
Computing manuscript No.
(will be inserted by the editor)

Scalability Approaches for Causal Multicast: A Survey

Rubén de Juan-Marı́n · Hendrik Decker ·
José Enrique Armendáriz-Íñigo · José M.
Bernabéu-Aubán · Francesc D. Muñoz-Escoı́

the date of receipt and acceptance should be inserted later

Abstract Many distributed services need to be scalable: internet search, electronic
commerce, e-government... In order to achieve scalability those applications rely on
replicated components. Because of the dynamics of growth and volatility of cus-
tomer markets, applications need to be hosted by adaptive systems. In particular, the
scalability of the reliable multicast mechanisms used for supporting the consistency
of replicas is of crucial importance. Reliable multicast may propagate updates in a
pre-defined order (e.g., FIFO, total or causal). Since total order needs more commu-
nication rounds than causal order, the latter appears to be the preferable candidate for
achieving multicast scalability, although the consistency guarantees based on causal
order are weaker than those of total order. This paper provides a historical survey of
different scalability approaches for reliable causal multicast protocols.

Keywords Multicast protocol · Causal multicast · Version vector · Vector clock ·
Interconnection · Scalability

Mathematics Subject Classification (2000) 68-00 · 68M14 · 68N01 · 90B18

1 Introduction

A growing number of dependable applications ensure their high availability and reli-
ability by replicating their components. Typical examples are web search, e-business,
grid computing and cloud computing. The replicas of such applications have to main-
tain some degree of consistency [48]; i.e., bounding the divergences allowed among
the states of such replicas. So, when an update operation is initiated in one replica,

Rubén de Juan-Marı́n · Hendrik Decker · José M. Bernabéu-Aubán · Francesc D. Muñoz-Escoı́
Instituto Universitario Mixto Tecnológico de Informática, Universitat Politècnica de València, 46022 Va-
lencia (Spain) E-mail: {rjuan, hendrik, josep, fmunyoz}@iti.upv.es

José Enrique Armendáriz-Íñigo
Depto. de Ingenierı́a Matemática e Informática, Universidad Pública de Navarra, 31006 Pamplona (Spain)
E-mail: enrique.armendariz@unavarra.es

This is a post-peer-review, pre-copyedit version of an article published in Computing.
The final authenticated version is available online at:
https://doi.org/10.1007/s00607-015-0479-0.

2 Rubén de Juan-Marı́n et al.

the same operation (or its results) should be propagated to all other replicas and ap-
plied there. The degree of replica consistency depends on the particular application,
on how the replicas are organised, and on the order of update propagation.

These dependable distributed applications should deal with a large number of
users. Therefore, they need to scale horizontally. Horizontal scalability implies that,
whenever the number of nodes in a system increases, it is able to serve more users
with the same QoS characteristics (e.g., average response time). In many applications,
most operations are read-only and each client may be served by a different server
process. Thus, an increase in the number of servers directly increases the service
capacity. On the other hand, client operations that modify the server state should be
propagated to all replicas. In many cases, the communication needed by updating
operations is the bottleneck that prevents systems from scaling out.

Thus, a scalable multicast protocol for propagating updates to all servers is needed.
FIFO total-order multicast provides the basis for supporting sequential consistency
[27]. However, total-order multicast demands consensus at some point [20]. There-
fore, total order entails additional communication rounds and this compromises scal-
ability. On the other hand, when updates are propagated among replicas using a re-
liable causal multicast, causal consistency is maintained. These multicast protocols
only need a single communication step in the regular case as FIFO multicasts do, but
causal multicasts provide a stronger consistency among replicas. So, causal multicast
provides an advantageous basis for scalable communication. However, this single
communication round uses messages that should carry some kind of causal history
and the amount of such information depends on the system size. As a result, in order
to multicast messages to as many servers as possible, some mechanisms should be
devised to reduce the overall size of that causal history.

Scalable services are regularly deployed in multiple data centres and network
partitions may arise. Considering the CAP theorem [28], only two of the following
three characteristics can be maintained simultaneously in a distributed system: Con-
sistency, Availability and Partition-tolerance. So, in a distributed system where par-
titions may happen and where service availability is also a must, consistency needs
to be sacrificed. Because of this, those systems usually adopt eventual consistency
[23, 70] and that condition can be easily met using causal consistency as its base [53].
Indeed, several recent works have proven that causal consistency is the strongest data-
centred consistency model to be maintained in a distributed partition-tolerant system
[42, 54].

Some examples of scalable services demanding causal multicasts are:

1. Services with commutable updates (e.g., e-commerce services). Most client ac-
tions in e-commerce services consist in viewing the available products and up-
dating the client’s cart. Cart updates can be implemented as add or subtract op-
erations on the set of elements in the cart and on the current warehouse stock
levels. Concurrent operations started by different customers may be executed fol-
lowing different orders in different replicas. If those operations are commutable
[55, 29] then there will be no danger in using causal communication: causally
related operations follow the same order in all replicas and concurrent operations
will generate the same server state once all they are applied.

Scalability Approaches for Causal Multicast: A Survey 3

Commutable updates may be combined with lazy propagation [37]. Lazy update
propagation and causal communication do not introduce any noticeable delays
for managing updates. As a result, servers may reply earlier to client requests.
All these mechanisms (causal communication, commutable operations, lazy prop-
agation...) provide the basis for implementing eventual consistency [64, 14] that
is the common approach now in scalable distributed services.

2. Mobile services. Multiple applications that are deployed in mobile networks (as
event notification services [41], virtual environments [75], information diffusion
in VANETs [40, 71],...) do not require strong consistency. Thus, reliable causal
multicast protocols for mobile systems have been proposed in many papers [9, 58,
57, 73]. Those protocols also involve some of the mechanisms described in this
paper, since most mobile computers are battery-backed and they need to minimise
message size in order to extend battery life.
A distributed system with mobile nodes is prone to network partitions. If the
services deployed in such system should be continuously available, previously
partitioned subsystems may have a divergent state when they join again. The us-
age of a causal history (in any of its forms: precedent messages, vector clocks...)
in the reliable causal multicasts combined with version vectors in the replicated
components allows an easy identification of the state divergences [52] that should
be fixed, simplifying the reconciliation algorithms demanded in those cases.

3. Cloud management. In recent cloud computing systems, some kind of tool is
needed to administer their virtual infrastructure [67]; i.e., to manage the large
amount of physical nodes that compose a data centre and the virtual machines
that could be deployed in each of those nodes. Reliable causal multicasts pro-
vide a low-level mechanism for dealing with the communication needs of such
management tools.

4. Geo-replicated scalable datastores. Several recent works [5, 10, 24, 65, 74] have
developed persistent datastores and client-side caches for highly scalable services
deployed on the cloud with causal consistency. Those systems use causal multi-
cast (or a stronger approach like chain propagation) for update forwarding. With
this, they ensure service continuity even in case of network partitions.

To the best of our knowledge, there are several textbooks (e.g., [18, 36]) that anal-
yse and compare some reliable causal multicast algorithms, but there is yet no pub-
lished survey or tutorial about the mechanisms used in the numerous reliable causal
multicast protocols existing today. This paper attempts to fill this void, by identify-
ing approaches that are better suited for attaining scalability. To this end, Section
2 specifies what is understood as reliable causal multicast. Section 3 summarises the
main characteristics of the proposed approaches and gives a historical review of these
mechanisms. Finally, Section 4 sums up comparing the surveyed causal multicast
mechanisms and Section 5 concludes the paper.

2 Reliable Causal Multicast

We assume an asynchronous distributed system that uses message passing as its inter-
process communication mechanism. There exists a distributed application that needs

4 Rubén de Juan-Marı́n et al.

Fig. 1 Communication events.

causal propagation of messages to all the nodes where its processes are executed. The
system being considered is that composed by all those nodes where the application
components have been deployed.

Many surveyed papers state that they assume “reliable communication”. How-
ever, often this only means that channels do not duplicate messages nor create spu-
rious ones and that message delivery is guaranteed as long as sender and receiver
do not fail; i.e., communication channels are quasi-reliable [2]. Therefore, reliable
message delivery is a responsibility of the multicast protocol.

A process is considered correct when it does not fail (in the scope of the commu-
nication steps being considered), and it is faulty otherwise.

Some of the surveyed multicast protocols manage uniform message delivery. Uni-
form delivery [30] means that if any correct or faulty process has delivered a message
m, then all correct processes will be able to deliver m.

