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Abstract

We consider inference for the mean of a general stationary process based on
standardizing the sample mean by a frequency domain estimator of the long run
variance. Here, the main novelty is that we consider alternative asymptotics in
which the bandwidth is kept fixed. This does not yield a consistent estimator
of the long run variance, but, for the weakly dependent case, the studentized
sample mean has a Student-¢ limit distribution, which, for any given bandwidth,
appears to be more precise than the traditional Gaussian limit. When data are
fractionally integrated, the fixed bandwidth limit distribution of the studentized
mean is not standard, and we derive critical values for various bandwidths. By a
Monte Carlo experiment of finite sample performance we find that this asymptotic
result provides a better approximation than other proposals like the test statistic
based on the Memory Autocorrelation Consistent (MAC) estimator of the variance
of the sample mean.
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1. INTRODUCTION

We consider inference for the mean of a covariance stationary time series with au-
tocorrelation of unspecified nature. This problem has been widely studied for weakly
dependent processes (whose spectral density is finite and nonzero), where robust infer-
ence can be obtained by standardizing the sample average by the long run variance: this
is usually unknown, but it can be estimated by a range of techniques based on either
weighted autocovariances or weighted periodograms, see, e.g., Priestley (1981).

In the present paper we emphasize the use of frequency domain techniques. In
this setting, the simplest estimator of the long run variance can be obtained by direct
averaging periodograms evaluated at the first m Fourier frequencies (which corresponds
to using the Daniell kernel), where m is known as bandwidth. When discussing the
limiting properties of this estimator, it is routinely assumed that m — oo, although
at a rate slower than the sample size T', so that the band m /T is degenerating to 0.
Throughout, we will denote the assumption m — oo as the large-m approach. Here,
we will consider instead an alternative strategy to derive the asymptotic properties in
which m is kept fixed. The motivation is that in any practical situation a finite m is
used, so letting the asymptotic distribution depend on a fixed m might yield a better
approximation to the sampling distribution of the corresponding test statistic. This
approach will be denoted as fixed-m, and can be seen as a frequency domain analogue
to the fixed-b approach for time domain estimators of the long run variance. The fixed-b
strategy has been also applied to provide a more accurate limit approximation to the
sampling distribution of the studentized mean (see, e.g., Kiefer and Vogelsang, 2002,
2005, Jansson, 2004, Sun, Phillips and Jin, 2008, McElroy and Politis, 2012, 2013).

Despite the analogies, the fixed-m and fixed-b limits are different and, as we show in
the paper, in the leading case of weakly dependent processes, the fixed-m approach does
not require the simulation of a null limit distribution (which is found to be a Student-t
with 2m degrees of freedom, t,,). However, weak dependence is just a particular case
of the general type of dependence we allow for in the paper, which is captured by the
so-called fractional processes. This includes the long memory and antipersistent situa-
tions, with positive and negative memories, respectively, where the fixed-m limit of the
standardized mean is not standard and we derive critical values for various bandwidths.

The following section presents the studentized mean and discusses its large-m and
fixed-m limits. In Section 3, we compare the large-m and fixed-m limiting approxima-
tions to the sampling distribution of the studentized mean by a Monte Carlo experiment.
Finally, in Section 4 we conclude. Proofs are given in the Appendix.

2. LARGE-m AND FIXED-m LIMITS OF THE STUDENTIZED MEAN



We consider the time series 1, ..., x7, observed from the stationary process x; := pu+
ug, where F (u;) = 0 and u; may be subject to a general type of dependence characterized
in Assumptions 1 and 2 below.

Assumption 1. Let n, = A(L)e; := >~ Ajer; where L is the usual lag operator.
The weights {A;} are such that A (1) > 0 and >:°,1|4;| < oo and ¢, is an independent,
identically distributed (i.i.d.) sequence with E (g;) = 0, E (¢7) = 1.

Assumption 2. Let A/ :=T (t+0)/ (T ()T (t+1)), I () denoting the Gamma func-
tion, such that I'(0) := oo and T'(0)/T'(0) := 1, and w;, = >.\____ AV, 6 e
(—1/2,1/2).

