity of �ABE is
trivial.

For the antisymmetry, suppose that [x, y] �ABE [z, t] and [z, t] �ABE

[x, y]. Thus, (A([x, y]), B([x, y]))E(A([z, t]), B([z, t])) and (A([z, t]), B([z, t]))E
(A([x, y]), B([x, y])), that is, hAB([x, y]) = hAB([z, t]), which implies, by the
injectivity of hAB, that [x, y] = [z, t].

The transitivity and linearity of �ABE follow immediately from the tran-
sitivity and linearity of E.

Finally, suppose [x, y] ≤2 [z, t]. Since hAB is an isotonic function between
〈I[0, 1],≤2〉 and 〈[0, 1]2,E〉, we have hAB([x, y]) E hAB([z, t]) ⇔ [x, y] �ABE

[z, t]. �

Observation 1. The admissible orders generated by aggregation functions
in [9] are particular cases of the ones in Theorem 1 with A and B being
aggregation functions in [0, 1]2 and taking as linear order ≤Lex1.

The next three corollaries present necessary and sufficient conditions for
hAB satisfy the conditions in the above theorem when E ∈ {≤Lex1,≤Lex2

,≤XY }. Since the three proofs are analogous, we present just the case
E =≤Lex1 in detail.

Corollary 1. If E =≤Lex1, then hAB is injective and isotonic if, and only if,
h is injective, A is ≤2-increasing and B restricted to the set Γ[a,b] = {[c, d] ∈
I[0, 1] : A([a, b]) = A([c, d])} (note that Γ[a,b] = A−1(A[a, b])) is ≤2-increasing
for each [a, b] ∈ I[0, 1].
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Proof. (⇒) Suppose that hAB is an injective and isotonic function and
[x, y] ≤2 [z, t]. Thus, hAB([x, y]) ≤Lex1 hAB([z, t]), so A([x, y]) < A([z, t])
or A([x, y]) = A([z, t]) and B([x, y]) ≤ B([z, t]), that is, we must have
A([x, y]) ≤ A([z, t]), which means that A is ≤2-increasing. Now, suppose
that [x, y], [z, t] ∈ Γ[a,b] and [x, y] ≤2 [z, t]. We have A([x, y]) = A([z, t]) =
A([a, b]). Since hAB is isotonic, we have hAB([x, y]) ≤Lex1 hAB([z, t]), so
(A([x, y]), B([x, y])) ≤Lex1 (A([z, t]), B([z, t])) and since A([x, y]) = A([z, t]),
we have B([x, y]) ≤ B([z, t]), that is, B is ≤2-increasing on Γ[a,b].
(⇐) Suppose that A is ≤2-increasing, B is ≤2 increasing in each Γ[a,b] and
hAB is injective. Take [x, y], [z, t] ∈ I[0, 1] such that [x, y] ≤2 [z, t]. Thus,
hAB([x, y]) ≤ A([z, t]). If A([x, y]) < A([z, t]), then (A([x, y]), A([x, y])) ≤Lex1

(A([z, t]), B([z, t])), so, hAB([x, y]) ≤Lex1 hAB([z, t]). If A([x, y]) = A([z, t]),
then [x, y], [z, t] ∈ Γ[x,y], so B([x, y]) ≤ B([z, t])⇒ hAB([x, y]) ≤Lex1 hAB([z, t]).

�

Observation 2. There are functions A and B satisfying the conditions of
the above corollary without B being ≤2-increasing. Take A([x, y]) = x and
B([x, y]) = y − x. If A([x, y]) = A([z, t]), then x = z, so, if [x, y] ≤2 [z, t],
then y ≤ t ⇒ y − x ≤ t − x = t − z ⇒ B([x, y]) ≤ B([z, t]). Clearly hAB

is injective. Note that B([0.1, 0.2]) = 0.1 and B([0.15, 0.2]) = 0.05, so, B is
not ≤2-increasing.

Example 2. With A([x, y]) = x, B([x, y]) = y (or B([x, y]) = y − x) and
E =≤Lex1 we have �ABE=≤Lex1.