The protocols presented in subsequent sections may be implemented inside a
group communication system (GCS) (e.g., Isis [16, 17], Transis [8], JGroup [47],
Spread [7], JGroups [13],...). Given a GCS, three different events can be distinguished
with regard to message transmission, as shown in Fig. 1:

1. multicast(m). The message m is multicast by its sender process (sender(m)).
2. receive(m). The message m is received by a GCS module in each node where

some process belonging to the group exists. It is temporarily buffered in the GCS
module until causal order can be ensured.

3. deliver(m). The message m is received by some target process from its underlying
GCS module. The delivery of m complies with causal order.

A process join or failure implies a view change event (i.e., a view encompasses
the set of processes that constitute the group/system, and such a set is changed each
time a process either joins or leaves the group) in a GCS.

Since not all existing protocols are view-oriented, a general specification of reli-
able causal multicast is needed. To this end, that presented in [30] is taken here.

With this, reliable multicast is specified using these three properties:

Scalability Approaches for Causal Multicast: A Survey 5

P1 (Validity). If a correct process p multicasts a message m, it eventually delivers m.
P2 (Agreement). If a correct process p delivers a message m then all correct processes

eventually deliver m.
P3 (Integrity). For any message m, every correct process delivers m at most once, and

only if m was previously multicast by sender(m).

So, when no failures arise, a reliable multicast needs to be delivered by all pro-
cesses that are alive. On the other hand, if its sender fails while a message m is being
multicast, two outcomes may arise (considering P2): either all processes deliver m
or none of them do so. Thus, if some of the target processes have delivered m, they
should be able to maintain and forward m to the remaining target processes in case
of failure of sender(m), using a specialised algorithm to this end (e.g., the flush algo-
rithm described in [17]).

We are interested in causal delivery, inspired by the happens before relation de-
fined by Lamport [38]. Such relation can be summarised as follows.

Let us assume a distributed system consisting of a set S of processes whose ex-
ecution could be represented by a sequence of events in each process. The happens
before relation (quoting [38]) denoted by “→” has this definition:

The relation “→” on the set of events of a system is the smallest relation
satisfying the following three conditions:
1. If a,b are events in the same process, and a comes before b, then a→ b.
2. If a is the sending of a message by one process and b is the receipt of the

same message by another process, then a→ b.
3. If a→ b and b→ c then a→ c.

Two distinct events a and b are said to be concurrent (a ‖ b) if a 6→ b and
b 6→ a .

Note that 6→ is the negation of→. Clearly, this definition entails that→ is anti-
reflexive, anti-symmetric, anti-cyclic and transitive.

So, a reliable causal multicast protocol should comply with all properties as de-
fined above for reliable multicasts, plus the next one:

P4 (Causal order). If the multicast of a message m causally precedes (i.e., “happens
before”) the multicast of a message m′, then if some correct process p delivers
both messages then no correct process delivers m′ unless it has previously deliv-
ered m.

Example. In order to illustrate what causal multicast is, imagine a simple execution
that uses causal multicasts. Let us assume a system S1 = {p1, p2, p3, p4}. These pro-
cesses multicast four different messages m1, m2, m3 and m4 as shown in Fig. 2. We
compactly denote Prop. P4 by m→ m′.

Note that m1 → m2, since m2 was sent by p3 once it had delivered m1. This in-
troduces a problem in p4, since it receives such messages in the opposite order, and
this forces p4 to buffer m2 in its receiving queue until m1 is delivered. This has been
shown drawing m2’s reception in p4 as a circle, and needing an additional arrow to
represent its delivery (at the appropriate time). Also, m2→ m3, since m3 was sent by
p2 once it had delivered m2. Again, this demands that p1 stops m3 delivery until m2

6 Rubén de Juan-Marı́n et al.

P1

P2

P3

P4

m1

m2

m3

m4

Fig. 2 Execution Ex1 with causal multicasts.

is received and delivered. Finally, note that m3 6→ m4, since p1’s GCS had received
m3 before sending m4, but it did not deliver m3 to p1 because m2 was still in transit.
Since both m1 and m4 have been multicast by p1 in that order, they also follow that
m1 → m4. Additionally, the following relations are also true: m2 ‖ m4 (since m2 is
sent by p3 and m4 by p1 and m2 is delivered in p1 once m4 was already multicast;
i.e., there is no communication —or multicast-deliver— path relating both sending
events), m3 ‖ m4 (because of the same reason), and m1→ m3 (since p2 delivered m1
before multicasting m3, and also due to transitivity: m1→ m2 and m2→ m3).

3 Reliable Causal Multicast Scaling Mechanisms

A brief technical description of each generation of multicast scalability solutions is
going to be given now, highlighting the advantages and drawbacks of each of them.

Scalability can be improved if the messages maintain a moderate size and the
number of messages needed by the multicast protocol is minimised. The following
sections describe how these two problems have been managed in different protocol
classes. Section 3.1 is devoted to describe the first generation of causal multicast
protocols, where scalability was not yet considered.

3.1 First Generation

Logical clocks [38] defined by Lamport (1978) register causal dependencies among
the events of distributed executions. Thus, they record the causal dependencies be-
tween sending and reception events. The first generation of reliable causal multicast
protocols followed a similar idea. However, those protocols preferred to (re-)transmit
the causally precedent messages instead of adding any kind of logical clock value to
the new messages being multicast. Thus, the senders simply added some previously
received messages as a causal history in each new multicast; i.e., instead of tagging
that new message with its intended clock value, the messages that have caused any
increase in that value are also sent (as an ordered sequence) in that multicast. If any of
the receivers has not yet delivered any of the messages in that sequence, it proceeds to
their delivery in the appropriate order. This also guarantees causally ordered delivery.

Scalability Approaches for Causal Multicast: A Survey 7

Initialisation: CausalDeliver(m):
previousDelivered := ⊥ upon FIFODeliver(〈 m1, m2, ..., mk 〉) for some k do

for i := 1 to k do
CausalMulticast(m): if p has not yet executed CausalDeliver(mi)

FIFOMulticast(previousDelivered · m) then
previousDelivered := ⊥ CausalDeliver(mi)

previousDelivered := previousDelivered · mi
fi

done
done

Fig. 3 Non-blocking causal multicast algorithm for process p.

P1

P2

P3

P4

m1

m2

m3

m4

Fig. 4 Execution Ex2 of the non-blocking protocol.

The CBCAST [16] protocol was one of the first proposals of this kind. However,
Hadzilacos and Toueg [30] describe a similar one, more compact, and without im-
plementation details. We present the latter in Fig. 3. It uses a modular design and
requires an underlying uniform reliable FIFO multicast as its basic building block.

Note that in this algorithm any sender process p includes as causal history all
messages that have been received by p since it sent its previous multicast. Since the
underlying multicast service is uniform, reliable and FIFO, this guarantees that no
message could be ever lost and that all causally precedent messages will be received
by all target receivers. When a receiving process gets that message sequence, it only
needs to check whether it had previously delivered any of its messages. If so, those
messages are ignored; otherwise, they are delivered following the appropriate order.

In order to illustrate how this protocol works, Fig. 4 shows the same example
depicted in Fig. 2 as it is managed by this protocol. Let us discuss its main steps:

1. When p1 multicasts m1 no previous message was received yet. So, the sequence
of this multicast only consists of 〈m1〉.

2. When p3 multicasts m2 it should send the sequence 〈m1,m2〉, since m1 was al-
ready delivered in p3.
This explains why p4 delivers both m1 and m2 at the same time (and in the correct
order), since the original m1 multicast by p1 had not yet been received there when
the sequence 〈m1,m2〉 multicast by p3 was received.

3. When p2 multicasts m3 it had already received m1 and m2, so the sequence being
multicast is 〈m1,m2,m3〉 at that time.
This explains that m2 and m3 are delivered at the same time in p1.

8 Rubén de Juan-Marı́n et al.

4. Finally, when p1 multicasts m4 it multicasts the sequence 〈m2,m3,m4〉. This en-
sures that p4 is able to deliver m3 before m4 when it receives such sequence.

Note that the resulting execution Ex2 is different to the execution Ex1 shown
in Fig. 2. Ex1 verifies that m2 ‖ m4 and m3 ‖ m4, but Ex2 does not maintain the
same relations. Because of the inclusion of potentially causally related messages,
Ex2 verifies that m1 → m2 → m3 → m4; i.e., it has managed as “causally related”
some messages that were concurrent in Ex1.

