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Abstract

We revisit the product convolution semigroup of probability densities ec(t), c >
0 on the positive half-line with moments (n!)c and determine the asymptotic
behaviour of ec for large and small t > 0. This shows that (n!)c is indeterminate
as Stieltjes moment sequence if and only if c > 2. When c is a natural number
ec is a Meijer-G function. From the results about ec we obtain the asymptotic
behaviour at ±∞ of the convolution roots of the Gumbel distribution.

1. Introduction

We consider a family of probability densities ec(t), c > 0 on the half-line given
by

ec(t) =
1

2π

∫ ∞
−∞

tix−1Γ(1− ix)c dx, t > 0. (1)

In this formula we use that Γ(z) is a non-vanishing holomorphic function in the
cut plane

A = C \ (−∞, 0], (2)

so we can define
Γ(z)c = exp(c log Γ(z)), z ∈ A

using the holomorphic branch of log Γ which is 0 for z = 1.
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As far as we know it was proved first by Urbanik in [17, Section 4] that ec is
a probability density, and that the following product convolution equation holds

ec+d(t) =

∫ ∞
0

ec(t/x)ed(x)
dx

x
, c, d > 0. (3)

Furthermore, it was noticed that∫ ∞
0

tnec(t) dt = (n!)c, c > 0, n = 0, 1, . . . . (4)

Defining the probability measure τc on (0,∞) by

dτc = ec(t) dt = tec(t) dm(t), c > 0, (5)

where dm(t) = (1/t) dt is the Haar measure on the locally compact abelian group
G = (0,∞) under multiplication, we can write (3) as τc � τd = τc+d, where �
denotes the (product) convolution of measures on the multiplicative group G.
The family (τc)c>0 is a convolution semigroup in the sense of [7]. We propose to
call this semigroup the Urbanik semigroup because of [17].

The continuous characters of the group G can be given as t → tix, where
x ∈ R is arbitrary, and in this way the dual group Ĝ of G can be identified
with the additive group of real numbers, and by the inversion theorem of Fourier
analysis for LCA-groups, (1) is equivalent to

τ̂c(x) =

∫ ∞
0

t−ix dτc(t) = exp(c log(Γ(1− ix)), x ∈ R. (6)

To establish the existence of a product convolution semigroup (τc) satisfying (6)
is therefore equivalent to proving that

ρ(x) := − log Γ(1− ix), x ∈ R (7)

is a continuous negative definite function on R in the terminology of [7] or [14].
This was done in [17] by giving the Lévy-Khinchin representation of ρ, using

Plana’s formula, cf. [9, 8.341(3)] or [12, p. 187]:

log Γ(z) =

∫ ∞
0

[
e−zt − e−t

1− e−t
+ (z − 1)e−t

]
dt

t
, Re (z) > 0. (8)

In fact from (8) we get

− log Γ(1− ix) =

∫ ∞
0

[
1− eixt +

itx

1 + t2

]
e−t

t(1− e−t)
dt− iax, (9)

where

a =

∫ ∞
0

[
1

(1 + t2)(1− e−t)
− 1

t

]
e−t dt,
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showing that ρ(x) = − log Γ(1− ix) is negative definite with the Lévy measure

dµ =
e−t

t(1− e−t)
dt

concentrated on (0,∞).
Another proof of the negative definiteness of ρ was given in [6] based on the

Weierstrass product for Γ , where Log denotes the principal logarithm in the cut
plane A, cf. (2):

− log Γ(z) = γz + Log z +
∞∑
k=1

(Log(1 + z/k)− z/k) , z ∈ A.