Assumption 1, 2 imply that, in general, u; is a Type 1 fractionally integrated process.
We consider inference on p when the dependence structure of u; is not known. In this
case, the sample mean T := T~! ZL Ty, is a natural estimator of p and, if u; is weakly
dependent, that is u; = 7, (or 6 = 0) and regularity conditions are met, inference on T
can be based on the Central Limit Theorem (CLT)

VT (T —p) fo —a N(0,1), (1)

where 02 1= A (1)2 is typically known as long run variance. In practice o2 is unknown,
but a large number of semiparametric techniques are available to estimate it consistently,
see, e.g., Priestley (1981). Letting w, (A) := (2a7) ST 2™ be the Fourier trans-
form of z; and the periodogram I (\) := |w, (\)|?, the Daniell kernel provides a very
simple estimator of 02, 7 := 271 > ey L(A)), where \; := 27 /T'. Feasible inference is

then conducted using the statistic
7 =VT(T—p) /. (2)

When m — oo, m/T — 0 and given other regularity conditions, 52 is consistent, and it
can be substituted in (1) without altering the limit. To derive the fixed-m asymptotic
distribution of 62, where m is kept fixed, we need to strengthen the moment conditions
on &;.

Assumption 3. There is ¢ such that F (|e;|?) < oo with ¢ > max (2,2/ (1 + 24)).
Remark 1. Under Assumptions 1-3, the following Functional Central Limit Theorem
(FCLT) for fractional process holds: for r € [0,1], as T' — oo,

LT
1
Ti/2t6 Z up = XsWeia (1), (3)
t=1



where W1 (r) is a Type I fractional Brownian motion, as defined in Mandelbrot and Van
Ness (1968), X% := o°T'(1—2§) /[(1 +20) T (1 +6)T (1 —46)] and |-] denotes integer
part. For further details see Theorems 2.1 and 2.2 of Wang, Lin and Gulati (2003). When
9 = 0 the limit (3) encompasses the standard convergence to the standard Brownian
motion. Let Wi, (r) := Wsiq1 (r) — rWsiq (1) and

Qs (j) = {(2@ /0 sin (20jr) Wy (1) dr)2 + (2@ /0 " cos (2mj) Wy (1) dr)Q}.

Our key result is Lemma 1 below.

Lemma 1. Under Assumption 1-3, for fixed j = 1,...,m, as T — oo,
T72211 (Nj) —a £3Q5 (5) - (4)

By Lemma 1 and (3) we can establish the following theorem.

Theorem 2. Under Assumption 1-3, for fixed m, as T — oo,

W1 (1) .
Va S Qi ()

()

T —d

When § = 0, it is well known that, under regularity conditions, the joint distribution
of 2rI()\;), j = 1,...,m, converges to that of m independent 27'o%y3 variates (see,
e.g., Theorem 13 and pp. 225, 226 of Hannan, 1970). Then, by the continuous mapping
theorem and exploiting also the asymptotic independence of I (0) and I (};), j =1, ..., m,
it is straightforward to derive

Corollary 3. Under Assumption 1, 2 and 6 = 0, for fixed m, as T" — oo,
T —4q tom-

Remark 2. In related settings, the Student-t limiting distribution has already been
posed by Sun (2013) (Theorem 3.1) and Miiller (2014). In particular, our Corollary 3
justifies formally the heuristic discussion of Miiller (2014, p.314), who anticipated that,
under weak dependence, taking into account the uncertainty in > instead of relying
on consistency arguments, leads to a Student-¢ limiting result instead of the traditional
N (0,1) limit. Thus our Theorem 2, which generalizes this result allowing also for long
memory and antipersistency, encompasses Miiller’s (2014) claim.

Remark 3. Asymptotic expected values and correlation of periodograms are derived

in Hurvich and Beltrao (1993), where a limit distribution of the periodogram for the



Gaussian case is also given. Asymptotics for the Fourier transforms of possibly fraction-
ally integrated processes are also given in Chen and Hurvich (2003) and Lahiri (2003);
see also Deo (1997). We find that (4), where the limiting distribution depends mainly
on integrals involving the fractional Brownian bridge /VIZ;H (r), provides an easy way to
simulate quantiles for the fixed-m limit distribution of 7 when § # 0. This in turn allows
for a simple practical application of the limit distribution in (5) for testing, which we
view as one of the main contributions of our work.

Remark 4 Theorem 1 provides results for Type I fractionally processes. Results for
Type II fractionally integrated processes may be obtained in the same way, just replacing
the type of fractional Brownian motion in the limit.

