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Communicated by Bernd Silbermann

ABSTRACT. We consider the asymptotic method de-
signed by Olver [6] for linear differential equations of sec-
ond order containing a large (asymptotic) parameter Λ, in
particular, the second and third cases studied by Olver: dif-
ferential equations with a turning point (second case) or a
singular point (third case). It is well known that his method
gives the Poincaré-type asymptotic expansion of two inde-
pendent solutions of the equation in inverse powers of Λ. In
this paper, we add initial conditions to the differential equa-
tion and consider the corresponding initial value problem.
By using the Green’s function of an auxiliary problem, we
transform the initial value problem into a Volterra integral
equation of the second kind. Then, using a fixed point theo-
rem, we construct a sequence of functions that converges to
the unique solution of the problem. This sequence also has
the property of being an asymptotic expansion for large Λ
(not of Poincaré-type) of the solution of the problem. More-
over, we show that the technique also works for nonlinear
differential equations with a large parameter.

1. Introduction. The most famous asymptotic method for second
order linear differential equations containing a large parameter is, with-
out any doubt, Olver’s method [6, Chapters 10, 11, 12]. Olver divides
the study into three canonical cases, say I, II and III (corresponding
respectively to Chapters 10, 11 and 12). In Case I, Olver completes
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the theory developed in the well known Liouville-Green approxima-
tion, giving a rigorous meaning to the approximation and providing
error bounds for the expansions of solutions of differential equations
free of transition points [6, Chapter 10]. In Cases II and III, Olver
generalizes the theory considering differential equations with a turning
point or with a regular singular point, respectively.

Consider any homogeneous second order linear differential equation
ü+ p(t)u̇+ q(t)u = 0, where the dot means derivative with respect to
the independent variable t (real or complex). This variable t ranges
over a real interval or a complex domain, neither of which need to be

bounded. After the change of unknown u = w · exp[−(1/2)
∫ t

p(s) ds],
this equation becomes the following equation for the new unknown w:
ẅ − Q(t)w = 0, where Q(t) := (1/4)p2 + (1/2)ṗ − q [11, Chapter 4,
Section 5].

A more detailed version of the following discussion may be found
in [6, Chapter 10, Section 1]. Suppose that p and/or q contain a
(large) parameter Λ, real or complex, in such a way that Q(t) may be

written in the form Q(t) = Λ2f̃(t) + h(t) for certain functions f̃ and
h. Now, for an (at this moment) arbitrary function t(x), we introduce
a double change of both, the unknown w and the independent variable
t: t → x and w → y = ẋ1/2w. After this double (at this moment
unspecified) change of variables, the differential equation for w becomes
the following differential equation for y:

(1) y′′ =

[
Λ2

(
dt

dx

)2

f(x) + g(x)

]
y,

where the prime denotes derivative with respect to x, f(x) := f̃(t(x)),
and

g(x) :=

(
dt

dx

)2

h(x)− 1

2
{t(x), x}

=

(
dt

dx

)2

h(x) +

(
dt

dx

)1/2
d2

dx2

(
dt

dx

)−1/2

.

The precise transformation t(x) is now fixed by specifying the relation
between t and x in such a manner that (i) t and x are analytic functions
of each other at the transition point of the differential equation (if any)
and (ii) the approximating differential equation obtained by neglecting



DIFFERENTIAL EQUATIONS WITH A LARGE PARAMETER 29

all or part of g(x) has solutions which are functions of a single variable.
The choices are:

Case I.
(
dt
dx

)2
f(x) = 1, which means x =

∫
f1/2(t) dt.

Case II.
(
dt
dx

)2
f(x) = x, which means 2

3x
3/2 =

∫ t

t0
f1/2(s) ds.

Case III.
(
dt
dx

)2
f(x) = 1/x, which means 2x1/2 =

∫ t

t0
f1/2(s) ds.

Then, equation (1) reduces to

(2) y′′ = [Λ2xm + g(x)]y,

with m = 0 (Case I), m = 1 (Case II) or m = −1 (Case III). In [4]
we give an alternative approximation to Olver’s expansion for Case I
that is not only asymptotic, but also convergent. In this paper, we
pursue the same objective for Cases II and III. In the remainder of this
introduction we briefly summarize Olver’s method in Cases II and III.

