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Abstract: Here, we present a novel method to fabricate long period gratings using standard
single mode optical fibers (SMF). These optical devices were fabricated in a three-step process,
which consisted of etching the SMF, then coating it with a thin-film and, the final step, which involved
removing sections of the coating periodically by laser ablation. Tin dioxide was chosen as the material
for this study and it was sputtered using a pulsed DC sputtering system. Theoretical simulations
were performed in order to select the appropriate parameters for the experiments. The responses of
two different devices to different external refractive indices was studied, and the maximum sensitivity
obtained was 6430 nm/RIU for external refractive indices ranging from 1.37 to 1.39.

Keywords: long period fiber gratings; laser ablation; micromachined; optical fiber sensors; thin-film
coatings; refractometer

1. Introduction

Long period gratings (LPGs) have been extensively studied for the last few decades [1]. LPGs are
structures where the periodic modulation of the refractive index (RI) along the length of the optical
fiber leads to light coupling between the core mode and co-propagating cladding modes at specific
resonance wavelengths [2]. Knowing that the attenuation bands in the optical spectrum are generated
by the coupling of the fundamental mode to cladding modes of the LPG structure, there is a
significant dependence between the properties of the external medium and the position of the
attenuation bands [3].

The first application found for LPGs was as rejection band filters [1]. However, applications as
optical fiber sensors were developed soon afterwards. This was possible thanks to the interaction
of the cladding modes with the external medium [4–6]. Based on this property, LPGs are
inherently sensitive to physical parameters, such as temperature [7,8], strain [9], surrounding
medium RI (SMRI) [10], and bending radius [11]. However, they can be made sensitive to chemical
parameters if they are coated with an appropriate material [12–14]. In fact, LPG-based sensors
for humidity [15–17], pH measurements [18,19], volatile organic compounds [20], chemical species
detection [21], gas detection [22], or even biological sensors [13,23] have been fabricated.

Two different aspects should be taken into account when developing an optical fiber sensor based
on LPGs: The fabrication process and the sensitivity.
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Regarding the fabrication, the most well-known method for inscription of LPGs is a core RI
change induced by UV laser radiation in standard communication fibers [1]. However, several other
mechanisms have been exploited to obtain this optical structure: CO2 [24] and IR femtosecond
laser radiation [25], ion beam irradiation [26], etching [27,28], mechanically induced gratings [29],
and electric arc discharges [30]. Besides, different kinds of fibers have been used for the development
of this optical structure, such as standard single mode optical fibers (SMF28) [6], hydrogen loaded
fibers [31,32], and Ge doped [33] and B/Ge co-doped fibers [30].

Other methods, based on lithography or wet-etching processes, have recently been used
for the fabrication of the so-called corrugated LPGs [27,28,34–38]. During these processes,
sections with different effective indices (neff) were obtained by periodically decreasing the cladding
diameter. The sensitivity of this optical structure towards different parameters [38]—strain, torsion,
and bending—has been studied, obtaining some promising results. A method based on coating the
multimode section of a tapered SMF through an amplitude mask has also been demonstrated for LPG
development [39]. Several modes can be guided through the tapered section of an SMF, making it more
difficult to predict coupling interactions between these different modes and, consequently, to optimize
that optical platform.

Regarding the sensitivity of LPGs, great efforts have recently been made to increase them.
This goal can be achieved using different techniques, such as adding a coating with high RI [40,41],
working in the dispersion turning point (DTP) [42–47], or reducing the diameter of the cladding by
etching [48] or tapering the fiber [49].

The method proposed here consists of the periodic laser ablation of a coating previously deposited
on a chemically etched SMF, which will keep single mode propagation because the core of the fiber
remains unaffected. The optical device developed here combines some of the characteristics that make
LPGs more sensitive, such as an etched optical fiber and further deposition of a thin-film coating, which
will be periodically removed later. The fabrication process offers some advantages over other methods,
such as lithography. There are more available materials, the number of fabrication steps is lower
compared to corrugated LPGs [35], it can be developed in standard SMFs, and physical parameters or
chemical species affecting the coating will modify the grating itself, either by changing its refractive
index or by changing its size. As a demonstration of this novel optical structure, the behavior as a
refractometer was studied.

