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ABSTRACT 

In this thesis, the theoretical foundations and the formulation of the Coupled-Mode 

Theory for the electromagnetic analysis and modeling of non-uniform waveguides are employed 

to develop different techniques for the synthesis of microwave and millimeter wave devices that 

are completely automatic and independent from the physical technology of implementation. 

Firstly, the technique for synthesizing optimal electromagnetic bandgap (EBG) structures 

is described and thoroughly reviewed. Subsequently, the general and exact one-dimensional 

Inverse Scattering techniques of Gel’fand, Levitan, Marchenko (GLM), Continuous Layer 

Peeling (CLP) and Integral Layer Peeling (ILP) are presented in detail. These Inverse Scattering 

techniques allow the calculation of the coupling coefficient for any single-mode targeted 

response in reflection that fulfills the physical principles of stability, causality and passivity. 

Novel design techniques inspired in the use of these synthesis methods are proposed for 

different microwave components such as multiplexers and tapers. In addition, a design method 

for low-pass and band-pass filters without spurious rejection bands is proposed. The application 

of this technique for the design of filters with high rejection levels in rectangular waveguide 

technology leads to structures that are very suitable to be fabricated with the novel additive 

manufacturing (AM) techniques in metal. 

The proposed design techniques are validated through the realization of practical design 

examples in the microwave range, where a high degree of agreement is achieved between the 

targeted, simulated and measured responses.  
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Resumen 

En esta tesis, los fundamentos teóricos y la formulación de la Teoría de Acoplo de Modos 

para el análisis y el modelado electromagnético de guías de onda no uniformes son utilizadas 

para desarrollar diferentes técnicas de síntesis de dispositivos de microondas y de milimétricas 

que son automáticas e independientes de la tecnología concreta de implementación. 

En primer lugar, la técnica para sintetizar estructuras EBG óptimas es descrita y revisada 

en profundidad. Posteriormente, las técnicas generales y exactas de Inverse Scattering de 

Gel’fand, Levitan, Marchenko (GLM), Continuous Layer Peeling (CLP) e Integral Layer Peeling 

(ILP) son presentadas en detalle. Estas técnicas de Inverse Scattering, permiten calcular el 

coeficiente de acoplo para cualquier respuesta monomodo en reflexión objetivo que cumpla con 

los principios físicos de estabilidad, causalidad y pasividad.  

Inspirados en estos métodos de síntesis, se proponen novedosas técnicas de diseño de 

diferentes componentes de microondas como tapers y multiplexores. Además, se propone un 

método de diseño de filtros paso bajo y paso banda de perfil suave que no presentan bandas de 

rechazo espurias. La aplicación de esta técnica para el diseño de filtros de alto rechazo en guía 

de onda rectangular da lugar a estructuras que resultan sumamente apropiadas para ser fabricadas 

con las novedosas técnicas de fabricación aditiva (AM) en metales. 

Las diferentes técnicas de diseño propuestas son validadas mediante la realización de 

varios ejemplos de prácticos de diseño en el rango de microondas en los que se logra alto grado 

de concordancia entre las respuestas objetivo, simuladas y medidas.  
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 INTRODUCTION 

Microwave engineering can be defined as the study and design of components and 

technologies employed for processing electromagnetic signals with frequency components that 

approximately belong to the range located between 300 MHz and 300 GHz, see Fig. 1.1. 

However, this delimitation should be interpreted as a rule of thumb, since the borders of the 

microwave term can be easily expanded in both, lower and upper limits, depending on the 

particular situation to be considered. The field of application of microwave engineering 

specifically starts when dealing with structures able to propagate electromagnetic waves that 

feature a wavelength comparable to the physical dimensions of the device under study [1]. In 

this situation, the classic circuit theory begins to fail due to the excessive size of its characteristic 

discrete elements (resistors, capacitors, inductors, …) when they are compared with the 

wavelength of the signals that are being processed. Indeed, it can be actually stated that circuit 

theory is an approximation of the microwave theory for those devices that feature very small 

sizes with respect to the concerning wavelengths. In contrast to the discrete elements of the 

standard circuit theory, microwave components are considered as distributed elements since the 

properties of the electromagnetic waves change significantly over the physical dimensions of the 

device. On the other hand, i.e. if the wavelength is much smaller than the structure, the 

geometrical optics approach will be employed for the modelling of the situation. From a general 

point of view, the general laws that govern the electromagnetic waves and their interaction with 

matter are gathered in the Maxwell’s equations. 
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The challenge that implies the analysis and design of components for microwave signal 

processing with their short wavelengths also becomes one of its most important advantages and 

fruitful source of opportunities, since the large amount of data managed by practically any 

current application devoted to provide information can be processed with small-sized 

components, thanks to microwave technologies. Regarding this aspect, one of the most frequent 

questions that non-initiated people ask me concerns the daily uses of the microwave technologies 

and it can be summarized as: What are the microwaves used for? 

In the recent years, the improvement of the data rate capabilities that has been achieved 

by some devices like smartphones has suffered an exponential growth linked to the continuous 

evolution of the different communication standards. Each new telecommunication standard 

required even more miniaturized microwave components that supported the necessary 

requirements of operational bandwidths and transmission velocities, and the research in the 

design and synthesis of microwave components and subsystems was accordingly essential. In 

fact, this innovation is still fundamental for the current deployment of the new 5G standard [2]-

[4], and it will continue being essential for the future standard releases. 

Moreover, private and broadcasting voice, video, and data services are based on modern 

satellite communications [5], [6], without forgetting the global positioning functions provided 

by the GPS, Galileo and GLONASS systems. In this case, the reduced space for the payload and 

the tight energy availability in the satellite lead to stringent requirements in terms of low losses, 

maximum power capabilities and reduced footprint and weight for the microwave components. 

Therefore, the research on high performance microwave components, especially filters, is being 

continuously addressed. Moreover, the benefits that can be added by the novel Additive 

Manufacturing techniques [7] are being presently explored so as to integrate different elements 

of the communication chain in a single piece and for the fabrication of many components at the 

same time in the context of large satellite platforms [8]. 

Different areas as radar, biomedical testing, wireless networking, security, and 

environmental remote sensing systems, among many others, are also benefited in a lesser or 

 

Fig. 1.1. Location of the microwave range in the electromagnetic spectrum. 
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greater degree from the application of microwave technology and the use of microwave 

components [1]. 

Since the fields that directly or indirectly make use of the microwave technology are so 

broad and varied, the associated research covers a lot of different topics. The contents gathered 

in this thesis conform my humble contribution to this research. 
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1.1. MOTIVATION 

A wide variety of techniques have been proposed in order to design each of the 

components that can be employed in a microwave system. Additionally, specific design 

techniques depend frequently on the particular technology that is considered for the physical 

implementation of the component. Thus, the design technique that has been developed for a 

certain technology may not be easily translated to another, something that is simply impossible 

in many cases. 

Moreover, the design technique commonly starts from a first theoretical approach for 

calculating the initial values of the dimensions of the waveguide elements that compose the 

device. However, a subsequent design stage based on time-consuming optimization procedures 

is almost always needed in order to adjust the final dimensions of the different elements that 

conform the device so as to achieve the desired behavior. 

A good example of this design philosophy is applied to one of the most attractive topics 

in the microwave literature: the filters [9]-[17]. Microwave filters can be defined as two-port 

networks employed for controlling the frequency response at a certain point of the microwave 

system. The frequency response of the filter provides a transmission feature for a frequency range 

of interest that conforms the so-called passband, while a characteristic of attenuation is applied 

to the frequencies that are not desired in the following stages of the microwave system, i.e. the 

stopband. Depending on the selectivity characteristics of the frequency response of the filter, it 

can be classified into four categories: low-pass, high-pass, band-pass, and reject-band. 

Several classical filter design techniques rely on the insertion-loss method that comes 

from the classical network synthesis theory [12], which was originally developed for lower 

frequencies, where discrete elements are employed in order to satisfy a desired rational transfer 

function such as Butterworth, Chebyshev or Cauer. As it has been already mentioned, the discrete 

elements like resistors, capacitors, inductors, etc., are not valid for high frequencies, and then, 

the dimensions of transmission line sections are selected so as to act as a desired discrete element 

for the bandwidth of interest. An additional optimization step is always needed so as to adjust 

the frequency response of the filter. However, since the frequency response of the transmission 

line sections is variable, the frequency response of the filter gets rapidly degraded with respect 

to the one expected from the insertion-loss starting model when the frequency considered is far 

from the one employed for the design. This inaccuracy typically results in a loss of steepness 

between the passband and the stopband. Furthermore, this design methods are characterized by 

a complete lack of control for the frequency response out of the bandwidth of interest, where 

spurious rejection/transmission bands appear as a result of the inherent periodic behavior of the 
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distributed elements and the influence of higher-order modes. The sum of these problems may 

not affect the narrow band applications, but it becomes undoubtedly much more troublesome 

when wider band applications are considered. 

In contrast to the aforementioned limitations of generality and control over the entire 

frequency response that are characteristic from other techniques, in this thesis the direct synthesis 

procedure  that was initially proposed by Israel Arnedo and the members of the Microwave 

Components Group of the Public University of Navarre will be followed [18]. The main 

characteristics of this method are: 

a) It is direct, due to the fact that it is not necessary to use lumped-element circuit 

models. 

b) It is exact for all the bandwidth required since neither degradation of the frequency 

response nor spurious bands are allowed. 

c) It is flexible since it is valid for any frequency response that fulfills the physical 

requirements of causality, stability and passivity. 

d) It is general because neither the implementation technology, nor the operation 

frequency band, is an intrinsic limitation of the method. 

As it can be seen in Fig. 1.2, the synthesis procedure starts from the definition of a target 

frequency response in reflection, 𝑆11(𝛽), that can be also specified in terms of its corresponding 

impulse response in reflection, 𝐹(𝜏), due to the Fourier transform relationship [19], i.e. 𝑆11(𝛽) =

𝐹𝑇{𝐹(𝜏)}. Then, different synthesis techniques can be employed to calculate the coupling 

coefficient, 𝐾(𝑧), of the structure that satisfies that response. The study of the Coupled-Mode 

Theory [20], which is devoted to the analysis of nonuniform waveguides, clearly shows  

 

 

Fig. 1.2. Scheme of the general synthesis workflow that is going to be followed within the thesis.  
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that the coupling coefficient determines the frequency response of the structure. However, 

another key conclusion that can be extracted from the study of the Coupled-Mode Theory is that 

the coupling coefficient is also related with the physical dimension of the nonuniform waveguide 

device [20]. Thus, if the coupling coefficient can be deduced from the 𝑆11(𝛽) by means of the 

synthesis techniques, the Coupled-Mode Theory will allow us to calculate the physical 

dimensions of the structure that features the sought 𝑆11(𝛽). Moreover, the frequency response 

of a certain device can be deduced just from its coupling coefficient. The synthetized device is 

finally tested by means of electromagnetic simulations, while proper measurements are 

performed when the prototype is fabricated. 

The synthesis techniques that are employed for the determination of the coupling 

coefficient into the design workflow of Fig. 1.2 can be classified into two large categories [18]. 

The first one is formed by the synthesis techniques for one dimensional electromagnetic bandgap 

(EBG) structures [21], [22], which can be considered as a special and analytical solution of the 

synthesis problem under the formulation of single-mode approximation of the Coupled-Mode 

Theory [23]. Since the EBGs are a particular solution of the synthesis problem, they can only 

satisfy a specific kind of frequency response characterized by a controllable passband and/or 

stopband feature. 

On the other hand, the second group of synthesis methods can be encompassed in the 

realm of the one-dimensional Inverse Scattering techniques. These methods are employed in 

other ranges like optics and even, in (a priori) very far sciences like quantum mechanics, 

geophysics or acoustics, among others [24], [25]. Indeed, the one dimensional is only a part of 

the inverse scattering framework, which is devoted to the most general task of calculating the 

dimensions of a certain space by means of measurements carried out at a distant position. One-

dimensional inverse scattering techniques originally began in the field of quantum mechanics 

[26], [27] for determining the scattering potential in the time-independent Schrödinger equation. 