Remark 5. Theorem 2 and Corollary 3 relate directly to results in McElroy and Politis
(2012, 2013), who proposed to studentize the sample mean of long, short and negative
memory processes by means of a weighted covariance estimator of the long run vari-
ance. The similarity between this estimator and the smoothed periodogram 62 could be

discussed more in detail. Defining the sample covariance of x;,
() =T (@ — %) (v —F), for 1 >0; =T S (21 —7) (20 —T), for | <0,

the weighted covariance estimator of 02 is oy = > 1 p L1k (I/M)c(l), where, for the
Daniell kernel, k (z) := sin (rx) /(7z) and M is a bandwidth parameter such that 1 <
M < T. Then, for Ky ()) := (2r)7" > <tk (1/M) e G = ST K (A) I (X) dA,
where I* (A) is the periodogram of x; — 7. In the case of the Daniell kernel, the spectral
window Ky () takes value M/(2r) when —w/M < A < w/M and 0 otherwise. Thus
for m = |T/ (2M)], 6% is an approximation of 7, when k (z) := sin (7z) /(7z) is used.
Regularity conditions for consistent estimation of o2 for weakly autocorrelated series
include M — oo but M/T — 0 as T — oo for Giye, or m — oo but m/T — 0 as
T — oo for 2. On the other hand, Kiefer and Vogelsang (2005) consider the limiting
distribution of 73, under the alternative assumption M = [bT'| for a fixed nonzero b
parameter (denoted fixed-b versus the standard small-b approach, where it is assumed
b — 0). Noting that M = |bT'| in &}y corresponds in the approximation 5> to taking
m as |1/ (2b)], our fixed-m assumption is then closely related to the fixed-b condition of
Kiefer and Vogelsang (2005), which was later employed by McElroy and Politis (2012,
2013) in their discussion of the limiting properties of their studentized mean of general
processes which, in particular, encompass our fractionally integrated x;. In this sense,
Theorem 2 could be viewed as the fixed-m counterpart to the corresponding fixed-b
results of McElroy and Politis (2012, 2013), noting that, despite the similarities, the



fixed-b and fixed-m limits are different.

Remark 6. As it is evident from Theorem 2, in general, the quantiles corresponding to
the limiting distribution of 7 must be simulated. We undertook this by approximating
integrals in (5) with summations over 10,000 steps. We simulated the distribution for
d € {-049, —04, —0.3, ..., 0.3, 04, 0.49} and m € {1, 2, ..., 16}: for each case,
we repeated the simulation 10,000 times. In Table 1 we report values cv such that
P (|| > cv) = 0.05. Notice that we also simulated the distribution for 6 = 0, which is
unnecessary, but we made it for completeness to make possible the comparison between
the simulated values and the quantiles from the t,,, distribution.

3. FINITE SAMPLE PERFORMANCE

We analyse the reliability of the fixed-m approximation in two Monte Carlo exercises.
First, we consider a weakly autocorrelated series and study if the fixed-m limit allows
for a more precise inference than the standard large-m approximation. We let u; =
N, = ¢n,_y + &, for g, ii.d. N (0,1), ¢ = 0.5, and T = 64,256. We repeated the
experiment 10,000 times. For each case, we compute 7 and count the frequency with
which the realization |7] is above the 95th percentile, using both the t,, and the N (0, 1)
distributions. This is like testing the null hypothesis on p with theoretical size 5%, so
we refer to these values as rejection frequencies. The results are given in Table 2. In all
cases, using the t,,, the empirical size is closer to 5%. Note that this is the case even
with relatively large values for m, for example m = +/T. Additionally, the size is more
precisely approximated the smaller is m.

Next, we simulated a Gaussian ARFIMA(1,6,0), u; = A%y, with n, = ¢n,_, + &,
gy 1.i.d. N (0,1), with ¢ = —0.5, 0, 0.5, and § = —0.3, 0, 0.3, and we computed 7 with
m = 1, ..., m = 16. Here we compare 7 to Robinson’s (2005) test statistic based on
a Memory Autocorrelation Consistent (MAC) estimator of the variance of the sample
mean (we refer to this statistic as §). Given that assuming knowledge of ¢ is unrealistic,
we estimated it by the local Whittle estimator (see Robinson, 1995) with bandwidth
J. Simulation results, such as in Abadir, Distaso and Giraitis (2009), recommend J =
| 7955 so this is the one we adopt. For simplicity, this is also the bandwidth employed
in the computation of #. We considered samples of T = 64,256, 1024, and for each
combination we simulate 10,000 repetitions. Finally, 7 is compared to critical values
calculated from the estimated ¢, which corresponds to the plug-in approach for obtaining
critical values (as in, e.g., McElroy and Politis, 2012, 2013).

In Tables 3-5 we present some of the results (those for other combinations of §, ¢,
are available from the authors upon request). We present first the case 6 = 0, ¢ = 0,

to better appreciate the effect of estimating o, which causes a relevant size distortion,



especially in small sample sizes with large bandwidths: the advantage of using fixed-m
asymptotic is more important if fractional integration is also considered.