Corollary 2. If E =≤Lex2, then hAB is injective and isotonic if, and only if,
h is injective, B is ≤2-increasing and A restricted to the set Γ′[a,b] = {[c, d] ∈
I[0, 1] : B([a, b]) = B(c, d)} is ≤2-increasing for each [a, b] ∈ I[0, 1].

Its immediate that if A and B are ≤2-increasing and hAB is injective,
then the conditions of the two corollaries hold.

Example 3. For A([x, y]) = y and B([x, y]) =
x + y

2
, we have �AB≤Lex1

=≤Lex2

and �AB≤Lex2
=≤Lex1.

Corollary 3. If E =≤XY , then hAB is injective and isotonic if, and only if,
h is injective, the function f([x, y]) = A([x, y]) + B([x, y]) is ≤2-increasing
and the function g([x, y]) = B([x, y])− A([x, y]) restricted to the set Γ′′[a,b] =

{[c, d] ∈ I[0, 1] : f([a, b]) = f([c, d])} is ≤2-increasing for each [a, b] ∈ I[0, 1].
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Observation 3. If A and B are ≤2-increasing and h is injective, then the
conditions of the Corollary 3 hold. In fact, in this case f([x, y]) = A([x, y])+
B([x, y]) is trivially ≤2-increasing. Now, suppose that g([x, y]) = B([x, y])−
A([x, y]) is not ≤2-increasing in some Γ′′[a,b] and take [x, y], [z, t] ∈ Γ′′[a,b] such

that [x, y] ≤2 [z, t] but g([x, y]) > g([z, t])⇔ B([x, y])−A([x, y]) > B([z, t])−
A([z, t]). Since [x, y], [z, t] ∈ Γ′′[a,b], we have A([x, y]) + B([x, y]) = A([z, t]) +

B([z, t]), so 2B([x, y]) > 2B([z, t])⇒ B([x, y]) > B([z, t]), which contradicts
B to be ≤2-increasing.

Example 4. Take A([x, y]) = y, B([x, y]) =
x + y

2
and E =≤XY . Note that

hAB([x, y]) = hAB([z, t]) ⇔ y = t and
x + y

2
=

z + t

2
, so x = z and hAB is

injective. Since A and B are ≤2-increasing �AB≤XY
is an admissible order.

Note that:

• �AB≤XY
6=≤XY : [0.15, 0.17] �AB≤XY

[0.1, 0.2] but [0.1, 0.2] ≤XY [0.15, 0.17];

• �AB≤XY
6=≤Lex1: [0.15, 0.17] �AB≤XY

[0.1, 0.2] but [0.1, 0.2] ≤Lex1 [0.15, 0.17];

• �AB≤XY
6=≤Lex2: [0.15, 0.17] �AB≤XY

[0.16, 0.169] but [0.16, 0.169] ≤Lex2

[0.15, 0.17].

3. Relation between some admissible orders and the chain 〈[0, 1],≤〉

In this section we discuss the possibility of an admissible order being
isomorphic to the usual order on [0, 1], that is, the existence of an order iso-
morphism between 〈I[0, 1],�〉, where � is an admissible order, and 〈[0, 1],≤〉.

In a poset 〈C,≤C〉, given a ≤C b we define the set [a, b]≤C
= {x ∈ C :

a ≤C x ≤C b}, i.e., this is the closed interval, w.r.t. ≤C , with end-points a
and b. This interval will be called non-degenerated if a <C b. Note that an
interval [a, b]≤C is never empty.

Observation 4. If 〈C,≤C〉 and 〈D,≤D〉 are posets such that ≤C and ≤D

are linear orders and f : C −→ D is a bijection that preserves order (an
order isomorphism between 〈C,≤C〉 and 〈D,≤D〉), then it is immediate to
note that for all x, y ∈ C with x ≤C y, we have f([x, y]≤C

) = [f(x), f(y)]≤D
.

Besides that, if [x, y]≤C
is a non-degenerated interval, then f([x, y]≤C

) is also
a non-degenerated interval.
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The following basic lemma is a well known result of Mathematical Anal-
ysis (see [24]).

Lemma 1. Every family of non-degenerated pairwise disjoint intervals of R
is countable.