It was in 1967 when the inverse scattering techniques were firstly studied from the point of view 

of the microwave research [28] that was afterwards emphasized with the special issue on Inverse 

Methods in Electromagnetics that was published by the IEEE Transactions on Antennas and 

Propagation [29]. The aim of these methods in the microwave and millimeter wave range is to 

deduce the unknown physical dimensions of a waveguide structure just from the response in 

reflection that it features. Unlike the EBG approach, the solution of the Inverse Scattering 

techniques can be considered as completely general, since it can be employed to synthetize any 

target response in reflection only limited by the physical constraints of stability, causality and 

passivity. 

A common aspect of both EBG and Inverse Scattering methods is the fact that their 

resulting structures exhibit a smooth variation (without abrupt discontinuities) of their physical 
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dimensions along the propagation direction. Some of the advantages of these smooth-profiled 

structures are the flexibility in the design [30], robustness in the implementation [31], spurious-

multimode-excitation avoidance [31], and a high-power handling capability [32]. 

Therefore, the initial aims of this thesis will be to review the study of the Coupled-Mode 

Theory performed in [33] and the synthesis methods that were summarized in [18], paying 

special attention to the spurious-free EBG synthesis method [34], the exact series solution of the 

one-dimensional Inverse Scattering problem (also known as the Gel’fand, Levitan, Marchenko 

(GLM) synthesis method [35]) and the Continuous Layer Peeling (CLP) technique [33], [36]. 

However, the main aim will be to develop, and study the practical implementation, of a new 

synthesis technique that will surpass the performance of the previous ones in terms of the 

rejection levels that can be achieved. As a result of the study and development of those synthesis 

techniques as well as of the Coupled-Mode Theory, different target applications for the design 

of the most employed microwave components should be proposed. 

As it has been previously mentioned, filters are one of the most employed components in 

microwave engineering. Thus, it will be of particular interest to develop a design method for 

smooth-profiled low-pass and band-pass rectangular waveguide filters where the final length and 

extreme dimensions of the cross-section of the structure will be under tight control. This design 

method will be linked with the improvement and development of the synthesis techniques, since 

they cannot provide an accurate coupling coefficient for the high-reflectivity (high-rejection) 

responses that are typical from rectangular waveguide filters. However, the development of this 

method will be of great importance for the new metal Additive Manufacturing (AM) [37] 

technique of Selective Laser Melting (SLM), which is also known as Direct Laser Metal 

Sintering (DMLS). 

The fabrication of a piece by means of the DMLS technique consists of several steps. The 

first one requires the slicing of the 3D computer-aided design (CAD) file data of the structure to 

be fabricated into layers, leading to a 2D image of each layer. The collection of 2D data is 

exported to the sintering system and the building process depicted in Fig. 1.3 starts. A thin layer 

of metal powder is uniformly deposited by a roller over the working platform, which is placed 

in the building chamber. Then, a high-energy density laser is employed to melt the desired 

surfaces according to the first 2D layer. Once the layer is fused, the building platform is lowered 

and a new layer of metal powder is deposited, allowing the melting of the next 2D layer just 

above of the previous one. Proceeding in an iterative manner, the laser scanning will come to its 

end when the last 2D layer will be fused, giving rise to the whole desired metal piece. 
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The DMLS technique allows the fabrication of complex structures as well as the 

manufacturing of objects that are already assembled, without the need of junctions [37]. 

Moreover, it has a great potential for reducing the weight and volume of metallic parts that are 

currently fabricated with classical techniques like Numerical Controlled (CNC) Milling, among 

others. Nevertheless, one of the most critical drawbacks of DMLS is the impossibility of 

fabricating overhanging surfaces, because they would eventually warp or even fall off during the 

melting process. Unfortunately, if we try to print a waveguide component designed by classical 

techniques, following the propagation direction, we will typically find plenty of problematic 

overhanging walls as it is shown in Fig. 1.4a. Since it is commonly impossible to use inner 

auxiliary supports in a waveguide structure, the only available option is to print the piece in a 

different orientation with the help of external auxiliary supports that must be designed ad-hoc 

for each different waveguide structure (see Fig. 1.4b). 

 

Fig. 1.3. Sketch of the DMLS fabrication procedure.  
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However, large overhanging surfaces are avoided when considering a structure that 

changes its dimensions in a smooth fashion along the propagation direction. Accordingly, the 

auxiliary supports would not be needed in a fabrication of a smooth-profiled rectangular 

waveguide filter, leading to a reduction of the auxiliary costs. Therefore, the last main objective 

of this thesis will be to verify the suitability of the smooth profiled rectangular waveguide filters 

that result from the synthesis methods for a later fabrication with DMLS technique.  

 

(a) 

 

(b) 

Fig. 1.4. (a) Detail of the problematic overhanging surfaces that are found when a classical corrugated waveguide filter 

is going to be fabricated with Additive Manufacturing in metal. (b) The only possibility is to modify the orientation of 

the piece by means of auxiliary supports.  
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1.2. OVERVIEW OF THE THESIS 

The thesis is divided into eight chapters, where the present Introduction conforms the first 

of them. 

The foundations of the Coupled-Mode Theory will be rigorously presented for the case 

of general non-uniform waveguide structures in CHAPTER 2. The cross-section method will be 

employed to achieve the so-called coupled mode equations, where the coupling coefficients will 

be presented as the key parameters. The Coupled-Mode Theory will be thoroughly applied to the 

case of rectangular waveguide technology. Moreover, the single-mode operation approximation 

that is needed for solving the synthesis problem will be formulated using this theory. As a result, 

closed-form expressions will be attained so as to relate the coupling coefficient with the physical 

dimensions of the rectangular waveguide. A similar relationship will be studied between the 

coupling coefficient and the characteristic impedance for the case of transmission lines that will 

be developed in depth for the case of single and coupled microstrip lines. The necessary 

theoretical tools will be completed with several models developed to assimilate the variation of 

the phase constant along the propagation direction, as well as the effects caused by the higher-

order modes into the single-mode approximation of the Coupled-Mode Theory. 

In CHAPTER 3, the synthesis solution for spurious-free electromagnetic bandgap (EBG) 

structures will be described in detail. Using this EBG concept, a method for the design of 

multiplexers based on simultaneous forward and backward coupling in microstrip coupled lines 

will be presented. 

CHAPTER 4 will cover the exact series solution of the one-dimensional Inverse 

Scattering problem, which is also known as the Gel’fand, Levitan and Marchenko (GLM) 

synthesis method. Since the reflectivity that can be achieved by means of this method is limited, 

the GLM solution will be employed in a novel procedure for the design of tapered matching 

sections in general waveguide technology, where the rejection of the required response is 

typically low. This novel procedure will apply the GLM method for the synthesis of tapers. 

Classical and novel tapering responses will be presented, and several design examples will be 

provided in rectangular waveguide technology as a result. 

In CHAPTER 5, the performance of the synthesis methods will be improved through the 

Continuous Layer Peeling (CLP) technique. The technique will be rigorously presented from a 

mathematical point of view, and practical considerations of its numerical implementation will be 

addressed. Taking advantage of the increase of the rejection levels of the responses that can be 

synthetized with CLP, a method for the design of low-pass and band-pass filters without spurious 
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rejection bands will be detailed. A successful design example will be provided in microstrip 

technology. 

CHAPTER 6 introduces the most accurate synthesis technique developed in this thesis, 

the Integral Layer Peeling (ILP) method. As in previous cases, it will be formulated in depth, 

and its practical implementation features will be pointed out and compared with the ones of CLP. 

The ILP technique will be employed to synthetize rectangular waveguide filters with challenging 

specifications that cannot be correctly synthetized with CLP. Several design examples will be 

provided where the methods proposed in CHAPTER 2 for the compensation of the effects of 

higher-order modes will be successfully applied and demonstrated. Some of the synthetized 

filters will be fabricated using a technique of Additive Manufacturing in metal. Finally, a 

complete assessment of the critical parameters for the synthesis with the ILP technique will be 

provided. 

In CHAPTER 7, the most important conclusions of this thesis will be given. 

Finally, in CHAPTER 8, the most interesting open research lines for the future will be 

listed. 
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 ELECTROMAGNETIC 

MODELLING AND ANALYSIS OF 

NON-UNIFORM WAVEGUIDES  

The study of the electromagnetic properties of nonuniform waveguides is a topic that  was 

frequently addressed during the past century in the microwave [1]-[9] and optics [10] engineering 

realms, although it is still ongoing by providing new solutions and applications [11], [12]. One 

of the most fruitful strategies to deal with this kind of structures is the so-called Coupled-Mode 

Theory [13]-[23]. The knowledge that has been achieved to the date constitutes the necessary 

theoretical basis that will be employed in subsequent chapters to relate the frequency response 

of a waveguide device with its physical dimensions through a single parameter: the coupling 

coefficient. 

As it will be detailed during this chapter, the coupling coefficients between the different 

modes govern the complex amplitudes of the waves associated with those modes through the 

coupled-mode equation system and hence, they determine the frequency response. Therefore, a 

general study of that coupling coefficient will be of primary importance for a coherent 

development of this thesis and specific solutions for it will be obtained by applying the cross-

section method to particular kinds of waveguides of interest in the microwave and millimeter 

wave range. In this thesis, the case of close-boundary waveguides will be analyzed by paying 

special attention to one of the most employed technologies: the rectangular waveguide, which 

was considered before in [19], [21]. Moreover, the results previously found in [18]-[20] for 
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waveguides or transmission lines that support pure transversal electromagnetic (TEM) or quasi-

transversal electromagnetic (QTEM) modes such as microstrip will be also included in this 

chapter. In both cases, an exact assessment in terms of the Coupled-Mode Theory will be 

performed, showing an implicit relationship between the coupling coefficient and the frequency 

response. A more explicit relationship with the physical dimensions of the waveguide will be 

also achieved. 

However, in order to deal with the synthesis problem, the general Coupled-Mode Theory 

can be greatly simplified by taking a set of reasonable approximations that will lead to the single-

mode operation assumption, and accordingly, to a single coupling coefficient. In addition to 

allowing the solution of the synthesis problem, one of the most important consequences of this 

assumption is the closed-form relationship that will be found between the coupling coefficient 

and the physical dimensions of certain waveguide structures. Indeed, the width and height 

dimensions for the case of rectangular waveguide will be related univocally with the coupling 

coefficient under the single-mode assumption. A similar relationship will be attained but with 

the characteristic impedance for the general case of transmission lines that support TEM or 

QTEM modes. The final dimensions of these transmission lines will be calculated in a 

subsequent step by using the related literature. Since the waveguide geometry will be linked with 

the coupling coefficient under the single-mode operation assumption, the determination of the 

former will correspond univocally with the latter. 

Furthermore, as it will be detailed in CHAPTER 4, the solution of the synthesis problem 

requires from at least one critical initial assumption apart from the single-mode operation: the 

phase constant of that mode must not vary along the propagation direction. However, when 

dimensional changes are performed over the physical dimensions of many waveguide 

technologies, the variability of the phase constant becomes unavoidable. In order to overcome 

these troublesome cases, a method based on the use of a normalized propagation axis where a 

reference phase constant is assumed to be fixed will be presented in this chapter. 

Since the possible parasitic contributions of cut-off modes are deliberately neglected for 

the synthesis, the actual frequency response obtained in certain scenarios may differ from the 

one that is expected from the single-mode approximation. This inherent inaccuracy of the single-

mode approximation of the Coupled-Mode Theory may result particularly troublesome in those 

cases where the coupling between the fundamental and higher-order modes is not weak enough. 

Fortunately, as it will be studied in the last part of the chapter, the effects of cut-off modes in 

closed-boundary waveguides can be modelled, following the Coupled-Mode formulation, as a 

variation of the phase constant of the fundamental mode, and two different methods to assimilate 

them in the single-mode coupled-mode equations will be described. 
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2.1. FORMULATION OF THE COUPLED-MODE 

THEORY THROUGH THE CROSS-SECTION 

METHOD 

The Coupled-Mode Theory will be accurately formulated for microwave devices making 

use of the cross-section method. The basic principle of this method is that the electromagnetic 

fields that are present at any cross section of an arbitrary nonuniform waveguide can be expanded 

in a set of orthogonal modes (with their corresponding forward and backward travelling waves) 

that would be found in an auxiliary uniform waveguide if the latter featured the same cross 

section and identical distributions of electrical permittivity, 휀, and magnetic permeability, 𝜇, to 

the ones of the former [18], [21], [23]. Moreover, if steady-state sinusoidal time dependence of 

the fields is assumed, and discrete and continuous spectrum modes are considered as well, a 

complete orthogonal mode system for general open waveguides will be achieved [18], [22], [24]. 