Advantages. Since all messages included in the transmitted packets are appropri-
ately ordered, causal order is trivially ensured in these protocols. Additionally, such
causal delivery never demands that messages were blocked at their delivery step,
since when a message is received and is ready to be delivered, all its causally prece-
dent messages have also been received and delivered. Note that none of the protocols
explained in the following sections are able to maintain this non-blocking behaviour.

Drawbacks. Although the inclusion of precedent messages is able to ensure the
protocol correctness and its non-blocking behaviour, there is a price to pay: the size of
the transmitted packets could be very large when both the message sending rate and
the group size are increased. This seriously compromises scalability and explains
why this approach was abandoned when vector clocks were introduced in order to
track message causality.

On the other hand, in systems with a few nodes and in intervals where only a
single process is multicasting messages, no precedent message needs to be included
in a multicast. As a result, the message propagation pattern being followed by every
application should be adequately analysed or monitored before discarding this initial
protocol. Despite this, most scalable applications require that every replica accepts
user requests. As a result, a load-balanced application deployment would require that
every replica initiates a similar amount of multicasts. In this scenario, this protocol
regularly generates large sequences of messages in each sending operation, since
multiple preceding messages should be included in every multicast.

Historical review. The first generation of causal multicast mechanisms was initi-
ated by the CBCAST [16] protocol from Birman and Joseph (1987). Its advantages
and drawbacks have already been described.

A logical subsequent step in this evolution was the design of a mechanism that
still preserves some notion of the causal history in each multicast message, but with-
out requiring the inclusion of entire past messages in such sendings. Psync’s conver-
sations [55] provided a first solution in this line in 1989. It consisted in including
only the identifiers of precedent messages, but not their contents. A similar solution
was used by Ladin et al [37] for labelling client-ordered operations in their lazy repli-
cation proposal (1992).

In both cases, the size of sent messages is reduced. However, this came at a cost:
when causally-precedent messages are included in a multicast, its delivery does not
demand any additional delay (i.e., it is non-blocking); on the other hand, if those
precedent messages are not included and at least one of them has not been received
yet, delivery is temporarily blocked. As a result, these identifier-based multicasts in-
troduced blocking delivery. Those solutions were generalised with the introduction
of vector clocks.

Scalability Approaches for Causal Multicast: A Survey 9

Alternatively, for point-to-point communication, Mattern and Fünfrocken [45]
(1994) prove that historical information is not needed at all when the communica-
tion channels being used are synchronous. With this, precedent messages need not be
included in the messages being sent, minimising the size of those messages. However,
synchronous communication means that the sender cannot put any subsequent mes-
sage in a communication channel until the receiver has acknowledged the reception
of the current message. Using both sending and receiving buffers at both communica-
tion ends, synchronous communication is able to emulate a non-blocking behaviour
for senders. In spite of this, the overall communication performance is much worse
than using vector clocks, to be described in the next section.

3.2 Vector Clocks

Vector clocks [26, 44] consist of as many entries as processes compose the system.
They assume that those processes use natural numbers as their identifiers. So, in a
process p each vector slot k maintains as its value the number of messages sent by
process k known by process p.

Vector clocks can be considered as an adaptation of the version vectors proposed
in [52] as a means to detect inconsistencies in distributed file systems. Indeed, version
vectors maintain the number of updates applied by each node to a given file or set of
files, while vector clocks hold the number of messages sent by each node. So, in
both cases the vectors maintain the set of relevant events (either updates or message
sendings) applied by each system node.

In the regular causal multicast protocols based on vector clocks, each process
maintains a vector clock VC with as many components as processes exist in the sys-
tem. Such clock entries are updated according to the rules from [17]:

– Each time a message m is multicast by pi, it is tagged with the local vector clock
of its sender (i.e., VCm := VCpi), once such vector clock has increased its local
entry (i.e., VCpi [i] :=VCpi [i]+1).

– When m is received by p j, it is checked whether entry i (the sender’s one) in the
message vector clock is one unit greater than the value of this same entry in p j’s
clock, and all other entries are greater or equal in p j’s clock than in the message
clock; i.e., the following should be respected:

VCm[i] =VCp j [i]+1

and, assuming that n is the system size, ∀k ∈ {1..n} : k 6= i

VCm[k]≤VCp j [k]

This implies that all causally preceding messages to m already sent by other group
members have already been delivered in this receiving process.
This means that the message is buffered and not yet delivered as long as these
conditions are not satisfied. When p j delivers m, it also increases the local entry
belonging to pi (i.e., VCp j [i] :=VCm[i]).

10 Rubén de Juan-Marı́n et al.

P1

P2

P3

P4

m1

m2

m3

m4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,1,0]

[1,1,1,0]

[2,0,0,0]

[2,1,1,0]

[2,1,1,0]

[2,1,1,0]

[2,1,1,0]

Fig. 5 Execution Ex1 managed with vector clocks.

Let us consider now the example Ex1 previously shown in Fig. 2, discussing the
vector clocks assigned by each process to each of the relevant events of that execution
(see Fig. 5):

1. The system is composed of four processes, so all vector clocks are initialised to
[0,0,0,0].

2. The first event is the multicast of message m1 by p1. So, p1 sets its vector clock
to [1,0,0,0] and m1 also gets that timestamp.

3. Once such message is received, all processes verify that the delivery conditions
are satisfied (i.e., the sender slot in the message is one unit greater than the same
slot in the receiver’s clock). Therefore, these processes deliver immediately m1
and update their own clock to [1,0,0,0].

4. Later, p3 multicasts m2 and to this end it sets its clock to [1,0,1,0]. Message m2
is also timestamped with that value.

5. When m2 is received, p1, p2 and p3 already had a value greater than 0 in the first
slot. So, they deliver m2 without blocking. On the other hand, p4 still had value
[0,0,0,0]. So, it maintains m2 in its receiving buffer until m1 is delivered. As a
result of m2’s delivery, p2, p3 and p4 set their clock to [1,0,1,0], whilst p1 sets it
to [2,0,1,0] since it has previously multicast message m4 as described in step 7.

6. Later, p2 multicasts m3 tagged with [1,1,1,0]. Such message is delivered in p2
and p3 without any problems, setting p3’s clock to [1,1,1,0], too.
When m3 is received by p1, p1 still has a clock [1,0,0,0]. So, it is unable to
deliver it, since its third slot should have value 1 in order to allow such delivery.
This only happens once p1 has multicast m4 and received m2, a bit later.
On the other hand, p4 receives m3 once it has already delivered m4. There is
no blocking in the delivery of that pair of messages since they are concurrent
(VCm3 = [1,1,1,0] and VCm4 = [2,0,0,0]) and p4’s clock ([1,0,1,0]) allows the
delivery of any of them, since it maintains a sender’s slot value one unit lower
than that carried in the message and the other slot values are greater or equal than
those included in such message.

7. Finally, p1 sends m4 with timestamp [2,0,0,0]. Later it receives and delivers m2,
setting its clock to [2,0,1,0] and enabling the delivery of m3 (updating p1’s clock
to [2,1,1,0]) and m4.

Scalability Approaches for Causal Multicast: A Survey 11

A bit later, p2, p3 and p4 are able to deliver m4 without problems. All processes
terminate with a vector clock with value [2,1,1,0].

This technique has managed execution Ex1 as initially described at the end of
Section 2. Note that m2 ‖ m4 and m3 ‖ m4 since their pairs of vector clocks are in-
comparable1 (i.e., in a per-slot comparison, not all the slots in a vector are lower
than or equal to those in the other vector): VCm2 = [1,0,1,0], VCm3 = [1,1,1,0] and
VCm4 = [2,0,0,0]. On the other hand, m1→m2 and m2→m3, since VCm1 = [1,0,0,0]
< VCm2 = [1,0,1,0] < VCm3 = [1,1,1,0].

Advantages. Vector clocks are able to ensure that VC(a)<VC(b)⇒ a→ b, whilst
the original Lamport logical clocks cannot ensure such property. However, the rules
to compare clocks are also more complex. Because of this, all causal dependencies
among multicast messages can be easily tracked with vector clocks. This removes
the need of including the causally precedent messages in each multicast. As a result,
message sizes are compacted and scalability on size is improved.

Drawbacks. Unfortunately, the non-blocking behaviour of the previous family of
protocols has been lost in this case. When a message is dropped or when the routing
being used leads to unordered reception, messages are prevented from being delivered
until the missed messages are appropriately re-sent, received and delivered. As a
result, these protocols may block message delivery in some cases.