In the next results we prove that some classes of admissible orders are not
isomorphic to the usual order on [0, 1]. For this, its enough to construct an
uncountable family of non-degenerated intervals in the poset 〈I[0, 1],�〉, so,
by the Observation 4, if there were an isomorphism between this poset and
〈[0, 1],≤〉, we would have an uncountable family of non-degenerated intervals
on 〈[0, 1],≤〉, which contradicts Lemma 1.

Theorem 2. Let A,B : I[0, 1] −→ [0, 1] be functions such that �AB≤Lex1
is

an admissible order. Suppose there are t1, t2 ∈ [0, 1], with t1 < t2 such that
A([x, y]) = x, for all x ∈ (t1, t2). Thus, 〈I[0, 1],�AB≤Lex1

〉 is not isomorphic
to 〈[0, 1],≤〉.

Proof. For each x ∈ (t1, t2), consider the intervals [x, x] and [x, 1]. Since
A([x, x]) = A([x, 1]) = x and [x, x] ≤2 [x, 1], we have [x, x], [x, 1] ∈ Γ[x,x],
so, by corollary 1, B([x, x]) < B([x, 1]) (hAB is injective), so [x, x] <AB≤Lex1

[x, 1]. For each x ∈ (t1, t2) define Ix = [[x, x], [x, 1]]�AB≤Lex1
. Note that Ix

is a non-degenerated interval and if [a, b] ∈ Ix, then A([a, b]) = x, so, if
x, y ∈ (t1, t2), with x 6= y, then Ix ∩ Iy = ∅, which implies that the family
{Ix}x∈(t1,t2) is an uncountable family of non-degenerated intervals and this is
enough to conclude the non-existence of the isomorphism. �

Example 5. If A([x, y]) = x and B([x, y]) = y, then �AB≤Lex1
=≤Lex1, so

≤Lex1 is not isomorphic to the usual order on [0, 1].

Example 6. Consider A([x, y]) =

{
x , if 0 ≤ x ≤ 1/2

x + y

2
, if 1/2 < x ≤ 1

and B([x, y]) =

y − x. Suppose that A([x, y]) = A([z, t]), so x, z ≤ 1/2 or x, z > 1/2. In the
first case A([x, y]) = x = A([z, t]) = z ⇒ x = z. So, if B([x, y]) = B([z, t]),
then y − x = t − z ⇒ y = z. If x, z > 1/2, then x + y = z + t and if
B(([x, y]) = B([z, t]), then y − x = t− z, so y = t and x = y. Thus, hAB is
injective. Besides that, A is clearly ≤2-increasing and if A([x, y]) = A([z, t])
with [x, y] ≤2 [z, t], then for the case x, z ≤ 1/2, we have x = z, so, from
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y ≤ t it follows that y − x ≤ t − z, that is, B([x, y]) ≤ B([z, t]) and for the
case x, z > 1/2, we have x + y = z + t. Suppose that y − x > t − z. Thus,
2y > 2t ⇒ y > t, which is a contradiction. So, B is ≤2-increasing in Γ[a,b],
for all [a, b] ∈ I[0, 1]. We can conclude that �AB≤Lex1

is an admissible order
and, for t1 = 0 and t2 = 1/2, the theorem 2 ensures that this order is not
isomorphic to the usual order on [0, 1]. Besides, this order is different from
the orders already seen:

• �AB≤Lex1
6=≤XY : [0, 0.4] �AB≤Lex1

[0.05, 0.05] but [0.05, 0.05] ≤XY [0, 0.4];

• �AB≤Lex1
6=≤Lex1: [0.6, 0.62] �AB≤Lex1

[0.54, 0.7] but [0.54, 0.7] ≤Lex1

[0.6, 0.62];

• �AB≤Lex1
6=≤Lex2: [0.51, 0.71] �AB≤Lex1

[0.54, 0.7] but [0.54, 0.7] ≤Lex2

[0.51, 0.71].

Theorem 3. Let A,B : I[0, 1] −→ [0, 1] be functions such that �AB≤Lex2
is

an admissible order. Suppose there are t1, t2 ∈ [0, 1], with t1 < t2 such that
B([x, y]) = y, for all y ∈ (t1, t2). Thus, 〈I[0, 1],�AB≤Lex2

〉 is not isomorphic
to 〈[0, 1],≤〉.