Therefore, the total electric, �⃗� ̂, and magnetic, �⃗⃗� ̂, fields at each cross section of interest can be 

expressed as in (2.1) and (2.2), respectively.: 

�⃗� ̂(𝑥, 𝑦, 𝑧) =∑𝑎𝑖
𝑖

(𝑧) · �⃗� 𝑖(𝑥, 𝑦, 𝑧) +∑∫ 𝑎𝑖
𝑐(𝑘𝑡 , 𝑧)

∞

0

· �⃗� 𝑖(𝑥, 𝑦, 𝑘𝑡 , 𝑧) · 𝑑𝑘𝑡
𝑖

 (2.1) 

�⃗⃗� ̂(𝑥, 𝑦, 𝑧) =∑𝑎𝑖
𝑖

(𝑧) · �⃗⃗� 𝑖(𝑥, 𝑦, 𝑧) +∑∫ 𝑎𝑖
𝑐(𝑘𝑡 , 𝑧)

∞

0

· �⃗⃗� 𝑖(𝑥, 𝑦, 𝑘𝑡 , 𝑧) · 𝑑𝑘𝑡
𝑖

 (2.2) 

where 𝑧 stands for the propagation direction; 𝑥 and 𝑦 for the coordinate axis system of the cross 

section; and �⃗� 𝑖, �⃗⃗� 𝑖 for the respective electric and magnetic vector mode patterns of the 𝑖 mode 

of the auxiliary uniform waveguide associated with the cross section of interest. It must be 

pointed out that the vector mode pattern exhibits a variation in 𝑧 direction since the dimensions 

of the cross section of the nonuniform waveguide also depend on 𝑧. Moreover, 𝑎𝑖(𝑧) is the 

complex amplitude of the 𝑖 discrete spectrum mode along the waveguide propagation direction, 

while 𝑎𝑖
𝑐(𝑘𝑡 , 𝑧) represents the complex amplitude of the continuous spectrum 𝑖 mode along 𝑧, 

being 𝑘𝑡 the continuous variable that determines the vector mode pattern, and the field 

contribution of this mode is given by an integral in 𝑘𝑡 [18], [22], [24]. 
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2.1.1. Relationship between the Coupling 

Coefficient and the Frequency 

Response of General Waveguide 

Structures 

If the field decomposition of (2.1) and (2.2) is introduced into the Maxwell’s equations 

[18], [21]-[23], the so-called coupled-mode equations will be obtained after performing several 

mathematical manipulations that are fully described in [18]: 

𝑑𝑎𝑚
𝑑𝑧

+ 𝑗 · 𝛽𝑚 · 𝑎𝑚 =∑𝑎𝑖 · 𝐶𝑚𝑖 +∑∫ 𝑎𝑖
𝑐(𝑘𝑡)

∞

0

· 𝐶𝑚𝑖
𝑐 (𝑘𝑡) · 𝑑𝑘𝑡

𝑖𝑖

 (2.3) 

𝑑𝑎𝑛
𝑐 (𝑘�̃�)

𝑑𝑧
+ 𝑗 · 𝛽𝑛

𝑐(𝑘�̃�) · 𝑎𝑛
𝑐 (𝑘�̃�) =∑𝑎𝑖 · 𝐶𝑛𝑖

𝑐 (𝑘�̃�) +∑∫ 𝑎𝑖
𝑐(𝑘𝑡)

∞

0

· 𝐶𝑛𝑖
𝑐𝑐(𝑘�̃�, 𝑘𝑡) · 𝑑𝑘𝑡

𝑖𝑖

 (2.4) 

being 𝛽𝑚 and 𝛽𝑛
𝑐  the phase constants of the discrete 𝑚 and continuous spectrum 𝑛 mode, 

respectively, in the auxiliary uniform waveguide associated with the cross section of interest. It 

must be noticed that these phase constants may not be uniform in 𝑧 as the dimensions of the cross 

section in that direction may not remain likewise invariable. Equation (2.3) is valid for any 𝑚 

discrete spectrum mode and thus, 𝐶𝑚𝑖 and 𝐶𝑚𝑖
𝑐  are the coupling coefficients between that 𝑚 mode 

and the 𝑖 discrete or continuous spectrum mode, respectively. On the other hand, (2.4) is valid 

for any 𝑛 continuous spectrum mode with 𝑘�̃�, and thereby, 𝐶𝑛𝑖
𝑐  and 𝐶𝑛𝑖

𝑐𝑐 represent accordingly the 

coupling coefficients of this 𝑛 mode with the 𝑖 mode that may belong either to the discrete or the 

continuous spectrum category. Those coupling coefficients relate the contribution of each mode 

amplitude in comparison with the variation of amplitude for other modes and then, (2.3) and 

(2.4) conform a first order integro-differential equation in 𝑎𝑚 and 𝑎𝑛
𝑐 (𝑘�̃�) (i.e., for the discrete 

𝑚 and the continuous spectrum 𝑛 modes) for general open waveguides, which is reduced to a 

first order differential equation when dealing with closed waveguides since continuous spectrum 

modes are not supported. The exact expressions to calculate the coupling coefficient depend on 

the kind of perturbation featured by the nonuniform waveguide [21], [23]. For the most 

interesting case in microwave technologies, where the waveguide includes conductors with 

variable cross sections, the coupling coefficient can be exactly determined by means of [18]: 



Electromagnetic Modelling and Analysis of Non-Uniform Waveguides 19 

 

 

𝐶𝑚𝑖 = −
1

2 · 𝑁𝑚
·∬ (�⃗� 𝑚 ×

𝜕�⃗⃗� 𝑖

𝜕𝑧
+
𝜕�⃗⃗� 𝑚

𝜕𝑧
× �⃗� 𝑖)

�̆�

· �̂� · 𝑑�̆� 

(2.5) 

−(𝛿𝑖,𝑚 + 𝛿𝑖,−𝑚) ·
1

2 · 𝑁𝑚
·
𝑑𝑁𝑖
𝑑𝑧

 

𝐶𝑚𝑖
𝑐 (𝑘𝑡) = −

1

2 · 𝑁𝑚
·∬ [�⃗� 𝑚 ×

𝜕�⃗⃗� 𝑖(𝑘𝑡)

𝜕𝑧
+
𝜕�⃗⃗� 𝑚

𝜕𝑧
× �⃗� 𝑖(𝑘𝑡)]

�̆�

· �̂� · 𝑑�̆� + 

(2.6) 

−(𝛿𝑖,𝑚 + 𝛿𝑖,−𝑚) ·
1

2 · 𝑁𝑚
·
𝑑𝑁𝑖(𝑘𝑡)

𝑑𝑧
 

𝐶𝑛𝑖
𝑐 (𝑘�̃�) = −

1

2 · 𝑁𝑛
𝑐(𝑘�̃�)

·∬ [�⃗� 𝑛(𝑘�̃�) ×
𝜕�⃗⃗� 𝑖

𝜕𝑧
+
𝜕�⃗⃗� 𝑛(𝑘�̃�)

𝜕𝑧
× �⃗� 𝑖]

�̆�

· �̂� · 𝑑�̆� + 

(2.7) 

−(𝛿𝑖,𝑛 + 𝛿𝑖,−𝑛) ·
1

2 · 𝑁𝑛
𝑐(𝑘�̃�)

·
𝑑𝑁𝑖
𝑑𝑧

 

𝐶𝑚𝑖
𝑐𝑐(𝑘�̃� , 𝑘𝑡) = −

1

2 · 𝑁𝑛
𝑐(𝑘�̃�)

·∬ [�⃗� 𝑛(𝑘�̃�) ×
𝜕�⃗⃗� 𝑖(𝑘𝑡)

𝜕𝑧
+
𝜕�⃗⃗� 𝑛(𝑘�̃�)

𝜕𝑧
× �⃗� 𝑖(𝑘𝑡)]

�̆�

· �̂� · 𝑑�̆� + 

(2.8) 

−(𝛿𝑖,𝑛 + 𝛿𝑖,−𝑛) ·
1

2 · 𝑁𝑛
𝑐(𝑘�̃�)

·
𝑑𝑁𝑖

𝑐(𝑘𝑡)

𝑑𝑧
· 𝛿(𝑘𝑡 − 𝑘�̃�) 

where �̆� is the surface of the cross section, excluding the conductors; �̂� is the unitary vector in 

the propagation direction, 𝑧; 𝛿𝑖,𝑚 and 𝛿𝑖,𝑛 are Kronecker deltas; and 𝑁𝑖 and 𝑁𝑖
𝑐 are the 

normalization factors of the 𝑖 mode defined as: 

𝑁𝑖 =∬ (�⃗� 𝑖 × �⃗⃗� 𝑖) · �̂� · 𝑑�̆�
�̆�

 (2.9) 

𝑁𝑖
𝑐(𝑘𝑡) · 𝛿(𝑘𝑡 − 𝑘�̃�) =∬ [�⃗� 𝑖(𝑘𝑡) × �⃗⃗� 

𝑖(𝑘�̃�)]
�̆�

· �̂� · 𝑑�̆� (2.10) 
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Furthermore, the following relationships are satisfied between the forward (𝑖 > 0) and 

backward (𝑖 < 0) travelling waves of the same 𝑖 mode [18]: 

𝑁𝑖 = −𝑁−𝑖 (2.11) 

𝑁𝑖
𝑐(𝑘𝑡) = −𝑁−𝑖

𝑐 (𝑘𝑡) (2.12) 

𝛽𝑖 = −𝛽−𝑖 (2.13) 

𝛽𝑖
𝑐(𝑘�̃�) = −𝛽−𝑖

𝑐 (𝑘�̃�) (2.14) 

Regarding the 𝑥, 𝑦, 𝑧 components of the fields of both travelling waves of the same 𝑖 

mode, the sign convention of [23] is followed: 

𝐸𝑥
−𝑖 = 𝐸𝑥

𝑖  (2.15) 

𝐸𝑦
−𝑖 = 𝐸𝑦

𝑖  (2.16) 

𝐸𝑧
−𝑖 = −𝐸𝑧

𝑖  (2.17) 

𝐻𝑥
−𝑖 = −𝐻𝑥

𝑖  (2.18) 

𝐻𝑦
−𝑖 = −𝐻𝑦

𝑖  (2.19) 

𝐻𝑧
−𝑖 = 𝐻𝑧

𝑖  (2.20) 

When dealing with lossless waveguides and modes that are propagating it is always 

possible to choose the vector mode patterns, �⃗� 𝑖 and �⃗⃗� 𝑖, in such a way that the transversal 

components to the propagation direction 𝐸𝑥
𝑖 , 𝐸𝑦

𝑖 , 𝐻𝑥
𝑖 , and 𝐻𝑦

𝑖  are real, while the tangential 

components to that direction, 𝐸𝑧
𝑖  and 𝐻𝑧

𝑖 , become purely imaginary. Therefore, it can be easily 

demonstrated that the coupling coefficient between two propagating modes must be real. 

Additionally, the average power, 𝑃, carried by the propagating modes in the increasing 𝑧 

direction can be calculated as the time-averaged Poynting vector integrated over the cross 

section, i.e.: 

𝑃 =
1

2
· 𝑅𝑒 {∬ (�⃗� ̂ × �⃗⃗� ̂∗) · �̂� · 𝑑�̆�

�̆�

} (2.21) 
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Then, by applying in (2.21) the orthogonal mode decomposition of (2.1) and (2.2) with 

the definition of the normalization factor of (2.9) and (2.10), it is obtained that: 

𝑃 = ∑
1

2

𝑀

𝑖=−𝑀

· |𝑎𝑖|
2 · 𝑁𝑖 + ∑ ∫

1

2
· |𝑎𝑖(𝑘𝑡)|

2 · 𝑁𝑖(𝑘𝑡) · 𝑑𝑘𝑡

𝑘0

0

𝑄

𝑖=−𝑄

= ∑ 𝑃𝑖

𝑀

𝑖=−𝑀

+ 𝑃𝑟𝑎𝑑  (2.22) 

where the summation is performed for all the propagating modes, i.e. the 𝑀 discrete spectrum 

(or bounded) modes and the 𝑄 continuous spectrum modes, by taking into account their 

corresponding forward and backward travelling waves. In order to calculate the power flow in 

(2.22), the integral is calculated in the range 0 < 𝑘𝑡 < 𝑘0, which determines the propagating 

continuous spectrum modes, because the values within 𝑘0 < 𝑘𝑡 < ∞ correspond to attenuating 

or evanescent modes that do not propagate power. Consequently, the total power carried by the 

waveguide in the increasing 𝑧 direction is the result of the sum of the power of all forward 

travelling waves and the subtraction of the power carried by the backward travelling ones. It 

must be stressed that the normalization factors of (2.9), (2.10) satisfy the relationships (2.11), 

(2.12), and thus the power that flows in the decreasing 𝑧 direction (corresponding to all the 

backward travelling waves) will be negative, something that means an opposite propagation 

direction from a physical point of view. 