Although message size has been reduced, vector clock size still depends linearly
on the amount of processes and logarithmically on the values to be held in each vector
slot. Multicast services are commonly used by highly available applications that will
exist for a long time. Thus, vector slots must hold long integer numbers. If there are
many processes, vector clocks will still be very large. So, a system that plans to use
a causal multicast service based on vector clocks should consider their size. With
vector slots of b bits in a system with n processes, we are adding a “tail” of (b∗n/8)
bytes to each message. For instance, in a system with 200 processes and 32-bit slots,
this adds 800 bytes to each message. This could be a non-negligible communication
overhead for a scalable service. However, replicated services seldom use as many
replicas. When they need to maintain a lot of data, they partition such data and each
fragment is managed by a disjoint set of replicas, using sharding [69]. So, typical data
replica cardinality seldom exceeds 10 replicas and this only introduces an overhead
of 40 bytes per message in this example.

Moreover, each time the system membership varies, vector clocks need to be
readjusted. This means that vectors adapt their amount of slots, all vector slots are
initialised to zero and communication is temporarily stopped in order to proceed with
that readjustment. That temporary reinitialisation, with its inherent communication
blocking, has also some advantageous effects: if slot values are reset to zero, this
limits their unbounded growth. As a result, the size of those slots could be bounded
considering that membership changes arise and their frequency may be forecast.

Historical review. The first protocols developed for the vector-clock-based ap-
proach by Birman et al in 1991 [17] (anticipated by Schiper et al [62] and Raynal

1 Vector clocks are compared as follows:
VC(a)≤VC(b) iff ∀i, i ∈ {1..n} : VC(a)[i]≤VC(b)[i], and
VC(a)<VC(b) iff VC(a)≤VC(b)∧∃i : VC(a)[i]<VC(b)[i]

12 Rubén de Juan-Marı́n et al.

et al [59], though for point-to-point communication) turned out to be efficient and
scaled better than those of the previous generation. Most existing GCSs use causal
multicast protocols of this kind (Isis [17], Transis [8], Spread [7], JGroups [13],...).

Other subsequent proposals are based on this kind of causal history information
and address other important issues. For instance, Schiper and Pedone [63] propose a
protocol for open groups. In open groups [22], not only the members of the system
group can multicast messages to its members, but any other process can. Most of
the surveyed multicast protocols were intended for closed groups where only group
members are able to multicast messages, compelling external clients to forward their
messages to any internal process that later multicasts each message.

Almeida et al [3] (2004) propose a mechanism for bounding the size of the el-
ements used in version vectors. It is intended for point-to-point communication and
demands the transmission of a short list of previous versions. So, it still combines the
usage of vector versions (that are locally maintained) with the transmission of some
historical information in the messages. Thus, each node is able to prune the “history”
maintained in every version vector component. Because of this, the values used in
vector slots can be bounded and restarted soon (e.g., in a system with N nodes, the
upper bound can be set to N2). However, this technique cannot be immediately ap-
plied to vector clocks, since it needs a thorough revision of the vector comparison
operator when vector slots assume a numerical domain.

Vector clocks should also deal with system membership changes since they lead
to vector reorganisations. An elegant solution to this problem has been proposed by
Almeida et al [4] (2008): interval tree clocks (ITC). ITCs may reconfigure the clocks
using local information (no global process identification approach is needed) allow-
ing a fast adaptation in dynamic systems. It is, indeed, an evolution of the compaction
approach to be described in the next section.

3.3 Compaction Approach

The vector compaction approach tries to minimise the size of the vector clocks being
transferred in each multicast. To this end, only those slots that have changed and are
still unknown for the receiving processes are included in the message timestamp. But
there are two different mechanisms able to decide which slots need to be included:
one for general causal communication [66] (i.e., point-to-point sendings), and another
specific to multicast-based communication [17].

Let us start describing the general approach [66] intended for point-to-point com-
munication. Each process pi should maintain two additional vector clocks, named
LUpi –last update– and LSpi –last sent–, besides VCpi as explained above. The LUpi [j]
holds the value of VCpi [i] when pi last updated its component j. In other words, to
remember the state of pi when it delivered the last message from p j. On the other
hand, LSpi [j] maintains the value of VCpi [i] when pi sent its last message to p j. Fi-
nally, when pi sends a new message to p j it only needs to transfer the entries VCpi [k]
(with k 6= j) such that LSpi [j]< LUpi [k]; i.e., it should propagate the sequence of pairs
〈k,VCpi [k]〉 that have been updated since pi sent its last message to p j.

Scalability Approaches for Causal Multicast: A Survey 13

P1

P2

P3

P4

m1

m2

[5,2,19,3]

{(3,20)}

{(1,10),(4,2)}

m3

{(1,10),(3,22)}

m4
{(1,10),(3,23)}

Fig. 6 Execution Ex3 with compacted clocks (unicast messages).

Let us illustrate how this compaction works with the example shown in Fig. 6
of a system with four processes. To this end, our description is focused on the state
managed by process p3. Its state when such execution fragment starts is:

Index VCp3 LUp3 LSp3
1 5 17 16
2 2 10 18
3 19 19 –
4 3 8 15

To begin with, p3 sends a causal message m1 to p2. So, it checks whether LSp3 [2]
(whose value is 18) is lower than the LUp3 [k] values for k∈ {1,3,4}. Only its own slot
satisfies such condition, so m1 only receives {(3,20)} as its timestamp. As a result,
the updated p3’s state is:

Index VCp3 LUp3 LSp3
1 5 17 16
2 2 10 20
3 20 20 –
4 3 8 15

Then, process p1 sends m2 to p3 with timestamp {(1,10),(4,2)}. So, p3 delivers
m2 and updates its state as follows:

Index VCp3 LUp3 LSp3
1 10 21 16
2 2 10 20
3 21 21 –
4 3 8 15

Note that VCp3 [4] has not been updated, since its value was already greater than
that propagated in m2’s timestamp.

Later, p3 sends m3 to p4. It checks whether LSp3 [4] (with value 15) is lower than
the LUp3 [k] values for k ∈ {1,2,3}. The slots from p1 and p3 satisfy such condition,
so m3 uses {(1,10),(3,22)} as its timestamp. As a result, the updated p3’s state is:

Index VCp3 LUp3 LSp3
1 10 21 16
2 2 10 20
3 22 22 –
4 3 8 22

14 Rubén de Juan-Marı́n et al.

P1

P2

P3

P4

m1

m2

m3

m4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

{(1,1)}

{(1,1),(3,1)}

{(1,1),(2,1),(3,1)}

{(1,2)}

[2,1,1,0]

[2,1,1,0]

[2,1,1,0]

[2,1,1,0]

Fig. 7 Execution Ex1 with compacted clocks (bcast messages).

The same happens when p3 sends m4 to p2. The timestamp for m4 is {(1,10),(3,23)}
and the final state matrix is:

Index VCp3 LUp3 LSp3
1 10 21 16
2 2 10 23
3 23 23 –
4 3 8 22

The compaction approach has not achieved impressive results in this execution
because there are only a few processes in the assumed system. However, in a system
like this with only four processes, only two bits are needed to maintain the process
identifier. So, if the regular slot length is that of an integer (32 or 64 bits), the benefits
of this compaction solution are clear.

In case of using only causal multicasts, the LSpi vector clock will not be needed
since all its entries will hold the value VCpi [i]− 1. On the other hand, the LUpi [j]
entries maintain in this case the value of VCpi [i] when p j multicast was delivered in
pi. This allows a trivial optimisation: instead of maintaining such LUpi vector clock,
pi only needs to recall the value of its VCpi clock when it multicast its last message
(let us name it as LMpi), and pi only needs to transfer those entries k 6= i such that
LMpi [k] < VCpi [k]. So, this compacting approach is equivalent to the one described
by Birman et al [17] that is outlined at the end of this section.

Applying such compaction to the Ex1 execution previously depicted in Fig. 2 and
Fig. 5, and assuming that all processes initialise their vector clocks to [0,0,0,0], the
Ex1’s compacted version is shown in Fig. 7.

Advantages. The described compaction approach makes sense when the set of
processes that multicast messages in a given group is localised; i.e., not all group
members attain the same sending rates and many of them hardly send any message,
at least at times. Thus, the processes that multicast more frequently will be able to
compact a lot the vector clocks associated to their messages.