1.1. Case II. When Λ is large, it is reasonable to neglect g(x) in

(3) y′′ = [Λ2x+ g(x)]y,

to get a first order approximation of the solutions of this differential
equation: any linear combination of the Airy functions Ai (Λ2/3x) and
Bi (Λ2/3x). Then, it is reasonable to seek for formal solutions of (3) of
the form

y1(x) ∼ Ai(Λ2/3x)
∞∑

n=0

An(x)

Λn
,

y2(x) ∼ Bi(Λ2/3x)
∞∑

n=0

Bn(x)

Λn
.

As Olver shows in [6, Chapter 11, Section 7], this first naive attempt
does not work and one must try instead a formal solution of the form

(4) y1(x) ∼ Ai (Λ2/3x)
∞∑

n=0

An(x)

Λ2n
+

Ai′(Λ2/3x)

Λ4/3

∞∑
n=0

Bn(x)

Λ2n
.

Introducing this expansion in (3) and equating coefficients with equal
powers of Λ, we see that the differential equation is satisfied, formally,
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if, for n = 0, 1, 2, . . .,{
A′′

n(x)− g(x)An(x) + 2xB′
n(x) +Bn(x) = 0,

2A′
n+1(x) +B′′

n(x)− g(x)Bn(x) = 0,

with A0(x) an arbitrary constant (we may take A0(x) = 1 without loss
of generality). Then, higher coefficients are determined recursively by

An+1(x) = −1

2
B′

n(x) +
1

2

∫
g(x)Bn(x) dx, n = 0, 1, 2, . . . ,(5)

Bn(x) =
1

2
√
x

∫ x

0

[g(t)An(t)−A′′
n(t)]

dt√
t
, n = 0, 1, 2, . . . ,

the constants of integration being arbitrary. A second formal solution
may be obtained from (4) by replacing Ai (x) by Bi (x):

(6) y2(x) ∼ Bi (Λ2/3x)
∞∑

n=0

An(x)

Λ2n
+

Bi′(Λ2/3x)

Λ4/3

∞∑
n=0

Bn(x)

Λ2n
.

In general, expansions (4) and (6) are divergent. However, when they
are properly interpreted, they give good approximations of the solutions
of (3). The important contribution of Olver’s theory is the proof of the
asymptotic character of expansions (4) and (6). More precisely, suppose
that g(x) is analytic in a certain region of the complex plane. Then,
both (4) and (6), with the coefficients An(x) and Bn(x) given in (5), are
asymptotic expansions for large Λ of two independent solutions y1(x)
and y2(x) of (3) [6, page 410, Theorem 7.1]. Moreover, in that theorem,
we can also find error bounds for the remainders of the expansions:

Rn,1(x) := y1(x)−
[
Ai (Λ2/3x)

n∑
k=0

Ak(x)

Λ2k
+

Ai′(Λ2/3x)

Λ4/3

n−1∑
k=0

Bk(x)

Λ2k

]
and

Rn,2(x) := y2(x)−
[
Bi (Λ2/3x)

n∑
k=0

Ak(x)

Λ2k
+

Bi′(Λ2/3x)

Λ4/3

n−1∑
k=0

Bk(x)

Λ2k

]
.

In [6, Chapter 11] we can also find several properties of the expansions
(4) and (6), like uniformity properties and examples of special func-
tions. Discussions about the regions of validity of the expansions and
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other more general equations, in particular inhomogeneous equations,
are also presented in [6, Chapter 11].

1.2. Case III. As in Case II, when Λ is large, it is reasonable to
neglect g(x) in

(7) y′′ =

[
Λ2

x
+ g(x)

]
y,

to get a first order approximation of the solutions of this differential
equation: Bessel functions (or modified Bessel functions), of order 1.
Then, we seek for formal solutions of (7) of the form

(8) y1(x) ∼
√
xI1(Λ

√
x)

∞∑
n=0

An(x)

Λ2n
+

x

Λ
I2(Λ

√
x)

∞∑
n=0

Bn(x)

Λ2n
,

(9) y2(x) ∼
√
xK1(Λ

√
x)

∞∑
n=0

An(x)

Λ2n
+

x

Λ
K2(Λ

√
x)

∞∑
n=0

Bn(x)

Λ2n
.