Therefore, the power carried by each 𝑖 discrete spectrum mode can be calculated as: 

𝑃𝑖 =
1

2
· |𝑎𝑖|

2 · 𝑁𝑖 (2.23) 

Although a single radiation mode does not have physical meaning, it can be understood 

as a mathematical tool that describes the radiation phenomenon in general open waveguides, 

being also a necessary part for the completeness and coherence of the Coupled-Mode Theory in 

open waveguides. The total radiated power is obtained as a summation of all the radiation modes 

that carry energy in the same direction of the open waveguide propagation axis [18]: 

𝑃𝑟𝑎𝑑 = ∑ ∫
1

2
· |𝑎𝑖(𝑘𝑡)|

2 · 𝑁𝑖(𝑘𝑡) · 𝑑𝑘𝑡

𝑘0

0

𝑄

𝑖=−𝑄

 (2.24) 

Due to the interference between the fields of different radiated modes, the continuity of 

modes represented by the integral (2.24) satisfies the expected behavior for the total radiated 

field. 

In addition to the power, other quantities can be directly measured like the amplitude and 

phase of the waves at certain points of special interest also known as ports. In fact, these physical 
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magnitudes determine the so-called scattering parameters [25], [26] which are widely employed 

in microwave engineering to characterize the frequency response of a general waveguide 

component. These scattering, 𝑆 −, parameters properly ordered conform the scattering matrix 

[29], which is defined for the case of a structure with 𝑋 ports as in (2.25), where all 𝑚 and 𝑖 

modes are considered. 

[𝑏𝑙,𝑚(𝑓)] = [𝑆𝑙𝑘,𝑚𝑖(𝑓)] · [𝑎𝑘,𝑖(𝑓)] (2.25) 

where 𝑓 is the frequency and the 𝑙, 𝑘 variables stand for the port numeration from 1 to 𝑋. 

Considering that nomenclature, 𝑏𝑙,𝑚 is defined as the amplitude of the 𝑚 mode wave that flows 

outwards the waveguide structure at the 𝑙 port, while 𝑎𝑘,𝑖 is the corresponding amplitude of the 

𝑖 mode wave that flows towards the waveguide structure at the 𝑘 port. Regarding the scattering 

parameters, 𝑆𝑙𝑘,𝑚𝑖, they can be understood as the amplitude of the 𝑚 mode wave that flows 

outwards the 𝑙 port when the waveguide is excited by means of the 𝑖 mode wave that flows into 

the structure at the 𝑘 port, while other incoming waves from different ports or modes are 

forbidden. This last condition implies that all ports different to 𝑘 are terminated with a matched 

load for all modes, and that the 𝑘 port is assumed to be matched for modes different to 𝑖, 

something that can be mathematically written as follows: 

𝑆𝑙𝑘,𝑚𝑖 =
𝑏𝑙,𝑚
𝑎𝑘,𝑖

|
𝑎𝑟,𝑠=0 ∀ 𝑟≠𝑘,∀𝑠≠𝑖

 (2.26) 

It is worth noting that in (2.25), the amplitudes 𝑏𝑙,𝑚 and 𝑎𝑘,𝑖 actually depend on the 

frequency, 𝑓, and hence, the scattering parameters 𝑆𝑙𝑘,𝑚𝑖 are also a function of 𝑓. 

Then, for the specific case of a two-port waveguide structure (𝑋 = 2) that is under study 

in this chapter, the corresponding scattering matrix is: 

[
 
 
 
 
 
 
 
 
 
𝑏1,1
𝑏1,2
⋯
𝑏1,𝑚
⋯
𝑏2,1
𝑏2,2
⋯
𝑏2,𝑚
⋯ ]
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
𝑆11,11 𝑆11,12 ⋯ 𝑆11,1𝑖 ⋯ 𝑆12,11 𝑆12,12 ⋯ 𝑆11,1𝑖 ⋯

𝑆11,21 𝑆11,22 ⋯ 𝑆11,2𝑖 ⋯ 𝑆12,21 𝑆12,22 ⋯ 𝑆12,2𝑖 ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

𝑆11,𝑚1 𝑆11,𝑚2 ⋯ 𝑆11,𝑚𝑖 ⋯ 𝑆12,𝑚1 𝑆12,𝑚2 ⋯ 𝑆12,𝑚𝑖 ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

𝑆21,11 𝑆21,12 ⋯ 𝑆21,1𝑖 ⋯ 𝑆22,11 𝑆22,12 ⋯ 𝑆22,1𝑖 ⋯

𝑆21,21 𝑆21,22 ⋯ 𝑆21,2𝑖 ⋯ 𝑆22,21 𝑆22,22 ⋯ 𝑆22,2𝑖 ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

𝑆21,𝑚1 𝑆21,𝑚2 ⋯ 𝑆21,𝑚𝑖 ⋯ 𝑆22,𝑚1 𝑆22,𝑚2 ⋯ 𝑆22,𝑚𝑖 ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯]

 
 
 
 
 
 
 
 
 

·

[
 
 
 
 
 
 
 
 
 
𝑎1,1
𝑎1,2
⋯
𝑎1,𝑖
⋯
𝑎2,1
𝑎2,2
⋯
𝑎2,𝑖
⋯ ]
 
 
 
 
 
 
 
 
 

  

(2.27) 
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In view of (2.27), and considering the definitions of the complex amplitude of a mode of 

(2.1), (2.2), as well as the normalization factor of (2.9) and (2.10), the definition of the scattering 

parameters of (2.26) can be alternatively written as: 

𝑆11,𝑚𝑖(𝑓) =
𝑏1,𝑚(𝑓)

𝑎1,𝑖(𝑓)
|
𝑎𝑟,𝑠=0,∀ 𝑟=2,∀𝑠≠𝑖

=
√𝑁|𝑚|(𝑧 = 0) · 𝑎𝑚

− (𝑧 = 0, 𝑓)

√𝑁|𝑖|(𝑧 = 0) · 𝑎𝑖
+(𝑧 = 0, 𝑓)

|
𝑎𝑠
+(𝑧=0,𝑓)=0,∀ 𝑠≠𝑖,

𝑎𝑤
−(𝑧=𝐿,𝑓)=0,∀ 𝑤

 (2.28) 

𝑆21,𝑚𝑖(𝑓) =
𝑏2,𝑚(𝑓)

𝑎1,𝑖(𝑓)
|
𝑎𝑟,𝑠=0,∀ 𝑟≠2,∀𝑠≠𝑖

=
√𝑁|𝑚|(𝑧 = 𝐿) · 𝑎𝑚

+ (𝑧 = 𝐿, 𝑓)

√𝑁|𝑖|(𝑧 = 0) · 𝑎𝑖
+(𝑧 = 0, 𝑓)

|
𝑎𝑠
+(𝑧=0,𝑓)=0,∀ 𝑠≠𝑖,

𝑎𝑤
−(𝑧=𝐿,𝑓)=0,∀ 𝑤

 (2.29) 

𝑆12,𝑚𝑖(𝑓) =
𝑏1,𝑚(𝑓)

𝑎2,𝑖(𝑓)
|
𝑎𝑟,𝑠=0,∀ 𝑟=1,∀𝑠≠𝑖

=
√𝑁|𝑚|(𝑧 = 0) · 𝑎𝑚

− (𝑧 = 0, 𝑓)

√𝑁|𝑖|(𝑧 = 𝐿) · 𝑎𝑖
−(𝑧 = 𝐿, 𝑓)

|
𝑎𝑠
−(𝑧=𝐿,𝑓)=0,∀ 𝑠≠𝑖,

𝑎𝑤
+(𝑧=0,𝑓)=0,∀ 𝑤

 (2.30) 

𝑆22,𝑚𝑖(𝑓) =
𝑏2,𝑚(𝑓)

𝑎2,𝑖(𝑓)
|
𝑎𝑟,𝑠=0,∀ 𝑟=1,∀𝑠≠𝑖

=
√𝑁𝑚(𝑧 = 𝐿) · 𝑎𝑚

+ (𝑧 = 𝐿, 𝑓)

√𝑁|𝑖|(𝑧 = 𝐿) · 𝑎𝑖
−(𝑧 = 𝐿, 𝑓)

|
𝑎𝑠
−(𝑧=𝐿,𝑓)=0,∀ 𝑠≠𝑖,

𝑎𝑤
+ (𝑧=0,𝑓)=0,∀ 𝑤

 (2.31) 

being 𝑎𝑚
− , the complex amplitude of a wave that propagates in the decreasing 𝑧 direction, i.e. 𝑎𝑚 

with 𝑚 < 0; and 𝑎𝑚
+ , that amplitude but for the case of a wave that propagates in the increasing 

𝑧 direction, or in other words, 𝑎𝑚 with 𝑚 > 0. Furthermore, port 1 is assumed to be placed at 

the beginning of the waveguide structure (𝑧 = 0), while port 2 is located at its end, i.e. at 𝑧 = 𝐿, 

being 𝐿 the length of the structure. 

It must be stressed that the scattering parameters of (2.27) and (2.28)-(2.31) allow us to 

obtain the total amplitude of a specific wave that leaves the waveguide structure from a particular 

port as a sum of the contributions that come from both ports and each mode: 

𝑏1,𝑚 =∑∑𝑆1𝑘,𝑚𝑖 · 𝑎𝑘,𝑖
𝑘𝑖

 (2.32) 

𝑏2,𝑚 =∑∑𝑆2𝑘,𝑚𝑖 · 𝑎𝑘,𝑖
𝑘𝑖

 (2.33) 

Finally, the key conclusion of this subsection is the implicit relationship that has been 

shown between the coupling coefficients and the frequency response of the waveguide structure, 

which is mathematically represented by means of the scattering parameters. The coupling 

coefficients of (2.5)-(2.8), 𝐶𝑚𝑖, 𝐶𝑚𝑖
𝑐 (𝑘𝑡), 𝐶𝑛𝑖

𝑐 (𝑘�̃�) and 𝐶𝑚𝑖
𝑐𝑐(𝑘�̃� , 𝑘𝑡), determine the complex 
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amplitudes of each mode along the whole nonuniform waveguide structure through the coupled 

mode equations of (2.3) and (2.4), being the scattering parameters defined in (2.28)-(2.31) 

special quotients between those wave amplitudes at specific points of the 𝑧 axis. This important 

relationship will be greatly simplified and mathematically specified just by introducing several 

reasonable approximations that will lead to single-mode operation. Moreover, as it will be 

thoroughly detailed in CHAPTER 4, if additional assumptions are taken, it will be possible to 

calculate the coupling coefficient from a single scattering parameter, which is the aim of the 

inverse scattering synthesis techniques. 