Next we analyse the effect of altering ¢ or ¢. In summary, changing § does not alter
much the empirical size, but changing ¢ has a more relevant effect, with ¢ > 0 reducing
the empirical size (for given T and §), and ¢ < 0 increasing it. We conjecture that these
results may be due to the lower order bias in the estimation of § caused by the weak
autocorrelation in 7,. When ¢ > 0, 3 is affected by a lower order bias with positive sign:
as the quantiles in Table 1 are increasing in ¢, this positive bias results in incorrectly
selecting for the test based on 7 a critical value that is higher than it should be, thus
distorting the size of the test towards 0. The size distortion for the MAC normalized
sample mean is still more relevant. Of course these arguments are reversed in presence
of negative autocorrelation, and this is actually the most important reason for concern,
as it may generate a relevant size increase, as we indeed find in our experiment. It is
however encouraging to see that the size is still reasonable if fixed-m asymptotics instead
of large-m (and MAC standardization) are used, especially when m is kept small.

5. CONCLUSION

We analysed inference for the mean of a time series with autocorrelation of unspecified
nature and that may be fractionally integrated. We considered a standardization of the
sample mean obtained averaging the first m periodograms, as it usually done for the
estimation of the long run variance using the Daniell kernel, and we derive a different type
of asymptotics in which m is kept fixed. We refer to this as fixed-m asymptotics. When
the time series is weakly autocorrelated, the studentized sample mean has a fixed-m limit
tom; when § # 0 the limit depends on ¢ and must be tabulated. We provide quantiles for
it. We compare fixed-m and large-m asymptotics in a Monte Carlo experiment, finding
that the former allows for a better approximation of the size in finite samples. We
also find that, if fractional integration is allowed for, then large-m asymptotics are more
heavily affected by the size distortion in the estimation of §, thus making the application

of fixed-m asymptotics even more preferable.

Appendix.

Proof of Lemma 1. Let z; = 2; — . From (3),

[T [rT| [rT] [rT|
T1/2+5 Z T = T1/2+5 Z T1/2+5 Z e = T1/2+5 Z Y
|_rTj T [rT]
T TTJ 1
= T1/2+5 Z T T+ T U = T1/2+5 Z 12+ Zut

t=1

= X5 (W5+1 ( ) —rWsn1 ( )) .



T

Noting that for j = *£1,....,&m, E - et = 0, for j = 1,...,m, it also holds that
T B .

wy (A)) = (2xT)/? g . TeNit and, using € = cosx + isinz,

T T
1
I(\) = T (Z 7y (cos \jt + isin )\jt)> <Z Ty (cos A\js — isin )\js)>
t

=1 s=1
1 T 2 T 2
= 57 (Z T, cos )\jt> + <Z T, sin )\js>
t=1 s=1
By summation by parts,
T-1 1 2
2l (N;) = (Z (cosAj (t+1) —cos\jt) — Z’x})
t=1 \/T s=1
T-1 1 2
+ Z (sinA; (t+1) sin)\jt)—Z@) ,
(t—l \/T s=1

where we used ZSTZI Zs = 0. Next, by the mean value theorem

cos\j (t+1) = cosAjt — Ajsin\jt + O (A3),
sin\; (t+1) = sinAjt + Ajcos A\t + O ()\f) ,

S0,
2/ 2mj t 1 < i
—925 . . ~
T 2 2wl ()‘j) = ( <—T Sin (271']?) +0 ()\3)) W E 333>
s=1
T-1 . ¢ 2
27 ot 9 1 ~
+ (TCOS (27ij) —|—O()\])) m El SCS> s

and, as T" — o0,

2

1
T-2921] ()) = %2 { (27?3’/ sin (27j1) Wi (1) d’r’)
0

+ (2@ /0 " cos (2mj) Wy (1) dr>2} ,

noting that the contribution due to the O ()\f) terms is of smaller order.

Proof of Theorem 2. Theorem 2 follows from Lemma 1, (3) and the continuous

mapping theorem.
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Table 1. Upper 5% quantile for |7| for m € {1,...,16}

s\m| 1 2 3 4 5 6 7 8

049 | 2.725 1.646 1332 1.185 1.076 0996 0941 0.895
04 | 2.801 1710 1392 1221 1110 1.037 0977 0.929
0.3 | 3136 1.854 1527 1334 1241 1169 1107 1.055
0.2 | 3425 2.090 1.728 1.559 1462 1.394 1.332 1.291
0.1 | 3.849 2401 2040 1.886 1790 1719 1.680 1.644
0 | 4421 2848 2470 2310 2237 2204 2168 2.135
0.1 | 5171 3411 3.063 2955 2.888 2.877 2.857 2.850
02 | 6289 4325 3961 3913 3.888 3.874 3.940 3.938
0.3 | 8.086 5724 5397 5413 5401 5472 5612 5.719
04 |12.358 8748 8442 8689 8.893 9.173 9427 9.645
049 |41.485 30.391 30.180 31.282 32.339 33.676 34.777 35.990
s\m| 9 10 11 12 13 14 15 16