Proof. For each y ∈ (t1, t2), consider the interval Iy = [[0, y], [y, y]]�AB≤Lex2
.

Since y > 0, we have [0, y] <2 [y, y], so the interval Iy is non-degenerated,
for all y ∈ (t1, t2). If [a, b] ∈ Iy, then B([a, b]) = y, so if x, y ∈ (t1, t2), with
x 6= y, then Ix ∩ Iy = ∅, which implies that the family {Ix}x∈(t1,t2) is an
uncountable family of non-degenerated intervals. �

Example 7. If A([x, y]) = x and B([x, y]) = y, then �AB≤Lex2
=≤Lex2, so

≤Lex2 is not isomorphic to the usual order on [0, 1].

Example 8. Consider A([x, y]) =

{ x + y

2
, if 0 ≤ y ≤ 1/2

y , if 1/2 < y ≤ 1
and B([x, y]) =

y−x. With this two functions, �AB≤Lex2
is an admissible order which is dif-

ferent from the orders ≤Lex1, ≤Lex2, ≤XY , and the order from Example 6.
Besides, for t1 = 1/2 and t2 = 1, Theorem 3 ensures that this order is not
isomorphic to the usual order on [0, 1].

Theorem 4. Let A,B : I[0, 1] −→ [0, 1] be functions such that �AB≤XY
is

an admissible order. Suppose there are t1, t2 ∈ [0, 1], with t1 < t2 such that
A([x, y]) = x and B([x, y]) = y, for all x ∈ (t1, t2). Thus, 〈I[0, 1],�AB≤XY

〉
is not isomorphic to 〈[0, 1],≤〉.
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Proof. For each x ∈ (t1, t2), consider the intervals [x/2, x/2] and [0, x].
Since A([x/2, x/2])+B([x/2, x/2]) = A([0, x])+B([0, x]) = x and B([x/2, x/2]−
A([x/2, x/2]) = 0 < x/2 = B([0, x])−A([0, x]) = x, we have [x/2, x/2] ≺AB≤XY

[0, x]. Define Ix = [[x/2, x/2], [0, x]]�AB≤XY
for each x ∈ (t1, t2). If [a, b] ∈ Ix,

then A([a, b])+B([a, b]) = x, so, if x, y ∈ (t1, t2), with x 6= y, then Ix∩Iy = ∅,
which implies that the family {Ix}x∈(t1,t2) is an uncountable family of non-
degenerated intervals. �

Example 9. If A([x, y]) = x and B([x, y]) = y, then �AB≤XY
=≤XY , so

≤XY is not isomorphic to the usual order on [0, 1].

Example 10. Consider A([x, y]) =

{
x , if 0 ≤ x ≤ 1/2

x + y

2
, if 1/2 < x ≤ 1

and B([x, y]) =

y. With this two functions, �AB≤XY
is an admissible order which is differ-

ent from the orders ≤Lex1, ≤Lex2, ≤XY , and from the orders in Examples 6
and 8. Besides, for t1 = 0 and t2 = 1/2, Theorem 4 ensures that this order
is not isomorphic to the usual order on [0, 1].

These last results and examples show a lot of admissible orders that are
not isomorphic to the usual order on [0, 1]. In fact, the unique possibility that
we have for 〈I[0, 1],�〉 be isomorphic to 〈[0, 1],≤〉 is with a non continuous
isomorphism, where the continuity is inherited from R2 continuity when we
consider an interval as a pair of numbers, i.e. I[0, 1] ≈ {([a, b]) ∈ [0, 1]2 : a ≤
b}.

3.1. An illustrative example for the use of admissible order in decision mak-
ing

The use of fuzzy sets in decision making problems is very common ([4, 10,
18]. The problem can be summarized as follows. There is a set of n alterna-
tives, say {x1, ..., xn}. The expert on the subject provides his/her preferences
for each alternative over the others by using a fuzzy binary relation R on X,
that is, a function R : X × X −→ [0, 1], where the value R(xi, xj) = Rij

indicates the degree of preference of xi over xj. When Rij + Rji = 1, we say
that the fuzzy relation R have the property of reciprocity. The relation R
can be represented by the matrix

R =


0 R12 · · · R1n

R21 0 · · · R2n
...