2.1.2. Relationship between the Coupling 

Coefficient and the Physical 

Dimensions of the Waveguide 

Once an interesting relationship has been found between the coupling coefficients and the 

frequency response of a general nonuniform waveguide, some of the expressions previously 

provided will be employed to relate the coupling coefficient with the physical dimensions of the 

structure. For doing so, the procedure fully detailed in [18] is followed, and the expressions (2.5)-

(2.8) valid for waveguides that include conductors with variable cross section are rewritten as: 

𝐶𝑚𝑖 =
−𝜋 · 𝑓 · ∮ 𝜈 · [𝜇0 · (𝐻𝑧

𝑚 · 𝐻𝑧
𝑖 −𝐻𝑡

𝑚 · 𝐻𝑡
𝑖) + 휀 · 𝐸𝑛

𝑚 · 𝐸𝑛
𝑖 ] ⋅ 𝑑𝑡

𝑁𝑚 · (𝛽𝑚 − 𝛽𝑖)
 (2.34) 

𝐶𝑚𝑖
𝑐 (𝑘𝑡) =

−𝜋 · 𝑓 · ∮ 𝜈 · {𝜇0 · [𝐻𝑧
𝑚 · 𝐻𝑧

𝑖(𝑘𝑡) − 𝐻𝑡
𝑚 · 𝐻𝑡

𝑖(𝑘𝑡)] + 휀 · 𝐸𝑛
𝑚 · 𝐸𝑛

𝑖 (𝑘𝑡)} ⋅ 𝑑𝑡

𝑁𝑚 · [𝛽𝑚 − 𝛽𝑖(𝑘𝑡)]
 (2.35) 

𝐶𝑛𝑖
𝑐 (𝑘�̃�) =

−𝜋 · 𝑓 · ∮ 𝜈 · {𝜇0 · [𝐻𝑧
𝑛(𝑘�̃�) · 𝐻𝑧

𝑖 −𝐻𝑡
𝑛(𝑘�̃�) · 𝐻𝑡

𝑖] + 휀 · 𝐸𝑛
𝑛(𝑘�̃�) · 𝐸𝑛

𝑖 } ⋅ 𝑑𝑡

𝑁𝑛
𝑐 · [𝛽𝑛

𝑐(𝑘�̃�) − 𝛽𝑖]
 (2.36) 

𝐶𝑛𝑖
𝑐 (𝑘�̃�, 𝑘𝑡) =

−𝜋 · 𝑓

𝑁𝑛
𝑐 · [𝛽𝑛

𝑐(𝑘�̃�) − 𝛽𝑖
𝑐(𝑘𝑡)]

· 

(2.37) 

·
∮ 𝜈 · {𝜇0 · [𝐻𝑧

𝑛(𝑘�̃�) · 𝐻𝑧
𝑖(𝑘𝑡) − 𝐻𝑡

𝑛(𝑘�̃�) · 𝐻𝑡
𝑖(𝑘𝑡)] + 휀 · 𝐸𝑛

𝑛(𝑘�̃�) · 𝐸𝑛
𝑖 (𝑘𝑡)} ⋅ 𝑑𝑡

𝑁𝑛
𝑐 · [𝛽𝑛

𝑐(𝑘�̃�) − 𝛽𝑖
𝑐(𝑘𝑡)]
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where the 𝑡, 𝑛, 𝑧 subscripts of 𝐸 and 𝐻 stand for the electric and magnetic field components that 

follow those directions; being 𝑡, the tangential direction to the conducting contour in the cross 

section and 𝑛, the normal direction to that contour in the same cross section. In fact, the edge of 

the conducting wall that defines the cross section conforms the path where the closed-curve 

integrals of (2.34)-(2.37) must be performed. It must be noted that the 𝑡, 𝑛, 𝑧 directions make up 

an orthogonal coordinate system as it is represented in Fig. 2.1 for the sake of clarity. The unitary 

vectors �̂�, �̂�, �̂� that correspond to the 𝑧, 𝑡, 𝑛, directions respectively are defined in the following 

manner: �̂� is parallel to the propagation direction, 𝑧, and follows the direction of the forward 

travelling waves; �̂� is the unitary vector of 𝑡 and follows the direction contained in the cross 

section that is tangential to the interface between dielectric and metal; �̂� is the unitary vector of 

𝑛 and follows the direction contained in the cross section, which is orthogonal to that interface, 

directed from the dielectric to the metal. These unitary vectors must satisfy �̂� = �̂� × �̂�. Finally, 

𝜈 = tan(𝛼), with 𝛼 being the angle defined from �̂� to the line tangential to the metal-dielectric 

interface and orthogonal to the cross section metal-dielectric interface, as depicted in Fig. 2.1c. 

 

(a) 

 

(b) 

 

(c) 

Fig. 2.1. Sketch of a general nonuniform waveguide. An arbitrary cross section (red trace) is selected and the line 

tangential to the metal-dielectric interface is highlighted (blue trace) for the case of the upper and lower interfaces. 

(b) Auxiliary uniform waveguide associated to the cross-section selected. (c) The local 𝑧, 𝑡, 𝑛 coordinate system is 

given for the upper metal-dielectric interface of (a) and a scheme of the angle α defined in that case between the z-

axis and the line tangential to that interface (blue line) is provided as well.  
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Moreover, the coupling coefficients of (2.34)-(2.37) satisfy the set of properties (2.38)-

(2.41) that were demonstrated in [18]: 

𝐶𝑚𝑚 =
−1

2 · 𝑁𝑚
·
𝑑𝑁𝑚
𝑑𝑧

 (2.38) 

𝐶𝑚𝑚
𝑐𝑐 (𝑘�̃�, 𝑘�̃�) =

−1

2 · 𝑁𝑚(𝑘�̃�)
·
𝑑𝑁𝑚(𝑘�̃�)

𝑑𝑧
· 𝛿(0) (2.39) 

𝐶𝑚𝑖 · 𝑁𝑚 = −𝐶𝑖𝑚 · 𝑁𝑖       ;       𝑚 ≠ 𝑖 (2.40) 

𝐶𝑚𝑖 = 𝐶−𝑚,−𝑖 (2.41) 

Lastly, it is important to stress that the expressions (2.34)-(2.37) relate the coupling 

coefficient and the physical dimensions of the waveguide, since the different 𝐸 and 𝐻 field 

components are inherent to the modes that may propagate in the auxiliary uniform waveguide. 

Indeed, the geometrical shape and the dimensions of the nonuniform waveguide may vary in the 

𝑧 direction and the auxiliary uniform waveguide to be studied would be different, leading to 

different relevant modes in 𝑧 as well. Hence, the equations (2.34)-(2.37) can be applied to a wide 

variety of waveguide technologies, from the ones that feature closed metallic boundaries, like 

the rectangular and circular waveguides, to planar transmission lines such as stripline or 

microstrip, among others. Indeed, specific expressions for rectangular waveguide technology 

will be developed in the following subsection, while a closed-form relationship between the 

coupling coefficient and the characteristic impedance will be provided in subsection 2.2.1.2 for 

the case of TEM and QTEM transmission lines when single-mode operation is assumed. In this 

last case, the final physical parameters will depend on the particular relationship between the 

characteristic impedance and the physical dimensions of the line for each technology. However, 

straightforward expressions that will not be covered in this thesis can be found for other 

waveguides [18]-[21]. 

2.1.2.1. Explicit Expressions for the Coupling 

Coefficients in Rectangular 

Waveguide 

The rectangular waveguide is one of the most popular waveguide technologies since it 

features high power handling capability and low dissipative losses when it is compared to other 
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technologies like the planar ones [29]. These aspects are particularly relevant for satellite 

communications and they make the rectangular waveguide one of the most employed 

technologies in the aerospace communications sector. Moreover, its electromagnetic behavior 

has been thoroughly studied in the classical literature as it is one of earliest technologies 

employed to carry and process microwave and millimeter wave signals [27]-[31]. 

The geometry of the rectangular waveguide is quite simple since it can be considered just 

as a hollow metallic pipe that features a rectangular cross section, which is defined by a width, 

𝑎, and a height, 𝑏. Due to the fact that a nonuniform waveguide is being considered, the width 

and the height will be consequently 𝑧-dependent, i.e. 𝑎(𝑧) and 𝑏(𝑧), respectively. A sketch of a 

nonuniform rectangular waveguide is provided in Fig 2.2, where the classical 𝑥, 𝑦, 𝑧 spatial 

coordinate system is also provided. 

In order to obtain closed-form expressions for the coupling coefficients of a nonuniform 

rectangular waveguide as a function of its physical parameters, a first reasonable assumption is 

going to be made by considering the most common case of a homogeneous and isotropic 

dielectric inner medium. Thus, the dielectric will be characterized by an electrical 

permittivity, 휀 = 휀0 · 휀𝑟, and a magnetic permeability, 𝜇 = 𝜇0, where: 휀0 = 8.854 · 10
−12 F/m, 

is the electrical permittivity of vacuum; 휀𝑟, stands for the relative electrical permittivity of the 

dielectric; and 𝜇0 = 4 · 𝜋 · 10
−7 H/m expresses the magnetic permeability of vacuum. 

 

Fig. 2.2. Sketch of a general nonuniform rectangular waveguide. An arbitrary cross section (red shape) is selected 

and the lines tangential to the metal-dielectric interfaces are highlighted in blue, green, black and magenta for each 

of the four metallic walls. 
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Moreover, it must be stressed that a metallic closed-boundary waveguide is under study 

and only discrete spectrum modes must be taken into account as a result, because the continuous 

(or radiated) ones are forbidden. By doing so, the mode decomposition of (2.1), (2.2) can be 

reduced to: 

�⃗� ̂(𝑥, 𝑦, 𝑧) =∑𝑎𝑖
𝑖

(𝑧) · �⃗� 𝑖(𝑥, 𝑦, 𝑧) (2.42) 

�⃗⃗� ̂(𝑥, 𝑦, 𝑧) =∑𝑎𝑖
𝑖

(𝑧) · �⃗⃗� 𝑖(𝑥, 𝑦, 𝑧) (2.43) 

As it is well known, the modes able to propagate in a rectangular waveguide are classified 

into two categories [27]-[31]: the so-called transverse electric (TE) modes, that satisfy a null 

component of the electric field in the propagation direction, 𝐸𝑧 = 0; and the transverse magnetic 

(TM) modes that fulfill that null component but for the magnetic field, 𝐻𝑧 = 0. 

Therefore, the system of coupled-mode equations (2.3), (2.4) can be rewritten by only 

considering the discrete spectrum modes: 

𝑑𝑎𝑚
𝑑𝑧

+ 𝑗 · 𝛽𝑚 · 𝑎𝑚 =∑𝑎𝑖 · 𝐶𝑚𝑖
𝑖

 (2.44) 

where 𝛽𝑚 is the phase constant of the 𝑚 mode in the auxiliary uniform waveguide associated 

with the cross section of interest, which can be determined as follows: 

𝛽𝑚 = −𝛽−𝑚 = √𝑘2 − 𝑘𝑐𝑚
2  (2.45) 

being 𝑘, the plane-wave wavenumber [27]-[31] that can be obtained by means of: 

𝑘 =
2 · 𝜋 · 𝑓

𝑐0
· √휀𝑟 =

2 · 𝜋 · 𝑓

𝑐
 (2.46) 

where 𝑐0 stands for the speed of light in vacuum that can be expressed as function of the electric 

permittivity and the magnetic permeability of vacuum: 

𝑐0 =
1

√𝜇0 · 휀0
= 299792458

𝑚

𝑠
 (2.47) 
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Consequently, the speed of light in a medium with relative electric permittivity, 휀𝑟, which 

is alternatively employed in (2.46) is going to be denoted by 𝑐, and calculated as: 

𝑐 =
𝑐0

√휀𝑟
 (2.48) 

Regarding the variable 𝑘𝑐𝑚 that can be found in the phase constant expression of (2.45), 

it is known as the cut-off wavenumber of the 𝑚 mode [29], and it depends on the width, 𝑎, and 

height, 𝑏, of the cross section of interest in the following manner: 

𝑘𝑐𝑚 = √(
𝜋 · 𝑝𝑚
𝑎

)
2

+ (
𝜋 · 𝑞𝑚
𝑏

)
2

 (2.49) 

where 𝑝𝑚 and 𝑞𝑚 are the modal indexes (𝑇𝐸𝑝𝑚𝑞𝑚 , 𝑇𝑀𝑝𝑚𝑞𝑚
). For TE modes the values of these 

modal indexes may be 𝑝𝑚 = 0,1,2,…; and 𝑞𝑚 = 0,1,2,…, although the simultaneous 

combination 𝑝𝑚 = 𝑞𝑚 = 0 is forbidden; while 𝑝𝑚 = 1,2,3,… and 𝑞𝑚 = 1,2,3,… are allowed for 

the TM case. The cut-off wavenumber allows to determine the cut-off frequency of the 𝑚 mode, 

𝑓𝑐𝑚, which is the frequency from which the wave can propagate into the auxiliary uniform 

waveguide associated with the cross section under study. It is important to note that if the 

operation frequency of the 𝑚 mode is below that cut-off frequency, the wave will be under the 

cut-off regime and will not propagate. The calculation of 𝑓𝑐𝑚 can be performed by means of [27]-

[31]: 

𝑓𝑐𝑚 =
𝑐

2
· √(

𝑝𝑚
𝑎
)
2

+ (
𝑞𝑚
𝑏
)
2

 (2.50) 

The expressions for the 𝑥, 𝑦, 𝑧 components of the electric and magnetic fields for both 

TE and TM modes in a uniform rectangular waveguide is a topic that has been widely covered 

in the microwave engineering literature [27]-[31]. Nonetheless, in order to work with normalized 

fields, a modified version of the expressions available in reference [32] will be employed. The 

𝑥, 𝑦, 𝑧 components of �⃗� ±𝑚 and �⃗⃗� ±𝑚 for the case of the 𝑚 TE mode (𝑇𝐸𝑝𝑚𝑞𝑚) are provided below 

in (2.51)-(2.56), with 𝑚 > 0; where the choice of the upper sign (+) in the superscripts stands 

for the forward travelling wave, while the lower (-) describes the backward travelling wave. 