The coefficients An(x) and Bn(x) are obtained from a system of
recurrences similar to (5) (see [6, Chapter 12] for details).

Once again, in general, expansions (8) and (9) are divergent, and the
contribution of Olver’s theory is the proof of the asymptotic character
of these expansions.

Expansions (4), (6), (8) and (9) are asymptotic expansions of solu-
tions of (3) and (7), but in general, they are divergent. The purpose
of this paper is to design a method that approximates one solution of
(3) and of (7) by means of an asymptotic series that is also convergent.
Without any extra effort, we may consider a nonlinear generalization
of equations (3) and (7).

In the next section, we consider initial value problems associated
to a nonlinear generalization of equations (3) and (7), respectively.
By using the fixed point theorem of Banach and the Green’s function
of an auxiliary initial value problem, we obtain uniformly convergent
expansions of that solution in terms of iterated integrals of Ai (x) and
Bi (x) (Case II), and iterated integrals of I1(x) and K1(x) (Case III). In
Section 3 we show that these expansions are asymptotic expansions for
large Λ of the unique solution of the initial value problem. In Section 4,
we particularize our theory to linear equations, in order to compare
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with Olver’s expansions. Some examples are presented in Section 5.
Section 6 contains a few remarks and conclusions.

2. Nonlinear initial value problems.

2.1. Case II. Consider the following nonlinear initial value problem

(10)

{
y′′ − Λ3xy = f(x, y) in [−X,X],

y(0) = y0, y′(0) = y′0,

where the function f : [−X,X] × C → C is continuous in its two
variables, X > 0, y0, y

′
0, Λ ∈ C, y0 = O(1) and y′0 = O(Λ) as Λ → ∞.

Without loss of generality, we restrict ourselves to ℜΛ ≥ 0. In the
following analysis we require for f to satisfy a Lipschitz condition in
its second variable:
(11)
|f(x, y)− f(x, z)| ≤ K|y − z|, for all y, z ∈ C and x ∈ [−X,X],

with K a positive constant independent of x, y, z. Also, it is convenient
to define the following function:

(12) B̃i(z) := 1 + |Bi(z)|, for z ∈ C.

Theorem 2.1. Let f : [−X,X] × C → C be continuous and satisfy
(11). Then, problem (10) has a unique solution y(x). Moreover,

(i) For n = 0, 1, 2, . . . , and y0(x) = ϕ(x), the sequence
(13)
y0(x) = ϕ(x) := π

{[
y0Bi

′(0)− y′
0

Λ Bi (0)
]
Ai (Λx)

−
[
y0Ai

′(0)− y′
0

Λ Ai (0)
]
Bi (Λx)

}
,

yn+1(x) = ϕ(x)+ π
Λ

∫ x

0
[Bi (Λx)Ai (Λt)−Ai (Λx)Bi (Λt)] f(t, yn(t)) dt,

converges to y(x) uniformly for x ∈ [−X,X].
(ii) The remainder

(14) Rn(x) := B̃i
−1

(x)[y(x)− yn(x)]

is bounded by

(15) |Rn(x)| ≤
Kn|Cx|n

|Λ|nn!

∥∥∥B̃i−1
(Λ·)(y − ϕ)

∥∥∥
∞

,
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where C is a positive constant independent of Λ and x (a
uniform bound for the kernel given below).

Proof. Using the Wronskian of the Airy functions is {Ai (x),Bi (x)}
= 1/π, we can see that the function ϕ(x) defined in (13) is the unique
solution of the auxiliary initial value problem{

ϕ′′ − Λ3xϕ = 0 in [−X,X],

ϕ(0) = y0, ϕ′(0) = y′0.

Then, after the change of unknown y(x) → u(x) := y(x)−ϕ(x), problem
(10) reads

(16)

{
u′′ − Λ3xu = F (x, u) := f(x, u+ ϕ) in [−X,X],

u(0) = u′(0) = 0.

We seek for solutions of the equation L[u] := u′′−Λ3xu−F (x, u) = 0
in the Banach space B = {u : [−X,X] → C, u ∈ C[−X,X]} equipped
with the norm

(17) ∥u∥∞ = sup
x∈[−X,X]

|u(x)|.