2. Fabrication Process

The fabrication process of the proposed device is described in Figure 1. This optical device was
fabricated in a three-step process, which consists of etching the SMF, then coating it with a thin-film
and, the final step, which involves removing sections of the coating periodically by laser ablation.
For the chemical etching, hydrofluoric acid (HF) diluted at 40% (Sigma-Aldrich, St. Louis, MO, USA)
was used. The SMF (SMF28e with 8/125 µm core/cladding diameter purchased from Telnet RI) was
immersed in the HF (previously 50 mm of the buffer was removed). It was important to remove the
buffer in a longer section than the one that was immersed in HF to avoid the fiber becoming brittle.
When the overall diameter reached 12 µm, the etched SMF was washed with deionized water to remove
all the HF. The diameter of the fiber was measured using the software included in the microscope
(Leica DMC 2900, Leica Microsystems, Wetzlar, Germany). This measurement was performed before
gluing the fiber to its holder. If the diameter was not the desired one, the fiber was immersed again
in HF until the diameter met the requirements. Then, it was attached to a U-holder to keep the fiber
straight and, hence, to avoid any bending artifacts.
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Figure 1. Scheme of the fabrication process and photo of the final device (device B). Step 1: Chemical
etching of the SMF. Step 2: Coating the CE-SMF by sputtering. Step 3: Inscription of the grating by
laser ablation.

Once the fiber reached its final diameter, a tin dioxide thin film was deposited on the
cladding-etched SMF (CE-SMF). Tin dioxide was sputtered by means of a pulsed DC sputtering
system (Nadetech Inc., Pamplona, Spain). SnO2 was selected between different transparent conductive
oxides (TCO) because of its optical properties, which meet the two main characteristics desired: a high
refractive index and a low extinction coefficient (these are the requirements to obtain a sensitive device
whose attenuation band exhibits a low spectral width). Pulsed DC sputtering technique has been
selected because of its high repeatability, high thickness control, and because it is a fast and reliable
method. The sputtering process was performed at a vacuum chamber pressure of 2 × 10−2 mbar,
using argon as the process gas and with a sputtering current of 180 mA. The coating was deposited
homogeneously around the fiber, enabling the obtainment of a polarization independent device.

Two devices with different coating thickness were developed. The first one, device A, was coated
with 55 nm of tin dioxide, whereas the coating thickness of device B was 65 nm. The greater thickness
of device B allows for reducing the number of periods required to generate the resonances in the optical
spectrum: 120 for device A and 100 for device B. Consequently, the grating length can be reduced at
the same time. The thickness was measured using a quartz crystal microbalance (QCM).

Then the coated CE-SMF was placed under the lens of the laser (PEDB-100, Perfect Laser, Wuhan,
China). This laser emits at 1064 nm with a maximum power of 20 W and is pulsed at a frequency of
20 kHz. A digital galvanometer scanning head positions the laser beam. The beam power, the repetition
rate, and the scanning velocity can be adjusted by software, which allows for an accurate control of
the laser direct writing (LDW). Here, the laser was programmed to periodically evaporate sections of
the coating. The transmitted spectrum was monitored after each period was written. The transmitted
optical spectra were normalized with respect to the one provided by a SLED light source (HP-83437A,
Agilent, Santa Clara, CA, USA), and they were acquired by an optical spectrum analyzer (HP-86142A,
Agilent, Santa Clara, CA, USA). Monitoring the transmitted optical spectrum was useful for checking
that the laser was operating correctly. Device A and device B have the same overall diameter of 12 µm.
The period was adjusted to 200 µm for device A and 160 µm for device B, in order to be able to measure
changes in different RI ranges, as will be seen later.
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3. Theoretical Analysis

This section presents a theoretical analysis that was performed for the parameters of the structure
presented in Section 2. The SMRI was set to 1.321 [50] to simulate water as the surrounding medium.
FIMMWAVE® was used for the numerical analysis of the structure. The RI of the optical fiber cladding,
made of fused silica, was estimated with the Sellmeier equation [30]. The optical fiber core RI for
the simulations was obtained, according to the specifications from Corning®, by increasing the RI
of the cladding by 0.36%. The material used for the simulations as well as for the experiments is tin
dioxide, whose RI was measured by ellipsometry (Uvisel-2 from HORIBA, Kioto, Japan), and is shown
in Figure 2.
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Figure 2. Refractive index of the tin dioxide thin film acquired with ellipsometer Uvisel-2 (Horiba,
Kioto, Japan).

3.1. Influence of the Diameter of the Fiber

In the first place, the influence of the overall diameter of the fiber was analyzed. For this purpose,
the neff of the fundamental mode, and of some cladding modes, was calculated for each wavelength
from 1200 to 1700 nm for different thicknesses of tin dioxide and for different overall diameters of
the fiber. In addition, the neff of the modes was calculated under the same conditions, except for the
fact that this time no tin dioxide coating was included (i.e., the profile of the uncoated section was
analyzed). In order to understand the results of the simulations, a specific case is presented in Figure 3.
The neff of sections coated with 10 and 70 nm of SnO2, and the neff of the uncoated section for fibers
of different diameters, were calculated. Then, the difference between the neff of the coated sections
and the uncoated section was plotted as a function of the diameter for thicknesses of 10 and 70 nm,
in order to see the effect of decreasing the diameter.