𝐸𝑥
±𝑚 =

−𝜋 · 𝑟𝑚 · 𝑞𝑚 · √2 · 𝜋 · 𝑓 · 𝜇0 · 𝑁𝑚

𝑏 · 𝑘𝑐𝑚 · √𝑎 · 𝑏 · 𝛽𝑚
· cos (

𝑝𝑚 · 𝜋

𝑎
· 𝑥) · sin(

𝑞𝑚 · 𝜋

𝑏
· 𝑦) (2.51) 
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𝐸𝑦
±𝑚 =

𝜋 · 𝑟𝑚 · 𝑝𝑚 · √2 · 𝜋 · 𝑓 · 𝜇0 · 𝑁𝑚

𝑎 · 𝑘𝑐𝑚 · √𝑎 · 𝑏 · 𝛽𝑚
· sin (

𝑝𝑚 · 𝜋

𝑎
· 𝑥) · cos (

𝑞𝑚 · 𝜋

𝑏
· 𝑦) (2.52) 

𝐸𝑧
±𝑚 = 0 (2.53) 

𝐻𝑥
±𝑚 =

∓𝑟𝑚 · 𝑝𝑚 · √𝜋 · 𝛽𝑚 · 𝑁𝑚

𝑎 · 𝑘𝑐𝑚 · √2 · 𝑓 · 𝑎 · 𝑏 · 𝜇0
· sin(

𝑝𝑚 · 𝜋

𝑎
· 𝑥) · cos (

𝑞𝑚 · 𝜋

𝑏
· 𝑦) (2.54) 

𝐻𝑦
±𝑚 =

∓𝑟𝑚 · 𝑞𝑚 · √𝜋 · 𝛽𝑚 · 𝑁𝑚

𝑏 · 𝑘𝑐𝑚 · √2 · 𝑓 · 𝑎 · 𝑏 · 𝜇0
· cos (

𝑝𝑚 · 𝜋

𝑎
· 𝑥) · sin (

𝑞𝑚 · 𝜋

𝑏
· 𝑦) (2.55) 

𝐻𝑧
±𝑚 =

𝑗 · 𝑟𝑚 · 𝑘𝑐𝑚 · √𝑁𝑚

√2 · 𝜋 · 𝑓 · 𝑎 · 𝑏 · 𝛽𝑚 · 𝜇0
· cos (

𝑝𝑚 · 𝜋 · 𝑥

𝑎
) · cos (

𝑞𝑚 · 𝜋 · 𝑦

𝑏
) (2.56) 

The normalization factor, 𝑁𝑚, in (2.51)-(2.56) is calculated using (2.9) over the surface 

�̆� highlighted in Fig. 2.3a, whereas the value of the parameter 𝑟𝑚 depends on the modal indexes 

as follows: 

𝑟𝑚 = {
√2

2

 
for 𝑝𝑚 = 0 or 𝑞𝑚 = 0 

(2.57)  
otherwise 

Regarding the 𝑥, 𝑦, 𝑧 components of �⃗� ±𝑚 and �⃗⃗� ±𝑚 for the m TM mode (𝑇𝑀𝑝𝑚𝑞𝑚
), their 

respective expressions are provided below in (2.58)-(2.63). 

𝐸𝑥
±𝑚 =

𝑝𝑚 · √2 · 𝜋 · 𝛽𝑚 · 𝑁𝑚

𝑎 · 𝑘𝑐𝑚 · √𝑓 · 𝑎 · 𝑏 · 휀
· cos (

𝑝𝑚 · 𝜋

𝑎
· 𝑥) · sin (

𝑞𝑚 · 𝜋

𝑏
· 𝑦) (2.58) 

𝐸𝑦
±𝑚 =

𝑞𝑚 · √2 · 𝜋 · 𝛽𝑚 · 𝑁𝑚

𝑏 · 𝑘𝑐𝑚 · √𝑓 · 𝑎 · 𝑏 · 휀
· sin (

𝑝𝑚 · 𝜋

𝑎
· 𝑥) · cos (

𝑞𝑚 · 𝜋

𝑏
· 𝑦) (2.59) 

𝐸𝑧
±𝑚 =

±𝑗 · 𝑘𝑐𝑚 · √2 · 𝑁𝑚

√𝜋 · 𝑓 · 𝑎 · 𝑏 · 𝛽𝑚 · 휀
· sin(

𝑝𝑚 · 𝜋

𝑎
· 𝑥) · sin (

𝑞𝑚 · 𝜋

𝑏
· 𝑦) (2.60) 

𝐻𝑥
±𝑚 =

∓2 · 𝜋 · 𝑞𝑚 · √2 · 𝜋 · 𝑓 · 휀 · 𝑁𝑚

𝑏 · 𝑘𝑐𝑚 · √𝑎 · 𝑏 · 𝛽𝑚
· sin (

𝑝𝑚 · 𝜋

𝑎
· 𝑥) · cos (

𝑞𝑚 · 𝜋

𝑏
· 𝑦) (2.61) 

𝐻𝑦
±𝑚 =

±2 · 𝜋 · 𝑝𝑚 · √2 · 𝜋 · 𝑓 · 휀 · 𝑁𝑚

𝑎 · 𝑘𝑐𝑚 · √𝑎 · 𝑏 · 𝛽𝑚
· cos (

𝑝𝑚 · 𝜋

𝑎
· 𝑥) · sin (

𝑞𝑚 · 𝜋

𝑏
· 𝑦) (2.62) 
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𝐻𝑧
±𝑚 = 0 (2.63) 

It is important to realize that different signs can be selected in equations (2.54), (2.55), 

(2.60), (2.61), and (2.62). In these cases the upper sign stands for the upper field component 

superscript, i.e. +𝑚 with 𝑚 > 0 (forward travelling wave of the 𝑚 mode), while the lower sign 

must be chosen for the lower field component superscript, corresponding to the backward 

travelling wave of the 𝑚 mode, which is denoted by −𝑚 with 𝑚 > 0. It is worth noting that the 

field components given in (2.51)-(2.56) and (2.58)-(2.63) satisfy the general component sign 

convention for electric and magnetic fields that was already mentioned in (2.15)-(2.20). 

Since the components of the electric and magnetic fields for the modes of the rectangular 

waveguide have been previously presented, the closed-form relationship between the coupling 

coefficient and the physical dimensions of the waveguide can be determined. For doing so, it 

must be reminded that only discrete spectrum modes are allowed for this kind of waveguide, so 

the general expression valid for the case under study that was given in (2.34) is going to 

employed as a starting point. This equation is provided again below for the sake of clarity: 

𝐶𝑚𝑖 =
−𝜋 · 𝑓 · ∮ 𝜈 · [𝜇0 · (𝐻𝑧

𝑚 · 𝐻𝑧
𝑖 −𝐻𝑡

𝑚 · 𝐻𝑡
𝑖) + 휀 · 𝐸𝑛

𝑚 · 𝐸𝑛
𝑖 ] ⋅ 𝑑𝑡

𝑁𝑚 · (𝛽𝑚 − 𝛽𝑖)
 (2.34) 

 

(a) 

 

(b) 

Fig. 2.3. (a) Auxiliary uniform waveguide associated to the cross section selected in Fig. 2.1 and the 

correspondence between each local 𝑡, 𝑛 and global 𝑥, 𝑦 coordinate systems for the four metal-dielectric interfaces. 

(b) Detail of the angles 𝛼1, 𝛼2, 𝛼3, 𝛼4 that determine 𝜈1, 𝜈2, 𝜈3, 𝜈4, respectively, for each metal-dielectric interface 

of the cross section of Fig. 2.1. 
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As it has been already mentioned, the closed-curve integral of (2.34) must be performed 

following the 𝑡 direction, which is tangential to the metallic-dielectric interface and is contained 

in the plane of the cross section of interest. If that broad definition is applied for the rectangular 

waveguide case, it will be possible to perform four different identities (one per each metal-

dielectric interface) between the 𝑛, 𝑡 and the 𝑥, y coordinate systems. Indeed, following the 

convention of Fig. 2.3a, 𝑡 = 𝑥 and 𝑛 = −𝑦 for the lower interface (𝑦 = 0); 𝑡 = 𝑦 and 𝑛 = 𝑥 for 

the leftmost wall (𝑥 = 𝑎), 𝑡 = −𝑥 and 𝑛 = 𝑦 for the upper interface (𝑦 = 𝑏); and 𝑡 = −𝑦 and 

𝑛 = −𝑥 for the interface placed at the right part of the waveguide (𝑥 = 0). 

Moreover, the general definition of the angle 𝛼, which determines 𝜈 in (2.34), can be 

applied to the rectangular cross section giving rise to four different angles 𝛼1, 𝛼2, 𝛼3, and 𝛼4,  

that yield to their corresponding tangents 𝜈1, 𝜈2 , 𝜈3 , and 𝜈4, as it is shown in Fig. 2.3b. It must 

be noted that in Fig. 2.3b, each one of these angles are related with each interface that was 

highlighted in Fig. 2.2, by following the same color code. Taking into account the 𝜈1 , 𝜈2, 𝜈3, and 

𝜈4 definitions, they can be also expressed by means of different derivatives as: 

𝜈1 = −
𝑑𝑦𝑑(𝑧)

𝑑𝑧
 (2.64) 

𝜈2 =
𝑑𝑥𝑙(𝑧)

𝑑𝑧
 (2.65) 

𝜈3 =
𝑑𝑦𝑢(𝑧)

𝑑𝑧
 (2.66) 

𝜈4 = −
𝑑𝑥𝑟(𝑧)

𝑑𝑧
 (2.67) 

where 𝑥𝑟(𝑧), 𝑥𝑙(𝑧), 𝑦𝑑(𝑧), and 𝑦𝑢(𝑧) are the functions that describe the profile of the right, left, 

down and up metal-dielectric interfaces, respectively, according to the 𝑥, 𝑦, 𝑧 general coordinate 

system of the nonuniform waveguide structure (see Fig. 2.2). It is worth noting that 𝑥𝑟(𝑧), 𝑥𝑙(𝑧), 

𝑦𝑑(𝑧), and 𝑦𝑢(𝑧) are related with the width and height dimensions, 𝑎(𝑧) and 𝑏(𝑧), respectively, 

as follows: 

𝑎(𝑧) = 𝑥𝑙(𝑧) − 𝑥𝑟(𝑧) (2.68) 

𝑏(𝑧) = 𝑦𝑢(𝑧) − 𝑦𝑑(𝑧) (2.69) 
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Now, if the 𝜈1, 𝜈2 , 𝜈3 , and 𝜈4 variables, as well as the aforementioned identities between 

𝑡, 𝑛 and 𝑥, 𝑦, are applied in (2.34), a general coupling coefficient expression can be developed 

for rectangular waveguide technology: 

𝐶𝑚𝑖 =
−𝜋 · 𝑓

2 · 𝑁𝑚 · (𝛽𝑚 − 𝛽𝑖)
· 

(2.70) 