Then, we solve the equation L[u] = 0 for u by using Green’s function of
the operator M[u] := u′′ − Λ3xu accompanied by homogeneous initial
conditions [10]. That is, G(x, t) is the unique solution of the initial
value problem{

Gxx(x, t)− Λ3xG(x, t) = δ(x− t) in (x, t) ∈ [−X,X]2,

G(0, t) = Gx(0, t) = 0.

After a straightforward computation, we obtain

(18) G(x, t) =
π

Λ
[Ai (Λt)Bi (Λx)− Bi (Λt)Ai (Λx)]χ[0,x](t),

where χ[0,x](t) is the characteristic function of the interval [0, x] for
x > 0 and of the interval [x, 0] for x < 0. Then, any solution u(x) of
(16) is a solution of the Volterra integral equation of the second kind:

u(x) =
π

Λ

∫ x

0

[Ai (Λt)Bi (Λx)− Bi (Λt)Ai (Λx)] f(t, u(t) + ϕ(t)) dt.
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Or equivalently, defining

(19) ũ(x) := B̃i
−1

(Λx)u(x), ϕ̃(x) := B̃i
−1

(Λx)ϕ(x),

we have that, for any solution u(x) of (16), ũ(x) is a solution of the
Volterra integral equation of the second kind

(20) ũ(x) = [Tũ](x),

where we have defined the operator T in the form

(21) [Tũ](x) :=
1

Λ

∫ x

0

KΛ(x, t)f(t, ũ(t) + ϕ̃(t)) dt,

with

(22) KΛ(x, t) := π
B̃i (Λt)

B̃i(Λx)
[Ai (Λt)Bi (Λx)− Bi (Λt)Ai (Λx)].

Airy functions are continuous functions in the whole complex plane

and B̃i (z) ̸= 0 for all z ∈ C. Using, in addition, the asymptotic
behavior of these functions [5, subsections 9.7 (i), 9.7 (ii)], we find
that |KΛ(x, t)| ≤ C for a certain positive constant C independent of
Λ ∈ C and x, t ∈ [−X,X] with 0 ≤ t/x ≤ 1. Using this bound, from
[10, Chapter 4, equation (4.13)], we find that, for any couple z, w ∈ B
and x ∈ [−X,X],

(23) |[Tnz](x)− [Tnw](x)| ≤ Kn

n!

∣∣∣∣Cx

Λ

∣∣∣∣n∥z − w∥∞, n = 1, 2, 3, . . . .

Then [10, Chap 4. eq. (4.14)],

(24) ∥Tnz −Tnw∥∞ ≤ Kn

n!

∣∣∣∣CX

Λ

∣∣∣∣n∥z − w∥∞, n = 1, 2, 3, . . . .

This means that the operator Tn is contractive in B for large enough
n and the successive approximations ũn+1 = T(ũn), n = 0, 1, 2, . . .,
ũ0(x) = 0, converge uniformly in x ∈ [−X,X] to ũ(x) [10, Chapter 4,

Section 4]. In other words, u(x) = B̃i (Λx)ũ(x) is the unique solution

of (16). Or, equivalently, the sequence yn(x) = B̃i (Λx)[ũn(x) + ϕ̃(x)]
given in (13) converges uniformly in x ∈ [−X,X] to the unique solution
of (10). This proves thesis (i).
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To prove thesis (ii), we set z = ũ and w = ũ0 = 0 in (23). Using
that Tnũ = ũ and Tnũ0 = ũn, we find

(25) |ũ(x)− ũn(x)| ≤ Kn 1

n!

∣∣∣∣Cx

Λ

∣∣∣∣n∥ũ∥∞.

Using y(x) = B̃i (Λx)ũ(x) + ϕ(x) and yn(x) = B̃i (Λx)ũn(x) + ϕ(x) in
(25), we find (15). �

Remark 2.2. Of course, the existence and uniqueness of the solution
of problem (10) is not new but a direct consequence of Picard-Lindelöf’s
theorem [3, Chapter 8, Section 2]. In fact, the proof of Picard-
Lindelöf’s theorem using Picard’s iteration is similar to the above
derivation. The unique difference is the choice of the “main operator”
M[u] that, in the standard Picard-Lindelöf theorem, is chosen to be
M[u] = u′′. The advantage of taking M[u] = u′′ − Λ3xu, instead
of M[u] = u′′, is that, for large Λ, we have a faster convergence of
the iteration (13) than the standard Picard’s iteration, as long as the
operator M[u] = u′′ − Λ3xu is “closer” to L[u] than the operator
M[u] = u′′: the error bound for the standard Picard’s iteration is
similar to (15) but replacing K by K + |Λ|3X. When Λ is large
compared with K, we have that (13) converges faster than the standard
Picard’s iteration. Moreover, in the next section, we show that the
recurrence yn(x) given in (13) is not only convergent (to the unique
solution y(x) of (10)), but also an asymptotic expansion of y(x) for
large Λ.