...
. . .

...
Rn1 Rn2 · · · 0

 .
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In reciprocal relations it is usual to not define the elements in the diagonal
or take a fixed value. We opt for the value 0.

Considering the relation R as the preferences indicated by the expert, one
of the most used method to make the choice among the alternatives is the
weighted vote (see [16]), where the alternative chosen is xk, where k is the
solution of:

arg max
i=1,...,n

∑
1≤j≤n

Rij.

When the expert assigns the degree of preference of an alternative over
other, the lack of knowledge of this expert is not taken into consideration
and this fact may result in a lack of accuracy in choosing (see [3]). The
concept of weak ignorance function was defined in [27] to measure this lack
of knowledge.

Definition 1. (Sanz et al. [27]) A function g : [0, 1] −→ [0, 1] is said to be
a weak ignorance function if it is continuous and:

1. g(x) = g(1− x), for all x ∈ [0, 1];

2. g(x) = 0 if and only if x = 0 or x = 1;

3. g(0.5) = 1.

Example 11. ([22]) g(x) = 2 min(x, 1− x) is a weak ignorance function.

Given an ignorance function g we define the map g∗ : [0, 1] → I[0, 1] for
each x ∈ [0, 1] as follows:

g∗(x) = [x(1− g(x)), x(1− g(x)) + g(x)]

Observe that if g is such that g(x) = g(y) ⇔ x ∈ {y, 1 − y}, as is the case
of the g in Example 11, then g∗ is injective but never will be bijective. In
addition, g∗(0.5) = [0, 1], g∗(0) = [0, 0] and g∗(1) = [1, 1].

In the decision making process mentioned above, the value g(Rij), where
g is a weak ignorance function, represents the ignorance in the preference
value assigned by the expert of the alternative xi over xj. Using some weak
ignorance function g, we can represents the uncertainty that comes from
ignorance by using intervals. Define rij = g∗(Rij) (see [3, 4, 22]). Thus, r is
an interval-valued fuzzy binary preference relation (IVFBPR).
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As an example, consider the decision making problem with 4 alternatives
({x1, x2, x3, x4}) where the preference fuzzy relation is given by:

R =


0 0.31 0.16 0.36

0.69 0 0.05 0.06
0.84 0.95 0 0.38
0.64 0.94 0.62 0

 .

For this example, the weighted vote method returns that the alternative
chosen is x4. Using the function g in Example 11, the IVFBPR is:

r =


0 [0.1178, 0.7378] [0.1088, 0.4288] [0.1088, 0.8208]

[0.2622, 0.8822] 0 [0.045, 0.145] [0.0528, 0.1728]
[0.5712, 0.8912] [0.855, 0.955] 0 [0.0912, 0.8512]
[0.1792, 0.8992] [0.8272, 0.9472] [0.1488, 0.9088] 0

 .

To choose the alternative we use the weighted vote method but adapted
for the interval case, by using the usual sum of intervals and some admissible
order. For this, we need to calculate

∑
1≤j≤4 rij, i ∈ {1, ..., 4}:

•
∑

1≤j≤4

r1j = [0.3274, 1.9874] = I1;

•
∑

1≤j≤4

r2j = [0.36, 1.2] = I2;

•
∑

1≤j≤4

r3j = [1.5174, 2.6974] = I3;

•
∑

1≤j≤4

r4j = [1.1552, 2.7552] = I4.

Since the admissible orders are defined in the set I[0, 1], we normalize the
intervals dividing each endpoint by 3 (the maximum value for the endpoints
for these intervals). Thus, we obtain:

• I ′1 = [0.109133, 0.662466];

• I ′2 = [0.12, 0.4];

• I ′3 = [0.5058, 0.899133];
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• I ′4 = [0.385066, 0.9184].

By using the functions A e B of Example 6, where the order �AB≤Lex1

was defined, we have:

• (A(I ′1), B(I ′1)) = (0.109133, 0.5533);

• (A(I ′2), B(I ′2)) = (0.12, 0.28);

• (A(I ′3), B(I ′3)) = (0.7024665, 0.3933);

• (A(I ′3), B(I ′3)) = (0.385066, 0.53334).