· [∫ 𝜈1 · [𝜇0 · 𝐻𝑧
𝑚 · 𝐻𝑧

𝑖 − 𝜇0 · 𝐻𝑥
𝑚 · 𝐻𝑥

𝑖 + 휀 · (−𝐸𝑦
𝑚) · (−𝐸𝑦

𝑖 )]|

𝑦=0

· 𝑑𝑥 +
𝑎

0

 

+∫ 𝜈2 · [𝜇0 · 𝐻𝑧
𝑚 · 𝐻𝑧

𝑖 − 𝜇 · 𝐻𝑦
𝑚 · 𝐻𝑦

𝑖 + 휀 · 𝐸𝑥
𝑚 · 𝐸𝑥

𝑖 ]|

𝑥=𝑎

· 𝑑𝑦
𝑏

0

+ 

+∫ 𝜈3 · [𝜇0 · 𝐻𝑧
𝑚 · 𝐻𝑧

𝑖 − 𝜇 · (−𝐻𝑥
𝑚) · (−𝐻𝑥

𝑖 ) + 휀 · 𝐸𝑦
𝑚 · 𝐸𝑦

𝑖 ]|

𝑦=𝑏

· 𝑑𝑥
𝑎

0

+ 

+∫ 𝜈4 · [𝜇0 · 𝐻𝑧
𝑚 · 𝐻𝑧

𝑖 − 𝜇 · (−𝐻𝑦
𝑚) · (−𝐻𝑦

𝑖 ) + 휀 · (−𝐸𝑥
𝑚) · (−𝐸𝑥

𝑖 )]|

𝑥=0

· 𝑑𝑦
𝑏

0

] 

It is important to note that in this equation (2.70), and in the subsequent equations (2.71), 

(2.77), (2.78), (2.79), (2.80), the 𝑥, 𝑦 coordinate system employed corresponds to the local 

coordinate system of the auxiliary uniform waveguide associated to the cross section of interest, 

see Fig. 2.3(a). This local coordinate system will be different from the global coordinate system 

employed for the nonuniform waveguide structure, see Fig. 2.2. 

Nevertheless, the procedure to calculate the coupling coefficient between different modes 

(including their forward and backward travelling waves) can be greatly simplified by applying 

several properties of the coupling coefficient that have been already presented. Indeed, if a pair 

of coupling coefficients, 𝐶𝑚,+𝑖 and 𝐶𝑚,−𝑖 (or briefly, 𝐶𝑚,±𝑖), with 𝑚 > 0 and 𝑖 > 0, is known, 

then 𝐶−𝑚,∓𝑖 will be directly solved using (2.41). Moreover, considering the sign conventions 

stated in (2.15)-(2.20) for the electric and magnetic field components, and in (2.13) for the phase 

constant of waves that propagate in opposite directions, equation (2.70) can be updated to 

calculate 𝐶𝑚,±𝑖 (with 𝑚 > 0 and 𝑖 > 0) in the following manner: 
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𝐶𝑚,±𝑖 =
−𝜋 · 𝑓

2 · 𝑁𝑚 · (𝛽𝑚 ∓ 𝛽𝑖)
· 

(2.71) 

· [∫ 𝜈1 · [𝜇0 · 𝐻𝑧
𝑚 · 𝐻𝑧

𝑖 ∓ 𝜇0 · 𝐻𝑥
𝑚 · 𝐻𝑥

𝑖 + 휀 · (−𝐸𝑦
𝑚) · (−𝐸𝑦

𝑖 )]|

𝑦=0

· 𝑑𝑥 +
𝑎

0

 

+∫ 𝜈2 · [𝜇0 · 𝐻𝑧
𝑚 · 𝐻𝑧

𝑖 ∓ 𝜇 · 𝐻𝑦
𝑚 · 𝐻𝑦

𝑖 + 휀 · 𝐸𝑥
𝑚 · 𝐸𝑥

𝑖 ]|

𝑥=𝑎

· 𝑑𝑦
𝑏

0

+ 

+∫ 𝜈3 · [𝜇0 · 𝐻𝑧
𝑚 · 𝐻𝑧

𝑖 ∓ 𝜇 · (−𝐻𝑥
𝑚) · (−𝐻𝑥

𝑖 ) + 휀 · 𝐸𝑦
𝑚 · 𝐸𝑦

𝑖 ]|

𝑦=𝑏

· 𝑑𝑥
𝑎

0

+ 

+∫ 𝜈4 · [𝜇0 · 𝐻𝑧
𝑚 · 𝐻𝑧

𝑖 ∓ 𝜇 · (−𝐻𝑦
𝑚) · (−𝐻𝑦

𝑖 ) + 휀 · (−𝐸𝑥
𝑚) · (−𝐸𝑥

𝑖 )]|

𝑥=0

· 𝑑𝑦
𝑏

0

] 

At this point, it is necessary to take into account that only TE and TM modes can be found 

in a rectangular waveguide and four different coupling coefficients should be calculated as a 

consequence, i.e. 𝐶𝑚,±𝑖
𝑇𝐸−𝑇𝐸 , when both, 𝑚 and 𝑖, are TE modes; 𝐶𝑚,±𝑖

𝑇𝐸−𝑇𝑀, in case of 𝑚 being a TE 

and 𝑖 belonging to the TM mode category; 𝐶𝑚,±𝑖
𝑇𝑀−𝑇𝐸, when 𝑚 is TM and 𝑖 is TE; and finally 

𝐶𝑚,±𝑖
𝑇𝑀−𝑇𝑀 will be the coupling coefficient when two TM modes, 𝑚 and 𝑖, are under consideration. 

However, if (2.40) is applied for the 𝐶𝑚,±𝑖
𝑇𝑀−𝑇𝐸 or 𝐶𝑚,±𝑖

𝑇𝐸−𝑇𝑀 cases, the following relationships 

are obtained: 

𝐶𝑚,±𝑖
𝑇𝑀−𝑇𝐸 =

−𝐶±𝑖,𝑚
𝑇𝐸−𝑇𝑀 · 𝑁±𝑖
𝑁𝑚

 (2.72) 

𝐶𝑚,±𝑖
𝑇𝐸−𝑇𝑀 =

−𝐶±𝑖,𝑚
𝑇𝑀−𝑇𝐸 · 𝑁±𝑖
𝑁𝑚

 (2.73) 

Therefore, only 𝐶𝑚,±𝑖
𝑇𝑀−𝑇𝐸 or 𝐶𝑚,±𝑖

𝑇𝐸−𝑇𝑀 needs to be directly calculated since the other one 

will be automatically attained by means of (2.72) or (2.73). For this reason, in the subsequent 

steps of this chapter, a closed-form equation will be obtained for the 𝐶𝑚,±𝑖
𝑇𝐸−𝑇𝑀 case, being this 

arbitrary choice free of practical consequences. 
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Finally, the relevant components of the electric and magnetic fields of (2.51)-(2.56) and 

(2.58)-(2.63) for forward travelling waves (𝑚 > 0 and 𝑖 > 0) are incorporated in (2.71). After 

several mathematical manipulations, the sought closed-form expressions will be achieved: 

𝐶𝑚,±𝑖
𝑇𝐸−𝑇𝐸 =

𝑟𝑚 · 𝑟𝑖 · 𝑘𝑐𝑚 · 𝑘𝑐𝑖 · √𝑁𝑖

2 · √𝑁𝑚 · (𝛽𝑚 ∓ 𝛽𝑖) · 𝑎 · 𝑏 · √𝛽𝑚 · √𝛽𝑖
· 

(2.74) · {[𝑐𝑝,𝑎 +
𝜋2 · 𝑝𝑚 · 𝑝𝑖 · 𝑠𝑝,𝑎 · (±𝛽𝑚 · 𝛽𝑖 − 𝑘

2)

(𝑎 · 𝑘𝑐𝑚 · 𝑘𝑐𝑖)
2

] · [𝜈1 + 𝜈3 · (−1)
𝑞𝑚+𝑞𝑖] + 

+ [𝑐𝑞,𝑏 +
𝜋2 · 𝑞𝑚 · 𝑞𝑖 · 𝑠𝑞,𝑏 · (±𝛽𝑚 · 𝛽𝑖 − 𝑘

2)

(𝑏 · 𝑘𝑐𝑚 · 𝑘𝑐𝑖)
2

] · [𝜈4 + 𝜈2 · (−1)
𝑝𝑚+𝑝𝑖]} 

𝐶𝑚,±𝑖
𝑇𝐸−𝑇𝑀 =

±𝜋2 · 𝑟𝑚 · 𝑘 · √𝑁𝑖

√𝑁𝑚 · (𝑎 · 𝑏)2 · √𝛽𝑚 · √𝛽𝑖 · 𝑘𝑐𝑚 · 𝑘𝑐𝑖
· 

(2.75) 
{𝑝𝑚 · 𝑞𝑖 · 𝑠𝑝,𝑎 · [𝜈1 + 𝜈3 · (−1)

𝑞𝑚+𝑞𝑖] + 

−𝑞𝑚 · 𝑝𝑖 · 𝑠𝑞,𝑏 · [𝜈4 + 𝜈2 · (−1)
𝑝𝑚+𝑝𝑖]} 

𝐶𝑚,±𝑖
𝑇𝑀−𝑇𝑀 =

2 · 𝜋2 · √𝑁𝑖 · (±𝑘
2 − 𝛽𝑚 · 𝛽𝑖)

√𝑁𝑚 · (𝛽𝑚 ∓ 𝛽𝑖) · (𝑎 · 𝑏)3 · √𝛽𝑚 · √𝛽𝑖 · 𝑘𝑐𝑚 · 𝑘𝑐𝑖
· 

(2.76) 
{[𝑎2 · 𝑞𝑚 · 𝑞𝑖 · 𝑠𝑝,𝑎] · [𝜈1 + 𝜈3 · (−1)

𝑞𝑚+𝑞𝑖] + 

+[𝑏2 · 𝑝𝑚 · 𝑝𝑖 · 𝑠𝑞,𝑏] · [𝜈4 + 𝜈2 · (−1)
𝑝𝑚+𝑝𝑖]} 

where it is assumed that 𝑚 > 0 and 𝑖 > 0 (𝐶−𝑚,∓𝑖 can be immediately calculated using (2.41)), 

and the auxiliary parameters 𝑐𝑝,𝑎, 𝑠𝑝,𝑎, 𝑐𝑞,𝑏, and 𝑠𝑞,𝑏, are the result of several trigonometric 

integrals that depend on the particular combination of modal indexes involved, i.e. 𝑝𝑚, 𝑝𝑖, 𝑞𝑚, 

and 𝑞𝑖. The explicit integrals of 𝑐𝑝,𝑎, 𝑠𝑝,𝑎, 𝑐𝑞,𝑏, and 𝑠𝑞,𝑏, as well as their corresponding results 

are provided below: 

 

𝑐𝑝,𝑎 = ∫ cos (𝑝𝑚 · 𝜋 ·
𝑥

𝑎
)

𝑎

0

· cos (𝑝𝑖 · 𝜋 ·
𝑥

𝑎
) · 𝑑𝑥 = {

𝑎
𝑎

2
0

 

for 𝑝𝑚 = 𝑝𝑖 = 0 

(2.77) for 𝑝𝑚 = 𝑝𝑖 ≠ 0 

otherwise 
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𝑠𝑝,𝑎 = ∫ sin(𝑝𝑚 · 𝜋 ·
𝑥

𝑎
)

𝑎

0

· sin (𝑝𝑖 · 𝜋 ·
𝑥

𝑎
) · 𝑑𝑥 = {

𝑎

2

0

 

for 𝑝𝑚 = 𝑝𝑖 ≠ 0 

(2.78)  

otherwise 

𝑐𝑞,𝑏 = ∫ cos(𝑞𝑚 · 𝜋 ·
𝑦

𝑏
)

𝑏

0

· cos (𝑞𝑖 · 𝜋 ·
𝑦

𝑏
) · 𝑑𝑦 = {

𝑏
𝑏

2
0

 

for 𝑞𝑚 = 𝑞𝑖 = 0 

(2.79) for 𝑞𝑚 = 𝑞𝑖 ≠ 0 

otherwise 

𝑠𝑞,𝑏 = ∫ sin(𝑞𝑚 · 𝜋 ·
𝑦

𝑏
)

𝑏

0

· sin(𝑞𝑖 · 𝜋 ·
𝑦

𝑏
) · 𝑑𝑦 = {

𝑏

2

0

 
for 𝑞𝑚 = 𝑞𝑖 ≠ 0 

(2.80)  

otherwise 

If the attained expressions of (2.74)-(2.76) for the calculation of 𝐶𝑚,±𝑖
𝑇𝐸−𝑇𝐸 , 𝐶𝑚,±𝑖

𝑇𝐸−𝑇𝑀, and 

𝐶𝑚,±𝑖
𝑇𝑀−𝑇𝑀, are carefully inspected, taking also into consideration the parameters 𝑐𝑝,𝑎, 𝑠𝑝,𝑎, 𝑐𝑞,𝑏, 

and 𝑠𝑞,𝑏 , of (2.77)-(2.80), it is clear that only certain modes can be coupled between each other, 

i.e. 𝐶𝑚,𝑖 ≠ 0, depending on the value of 𝑝𝑚, 𝑝𝑖, 𝑞𝑚, 𝑞𝑖 , and on the specific geometry of the 

nonuniform rectangular waveguide through the 𝜈1, 𝜈2 , 𝜈3 , 𝜈4 variables defined in (2.64)-(2.67). 