2.2. Case III. Consider the following nonlinear initial value problem

(26)

{
y′′ − Λ2

x y = f(x, y) in [−X,X],

y′(0) = y′0,

where the function f : [−X,X] × C → C is continuous in its two
variables and satisfies (11). We consider X > 0, y′0, Λ ∈ C with
ℜΛ ≥ 0, and y′0 = O(Λ) as Λ → ∞. We also need to define the
function

Ĩ1(z) := 1 + |I1(2
√
z)|, for z ∈ C.

We have the following theorem.
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Theorem 2.3. Let f : [−X,X] × C → C be continuous and satisfy
(11). Then, problem (26) has a unique solution y(x). Moreover :

(i) For n = 0, 1, 2, . . ., the sequence

(27)


y0(x) = ϕ(x) :=

y′
0

Λ

√
xI1(2Λ

√
x),

yn+1(x) = ϕ(x) + 2

∫ x

0

√
xt[I1(2Λ

√
x)K1(2Λ

√
t)

−K1(2Λ
√
x)I1(2Λ

√
t)]f(t, yn(t)) dt,

converges to y(x) uniformly for x ∈ [−X,X].
(ii) The remainder

(28) Rn(x) := Ĩ1
−1

(Λ2x)[y(x)− yn(x)]

is bounded by

(29) |Rn(x)| ≤
Kn

n!

∣∣∣∣Cx

Λ

∣∣∣∣n ∥∥∥Ĩ1(Λ2·)(y − ϕ)
∥∥∥
∞

,

where C is a positive constant independent of Λ and x (a
uniform bound for the kernel given below).

Proof. Similar to the proof of Theorem 1, we replace the kernel (22)
by:
(30)

KΛ(x, t) := 2Λ
√
xt

Ĩ1(Λ
2t)

Ĩ1(Λ2x)
[K1(2Λ

√
t)I1(2Λ

√
x)−I1(2Λ

√
t)K1(2Λ

√
x)].

The Bessel functions Iν(z) and Kν(z) are continuous functions of z

in C \ (−∞, 0] and Ĩ1(z) ̸= 0 for all z ∈ C. Using, in addition, the
asymptotic behavior of these functions at z = 0 [5, equations (10.25.2),
(10.27.4), (10.27.5)] and at z = ∞ [5, subsection 10.40 (i)], we find that
|KΛ(x, t)| ≤ C for a certain positive constant C independent of Λ ∈ C
and x, t ∈ [−X,X] with 0 ≤ t/x ≤ 1. �

Remark 2.4. The existence and uniqueness of the solution of (26)
is a new result, as Picard-Lindelöf’s theorem does not apply to this
problem. Then, Theorem 2.3 is a kind of Picard-Lindelöf theorem
for second order differential equations with initial datum given at the
regular singular point of the equation. It is worth noting that, as a
difference from the regular problem, only one initial datum is required:
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the value of the derivative at the regular singular point. It is natural
to also consider problem (26), but to replace the condition y′(0) = y′0
by the condition y(0) = y0. Or, consider problem (26) with both
conditions: y(0) = y0 and y′(0) = y′0. In general, neither of these two
initial value problems has a unique solution (and this is why we have
not considered them here). For example, the problem{

y′′ − Λ2

x y = 0 in [−X,X],

y(0) = 0,

has an infinite number of solutions: y(x) = c
√
xI1(2Λ

√
x), with c an

arbitrary constant. On the other hand, the problem{
y′′ − Λ2

x y = 0 in [−X,X],

y(0) = 1, y′(0) = 0,

has no solution.