Clearly,

ρn(z) := γz + Log z +
n∑
k=1

(Log(1 + z/k)− z/k)

converges locally uniformly to − log Γ(z) for z ∈ A, and since

ρn(1− ix) = ρn(1)− i

(
γ −

n∑
k=1

1

k

)
x+

n+1∑
k=1

Log(1− ix/k)

is negative definite, because Log(1 + iax) is so for a ∈ R and

ρn(1) = γ + log(n+ 1)−
n∑
k=1

1

k
> 0,

we conclude that the limit function ρ(x) = − log Γ(1− ix) is negative definite.
As noticed in [6, Lemma 2.1], (4) is a special case of∫ ∞

0

tzec(t) dt = Γ(1 + z)c, Re (z) > −1, (10)

and letting z tend to −1 along the real axis, we get∫ ∞
0

ec(t)
dt

t
=

∫ ∞
0

ec(1/t)
dt

t
=∞, c > 0. (11)

It follows from (4) that (n!)c is a Stieltjes moment sequence for any c > 0,
and while it is easy to see that it is S-determinate for c ≤ 2 in the sense, that
there is only one measure on the half-line with these moments, namely τc, it is
rather delicate to see that it is S-indeterminate for c > 2. This was proved in
Theorem 2.5 in [6]. The proof was based on a relationship between τc and stable
distributions, and it used heavily asymptotic results of Skorokhod from [15] and
exposed in [19]. Further details are given at the end of this section.
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The purpose of the present paper is to establish the asymptotic behaviour of
the densities ec(t) for t→∞ and t→ 0. The behaviour for t→∞ will lead to a
direct proof of the S-indeterminacy for c > 2.

We mention that the product convolution semigroup (τc)c>0 corresponds to
the Bernstein function f(s) = s in the following result from [6, Theorem 1.8].

Theorem 1.1. Let f be a non-zero Bernstein function. The uniquely determined
measure κ = κ(f) with moments sn = f(1) · · · f(n) is infinitely divisible with
respect to the product convolution. The unique product convolution semigroup
(κc)c>0 with κ1 = κ has the moments∫ ∞

0

xn dκc(x) = (f(1) · · · f(n))c, c > 0, n = 0, 1, . . . . (12)

It is an easy consequence of Carleman’s criterion that the measures κc are
S-determinate for c ≤ 2, cf. [6, Theorem 1.6].

In [6] we consider three Bernstein functions fα, fβ, fγ with corresponding prod-
uct convolution semigroups (αc)c>0, (βc)c>0, (γc)c>0:

fα(s) = (1 + 1/s)s, fβ(s) = (1 + 1/s)−s−1, fγ(s) = s(1 + 1/s)s+1.

It is proved that the measures αc, βc have compact support, so they are clearly
S-determinate for all c > 0, but γc is S-indeterminate for c > 2. Using that
τc = βc � γc, it is possible to infer that also τc is S-indeterminate, see [6] for
details.

As noticed in [17], the measures τc, c ≥ 1 are also infinitely divisible for the
additive structure, because ec(t) is completely monotonic. To see this, notice that
the convolution equation (3) with d = 1 can be written

ec+1(t) =

∫ ∞
0

e−txec(1/x)
dx

x
, c > 0, (13)

showing that ec(t) is completely monotonic for c > 1, and it tends to infinity for
t→ 0 because of (11).

It is well-known that the exponential distribution τ1 is infinitely divisible for
the additive structure and with a completely monotonic density e1(t).

Urbanik also showed that τc is not infinitely divisible for the additive structure
when 0 < c < 1.

Formula (1) states roughly speaking that tec(t) is the Fourier transform of the
Schwartz function Γ(1 − ix)c evaluated at log t, thus showing that ec is C∞ on
(0,∞). By Riemann-Lebesgue’s Lemma we also see that tec(t) tends to zero for
t tending to zero and to infinity. Much more will be obtained in the main results
below.
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2. Main results

Our main results are

Theorem 2.1. For c > 0 we have

ec(t) =
(2π)(c−1)/2

√
c

exp(−ct1/c)
t(c−1)/(2c)

[
1 +O

(
1

t1/c

)]
, t→∞. (14)

Remark 2.2. It is worth noticing that ec can be expressed as a Meijer-G function
when c = 1, 2, . . ., namely as

ec(t) = Gc,0
0,c

(
−

0, · · · , 0
| t
)
. (15)

For an introduction to these functions see the recent paper [3]. Formula (15)
follows e.g. by (31) below. The cases c = 1, 2 are particularly simple since

e1(t) = e−t, e2(t) =

∫ ∞
0

exp(−x− t/x)
dx

x
= 2K0(2

√
t).