The change in neff increased for higher order modes, but the main conclusion is that the scale of
the change for the 9 µm fiber was 50 times higher than in the fiber of diameter 40 µm. Moreover, unlike
in the 40 µm fiber, in the 9 µm fiber there was a change in the neff of the fundamental mode. This higher
perturbation suggests that a low diameter fiber must be used, as it will be the case in Section 4.

These changes in the neff of the core and the cladding modes play a role in the coupling between
the core mode and each cladding mode (i.e., on the generation of resonances in the transmission
spectrum). The simplest way to calculate the position in the optical spectrum of these resonances for
each period is the well-known phase matching condition [51]:

λ =
[
ne f f (λ)− ni

clad

]Λ
N

(1)

where neff (λ) is the effective RI of the propagating core mode at wavelength λ, ni
clad (λ) is the effective RI

of the ith cladding mode, Λ is the period of the LPG, and N is the diffraction order. Taking into account
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this equation and the data obtained previously, it was possible to calculate the wavelength of the
resonance as a function of the grating period. The lines satisfying the Bragg condition corresponding
to the mode HE2

1,4 for a thin-film of 50 nm coated onto a CE-SMF of different diameters are shown
in Figure 4.
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modes were analyzed. Thickness of 70 nm is represented as continuous lines, and thickness of 10 nm is
represented as dashed lines, which is also depicted in the inset.
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fibers of different diameters corresponding to the mode HE2

1,4. The horizontal line and the black spots
represent the working points for further analysis.



Sensors 2018, 18, 1866 6 of 14

In Figure 4, the wavelength of the resonance is represented as a function of the grating period for
diameters increasing from 10 to 16 µm. For analyzing the influence on the sensitivity of the diameter,
all the other parameters needed to remain unaffected. Therefore, the thickness of the coating, the mode
that is going to be coupled, and the initial wavelength of the resonance were kept constant. Then, in
order to obtain the resonance located at the same wavelength and to couple the same cladding mode,
it became necessary to change the grating period.

Following the procedure to select the grating period schematized in Figure 4, the influence of
the diameter on the attenuation band, as well as the influence of the diameter on the sensitivity,
were analyzed. Figure 5 shows the influence of the diameter on the transmitted spectrum obtained,
as well as on the characteristics of the attenuation band. The data were obtained by simulating an
LPG with 120 periods written onto a 50 nm tin dioxide thin-film. The number of periods was chosen
by comparison with conventional LPGs and because it offers a reasonable final length of the device.
The grating period was calculated to couple the HE2

1,4 mode, as indicated in Figure 4.
Figure 5a shows the transmitted spectra for different diameters, whereas Figure 5b shows the

insertion losses and the attenuation depth of the resonance as a function of the diameter. Finally,
in Figure 5c, the full width at half maximum (FWHM) is plotted against the diameter.
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function of the diameter.



Sensors 2018, 18, 1866 7 of 14

From Figure 5, it can be concluded that diameters greater than 18 µm do not allow for a resonance
with coupling strength greater than 3 dB for the number of periods studied. There is a range of
diameters, between 12 and 15 µm, which provide the smallest FWHM. In addition, a study of the
influence of the diameter on the sensitivity was also performed and the obtained results are represented
in Figure 6. It is important to remark that the grating period was selected to always work with the
same mode coupled (mode HE2

1,4 in this case), which was selected to also obtain the resonance at the
same wavelength every time, in order to avoid the dependence of the sensitivity on the wavelength.
The SMRI was swept from 1.321 to 1.351, and the diameter was swept from 10 to 16 µm, while the
thickness of the coating was fixed at 50 nm.
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Figure 6. Sensitivity of an LPG written onto a 50 nm thin-film coated cladding-etched single mode
optical fiber as a function of the diameter.

The sensitivity increased following a linear behavior as the diameter increases. However,
the FWHM of the resonance also increased with the diameter. For the following analysis and for
the experimental study, the diameter was fixed to 12 µm as a compromise between sensitivity and
spectral width. This diameter enables a significant modification of the neff of the core and the cladding
modes by deposition of a thin-film, providing an attenuation band that can be easily monitored
and distinguished.