Thus, by the order �AB≤Lex1
, the alternative x3 is the chosen one.

By using the functions A e B of Example 8, where the order �AB≤Lex2

was defined, we have:

• (A(I ′1), B(I ′1)) = (0.662466, 0.553333);

• (A(I ′2), B(I ′2)) = (0.26, 0.28);

• (A(I ′3), B(I ′3)) = (0.899133, 0.393333);

• (A(I ′3), B(I ′3)) = (0.91984, 0.53334).

Thus, by the order �AB≤Lex2
, the alternative x1 is the chosen one.

By using the functions A e B of Example 10 where the order �AB≤XY

was defined, we have:

• (A(I ′1), B(I ′1)) = (0.109133, 0.662466);

• (A(I ′2), B(I ′2)) = (0.12, 0.4);

• (A(I ′3), B(I ′3)) = (0.7024665, 0.899133);

• (A(I ′3), B(I ′3)) = (0.385066, 0.9184).

Thus, by the order �AB≤XY
, the alternative x3 is the chosen one.

As could be seen, each order resulted in a different choice among the
alternatives, only alternative x2 was not chosen in either case.
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4. Isomorphism: the general case

We don’t have the answer to the conjecture “If � is an admissible order
on I[0, 1], then 〈I[0, 1],�, 〉 is not isomorphic to 〈[0, 1],≤〉”, but we have some
considerations about it, based on the following famous theorem:

Theorem 5 (Cantor-Schröder-Bernstein). Let A and B be non-empty
sets. If there exist injections from A to B and from B to A, then there exists
a bijection between A and B.

First of all, if there is a bijection f : I[0, 1] −→ [0, 1] such that [a, b] ≤2

[c, d] ⇒ f([a, b]) ≤ f([c, d]), then we can define the order ≤f by [a, b] ≤f

[c, d]⇔ f([a, b]) ≤ f([c, d]). This order is clearly admissible and the function
f is an isomorphism between 〈I[0, 1],≤f〉 and 〈[0, 1],≤〉. The converse is
trivially true, so, the original conjecture can be rewritten as “There is no
bijection from I[0, 1] to [0, 1] such that [a, b] ≤2 [c, d]⇒ f([a, b]) ≤ f([c, d]).”

There are several proofs of the Cantor-Schröder-Bernstein Theorem [15].
Most of them have an existential flavor, that is, they guarantees the existence
of the bijection but do not exhibit or build it. Following the ideas in [6] and
[23], a constructible proof of this theorem is presented in [19]. The basic idea
of this proof is constructing, from the injections f : A −→ B and g : B −→ A,
two sequences of sets An and Bn

i) A0 = A \ g(B);

ii) Bn = f(An), for n ∈ N;

iii) An = g(Bn−1), for n ∈ N \ {0}.

If g is not surjective (if g is surjective, g−1 is, itself, the claimed bijection),
then A0 is non empty and, so, none of the sets in both sequences is empty.
After, is proved that the function H : A −→ B defined by:

H(x) =

{
f̃(x) , if x ∈

⋃
n∈N An

g̃−1(x) , if x ∈ A \
⋃

n∈N An

where f̃ is a bijection from
⋃

nAn to
⋃

nBn, obtained by restricting f to⋃
n An and, similarly, g̃ is a bijection which from B \

⋃
nBn to A \

⋃
nAn,

obtained by restricting g to
⋃

nBn, is well defined and, finally, that H is a
bijection from A to B. Unfortunately, this theorem does not involve orders.
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In fact, as will be seen, it is possible that the two injections f and g preserve
orders but the function H is not an order isomorphism. Below, we will present
injections f : I[0, 1] −→ [0, 1] and g : [0, 1] −→ I[0, 1] that preserve the orders
≤2 and ≤ but the function H from the theorem is not an isomorphism.
There are many injections g that preserve the orders above. For example,
g(t) = [t, t], or g(t) = [0, t], or g(t) = [t, 1]. To define an injection f that
preserve the orders, consider the infinite proper decimal expansion of the
numbers in [0, 1) and consider the notation 0.t1t2t3 . . . for t ∈ [0, 1) (there
is no expansions such that tk = 9 for all k ≥ k0, for some k0). If t has a
finite decimal expansion we consider tk = 0, for all k not appearing in the
expansion.