3. Asymptotic properties of the expansions.

3.1. Case II. We have seen in Theorem 1 that the unique solu-
tion y(x) of problem (10) may be obtained from the limit y(x) =
limn→∞ yn(x) uniformly in [−X,X], where yn(x) is defined by the re-
currence (13). In other words, y(x) admits the series expansion

y(x) = ϕ(x) +

∞∑
k=0

[yk+1(x)− yk(x)](31)

= ϕ(x) + B̃i (Λx)
∞∑
k=0

[ũk+1(x)− ũk(x)],

with

(32) ũn(x) := B̃i
−1

(Λx)[yn(x)− ϕ(x)], n = 0, 1, 2, . . . .

Using (14), we may write (31) in the form

y(x) = ϕ(x) +
n−1∑
k=0

[yk+1(x)− yk(x)] + B̃i (Λx)Rn(x)(33)
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= ϕ(x) + B̃i (Λx)

[ n−1∑
k=0

[ũk+1(x)− ũk(x)] +Rn(x)

]
.

Then, we have the following theorem.

Theorem 3.1. Let the functions yn(x) be defined by the recurrence
(13), where f : [−X,X]×C → C is continuous in [−X,X] and satisfies
(11). Then, the expansion (33) is an asymptotic expansion for large
Λ of the unique solution of (10), uniformly for x ∈ [−X,X]. More
precisely, for n = 1, 2, 3, . . .,

∥ũn(x)− ũn−1(x)∥∞ = O(|Λ|−n)(34)

and

∥Rn(x)∥∞ = O(|Λ|−n−1).

Proof. From definition (21), we have

(35) ũn(x) = [Tũn−1](x) =
1

Λ

∫ x

0

KΛ(x, t)f(t, ũn−1(t) + ϕ̃(t)) dt

and

(36) ũn+1(x) = [Tũn](x) =
1

Λ

∫ x

0

KΛ(x, t)f(t, ũn(t) + ϕ̃(t)) dt.

with KΛ(x, t) defined in (22). Subtracting (36) from (35) and using the
bounds |KΛ(x, t)| ≤ C and (11), we find that

(37) ∥ũn+1 − ũn∥∞ ≤
∣∣∣∣XΛ

∣∣∣∣CK∥ũn − ũn−1∥∞.

We have ũ0(x) = 0 and ũ1(x) = [Tũ0](x) = O(|Λ|−1) uniformly for
x ∈ [−X,X]. Using this and (37), the first thesis in (34) follows by
induction over n.

Observe that ũ=limn→∞ ũn=
∑∞

k=0[ũk+1 − ũk]=
∑∞

k=0 O(|Λ|−k−1)
= O(|Λ|−1) uniformly for x ∈ [−X,X]. This and inequality (25) prove
the second thesis in (34). �
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3.2. Case III. We have seen in Theorem 2 that the unique solu-
tion y(x) of problem (26) may be obtained from the limit y(x) =
limn→∞ yn(x) uniformly in [−X,X], where yn(x) is the sequence de-
fined in (27). In other words, and analogously to Case II, in this Case
III, y(x) admits the series expansion

(38) y(x) = ϕ(x) + Ĩ1(Λ
2x)

[ n−1∑
k=0

[ũk+1(x)− ũk(x)] +Rn(x)

]
with

(39) ũn(x) := Ĩ1
−1

(Λ2x)[yn(x)− ϕ(x)], n = 0, 1, 2, . . . .

And, we have the following theorem.

Theorem 3.2. Let the functions yn(x) be defined by the recurrence
(27), where f : [−X,X]×C → C is continuous in [−X,X] and satisfies
(11). Then, expansion (38) is an asymptotic expansion for large Λ of
the unique solution of (26), uniformly for x ∈ [−X,X]. More precisely,
for n = 1, 2, 3, . . .,

∥ũn(x)− ũn−1(x)∥∞ = O(|Λ|−n)(40)

and

∥Rn(x)∥∞ = O(|Λ|−n−1).

Proof. Analogous to the proof of Theorem 3.1. �

Example 3.3. Consider a mathematical pendulum [12, Chapter 5,
Example 5.2] with a reaction term vanishing at the origin. Suppose
that, at time x = 0, the pendulum is at rest at the angular position
y = y0. Then, the angular position y(x) is the unique solution of the
initial value problem

(41)

{
y′′ − Λ3xy = sin y, x ∈ [−X,X],

y(0) = y0, y′(0) = 0.