3.2. Influence of the Thickness of the Coating

The next parameter that was analyzed was the thickness of the thin-film where the grating was
written. Following the same scheme as in the previous section, the neff of both the core and the cladding
modes was calculated as a function of thickness and for a fixed diameter of 12 µm. The SMRI was
swept from 1.321 to 1.351, and the thickness was swept from 20 to 60 nm. The grating period was fixed
in such way that it worked with the resonance associated with the mode HE1

1,3. Figure 7 shows the
sensitivity as a function of the coating thickness.
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Figure 7 shows the influence of the thickness of the coating in the sensitivity of the device.
Here, the relationship between thickness and sensitivity was stronger than the relationship between
diameter and sensitivity. For the thinnest coating (20 nm), the wavelength shift of the resonance
followed an almost linear behavior with a sensitivity of 1000 nm/RIU. However, as the thickness
increases, the behavior of the device evolved towards a quadratic behavior with a maximum
sensitivity of 1900 nm/RIU (for a thin-film of 60 nm). Nonetheless, it must be highlighted that
the maximum thickness was limited by the absorption of the material, which prevented increasing the
thickness indefinitely.

3.3. Influence of the Grating Period

In conventional LPGs, the sensitivity is dependent on the grating period. For this section, the
dependence was analyzed. To this purpose, a device of 12 µm of diameter with a coating of 40 nm was
studied. The SMRI was swept from 1.321 to 1.351, and the grating period was swept, in a discrete way,
from 50 µm to 370 µm. The sensitivity as a function of the grating period, as well as the transmission
spectra, are shown in Figure 8.
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Figure 8. (a) Transmission spectra for the first four resonances; (b) sensitivity of an LPG written onto a
12 µm CE-SMF as a function of the grating period.

It was observed that each coupled mode generated a resonance with different properties.
Resonances associated with the mode HE1

1,4 were more sensitive than the others, but the FWHM
was the greatest (120 nm). However, the next resonances that appeared, which were associated
with the modes HE2

1,4, HE1
1,3, and HE1

1,2, presented a FWHM of 10, 20, and 32 nm, respectively.
Therefore, it seems to be preferable to work with these modes. Although they lead to lower sensitivities,
this drawback will be compensated for with a greater resolution.

4. Experimental Results

Taking into account the simulated results, it was possible to select the appropriate parameters
for the fabrication of this kind of device. In this section, the experimental results obtained for two
different devices are explained. The final chosen diameter of 12 µm was chosen as a compromise
between sensitivity, spectral characteristics of the attenuation band, and the final size of the device.
These two devices have been developed using tin dioxide for both of them, but the LPGs have coatings
with different thicknesses and different grating periods. Knowing that the sensitivity increases for
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thicker coatings and shorter grating periods, we compared two devices: one with a thicker coating and
a shorter grating period than the other one.

4.1. Device A

Device A was generated by coating an etched fiber of 12 µm in diameter with a thin-film of tin
dioxide of 55 nm. The required grating period was calculated using Equation 1, and a grating period of
200 µm was selected for this first device. Then, the coated fiber was placed under the laser and the LPG
was generated. Device A, with a nanocoating of period 200 µm, allowed for observing the resonance
corresponding to the mode HE2

1,3 at 1370 nm when it was immersed in water. The experimental
dependence of the resonance wavelength of this optical structure on the SMRI was studied. To achieve
this purpose, the LPG was immersed into different water-glycerin solutions. The RI of these solutions
was first measured with a commercial refractometer (Mettler Toledo 30GS, Columbus, OH, USA).
The transmission spectra for SMRI ranging from 1.321 to 1.386 are shown in Figure 9.
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Figure 9. Experimental transmitted spectra of device A for SMRIs ranging (a) from 1.321 to 1.339,
and (b) from 1.343 to 1.386.

The experimental results presented in Figure 8 show that the resonance redshifts as the SMRI
increases and that there is also a continuous increase of the attenuation depth. The resonance of
conventional LPGs blueshift as the SMRI increases for grating periods above the dispersion turning
point, whereas for grating periods below the dispersion turning point, there is a redshift. This behavior
is related to the shape of the lines satisfying the Bragg condition. If they present a positive slope,
there is a blueshift, whereas if they show a negative slope, there is a redshift. In addition, it has been
checked recently that as the diameter of the optical fiber is reduced, the dispersion turning point is
shifted to lower grating periods. Consequently, the grating period range where there is a redshift
increases [46]. In the structure analyzed in this work, the diameter was very low and the grating
period was also short. As a result, a redshift in the resonances was observed when the SMRI was
increased. The attenuation band shifted 167 nm, providing a maximum sensitivity of 4000 nm/RIU in
the 1.343–1.386 range. It was observed that the wavelength shift was non-linear. The FWHM of the
resonance was 40 nm at 1.321 and 20 nm at 1.386.
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4.2. Device B