-0.49 | 0.854 0.821 0.787 0.762 0.735 0.711 0.692 0.672
0.4 | 0.885 0.853 0.824 0.797 0.774 0.752 0.733 0.714
0.3 | 1.022 0984 0955 0928 0910 0.888 0.876 0.855
0.2 | 1.266 1.228 1.199 1.172 1153 1.141 1117 1.109
0.1 | 1.625 1597 1571 1.547 1530 1.505 1.501  1.482
0 | 2114 2105 2097 2087 2066 2.070 2.067 2.061
0.1 | 2.843 2855 2858 2857 2872 2.886 2.909  2.904
0.2 | 3973 4007 4030 4.059 4104 4148 4197  4.229
03 | 5792 5885 6.008 6.125 6.181 6.289 6.364 6.468
04 | 9.847 10.114 10.369 10.532 10.737 10.968 11.170 11.339
0.49 |37.112 38.193 39.272 40.218 41.149 42.089 42.989 43.799
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Table 2. Rejection frequencies for different asymptotics

T m 1 2 3 4 5 6 7 8
64 tom 0.052 0.053 0.056 0.063 0.069 0.076 0.084 0.093
64 | N(0,1) | 0.188 0.126 0.112 0.104 0.104 0.107 0.111 0.116
256 tom 0.049 0.047 0.049 0.047 0.048 0.051 0.050 0.051
256 | N(0,1) | 0.186 0.118 0.095 0.084 0.076 0.073 0.069 0.068
m 9 10 11 12 13 14 15 16
64 tom 0.099 0.107 0.116 0.124 0.132 0.141 0.150 0.157
64 | N(0,1) | 0.120 0.129 0.136 0.144 0.151 0.158 0.164 0.172
256 tom 0.050 0.052 0.052 0.054 0.054 0.056 0.058 0.058
256 | N(0,1) | 0.067 0.064 0.066 0.067 0.066 0.067 0.068 0.067
Table 3. Rejection frequencies, 6 =0, ¢ =0
T |m 1 2 3 4 5 6 7 8
64 0.068 0.084 0.094 0.102 0.109 0.112 0.114 0.116
256 0.055 0.060 0.067 0.072 0.074 0.075 0.075 0.077
1024 0.050 0.056 0.059 0.062 0.062 0.063 0.063 0.063
m 9 10 11 12 13 14 15 16 T 0
64 0.118 0.119 0.118 0.119 0.120 0.120 0.121 0.125 64 | 0.124
256 0.078 0.080 0.080 0.080 0.081 0.081 0.082 0.082 256 | 0.096
1024 0.063 0.063 0.064 0.063 0.065 0.064 0.063 0.065 1024 | 0.076
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Table 4. Rejection frequencies, 6 = —0.3, ¢ = 0.5

T |m 1 2 3 4 5 6 7 8
64 0.036 0.034 0.031 0.030 0.028 0.027 0.027 0.027
256 0.042 0.032 0.030 0.028 0.025 0.025 0.023 0.024
1024 0.043 0.043 0.039 0.037 0.034 0.033 0.035 0.033

m 9 10 11 12 13 14 15 16 T 0
64 0.027 0.027 0.028 0.029 0.030 0.032 0.033 0.036 64 | 0.031
256 0.021 0.020 0.020 0.018 0.018 0.018 0.018 0.018 256 | 0.022
1024 0.033 0.032 0.030 0.030 0.029 0.028 0.028 0.029 1024 | 0.026

Table 5. Rejection frequencies, 6 = 0.3, ¢ = —0.5

T |m 1 2 3 4 ) 6 7 8
64 0.111 0.160 0.186 0.202 0.211 0.217 0.222 0.226
256 0.068 0.090 0.099 0.107 0.112 0.113 0.115 0.117
1024 0.0564 0.060 0.061 0.062 0.064 0.063 0.063 0.063

m 9 10 11 12 13 14 15 16 T 0
64 0.229 0.231 0.232 0.232 0.233 0.231 0.231 0.233 64 | 0.244
256 0.118 0.119 0.120 0.122 0.123 0.124 0.124 0.125 256 | 0.145
1024 0.065 0.065 0.064 0.064 0.066 0.065 0.065 0.065 1024 | 0.101
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