Assuming that n is the number of system processes, b is the number of bits needed
to maintain a sequence number (i.e., the value of a vector clock entry), m is the num-
ber of bits needed to maintain a process identifier, and k is the proportion of clock
entries that need to be propagated in each multicast, this technique is convenient when
[66]: k < n∗b

m+b . Note that n∗b is the size of a non-compacted vector clock and m+b

Scalability Approaches for Causal Multicast: A Survey 15

is the size of a compacted entry that needs to be propagated. This expression is easily
held in most systems, as proven by Chandra et al [19].

Finally, although it was initially presented as a technique to improve scalability,
it is able to provide important bandwidth saves even in systems that consist of a not
so large number of processes (e.g., the performance analysis given in [19] does only
consider systems with less than 100 processes).

Drawbacks. In the general case, the usage of the described compaction approach
reduces the needed bandwidth. However, this does not come for free since each pro-
cess needs to maintain an additional copy of its vector clock. Nevertheless, that is a
negligible space since the same amount of memory is added in every message when
this compaction technique is not used.

Note that the compaction mechanism for point-to-point communication has only
been described for completeness. Contrarily to what it suggests, the management of
the multicast-oriented compaction approach is easier. Indeed, the slots to be trans-
mitted may be progressively appended to a list as soon as any change arises. As a
result, the computing overhead being introduced for managing these compacted vec-
tor clocks in the sender process directly depends on the rate of vector changes. So,
that overhead is determined by the multicast traffic being originated by the other
group members.

Historical review. As already indicated, the main problem of this new generation
of protocols was the length of the vector clocks. A first solution was already pre-
sented by Birman et al [17] and Stephenson [68] (1991): it consisted in compacting
clocks by recording only incremental changes. More precisely, for each new multi-
cast message, each sender only sets those vector slots that have changed since its last
multicast message. However, the reduction being achieved depends on the message
transmission rate from each sender and on the number of system processes. Thus,
other compacting approaches were due.

Inspired in the compacting approach from [17], a more general compacting so-
lution was proposed by Singhal and Kshemkalyani (1992) [66]. It was later refined
and formalised by Prakash et al [58] (1997) and Kshemkalyani and Singhal [35]. The
degree of compaction of these solutions was evaluated by Chandra et al (2004) [19].
That evaluation showed that, in all analysed scenarios, the solution in [66] can avoid
any penalty of additional space requirements, and that, in an optimal scenario, it is
able to reduce the vector length to only 8% of its original size. In Pomares Hernández
et al (2001) [56], the compacted causal clock information is propagated in (some-
times separate) light control messages (LCM). The performance evaluation given in
that paper also proves that these mechanisms are able to enhance scalability.

Another compacting solution had been described by Mostéfaoui and Raynal [49]
in 1993. Although that solution was focused on the particular case of multiple groups
that share some of their processes, it essentially used the same key ideas described
above. It was able to manage multicasts to multiple groups using a single vector clock,
with as many entries as groups. This is cheaper than the solutions given in [17, 68],
but sometimes it also needs resynchronisation messages. In some way, this can also
be seen as a precursor of the subgroup interconnection technique.

16 Rubén de Juan-Marı́n et al.

3.4 Interconnection Approach

In an interconnection scenario [25, 6] there are multiple subgroups that already have
an internal causal multicast service and that collaborate to achieve a global causal
multicast service encompassing all those subgroups. At least one process in each
subgroup is chosen as its interconnection server (IS). The IS runs an interconnection
protocol, ensuring that all messages initially multicast in its local subgroup are even-
tually delivered in all other interconnected subgroups. Analogously, all the messages
multicast in remote subgroups are also eventually delivered in the local subgroup.
Note that the IS provides a regular application process interface to its local multicast
service; i.e., it must not interfere with the local multicast protocol execution.

Causal separators [61] provide the basis to implement this kind of interconnec-
tion protocols, since they isolate each subgroup as a different causal zone. The fact
that causal history does not need to be forwarded to other subgroups was proven
by Rodrigues and Verı́ssimo [60]. The resulting interconnection protocol only needs
either a FIFO transmission of the messages [31] when the interconnection servers
are paired, or an independent (i.e., not related in any way to the internal multicast
protocols used in the subgroups) causal multicast protocol executed by the set of all
interconnection servers [12].

Although the complete proofs can be found in the cited papers, their justifica-
tion is intuitive. Let us assume that our system S consists in the interconnection of k
subgroups Si (1 ≤ i ≤ k). Let prec(m) be the set of messages that causally precede
message m. Let IS(Si) be the interconnection server of subgroup Si. Message m only
needs to carry as its causal history some subset of prec(m), and it is easy to argue
that this subset is empty. Without loss of generality, let us assume that m was ini-
tially multicast in S1. For each m′ in prec(m), m′ was delivered to IS(S1) before m,
since m′ → m. Thus, IS(S1) was able to propagate m′ to all other Si (i 6= 1) before
m was propagated, since IS processes use FIFO channels [31] or a causal intercon-
nection protocol [12] for message propagation. As a result, all messages in prec(m)
have been transferred and remulticast in each subgroup Si before m is propagated.
Since each message in prec(m) has been remulticast in each subgroup Si (i 6= 1) by
the same IS(Si) process, all of them are causally related in such subgroups (since they
have all been sent by the same sender, and causal order implies FIFO order). Thus,
they should and will be delivered in their remulticast order. This eliminates the need
of any causal history in the interconnection protocol.

Advantages. The first advantage of an interconnection solution is that it limits the
scope of the causal history needed for implementing causal delivery. It is only used
internally, in each subgroup. This guarantees that the size of such causal history is
always kept small and does not depend on the overall size of the complete system.
So, that facilitates the scalability of the causal multicast service.

Interconnection protocols allow [31] that a particular sender chooses either to
multicast a message to its local subgroup or to the entire system.

Usually, each one of the interconnected subgroups has internal access to a very
fast computer network, whilst the links used for implementing the interconnection
have limited bandwidth [61]. Compared with deploying a single causal multicast
protocol among all processes, the interconnection approach minimises the number of

Scalability Approaches for Causal Multicast: A Survey 17

packets needed for implementing the multicast service through these links with lim-
ited bandwidth. Recall that the interconnection protocol only requires either a FIFO
or a causal communication among the interconnection servers of each connected sub-
group, and that only requires a single message to be communicated for each multicast
message. Without an interconnection solution, the sender would have to emit multiple
point-to-point messages, one for each receiver, and this could require that those inter-
subgroup links were traversed multiple times for a given multicast. Thus, without
interconnection the overall delivery delay would increase, since such low-bandwidth
links will be easily saturated.

Finally, the interconnection approach seems to be the ideal candidate for dealing
with dynamic distributed systems, i.e., those that may have a highly variable member-
ship [50]. Note that the modularity of this approach allows that each interconnected
subgroup may use internally any reliable causal multicast protocol. So, the implemen-
tation of such intra-subgroup protocols is not concerned with the global system mem-
bership. Additionally, some of the surveyed papers have shown that intra-subgroup
protocols may also not depend on its own membership (e.g., the protocols [33] based
on GPS modules for achieving a physical clock synchronisation, thus ensuring causal
delivery by timestamping messages). As a result, that kind of solutions is able to eas-
ily deal with dynamic systems, ensuring thus an acceptable level of scalability for
modern applications.

Drawbacks. Although an interconnection server introduces a short forwarding
step, some papers (e.g., [56]) criticise that such application-level processing intro-
duces a delay that might not be affordable by all kinds of applications. For instance,
media stream multicasting should comply with soft real-time constraints and demand
specific causal multicast protocols that tolerate message losses [72, 11, 15].

Kalantar and Birman [32] report a similar problem that is not specific of inter-
connected subgroups, since it also arises in any kind of overlapping groups: the con-
voy phenomenon. Processes that belong to more than one group (as the interconnec-
tion servers) introduce, at times, delays that generate a bursty propagation behaviour.
Since they act as “bridges” between subgroups and multicasts follow a specific order
(causal in this case), when any message cannot be propagated (due to the temporary
loss of a preceding message or because of a missed acknowledgement that might
compromise the agreement in reliable multicast delivery) some subsequent messages
get blocked until such propagation is resumed. If messages should cross multiple
subgroups in order to get delivered (as it happens in a hierarchical structure with
more than two layers), these delays in one of the propagation servers originate fur-
ther delays in the remaining servers of that path, causing a bursty propagation that
compromises scalability.