In the last formula K0 is a modified Bessel function, see [13, Chap. 10, Sec. 25].
Meijer-G functions have appeared recently in connection with random matrix

problems, see [1],[8],[10].

Corollary 2.3. The measure τc = ec(t) dt is S-indeterminate for c > 2.

Theorem 2.4. For c > 0 we have

ec(t) =
(log(1/t))c−1

Γ(c)
+O((log(1/t))c−2), t→ 0. (16)

Remark 2.5. Formula (16) shows that ec(t) tends to infinity as a power of
log(1/t) when c > 1, but so slowly that multiplication with t forces the den-
sity to tend to zero. When 0 < c < 1 the density ec(t) tends to zero.

In a short Section 4 we transfer our results to information about the Gumbel
distribution.

3. Proofs

We will first give a proof of Theorem 2.1 in the case, where c is a natural
number. Note that the asymptotic expression in (14) for c = 1 reduces to e1(t) =
e−t. When c = n + 1, where n is a natural number, we know that en+1(t) is the
n’th product convolution power of e1, hence

en+1(t) =

∫ ∞
0

. . .

∫ ∞
0

e
− t

u1···un e−u1 · · · e−un du1

u1

· · · dun
un

.
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For t > 0 fixed, the change of variables uj = t1/(n+1)vj, j = 1, . . . , n leads to

en+1(t) =

∫ ∞
0

. . .

∫ ∞
0

g(v1, . . . , vn)e−t
1/(n+1)f(v1,...,vn)dv1 · · · dvn, (17)

with

g(v1, . . . , vn) :=
1

v1 · · · vn
, f(v1, . . . , vn) := v1 + · · ·+ vn + g(v1, . . . , vn).

The phase function f(v1, . . . , vn) is convex in C = {v1 > 0, . . . , vn > 0} because
the Hessian matrix of second derivatives is

Hf(v1, . . . , vn) = g(v1, . . . , vn)


2
v2
1

1
v1v2

· · · 1
v1vn

1
v2v1

2
v2
2
· · · 1

v2vn
...

...
. . .

...
1

vnv1

1
vnv2

· · · 2
v2
n

 ,

which is easily seen to be positive definite. The phase function therefore has a
global minimum at the unique stationary point ~v0 such that ~5f(~v0) = ~0, that is,
at ~v0 = (1, . . . , 1). At that point, the Hessian matrix of f(~v) is

A := Hf(1, . . . , 1) =


2 1 1 · · · 1
1 2 1 · · · 1
...

...
...

. . .
...

1 1 1 · · · 2

 ,

with determinant det(A) = n+ 1.
By Laplace’s asymptotic method for multiple dimensional Laplace transforms,

cf. [18, Theorem 3, p. 495], we know that for t→∞,

en+1(t) =

(
2π

t1/(n+1)

)n/2
g(~v0)(det(A))−1/2e−t

1/(n+1)f(~v0)

[
1 +O

(
1

t1/(n+1)

)]
.

We have that g(~v0) = 1 and f(~v0) = n+ 1, hence

en+1(t) =
(2π)n/2√
n+ 1

e−(n+1)t1/(n+1)

tn/(2(n+1))

[
1 +O

(
1

t1/(n+1)

)]
, (18)

which agrees with (14) for c = n+ 1.