This problem is of the form considered in Theorem 2.1 with f(x, y) =
sin y, and then |f(x, y) − f(x, z)| ≤ |y − z|. This function is Lipschitz
continuous for all y, z ∈ C with a Lipschitz constant L = 1. From
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Figure 1. These graphs contain the exact solution (computed with a
numerical integrator) y(x) (dashed) and the approximations y1(x) (blue) and
y2(x) (pink) for Λ = 3 (left picture) and Λ = 4 (right picture) with y0 = π/8.

Theorem 2.1, we have that, for n = 0, 1, 2, . . .,

y0(x) = ϕ(x) := πy0(Bi
′
(0)Ai (Λx)−Ai′(0)Bi (Λx)),

yn+1(x) = ϕ(x) +
π

Λ
Bi (Λx)

∫ x

0

Ai (Λt) sin yn(t) dt

− π

Λ
Ai (Λx)

∫ x

0

Bi (Λt) sin yn(t) dt.

This sequence converges uniformly and absolutely to the unique so-
lution of (41). Figure 1 illustrates the approximation of the unique
solution of (41) supplied by this approximation. �
4. The linear case. For a better comparison with Olver’s method,

we briefly indicate how the previous results look in the linear case:
consider the initial value problems (10) and (26), with f(x, y) = g(x)y,
where we only require the function g : [−X,X] → C to be continuous.
Then, Theorems 1, 2, 3 and 4 hold, replacing f(x, y) by g(x)y and the
positive constant K by ||g||∞.

4.1. Examples.

Example 4.1. For any Λ ∈ C and X > 0, the unique solution of the
initial value problem{

y′′ −
(
Λ3x+ x2

4

)
y = 0 in [−X,X],

y(0) = 1, y′(0) = U ′(−Λ6, 2Λ3)/U(−Λ6, 2Λ3),

is the normalized parabolic cylinder function Ũ(−Λ6, x + 2Λ3) :=
U(−Λ6, x+2Λ3)/U(−Λ6, 2Λ3). For this problem g(x) = x2/4 and, from
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Theorem 2.1 with f(x, y) = g(x)y, we obtain that, for n = 0, 1, 2, . . .,
the sequence

(42)


y0(x) = ϕ(x) := π

{[
Bi′(0)− U ′(−Λ6,2Λ3)

ΛU(−Λ6,2Λ3)Bi (0)
]
Ai (Λx)

−
[
Ai′(0)− U ′(−Λ6,2Λ3)

ΛU(−Λ6,2Λ3)Ai (0)
]
Bi (Λx)

}
,

yn+1(x) = ϕ(x) + π
4ΛBi (Λx)

∫ x

0
Ai (Λt)t2yn(t) dt

− π
4ΛAi (Λx)

∫ x

0
Bi (Λt)t2yn(t) dt,

converges uniformly for x ∈ [−X,X], to the exact solution Ũ(−Λ6, x+
2Λ3). From Theorem 3.1 with f(x, y) = g(x)y, we know that it is

also an asymptotic expansion of Ũ(−Λ6, x+ 2Λ3) for Λ → ∞. Table 1
shows some numerical results for the approximation supplied by the
recursion (42) compared with the approximation supplied by Olver’s
algorithm. �

Example 4.2. For any Λ ∈ C and X > 0, the unique solution of the
initial value problemy′′ −

(
Λ2

x
+ a2

)
y = 0 in [−X,X],

y′(0) = 1,

is given in terms of a confluent hypergeometric function [5, Chapter
13]: y(x) = xe−axM(1 + Λ2/(2a), 2, 2ax). For this problem, g(x) = a2

and, from Theorem 2.3 with f(x, y) = g(x)y, we have that, for
n = 0, 1, 2, . . .,

the sequence

(43)


y0(x) = ϕ(x) :=

√
x

Λ
I1(2Λ

√
x),

yn+1(x) = ϕ(x) + 2a2
∫ x

0

√
xt[I1(2Λ

√
x)K1(2Λ

√
t)