Proposition 1. The function f : I[0, 1] −→ [0, 1] defined by:

f([x, y]) =


0.x1y1x2y2x3y3 . . . , if 0 ≤ x ≤ y < 1
0.x19x29x39 . . . , if 0 ≤ x < y = 1
1 , if x = y = 1

is an injection such that [a, b] ≤2 [c, d]⇒ f([a, b]) ≤ f([c, d]).

Proof. The injectivity is immediate (see [19]). Suppose [a, b] ≤2 [c, d], that
is, a ≤ c and b ≤ d, and denote z = f([a, b]) and w = f([c, d]). First,
consider the case a < c and b = d < 1. Thus, there exists k0 ∈ N such
that ak = ck for all k < k0 and ak0 < ck0 and bk = dk for all k ∈ N. Thus,
z = 0.a1b1a2b2 . . . ak0bk0 . . . and w = 0.c1d1c2d2 . . . ck0dk0 . . ., so zk = wk for
all k < 2k0 − 1 and z2k0−1 = ak0 < ck0 = w2k0−1, which implies z < w. The
case a = c and b < d is entirely analogous. Consider a < c and b < d. There
exists k1 and k2 such that ak = ck for all k < k1 and ak1 < ck1 , bk = dk for
all k < k2 and bk2 < dk2 . Taking k0 = min{k1, k2}, we have zk = wk for
all k < 2k0 and z2k0 < w2k0 , or, z2k0 = w2k0 and z2k0−1 < w2k0−1 so z < w.
The remaining cases, d = 1, b = d = 1, c = d = 1, b = c = d = 1 and
a = b = c = d = 1 are immediate or follows the same idea employed in the
previous cases. �

This function f is not surjective. Indeed, 0.x1x2x3x4x5 . . . 6∈ Im(f) if
0.x1x3x5 . . . 6≤ 0.x2x4x6 . . ..

Now, we prove that the bijection H built from the the Cantor-Schröder-
Bernstein Theorem, starting from the functions f above and g(t) = [t, t], is
not isotonic, w.r.t. ≤2 and ≤. We have:
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• A0 = I[0, 1] \ g([0, 1]) = {[x, y] : 0 ≤ x < y ≤ 1};

• B0 = f(A0) = {0.x1x2x3 . . . : 0.x1x3x5 . . . ≤ 0.x2x4x6 . . . and
x2k−1 6= x2k, for some k};

• A1 = {[x, x] : x ∈ B0};

• B1 = f(A1) = {0.x1x1x2x2x3x3 . . . : 0.x1x3x5 . . . ≤ 0.x2x4x6 . . . and
x2k−1 6= x2k, for some k};

• A2 = {[x, x] : x ∈ B1};

• B2 = f(A2) = {0.x1x1x1x1x2x2x2x2 . . . : 0.x1x3x5 . . . ≤ 0.x2x4x6 . . . and
x2k−1 6= x2k, for some k};

• A3 = {[x, x] : x ∈ B2};

• B3 = f(A3) = {0.x1x1x1x1x1x1x1x1x2x2x2x2x2x2x2x2 . . . : 0.x1x3x5 . . . ≤
0.x2x4x6 . . . and x2k−1 6= x2k, for some k}.

In general, for all n ≥ 1, the set Bn is constituted by the elements
0. x1 . . . x1︸ ︷︷ ︸

2n

x2 . . . x2︸ ︷︷ ︸
2n

x3 . . . x3︸ ︷︷ ︸
2n

. . . such that 0.x1x3x5 . . . ≤ 0.x2x4x6 . . . and x2k−1 6=

x2k, for some k. So, for n ≥ 1, the elements belonging to An have the
form [0. x1 . . . x1︸ ︷︷ ︸