The proof of Theorem 2.1 for arbitrary c > 0 is more delicate. We first
apply Cauchy’s integral theorem to move the integration in (1) to an arbitrary
horizontal line

La := {z = x+ ia | x ∈ R}, a > 0. (19)
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Lemma 3.1. With La as in (19) we have

ec(t) =
1

2π

∫
La

tiz−1Γ(1− iz)c dz, t > 0. (20)

Proof: For t, c > 0 fixed, f(z) = tiz−1Γ(1− iz)c is holomorphic in the simply
connected domain C \ i(−∞,−1], so the Lemma follows from Cauchy’s integral
theorem provided the integral ∫ a

0

f(x+ iy) dy

tends to 0 for x→ ±∞. We have

|f(x+ iy)| = t−y−1|Γ(1 + y − ix)|c

and since

|Γ(u+ iv)| ∼
√

2πe−|v|π/2|v|u−1/2, |v| → ∞, uniformly for bounded real u,

cf. [2, p.141, eq. 5.11.9],[9, 8.328(1)], the result follows. �

In the following we will use Lemma 3.1 with the line of integration L = La,
where a = t1/c−1 for t > 1. Therefore, using the parametrization z = x+i(t1/c−1)
we get

ec(t) = t−t
1/c 1

2π

∫ ∞
−∞

tixΓ(t1/c − ix)c dx,

and after the change of variable x = t1/cu

ec(t) = t1/c−t
1/c 1

2π

∫ ∞
−∞

tiut
1/c

Γ(t1/c(1− iu))c du. (21)

Stirling’s formula for Γ with Binet’s remainder term is, see [9, 8.341(1)] or
[12, p. 176],

Γ(z) =
√

2πzz−
1
2 e−z+µ(z), Re (z) > 0, (22)

where

µ(z) =

∫ ∞
0

(
1

2
− 1

t
+

1

et − 1

)
e−zt

t
dt, Re (z) > 0. (23)

Notice that µ(z) is the Laplace transform of a positive function, so we have the
estimates for z = r + is, r > 0

|µ(z)| ≤ µ(r) ≤ 1

12r
, (24)

where the last inequality is a classical version of Stirling’s formula, thus showing
that the estimate is uniform in s ∈ R.
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Inserting this in (21), we get after some simplification

ec(t) = (2π)c/2−1t1/c−1/2e−ct
1/c

∫ ∞
−∞

ect
1/cf(u)gc(u)M(u, t) du, (25)

where
f(u) := iu+ (1− iu) Log(1− iu), gc(u) := (1− iu)−c/2 (26)

and
M(u, t) := exp[cµ(t1/c(1− iu))]. (27)

From (24) we get M(u, t) = 1 + O(t−1/c) for t → ∞, uniformly in u. We shall
therefore consider the behaviour of∫ ∞

−∞
ect

1/cf(u)gc(u) du. (28)

From here we need to apply the saddle point method to obtain the approximation
of (28) for large positive t. For convenience, we use Theorem 1 in [11]. We have
that the only saddle point of the phase function f(u) is u = 0 and f(0) = f ′(0) =
0, f ′′(0) = −1, f ′′′(0) 6= 0; also gc(0) = 1. Then, the parameters used in that
theorem are m = 2, p = 3, φ = π, N = 0, M = 1 and the large variable
used in the theorem is x ≡ ct1/c. We have that the steepest descendent path
used in the theorem is Γ = Γ0

⋃
Γ1 = (−∞, 0)

⋃
(0,∞), that is, it is just the

original integration path in the above integral, and therefore does not need any
deformation. From [11, Theorem 1] with the notation used there, we read that
the integral (28) has an expansion of the form

exf(0)[c0Ψ0(x) + c1Ψ1(x) + c2Ψ2(x) + · · · ],

with Ψn(x) = O(x−(n+1)/2) and cn is independent of x. Because the factors c2n+1

vanish we find

c0Ψ0(x) + c1Ψ1(x) + c2Ψ2(x) + · · · = c0Ψ0(x)[1 +O(x−1)]

with c0 = 1 and

Ψ0(x) = a0(x)Γ

(
1

2

) ∣∣∣∣ 2

xf ′′(0)

∣∣∣∣1/2
with

a0(x) = e−xf(0)A0(x)B0, A0(x) = exf(0), B0 = gc(0),

hence a0(x) = B0 = 1. Using all these data we finally obtain∫ ∞
−∞

ect
1/cf(u)gc(u)du =

√
2π√

ct1/(2c)
[1 +O(t−1/c)],
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and

ec(t) =
(2π)(c−1)/2

√
c

e−ct
1/c

t(c−1)/(2c)
[1 +O(t−1/c)].