−K1(2Λ
√
x)I1(2Λ

√
t)]yn(t) dt,

converges to the solution y(x) uniformly for x ∈ [−X,X]. Table 2
shows some numerical results for the approximation supplied by the
recursion (43) compared with the approximation supplied by Olver’s
algorithm.
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x = 1

Λ n Olver’s method Formula (42)

1 0.48174856 0.00012789
−0.5 3 0.14351156 2.68e−10

5 35.44078569 3.80e−16

1 0.02009256 0.00027836
−1 3 0.00093302 6.29e−10

5 0.00178991 2.83e−15

1 0.00057733 0.00005885

−51/3 3 1.12e−6 1.8e−10
5 8.22e− 8 2.6e−15

1 0.00009711 0.00001251

−101/3 3 4.6e−8 8.18e−11
5 8.6e− 10 4.3e−14

x = −1

Λ n Olver’s method Formula (42)

1 0.0246796 0.0000754845
0.5 3 0.0123801 1.4e−10

5 11.441990 1.4e−16

1 0.00172736 0.0000770293
1 3 0.0000585129 1.4e−10

5 0.000155435 9.3e−16

1 0.0000200375 0.000107348

51/3 3 1.4e−7 2.1e−10
5 3.2e−9 1.9e−16

1 0.0000820701 0.000276735

101/3 3 9.4e−8 5.8e−10
5 7.0e− 10 1.7e−14

Table 1. Numerical experiments about the relative errors in the approx-
imation of the solution of problem given in Example 2 using Olver’s method
and formula (42) for different values of Λ and n.

5. Final remarks. In Theorem 2.1 we have proposed a kind of
Picard-Lindelöf’s iteration, recurrence (13), to approximate, uniformly
for x ∈ [−X,X], the unique solution of problem (10). When Λ is large
compared with the Lipschitz constantK of f(x, y), (13) converges faster
than the standard Picard-Lindelöf’s iteration. As Olver’s expansion,
the expansion (13) is asymptotic for large Λ but has the advantage of
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x = 0.05

Λ n Olver’s method Formula (43)

2 1.e−4 8.3e-7
−0.5 3 0.011 1.97e−10

4 0.016 9.4e−13

2 6.25e−6 8.22e-7
−1 3 0.00016 1.95e−10

4 6.3e−5 4.6e−13

2 7.15e−7 8.e−7

−51/3 3 6.5e−6 1.9e−10
4 8.6e− 7 1.4e−12

2 2.8e−7 7.9e−7

−101/3 3 1.6e−6 1.85e−10
4 1.35e− 7 2.2e−12

x = −0.1

Λ n Olver’s method Formula (43)

2 1.8e-4 1.3e-5
0.5 3 9.3e-3 1.27e−8

4 0.09 1.47e−11

2 3.5e-5 1.4e-5
1 3 1.2e-4 1.3e−8

4 3.7e-4 1.1e−11

2 2.9e-5 1.4e-5

51/3 3 2.e-5 1.38e−8
4 3.3e-5 1.9e−11

2 3.e-5 1.5e-5

101/3 3 2.8e-5 1.45e−8
4 3.e-5 1.e−11

Table 2. Numerical experiments about the relative errors in the approx-
imation of the solution of problem given in Example 3 using Olver’s method
and formula (43) for different values of Λ and n.

also being convergent for any Λ ∈ C, ℜΛ ≥ 0. A formal difference
between both expansions is that Olver’s expansion is of Poincaré type,
whereas expansion (13) is not. An important difference is that this
method can be used for nonlinear problems with Lipchitz continuous
functions f(x, y), whereas Olver’s method requires a linear problem
with an analytic function g. On the other hand, this method is valid
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for bounded domains, whereas Olver’s method is valid for unbounded
domains.

The existence and uniqueness of the solution of (26) is a new result,
since Picard-Lindelöf’s theorem does not apply. Then, Theorem 2.3
is a kind of Picard-Lindelöf’s theorem for second order differential
equations with initial datum given at the regular singular point of the
equation. It is worth noting that, as a difference from the regular
problem, only one initial datum is required: the value of the derivative
at the regular singular point.

A different asymptotic as well as convergent method is given in
[2]. As a difference from the method presented here, it is valid for
unbounded domains of x. On the other hand, it requires a more
stringent condition for the function g(x): it must be analytic and posses
a certain asymptotic behavior at infinity.
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