2n−1

x2 . . . x2︸ ︷︷ ︸
2n−1

x3 . . . x3︸ ︷︷ ︸
2n−1

. . . , 0. x1 . . . x1︸ ︷︷ ︸
2n−1

x2 . . . x2︸ ︷︷ ︸
2n−1

x3 . . . x3︸ ︷︷ ︸
2n−1

. . .], being

0.x1x3x5 . . . ≤ 0.x2x4x6 . . . and x2k−1 6= x2k, for some k. Thus, taking [x, x],
with x = 0.3321110 . . ., we have [x, x] 6∈ A0. Besides, since there is not repe-
titions in the decimal expansion of x, [x, x] 6∈ An for all n ≥ 2. Finally, note
that 0.x1x3x5 . . . = 0.3210 . . . and 0.x2x4x6 . . . = 0.3110 . . ., so 0.x1x3x5 . . . 6≤
0.x2x4x6 . . ., which means that [x, x] 6∈ A1. Thus, [x, x] ∈ [0, 1] \

⋃
n∈N An.

Now, take [y, y] = [0.332110 . . . , 0.3321110] ∈ A0 ⇒ [y, y] ∈
⋃

n∈N An. Note
that [y, y] <2 [x, x]. Following the proof of Cantor-Schroder-Bernstein theo-
rem, we have H([x, x]) = 0.3321110 . . . and H([y, y]) = 0.3333221111010 . . .,
so H([y, y]) > H([x.x]).

The order ≤H , defined by [a, b] ≤H [c, d]⇔ H([a, b]) ≤ H([c, d]) is a total
order and is isometric to the usual order in [0, 1], being H, itself, the order
isomorphism.

With the functions g(t) = [0, t] or g(t) = [t, 1], the function H is not an
order preserving bijection either.
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Although the function H above is not an order preserving bijection, it
coincides with f except in a negligible set in the following sense. Identifying
I[0, 1] with the set K[0, 1] = {([x, y]) ∈ R2 : 0 ≤ x ≤ y ≤ 1} (the upper part
to the diagonal of the unit square), the subset of K[0, 1] where H is different
from f is a subset of the diagonal, which have null Lebesgue measure.

About a possible admissible order � such that 〈I[0, 1],�〉 is isomorphic to
〈[0, 1],≤〉, the isomorphism h : I[0, 1] −→ [0, 1] can be seen as a function h∗ :
K[0, 1] −→ [0, 1] and that function cannot be continuous, since continuous
functions preserve connected sets and if one excludes both a point a in (0, 1)
and its pre-image A ∈ K[0, 1], then the function h∗∗ : K[0, 1] \ {A} −→
[0, 1] \ {a} is a continuous function sending the connected set K[0, 1] \ {A}
to the non-connected set [0, 1] \ {a}.

5. Final Remarks

In this paper, we generalized the construction of admissible orders based
on two aggregation functions and the lexicographical order by extending it
to an arbitrary admissible order, instead of the lexicographical and functions
that are not necessarily aggregation functions. We present an application of
these new admissible orders on the decision making process where changes
the order resulted in different choices. Our second contribution was to start
investigating the existence of admissible orders on I[0, 1] that are isomorphic
to [0, 1] with its usual order. In Figure 1 we present, graphically, a sum-
mary of the results contained in this paper as well as the remaining open
problem related to this question. In that figure, T, TC , TNC and TA denote,
respectively, the sets of total orders on I[0, 1], total orders on I[0, 1] with a
continuous isomorphism to 〈[0, 1],≤〉(this set is empty), total orders on I[0, 1]
with a non-continuous isomorphism to 〈[0, 1],≤〉, and admissible total orders
on I[0, 1].

In addition, although of the contributions of this paper are not relates
with fuzzy intervals, in the sense of [12, 17], it may be a first step to get
admissible ordering between fuzzy intervals, but it will be matter of a future
research. In a future work, we intend to study new methods for constructing
admissible orders on I[0, 1], which are not necessarily based on aggregation
functions and an order. Besides, we intend to give a full and definitive answer
to the conjecture“If � is an admissible order on I[0, 1], then 〈I[0, 1],�, 〉 is
not isomorphic to 〈[0, 1],≤〉”.
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T

TA

≤Lex1≤Lex2
≤XY

∅

TC

TNC

≤H

???

Figure 1: Sumary of isomorphism problem between I[0, 1] with total (admissible) order
and [0, 1] with their usual order.
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