The solution to that problem has been already advanced in previous sections.
Since the convoy phenomenon is caused by a pause in forwarding processes, we
could use any of the available mechanisms for avoiding pauses. In the common case,
a forwarding pause is caused by a missed precedent message. So, we could use any of
the first generation protocols that include precedent messages in order to avoid such
situations. System architecture should take this into account, using small subgroups
that might only accumulate a few precedent messages in each multicast.

18 Rubén de Juan-Marı́n et al.

If failures arise, the reconfiguration and recovery of the system could need a non-
negligible time if any of the interconnection servers has crashed. In such case, another
server process should be chosen in that affected subgroup and its identity should be
reported to all other subgroups.

Applications demanding a strong consistency among their component replicas
usually require a precise global membership management, even when those repli-
cas are placed in different interconnected subgroups. The existing interconnecting
protocols have not been designed considering any global membership management.
Fortunately, reliable causal multicast provides a basis for supporting causal consis-
tency, and this consistency model cannot be qualified as strong; so the absence of
such global membership management will not be a problem in the general case.

Historical review. Meldal et al (1991) [46] proposed different ways for compact-
ing the vector clocks used in static multi-centre topologies. They proved that when
all subgroup interconnection channels are known in advance, vector clocks can be
highly compacted. They also specified general rules to accomplish such compaction
and showed that several topologies (e.g., a star) are able to generate minimal clock-
related information, whilst others (e.g., a ring) cannot reduce it at all.

Such rules were used by Adly and Nagi (1995) [1], where a hierarchical topology
was proposed, compacting the used vector clocks and enhancing thus its scalability.

This solution was further improved by Rodrigues and Verı́ssimo [61] in 1995 with
the introduction of the causal separator concept. Causal separators act as communi-
cation gateways, forwarding the messages transmitted among two or more subgroups,
named causal zones. Any causal history information (e.g., vector clocks) used in each
causal zone does not need to be known by the processes belonging to other causal
zones. As a result, a system consisting of many processes could be divided into mul-
tiple causal zones with several causal separators. Hence, the size of the vector clocks
managed by each process could be reduced, making thus practical the usage of the
causal protocols described already in Section 3.2, since the causal history overhead
may become negligible with an appropriate system division. Finally, [61] also shows
that FIFO point-to-point communication is enough for interconnecting causal zones.

The usage of causal separators was refined by Baldoni et al [12] in 1997. The lat-
ter limited the number of causal separators in a given causal zone to be a single one,
its causal server. In order to interconnect the causal servers of multiple groups, a reg-
ular causal multicast protocol should be used. This generates a hierarchical structure
named daisy architecture [12].

This was the first example of a new scalability approach known as (non-intrusive)
subgroup interconnection [25]. The best property of an interconnecting solution is
that the interconnected subgroups may internally use the protocol of their choice
that provides a suitable semantics (reliable causal delivery in the context of this pa-
per, but subgroup interconnection can also be applied to other kinds of ordered de-
livery). There should exist an interconnecting protocol that is compatible with the
same semantics, but it does not depend on the protocols being internally used in each
subgroup. Although the protocols described in [61] were already able to ensure this
property, Baldoni et al [12] were the first to explicitly state it.

Scalability Approaches for Causal Multicast: A Survey 19

Other papers presenting other interconnection solutions were published later. For
instance, Johnson et al (1999) [31] describe solutions to interconnect causal and total-
order multicast protocols.

Causal interconnection protocols require only reliable FIFO communication when
two subgroups are interconnected, and the avoidance of interconnection cycles when
more than two subgroups are managed [31, Theorem 7]. In a similar way, Meldal et al
[46] proved that the amount of clock-related information to be included in multicast
messages can be reduced if the connecting paths are acyclic; also Stephenson (1991)
[68] and Mostéfaoui and Raynal (1993) [49] proved that acyclicity is needed. On the
other hand, when total-order interconnection is intended, both [68, 49] show that an
intrusive interconnecting protocol is necessary; i.e., a multicast message cannot be
locally delivered in the sending subgroup until the forwarder process has propagated
the message and a global total order has been decided. Formal proofs of the impossi-
bility of achieving total-order interconnection in a non-intrusive way were later given
by Laumay et al (2001) [39] and Álvarez et al (2008) [6].

An alternative kind of interconnecting technique that also illustrates its modu-
larity is described by Kawanami et al [33, 34, 51] in 2004. This approach does not
use inside each interconnected subgroup any of the techniques previously presented
in this paper, but a simple algorithm based on physical timestamping. To this end,
it timestamps all multicast messages with the local clock of its sender process. This
requires a physical clock synchronisation, which can be achieved using GPS modules
in the host computers. Prakash and Baldoni [57] state that such level of physical syn-
chronisation is sufficient. In order to implement the interconnection, a regular vector
clock-based protocol is used by Kawanami et al [33], whilst the approaches in the
other two papers either work with nothing but the original Lamport clocks [51], or
those clocks combined with the physical timestamp used in the sender subgroup [34].

The interconnection modularity enables the protocols to be appropriately tailored
and optimised with regard to the particularities of each system. Thus, if an intra-
subgroup local network has high bandwidth and low delays, as in the cloud infras-
tructures mentioned by Matos et al (2009) [43] as a federation of data centres, then its
performance can be very high, tolerating high internal message multicast rates. How-
ever, inter-subgroup channels do not provide high bandwidth. So, having a single
interconnecting server per subgroup may become a bottleneck that limits the over-
all scalability. To overcome this limitation, multiple servers per subgroup could be
deployed, thus setting multiple interconnecting channels between each pair of sub-
groups. That option has been analysed by de Juan-Marı́n et al (2009) [21], involving
a simple subprotocol that ensures an overall FIFO order among all interconnection
channels for each pair of interconnected subgroups, increasing thus the interconnec-
tion bandwidth.

4 Discussion

In order to sum up, Table 1 depicts the main characteristics of each presented ap-
proach. The multicasting mechanisms shown in that table are: First Generation, Vec-
tor Clocks, Compaction Approach and Interconnection Approach.

20 Rubén de Juan-Marı́n et al.

Multicasting Approaches
First Vector Compact. Intercon.

generat. clocks approach approach

Causal precedent vector compact
history messages clocks clocks

any

Structure no no no yes
Advantages non-blck – msg size msg size

blocking blockingDrawbacks big msg
reconf reconf

–

Table 1 Characteristics summary.

The characteristics being considered in such table rows are:

Causal History. It refers to how the solution ensures causal order. The possible values
are: inclusion of causal precedent messages, vector clocks or compacted vector
clocks.

Structure. This highlights whether the solution should have a logical structure of
processes or not. This might introduce some overhead in case of failures, since
such structure needs to be (partially) rebuilt when some processes fail.

Advantages. They can be: non-blocking delivery (Non-blck), or usage of small mes-
sages (Msg size) due to a minimisation of the causal history information being
appended to each message.

Drawbacks. Different drawbacks are considered: usage of large messages (big msg),
need of reconfiguration on each membership change (reconf) and blocking be-
haviour (blocking).
The interconnection approach does not need to be blocking, since it may use
in each subgroup any causal history format, even causally precedent messages.
Moreover, the interconnecting protocol need not transfer any causal history. Re-
garding internal message size, interconnected subgroups may use small messages
when a non-blocking alternative is chosen. This is achieved selecting a small sub-
groups size, minimising thus the amount of precedent messages in each multicast.

Regarding adaptability to varying workloads, the interconnection approach is the
best option since it does not demand any global membership management. View man-
agement is accomplished in each subgroup. This allows a precise implementation
with negligible overhead, since all the internal communication channels will provide
similar delays and bandwidth, using a fast network in most cases. Workload varia-
tions are easily managed, even when a lot of servers are involved in the scaling out
actions. To this end, administrators do only require an appropriate subgroup deploy-
ment, removing or adding entire subgroups to the current system when needed.

For each causal multicast mechanism, the following list identifies the require-
ments of the applications for which the respective mechanism could be used:

1. First generation: Applications that need a non-blocking delivery of messages and
are able to tolerate large messages (e.g., deployed in high-bandwidth networks).

2. Vector clocks: Applications that tolerate blocking delivery and are interested in
small messages (e.g., low-end LANs and WANs), with low scaling-out needs.

Scalability Approaches for Causal Multicast: A Survey 21

3. Compaction: Applications that tolerate blocking delivery and are interested in the
smallest messages (e.g., when deployed in WANs), with low scaling-out needs.