�

Proof of Corollary 2.3. We apply the Krein criterion for S-indeterminacy of
probability densities concentrated on the half-line, using a version given in [5,
Theorem 5.1]. It states that if∫ ∞

0

log ec(t) dt√
t(1 + t)

> −∞, (29)

then τc = ec(t) dt is S-indeterminate. We shall see that (29) holds for c > 2.
From Theorem 2.1 combined with the fact that ec(t) is decreasing when c > 1,

we see that the inequality in (29) holds if and only if∫ ∞
0

log((2π)(c−1)/2/
√
c)− ct1/c − ((c− 1)/(2c)) log t√

t(1 + t)
dt > −∞,

and the latter holds precisely for c > 2. This shows that τc is S-indeterminate for
c > 2. �

Proof of Theorem 2.4.
Since we are studying the behaviour for t → 0, we assume that 0 < t < 1 so

that Λ := log(1/t) > 0.
We will need integration along the vertical lines

Va := {a+ iy | y = −∞ . . .∞}, a ∈ R, (30)

and we can therefore express (1) as

ec(t) =
1

2πi

∫
V−1

tzΓ(−z)cdz. (31)

By the functional equation for Γ we get

ec(t) =
1

2πi

∫
V−1

(−z)−ctzΓ(1− z)cdz. (32)

To ease the writing we define

ϕ(z) := tzΓ(1− z)c, g(z) := (−z)−c = exp(−cLog(−z)),

and note that ϕ is holomorphic in C\ [1,∞), while g is holomorphic in C\ [0,∞).
Here Log is the principal logarithm in the cut plane A, cf. (2).

Note that for x > 0

g±(x) := lim
ε→0+

g(x± iε) = x−ce±iπc.

10



Formula (32) can now be written

ec(t) =
1

2πi

∫
V−1

g(z)ϕ(z) dz. (33)

Case 1. We will first treat the case 0 < c < 1.
We fix 0 < s < 1, choose 0 < ε < s and integrate g(z)ϕ(z) over the contour C

{−1+iy | y =∞ . . . 0}∪[−1,−ε]∪{εeiθ | θ = π . . . 0}∪[ε, s]∪{s+iy | y = 0 . . .∞}

and get 0 by the integral theorem of Cauchy. On the interval [ε, s] we use the
values of g+.

Similarly we get 0 by integrating g(z)ϕ(z) over the complex conjugate contour
C, and now we use the values of g− on the interval [ε, s].

Subtracting the second contour integral from the first leads to∫
Vs

−
∫
V−1

−
∫
|z|=ε

g(z)ϕ(z) dz +

∫ s

ε

ϕ(x)(g+(x)− g−(x)) dx = 0,

where the integral over the circle is with positive orientation. Note that the two
integrals over [−1,−ε] cancel. Using that 0 < c < 1 it is easy to see that the
integral over the circle |z| = ε converges to 0 for ε → 0, and we finally get for
ε→ 0

ec(t) =
1

2πi

∫
Vs

g(z)ϕ(z) dz +
sin(πc)

π

∫ s

0

x−cϕ(x) dx := I1 + I2.