Another device fabricated with different parameters, called device B, was analyzed. As it was
indicated in Section 3, the thickness of the thin-film was increased for this device in order to improve
the sensitivity of the final device. Then, the thickness of the coating for device B was increased to
65 nm. Again, simulations became crucial to know the appropriate grating period. Now, in order to
have the same mode coupled as the one in device A, a period of 160 µm was selected. According to
LPG theory, shorter periods will lead to higher sensitivity towards the external refractive index [43].
Device B, with a nanocoating of period 160 µm, allowed for observing the resonance corresponding to
the mode HE2

1,3 at 1280 nm when it was immersed in a medium with a SMRI of 1.347. Using these
parameters, the evolution of the transmitted optical spectrum of device B was experimentally studied
for different RIs (see Figure 10). The attenuation band redshifted as the SMRI increased, and there was
also a continuous increasing power loss as the SMRI increased. This increase of the attenuation was
smaller than that one observed for device A, due to the lower number of periods. The attenuation
band shifted 179 nm, providing a maximum sensitivity of 6430 nm/RIU in the 1.374–1.389 range.
The FWHM of the resonance obtained was 30 nm at 1.367 and it diminished to 20 nm at 1.389.
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4.3. Comparison between Theoretical and Experimental Results

Figure 11 shows the wavelength of the resonance as a function of the SMRI. A good agreement
between experimental results and theoretical results was obtained, which indicates that the model
presented in Section 2 was useful for the design of this optical device. In addition, the wavelength
shift was non-linear, as is the common behavior for an LPG [47]. The sensitivity for refractive indices
between 1.343 and 1.386 was 4000 nm/RIU for device A. Device B provided a sensitivity of 6430
nm/RIU for SMRIs between 1.374 and 1.389, which were larger than those obtained in DTP-tuned LPGs
in the telecommunications spectral range without cladding reduction (1309 nm/RIU in Reference [52],
1847 nm/RIU in Reference [53], and 944 nm/RIU in Reference [54]), and competes with the value
of 8374 nm/RIU obtained with DTP-tuned LPFGs in the telecommunications spectral range with
cladding reduction [46].
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5. Conclusions

Here, a novel method to obtain an LPG-based optical structure was developed and the wavelength
dependence of the attenuation band on the SMRI was studied. The combination of sputtering and
laser ablation provided a method for the development of this kind of optical structure, which can be
tuned for working in different conditions (i.e., different SMRIs). The device was developed using
standard single mode optical fibers, and the coating material was selected for the development of
sensors for different applications. The CE-SMF, which keeps single mode propagation, made this
structure highly predictable. Therefore, this kind of device can be easily tuned for each coating material
and for working in a specific RI range.

The maximum sensitivity, obtained with device B, was 6430 nm/RIU for SMRIs between 1.374
and 1.389; a value that competes with those ones obtained with LPGs fabricated using other techniques.
Since the nanocoating material was responsible for the grating generation, the sensitivity of the
device was enhanced with the deposition of other materials with higher refractive index. Moreover,
the deposited material was sensitive to a specific parameter to detect. This widens the domain of
application of this type of device. In this sense, further research should be done to develop sensors for
specific application fields, such as pH sensors, detection of chemical or biological species, magnetic
field sensors, etc.

Author Contributions: J.A. and J.M.C. conceived and designed the experiments; J.A. performed the experiments
and wrote the manuscript; I.d.V. helped with the simulations; I.d.V. and I.R.M. participated in the design of the
study and in the draft of the manuscript.

Funding: This work was supported by the Spanish Agencia Estatal de Investigación (AEI) and Fondo Europeo de
Desarrollo Regional (FEDER) (TEC2016-78047-R and TEC2016-79367-C2-2-R), and by the Government of Navarre
through the project with reference 2017/PI044.

Acknowledgments: Joaquin Ascorbe would like to thank the Public University of Navarra for the pre-doctoral
research grant.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Vengsarkar, A.M.; Lemaire, P.J.; Judkins, J.B.; Bhatia, V.; Erdogan, T.; Sipe, J.E. Long-period fiber gratings as
band-rejection filters. J. Light. Technol. 1996, 14, 58–65. [CrossRef]

2. Rego, G.; Marques, P.V.S.; Santos, J.L.; Salgado, H.M. Arc-induced long-period gratings. Fiber Integr. Opt.
2005, 24, 245–259. [CrossRef]

http://dx.doi.org/10.1109/50.476137
http://dx.doi.org/10.1080/01468030590922975


Sensors 2018, 18, 1866 12 of 14
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