4. Interconnection: Applications with small message size on average and moderate-
to-high scaling-out needs, that can be deployed on modular sets of processes.

Causal multicasts support causal consistency. Causal consistency implemented
through an interconnection-based causal multicast protocol may support eventual
consistency [42, 54], overcoming the limitations imposed by the CAP theorem [28]
since causal consistency is partition-tolerant and it does not compromise service
availability. Each causal subgroup may be deployed in a different data centre and the
interconnection protocol implicitly implements the update propagation tasks needed
in order to reach a convergent state once a network partition has been repaired.

5 Conclusions

We have historically surveyed several mechanisms for implementing reliable causal
multicast. The first protocols included in each multicast message its own causal his-
tory; i.e., a set of precedent messages not yet delivered in all system processes. Thus,
the causal order could be enforced in all receivers. That was simplified when vector
clocks were introduced, reducing the size of the multicast messages. Some amount
of causal information (the vector clocks themselves) is still kept, in proportion of the
system size. In order to improve the scalability of these protocols, some kind of vec-
tor clock compaction mechanism may be used. There are two types of compaction.
The first only transmits the vector entries that have been modified since the last mes-
sage multicast by the same sender. The second uses the interconnection principle in
order to manage vector clocks only inside each subsystem. Thus, the vector size only
depends on the amount of processes in each subsystem but not on the global system
size. These approaches can be easily combined, for enabling reliable message mul-
ticasts in large systems and for facilitating the use of causal consistency in scalable
applications. When causal consistency is combined with lazy propagation, eventual
consistency is achieved. This improves the scalability of replicated services.

Acknowledgements This work was supported by European Regional Development Fund (FEDER) and
Ministerio de Economı́a y Competitividad (MINECO) under research grant TIN2012-37719-C03-01.

References

1. Adly N, Nagi M (1995) Maintaining causal order in large scale distributed sys-
tems using a logical hierarchy. In: IASTED Intnl Conf on Appl Inform, pp 214–
219

2. Aguilera MK, Chen W, Toueg S (1997) Heartbeat: A timeout-free failure detec-
tor for quiescent reliable communication. In: 11th Intnl Wshop on Distrib Alg
(WDAG), Saarbrücken, Germany, pp 126–140

3. Almeida JB, Almeida PS, Baquero C (2004) Bounded version vectors. In: 18th
Intnl Conf Distrib Comput (DISC), Amsterdam, The Netherlands, pp 102–116

22 Rubén de Juan-Marı́n et al.

4. Almeida PS, Baquero C, Fonte V (2008) Interval tree clocks. In: 12th Intnl Conf
Distrib Syst (OPODIS), Luxor, Egypt, pp 259–274

5. Almeida S, Leitão J, Rodrigues LET (2013) ChainReaction: a causal+ consis-
tent datastore based on chain replication. In: 8th EuroSys Conf, Prague, Czech
Republic, pp 85–98

6. Álvarez A, Arévalo S, Cholvi V, Fernández A, Jiménez E (2008) On the inter-
connection of message passing systems. Inform Process Lett 105(6):249–254

7. Amir Y, Stanton J (1998) The Spread wide area group communication system.
Tech. rep., CDNS-98-4, The Center for Networking and Distributed Systems,
The Johns Hopkins Univ.

8. Amir Y, Dolev D, Kramer S, Malki D (1992) Transis: A communication sub-
system for high availability. In: 22nd Intnl Symp Fault-Tolerant Comp (FTCS),
Boston, MA, USA, pp 76–84

9. Anastasi G, Bartoli A, Spadoni F (2001) A reliable multicast protocol for dis-
tributed mobile systems: Design and evaluation. IEEE Trans Parallel Distrib Syst
12(10):1009–1022

10. Bailis P, Ghodsi A, Hellerstein JM, Stoica I (2013) Bolt-on causal consistency.
In: Intnl Conf Mgmnt Data (SIGMOD), New York, NY, USA, pp 761–772

11. Baldoni R, Raynal M, Prakash R, Singhal M (1996) Broadcast with time and
causality constraints for multimedia applications. In: 22nd Intnl Euromicro Conf,
Prague, Czech Republic, pp 617–624

12. Baldoni R, Friedman R, van Renesse R (1997) The hierarchical daisy architec-
ture for causal delivery. In: 17th Intnl Conf Distrib Comput Syst (ICDCS), Bal-
timore, Maryland, USA, pp 570–577

13. Ban B (2002) JGroups - a toolkit for reliable multicast communication. Available
at: http://www.jgroups.org

14. Baquero C, Almeida PS, Shoker A (2014) Making operation-based CRDTs
operation-based. In: 14th Intnl Conf Distrib Appl Interop Syst (DAIS), Berlin,
Germany, pp 126–140

15. Benslimane A, Abouaissa A (2002) Dynamical grouping model for distributed
real time causal ordering. Comput Commun 25:288–302

16. Birman KP, Joseph TA (1987) Reliable communication in the presence of fail-
ures. ACM T Comput Syst 5(1):47–76

17. Birman KP, Schiper A, Stephenson P (1991) Lightweigt causal and atomic group
multicast. ACM T Comput Syst 9(3):272–314

18. Cachin C, Guerraoui R, Rodrigues LET (2011) Introduction to Reliable and Se-
cure Distributed Programming (2nd ed.). Springer

19. Chandra P, Gambhire P, Kshemkalyani AD (2004) Performance of the optimal
causal multicast algorithm: A statistical analysis. IEEE T Parall Distr 15(1):40–
52

20. Chandra TD, Toueg S (1996) Unreliable failure detectors for reliable distributed
systems. J ACM 43(2):225–267

21. de Juan-Marı́n R, Cholvi V, Jiménez E, Muñoz-Escoı́ FD (2009) Parallel in-
terconnection of broadcast systems with multiple FIFO channels. In: 11th Intnl
Symp on Distrib Obj, Middleware and Appl (DOA), Vilamoura, Portugal, LNCS,
vol 5870, pp 449–466

Scalability Approaches for Causal Multicast: A Survey 23

22. Défago X, Schiper A, Urbán P (2004) Total order broadcast and multicast algo-
rithms: Taxonomy and survey. ACM Comput Surv 36(4):372–421

23. Demers AJ, Greene DH, Hauser C, Irish W, Larson J, Shenker S, Sturgis HE,
Swinehart DC, Terry DB (1987) Epidemic algorithms for replicated database
maintenance. In: 6th ACM Symp on Princ of Distrib Comput (PODC), Vancou-
ver, BC, Canada, pp 1–12

24. Du J, Elnikety S, Roy A, Zwaenepoel W (2013) Orbe: scalable causal consis-
tency using dependency matrices and physical clocks. In: ACM Symp on Cloud
Comput (SoCC), Santa Clara, CA, USA, pp 11:1–11:14

25. Fernández A, Jiménez E, Cholvi V (2000) On the interconnection of causal mem-
ory systems. In: 19th Annual ACM Symp on Princ of Distrib Comput (PODC),
Portland, Oregon, USA, pp 163–170

26. Fidge CJ (1988) Timestamps in message-passing systems that preserve the par-
tial ordering. In: 11th Australian Comput Conf, pp 56–66

27. Friedman R, Vitenberg R, Chockler G (2003) On the composability of consis-
tency conditions. Inform Process Lett 86(4):169–176

28. Gilbert S, Lynch N (2002) Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News 33(2):51–59

29. Gray J, Helland P, O’Neil PE, Shasha D (1996) The dangers of replication and a
solution. In: SIGMOD Conf, pp 173–182

30. Hadzilacos V, Toueg S (1993) Fault-tolerant broadcasts and related problems. In:
Mullender S (ed) Distributed Systems, 2nd edn, ACM Press, chap 5, pp 97–145

31. Johnson S, Jahanian F, Shah J (1999) The inter-group router approach to scalable
group composition. In: 19th Intnl Conf on Distrib Comput Syst (ICDCS), Austin,
TX, USA, pp 4–14

32. Kalantar MH, Birman KP (1999) Causally ordered multicast: the conservative
approach. In: 19th Intnl Conf on Distrib Comput Syst (ICDCS), Austin, TX,
USA, pp 36–44

33. Kawanami S, Enokido T, Takizawa M (2004) A group communication proto-
col for scalable causal ordering. In: 18th Intnl Conf on Adv Inform Netw Appl
(AINA), Fukuoka, Japan, pp 296–302