We claim that the first integral I1 is o(ts) for t → 0. To see this we insert the
parametrization of Vs and get

I1 =
ts

2π

∫ ∞
−∞

(−s− iy)−ctiyΓ(1− s− iy)c dy

and the integral is o(1) by Riemann-Lebesgue’s Lemma, so I1 = o(ts).
The substitution u = x log(1/t) = xΛ in the integral I2 leads to

I2 =
sin(πc)

π
Λc−1

∫ sΛ

0

u−ce−uΓ(1− u/Λ)c du. (34)

We split the integral in (34) as

Γ(1− c) +

∫ sΛ

0

u−ce−u [Γ(1− u/Λ)c − 1] du−
∫ ∞
sΛ

u−ce−u du, (35)

and by the mean-value theorem and Ψ = Γ′/Γ we have

Γ(1− u/Λ)c − 1 = −u
Λ
cΓ(1− θu/Λ)cΨ(1− θu/Λ)
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for some 0 < θ < 1, but this implies that

|Γ(1− u/Λ)c − 1| ≤ cu

Λ
M(s), 0 < u < sΛ,

where
M(s) := max{Γ(x)c|Ψ(x)| | 1− s ≤ x ≤ 1},

so the first integral in (35) is O(Λ−1). The second integral is an incomplete
Gamma function, and by known asymptotics for this, see [9], we get that the
second integral is O(Λ−cts). Putting things together and using Euler’s reflection
formula for Γ, we see that

ec(t) =
Λc−1

Γ(c)
+O(Λc−2),

which is (16).

Case 2. We now assume 1 < c < 2.
The Gamma function decays so rapidly when z = −1 + iy ∈ V−1, y → ±∞,

that we can integrate by parts in (32) to get

ec(t) = − 1

2πi

∫
V−1

(−z)−(c−1)

c− 1

d

dz
(tzΓ(1− z)c) dz. (36)

Defining

ϕ1(z) :=
d

dz
(tzΓ(1− z)c) = tzΓ(1− z)c(log t− cΨ(1− z)),

and using the same contour technique as in case 1 to the integral in (36), where
now 0 < c− 1 < 1, we get for 0 < s < 1 fixed

ec(t) = − 1

c− 1

1

2πi

∫
Vs

(−z)−(c−1)ϕ1(z) dz − sin(π(c− 1))

(c− 1)π

∫ s

0

x−(c−1)ϕ1(x) dx.

The first integral is o(tsΛ) by Riemann-Lebesgue’s Lemma, and the substitution
u = xΛ in the second integral leads to∫ s

0

x−(c−1)ϕ1(x) dx

= Λc−2

∫ sΛ

0

u−(c−1)ϕ1(u/Λ) du

= −Λc−1

∫ sΛ

0

u−(c−1)e−u du− Λc−1

∫ sΛ

0

u−(c−1)e−u (Γ(1− u/Λ)c − 1) du

− cΛc−2

∫ sΛ

0

u−(c−1)e−uΓ(1− u/Λ)cΨ(1− u/Λ) du

= −Λc−1Γ(2− c) +O(Λc−2).
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Using that (
−sin(π(c− 1))

(c− 1)π

)(
−Λc−1Γ(2− c)

)
=

Λc−1

Γ(c)

by Euler’s reflection formula, we see that (16) holds.

Case 3. We now assume c > 2.
We perform the change of variable w = Λz in (32) and obtain

ec(t) =
Λc−1

2πi

∫
V−Λ

(−w)−ce−wΓ(1− w/Λ)c dw.

Using Cauchy’s integral theorem, we can shift the contour V−Λ to V−1 as the inte-
grand is holomorphic in the vertical strip between both paths and exponentially
small at both extremes of that vertical strip. Then,

ec(t) =
Λc−1

2πi

∫
V−1

(−w)−ce−wΓ (1− w/Λ)c dw.

For any holomorphic function h in a domain G which is star-shaped with respect
to 0 we have

h(z) = h(0) + z

∫ 1

0

h′(uz) du, z ∈ G.