34. Kawanami S, Nishimura T, Enokido T, Takizawa M (2005) A scalable group
communication protocol with global clock. In: 19th Intnl Conf on Adv Inform
Netw Appl (AINA), Taipei, Taiwan, pp 625–630

35. Kshemkalyani AD, Singhal M (1998) Necessary and sufficient conditions on in-
formation for causal message ordering and their optimal implementation. Distrib
Comput 11(2):91–111

36. Kshemkalyani AD, Singhal M (2011) Distributed Computing: Principles, Algo-
rithms, and Systems, 2nd edn. Cambridge University Press, New York, USA

37. Ladin R, Liskov B, Shrira L, Ghemawat S (1992) Providing high availability
using lazy replication. ACM T Comput Syst 10(4):360–391

38. Lamport L (1978) Time, clocks, and the ordering of events in a distributed sys-
tem. Commun ACM 21(7):558–565

39. Laumay P, Bruneton E, de Palma N, Krakowiak S (2001) Preserving causality
in a scalable message-oriented middleware. In: Intnl Conf on Distrib Syst Platf
(Middleware), pp 311–328

24 Rubén de Juan-Marı́n et al.

40. Liu N, Liu M, Cao J, Chen G, Lou W (2010) When transportation meets commu-
nication: V2P over VANETs. In: 30th Intnl Conf Distrib Comput Syst (ICDCS),
Genova, Italy

41. Lwin CH, Mohanty H, Ghosh RK (2004) Causal ordering in event notification
service systems for mobile users. In: Intnl Conf Inform Tech: Coding Comput
(ITCC), Las Vegas, Nevada, USA, pp 735–740

42. Mahajan P, Alvisi L, Dahlin M (2011) Consistency, availability and covergence.
Tech. rep., UTCS TR-11-22, The University of Texas at Austin, USA

43. Matos M, Sousa A, Pereira J, Oliveira R, Deliot E, Murray P (2009) CLON:
Overlay networks and gossip protocols for cloud environments. In: 11th Intnl
Symp on Dist Obj, Middleware and Appl (DOA), Vilamoura, Portugal, LNCS,
vol 5870, pp 549–566

44. Mattern F (1989) Virtual time and global states of distributed systems. In: Parallel
and Distributed Algorithms, North-Holland, pp 215–226

45. Mattern F, Fünfrocken S (1994) A non-blocking lightweight implementation of
causal order message delivery. Lect Notes Comput Sc 938:197–213

46. Meldal S, Sankar S, Vera J (1991) Exploiting locality in maintaining potential
causality. In: 10th ACM Symp on Princ of Distrib Comp (PODC), Montreal,
Quebec, Canada, pp 231–239

47. Meling H, Montresor A, Helvik BE, Babaoglu Ö (2008) Jgroup/ARM: a dis-
tributed object group platform with autonomous replication management. Softw,
Pract Exper 38(9):885–923

48. Mosberger D (1993) Memory consistency models. Operat Syst Review 27(1):18–
26

49. Mostéfaoui A, Raynal M (1993) Causal multicast in overlapping groups: To-
wards a low cost approach. In: 4th Intnl Wshop on Future Trends of Distrib
Comp Syst (FTDCS), Lisbon, Portugal, pp 136–142

50. Mostéfaoui A, Raynal M, Travers C, Patterson S, Agrawal D, El Abbadi A (2005)
From static distributed systems to dynamic systems. In: 24th Symp on Rel Distrib
Syst (SRDS), Orlando, FL, USA, pp 109–118

51. Nishimura T, Hayashibara N, Takizawa M, Enokido T (2005) Causally ordered
delivery with global clock in hierarchical group. In: ICPADS (2), Fukuoka,
Japan, pp 560–564

52. Parker Jr DS, Popek GJ, Rudisin G, Stoughton A, Walker BJ, Walton E, Chow
JM, Edwards DA, Kiser S, Kline CS (1983) Detection of mutual inconsistency
in distributed systems. IEEE Trans Software Eng 9(3):240–247

53. Pascual-Miret L (2014) Consistency models in modern distributed systems.
An approach to eventual consistency. Master’s thesis, Depto. de Sistemas In-
formáticos y Computación, Univ. Politècnica de València, Spain

54. Pascual-Miret L, González de Mendı́vil JR, Bernabéu-Aubán JM, Muñoz-Escoı́
FD (2015) Widening CAP consistency. Tech. rep., IUMTI-SIDI-2015/003, Univ.
Politècnica de València, Valencia, Spain

55. Peterson LL, Buchholz NC, Schlichting RD (1989) Preserving and using context
information in interprocess communication. ACM T Comput Syst 7(3):217–246

56. Pomares Hernández S, Fanchon J, Drira K, Diaz M (2001) Causal broadcast
protocol for very large group communication systems. In: 5th Intnl Conf on Princ

Scalability Approaches for Causal Multicast: A Survey 25

of Distrib Syst (OPODIS), Manzanillo, Mexico, pp 175–188
57. Prakash R, Baldoni R (2004) Causality and the spatial-temporal ordering in mo-

bile systems. Mobile Netw Appl 9(5):507–516
58. Prakash R, Raynal M, Singhal M (1997) An adaptive causal ordering algorithm

suited to mobile computing environments. J Parallel Distr Com 41(2):190–204
59. Raynal M, Schiper A, Toueg S (1991) The causal ordering abstraction and a

simple way to implement it. Inform Process Lett 39(6):343–350
60. Rodrigues L, Verı́ssimo P (1995) Causal separators and topological timestamp-

ing: An approach to support causal multicast in large-scale systems. Tech. Rep.
AR-05/95, Instituto de Engenharia de Sistemas e Computadores (INESC), Lis-
bon, Portugal

61. Rodrigues L, Verı́ssimo P (1995) Causal separators for large-scale multicast
communication. In: 15th Intnl Conf on Distrib Comput Syst (ICDCS), Vancou-
ver, Canada, pp 83–91

62. Schiper A, Eggli J, Sandoz A (1989) A new algorithm to implement causal or-
dering. In: 3rd Intnl Wshop on Distrib Alg (WDAG), Nice, France, pp 219–232

63. Schiper N, Pedone F (2010) Fast, flexible and highly resilient genuine FIFO
and causal multicast algorithms. In: 25th ACM Symp on Applied Comp (SAC),
Sierre, Switzerland, pp 418–422

64. Shapiro M, Preguiça NM, Baquero C, Zawirski M (2011) Convergent and com-
mutative replicated data types. Bulletin of the EATCS 104:67–88

65. Shen M, Kshemkalyani AD, Hsu TY (2015) Causal consistency for geo-
replicated cloud storage under partial replication. In: Intnl Paral Distrib Proces
Symp (IPDPS) Wshop, Hyderabad, India, pp 509–518

66. Singhal M, Kshemkalyani AD (1992) An efficient implementation of vector
clocks. Inform Process Lett 43(1):47–52

67. Sotomayor B, Montero RS, Llorente IM, Foster IT (2009) Virtual infrastructure
management in private and hybrid clouds. IEEE Internet Computing 13(5):14–22

68. Stephenson P (1991) Fast ordered multicasts. PhD thesis, Dept. of Comp. Sc.,
Cornell Univ., Ithaca, NY, USA

69. Stonebraker M (1986) The case for shared nothing. IEEE Database Eng Bull
9(1):4–9

70. Vogels W (2009) Eventually consistent. Commun ACM 52(1):40–44
71. Wischhof L, Ebner A, Rohling H (2005) Information dissemination in self-

organizing intervehicle networks. IEEE T Intell Transp 6(1):90–101
72. Yavatkar R (1992) MCP: A protocol for coordination and temporal synchro-

nization in multimedia collaborative applications. In: 12th Intnl Conf on Distrib
Comput Syst (ICDCS), Yokohama, Japan, pp 606–613

73. Yen LH, Huang TL, Hwang SY (1997) A protocol for causally ordered message
delivery in mobile computing systems. Mobile Netw Appl 2(4):365–372

74. Zawirski M, Preguiça N, Duarte S, Bieniusa A, Balegas V, Shapiro M (2015)
Write fast, read in the past: Causal consistency for client-side applications. In:
16th Intnl Middleware Conf, Vancouver, BC, Canada

75. Zhou S, Cai W, Turner SJ, Lee BS, Wei J (2007) Critical causal order of events
in distributed virtual environments. ACM T Mult Comp Comm Appl 3(3)