If this is applied to G = C \ [1,∞) and h(z) = Γ(1− z)c we find

Γ(1− w/Λ)c = 1− cw

Λ

∫ 1

0

Γ(1− uw/Λ)cΨ(1− uw/Λ) du. (37)

Defining

R(w) =

∫ 1

0

Γ(1− uw/Λ)cΨ(1− uw/Λ) du,

we get

ec(t) =
Λc−1

2πi

∫
V−1

(−w)−ce−wdw +
cΛc−2

2πi

∫
V−1

(−w)1−ce−wR(w)dw. (38)

For any w ∈ V−1, 0 ≤ u ≤ 1 and for Λ ≥ 1 we have that 1− uw/Λ ∈ Ω, where Ω
is the closed vertical strip located between the vertical lines V1 and V2. Because
Γ(z)cΨ(z) is continuous in Ω and exponentially small at the upper and lower
limits of Ω, the function R(w) is bounded for w ∈ V−1 by a constant independent
of Λ ≥ 1. Therefore,

cΛc−2

2πi

∫
V−1

(−w)1−ce−wR(w)dw = O(Λc−2),

where we use that (−w)1−ce−w is integrable over V−1 because c > 2.
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On the other hand, in the first integral of (38), the contour V−1 may be
deformed to a Hankel contour

H := {x− i | x =∞ . . . 0} ∪ {eiθ | θ = −π/2 . . .− 3π/2} ∪ {x+ i | x = 0 . . .∞}

surrounding [0,∞), and the integral over H is Hankel’s integral representation of
the inverse of the Gamma function:

1

2πi

∫
H

(−w)−ce−wdw =
1

Γ(c)
.

Therefore, when we join everything, we obtain that for c > 2:

ec(t) =
(log(1/t))c−1

Γ(c)
+O((log(1/t))c−2), t→ 0.

Case 4. c = 1, c = 2.
These cases are easy since e1(t) = e−t and e2(t) = 2K0(2

√
t). �

Remark 3.2. The behaviour of ec(t) for t→ 0 can be obtained from (31) using
the residue theorem when c is a natural number, so ec belongs to the Meijer-G
family. In fact, in this case Γ(−z)c has a pole of order c at z = 0, and a shift
of the contour V−1 to Vs, where 0 < s < 1, has to be compensated by a residue,
which will give the behaviour for t→ 0.

4. Remarks about the Gumbel distribution

The standard Gumbel distribution has the probability density

G(x) = exp
(
−x− e−x

)
, x ∈ R

with respect to Lebesgue measure. It is known to be infinitely divisible, see
[16], and hence embeddable in a convolution semigroup (Gc(x))c>0 with G1 = G.
The image measure of the Gumbel distribution under the group isomorphism
x 7→ e−x of (R,+) onto ((0,∞), ·) is the exponential distribution τ1 given in (5),
and therefore (Gc) is mapped onto the Urbanik semigroup (τc), so we obtain

Gc(x) = e−xec(e
−x), x ∈ R, c > 0.

From the asymptotic behaviour of ec in Theorem 2.1 and Theorem 2.4 we can
obtain the asymptotic behaviour of the Gumbel convolution roots Gc(x):

Gc(x) =
xc−1e−x

Γ(c)

[
1 +O(

1

x
)

]
, x→∞, (39)
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Gc(x) =
(2π)(c−1)/2

√
c

exp

(
−xc+ 1

2c
− ce−x/c

)[
1 +O(ex/c)

]
, x→ −∞. (40)

The Gumbel distribution is determinate because the moments

sn =

∫ ∞
−∞

xnG(x) dx =

∫ ∞
0

(− log t)ne−t dt

satisfy s2n ≤ 2(2n)!. This shows that Carleman’s condition
∑

1/ 2n
√
s2n = ∞ is

satisfied. By [4, Corollary 3.3] it follows that Carleman’s condition is satisfied for
all Gumbel roots Gc, c > 0, so they are all determinate.

Acknowledgment: The authors want to thank Nico Temme for his indi-
cations about the asymptotics of the integral (1). The authors also thank one
referee for having pointed out that ec(t) is a Meijer-G function, when c is a na-
tural number. This has led to inclusion of references to recent work using these
functions.
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