It must be highlighted that in the most frequent situation that will be applicable for the 

cases that will be addressed in this thesis, the rectangular waveguide is excited with the first 

mode that reaches the propagation regime, which is the fundamental TE10 (𝑝𝑚 = 1, 𝑞𝑚 = 0) 

mode. Accordingly, it is worth to perform a deep assessment of the different modes that can 

couple energy to (or receive that energy from) the TE10 mode, depending on the type of 

perturbation of the rectangular waveguide. Indeed, the most useful classification of the 

waveguide profile variations for this purpose is based on the presence of symmetries between 

metallic walls that are parallel to each other. The different relationships that can be found 

following this criterion are summarized below in terms of derivatives of 𝑥𝑟(𝑧), 𝑥𝑙(𝑧), 𝑦𝑑(𝑧), 

𝑦𝑢(𝑧) and their corresponding identities in 𝜈1 , 𝜈2 , 𝜈3 , 𝜈4 for the sake of clarity: 

𝑥𝑟(𝑧)

𝑑𝑧
≠ |
𝑥𝑙(𝑧)

𝑑𝑧
| ∀ 𝑧 ⇔ 𝜈2 ≠ |𝜈4| ∀ 𝑧 (2.81) 

𝑥𝑟(𝑧)

𝑑𝑧
=
𝑥𝑙(𝑧)

𝑑𝑧
≠ 0⇔𝜈2 = −𝜈4 ≠ 0 ∀ 𝑧 (2.82) 

𝑥𝑟(𝑧)

𝑑𝑧
= −

𝑥𝑙(𝑧)

𝑑𝑧
≠ 0 ⇔𝜈2 = 𝜈4 ≠ 0 ∀ 𝑧 (2.83) 

𝑥𝑟(𝑧)

𝑑𝑧
=
𝑥𝑙(𝑧)

𝑑𝑧
= 0 ∀ 𝑧⇔𝜈2 = 𝜈4 = 0 ∀ 𝑧 (2.84) 
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𝑦𝑑(𝑧)

𝑑𝑧
≠ |
𝑦𝑢(𝑧)

𝑑𝑧
| ∀ 𝑧 ⇔ 𝜈1 ≠ |𝜈3| ∀ 𝑧 (2.85) 

𝑦𝑑(𝑧)

𝑑𝑧
=
𝑦𝑢(𝑧)

𝑑𝑧
 ≠ 0∀ 𝑧 ⇔ 𝜈1 = −𝜈3 ≠ 0 ∀ 𝑧 (2.86) 

𝑦𝑑(𝑧)

𝑑𝑧
= −

𝑦𝑢(𝑧)

𝑑𝑧
≠ 0 ∀ 𝑧 ⇔ 𝜈1 = 𝜈3 ≠ 0 ∀ 𝑧 (2.87) 

𝑦𝑑(𝑧)

𝑑𝑧
=
𝑦𝑢(𝑧)

𝑑𝑧
= 0 ∀ 𝑧 ⇔ 𝜈1 = 𝜈3 = 0 ∀ 𝑧 (2.88) 

Now, it will be assumed that the excitation is carried out with the forward travelling wave 

of the TE10 mode (𝑝𝑚 = 1, 𝑞𝑚 = 0) for the different symmetry conditions of (2.81)-(2.88) so as 

to find the different values of 𝑝𝑖 and 𝑞𝑖 that lead to 𝐶𝑚,±𝑖 ≠ 0 by means of (2.74)-(2.76). The 

obtained modes constitute the set of modes that have direct coupling with the TE10 forward 

travelling wave, and they are summarized in Table 2.1. If the waveguide profile varies in its 

width as well as in its height, the modes that will be directly coupled to the TE10 will be the 

combination of the modes that are coupled due to each symmetry condition. 

 TE TM 

 𝒑𝒊 𝒒𝒊 𝒑𝒊 𝒒𝒊 

𝝂𝟏 ≠ |𝝂𝟑| 1 0, 1, 2, … 1 1, 2, 3, … 

𝝂𝟏 = −𝝂𝟑 1 1, 3, 5, … 1 1, 3, 5, … 

𝝂𝟏 = 𝝂𝟑 1 0, 2, 4, … 1 2, 4, 6, … 

𝝂𝟏 = 𝝂𝟑 = 𝟎 - - - - 

𝝂𝟐 ≠ |𝝂𝟒| 1, 2, 3, … 0 - - 

𝝂𝟐 = −𝝂𝟒 2, 4, 6, … 0 - - 

𝝂𝟐 = 𝝂𝟒 1, 3, 5, … 0 - - 

𝝂𝟐 = 𝝂𝟒 = 𝟎 - - - - 

Table 2.1. Modal indexes, 𝑝𝑖  and 𝑞𝑖 , of the TE and TM modes that are directly coupled with the forward travelling 

TE10 mode (𝑝𝑚 = 1, 𝑞𝑚 = 0) considering different symmetry relations of the pairs 𝜈2, 𝜈4 and 𝜈1, 𝜈3. The combination 

for TE mode with 𝑝𝑖 = 1 and 𝑞𝑖 = 0 means that the power is coupled to the backward travelling wave of the TE10 

mode. 

It is worth noting that in those rectangular waveguide structures where the variations in 

height and width are symmetrical, i.e. 𝜈1 = 𝜈3 and 𝜈2 = 𝜈4, respectively, it will be verified that 

𝜈1 = 𝜈3 =
1

2
·
𝑑𝑏(𝑧)

𝑑𝑧
 and 𝜈2 = 𝜈4 =

1

2
·
𝑑𝑎(𝑧)

𝑑𝑧
 according to (2.64)-(2.67), (2.68), and (2.69). In this 

situation, the coupling coefficient between two modes 𝑚 and 𝑖, 𝐶𝑚,𝑖 (see (2.74)-(2.76) and 

(2.77)-(2.80)), will not be equal to zero only if one of the indexes of a mode is the same as the 

corresponding index of the other mode, and the other pair of indexes is of the same parity. Thus, 

except for the case of the forward and backward travelling waves of the same mode (𝑚 = −𝑖) in 
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which the coupling coefficient has contributions of both 𝜈2 = 𝜈4 =
1

2
·
𝑑𝑎(𝑧)

𝑑𝑧
 and 𝜈1 = 𝜈3 =

1

2
·

𝑑𝑏(𝑧)

𝑑𝑧
 (see (2.74)-(2.76)), the coupling coefficient will be proportional to 𝜈2 = 𝜈4 =

1

2
·
𝑑𝑎(𝑧)

𝑑𝑧
 if 

𝑞𝑚 = 𝑞𝑖 and 𝑝𝑚 + 𝑝𝑖 is an even number. On the other hand, if 𝑝𝑚 = 𝑝𝑖 and 𝑞𝑚 + 𝑞𝑖 is an even 

number, then the coupling coefficient will be proportional to 𝜈1 = 𝜈3 =
1

2
·
𝑑𝑏(𝑧)

𝑑𝑧
. Hence, if |𝑚| ≠

|𝑖|, in the coupling coefficient expressions of (2.74)-(2.76) we should calculate either only the 

term proportional to 
𝑑𝑎(𝑧)

𝑑𝑧
 (if 𝑞𝑚 = 𝑞𝑖 and 𝑝𝑚 + 𝑝𝑖 is an even number) or only the term 

proportional to 
𝑑𝑏(𝑧)

𝑑𝑧
 (if 𝑝𝑚 = 𝑝𝑖 and 𝑞𝑚 + 𝑞𝑖 is an even number). For example, if the forward 

travelling wave of the TE10 mode is incident (𝑝𝑚 = 1, 𝑞𝑚 = 0), the odd order waves TE30, TE50, 

…, are excited in both directions with an amplitude of the coupling coefficient proportional to 

𝜈2 = 𝜈4 =
1

2
·
𝑑𝑎(𝑧)

𝑑𝑧
. On the other hand, the mode pairs TE12-TM12, TE14-TM14, …, are also 

excited in both directions with the amplitudes of the coupling coefficients proportional to 𝜈1 =

𝜈3 =
1

2
·
𝑑𝑏(𝑧)

𝑑𝑧
. Finally, the backward travelling wave of the TE10 mode is excited with a coupling 

coefficient that depends on the terms associated with both 𝜈2 = 𝜈4 =
1

2
·
𝑑𝑎(𝑧)

𝑑𝑧
 and 𝜈1 = 𝜈3 =

1

2
·

𝑑𝑏(𝑧)

𝑑𝑧
, see [21]. 

Nonetheless, it must be stressed that the modes of Table 2.1 may likewise couple power 

to other modes that do not have direct coupling with the TE10. The study of these indirect links 

between the TE10 and other modes may be a complex and time-consuming task when different 

combinations of symmetry conditions for all 𝜈1, 𝜈2 , 𝜈3 , and 𝜈4 variables are considered. The 

Table 2.2 and Table 2.3 summarize the 𝑝𝑖 and 𝑞𝑖 permutations that may receive power in either 

direct or indirect way from the fundamental TE10 mode. 

 

 𝝂𝟏 ≠ |𝝂𝟑| 𝝂𝟏 = −𝝂𝟑 ≠ 𝟎 

 TE TM TE TM 

 𝒑𝒊 𝒒𝒊 𝒑𝒊 𝒒𝒊 𝒑𝒊 𝒒𝒊 𝒑𝒊 𝒒𝒊 

𝝂𝟐 ≠ |𝝂𝟒| 0,1,2,… 0,1,2,… 1,2,3,… 1,2,3,… 0,1,2,… 0,1,2,… 1,2,3,… 1,2,3,… 

𝝂𝟐 = −𝝂𝟒 ≠ 𝟎 0,1,2,… 0,1,2,… 1,2,3,… 1,2,3,… 0,1,2,… 0,1,2,… 1,2,3,… 1,2,3,… 

𝝂𝟐 = 𝝂𝟒 ≠ 𝟎 1,3,5,… 0,1,2,… 1,3,5,… 1,2,3,… 1,3,5,… 0,1,2,… 1,3,5,… 1,2,3,… 

𝝂𝟐 = 𝝂𝟒 = 𝟎 1 0,1,2,… 1 1,2,3,… 1 0,1,2,… 1 1,2,3,… 

Table 2.2. Different permutations for modal indexes, 𝑝𝑖  and 𝑞𝑖 , of TE and TM modes that receive power from TE10 

mode (𝑝𝑚 = 1, 𝑞𝑚 = 0) by means of direct or intermediate-mode coupling by considering the different symmetry 

combinations of the pair 𝜈2, 𝜈4; with the cases 𝜈1 ≠ |𝜈3| and 𝜈1 = −𝜈3 ≠ 0. The pair of values 𝑝𝑖 = 0 and 𝑞𝑖 = 0 is 

forbidden. 
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 𝝂𝟏 = 𝝂𝟑 ≠ 𝟎 𝝂𝟏 = 𝝂𝟑 = 𝟎 

 TE TM TE TM 

 𝒑𝒊 𝒒𝒊 𝒑𝒊 𝒒𝒊 𝒑𝒊 𝒒𝒊 𝒑𝒊 𝒒𝒊 

𝝂𝟐 ≠ |𝝂𝟒| 0,1,2,… 0,2,4,… 1,2,3,… 2,4,6,… 1,2,3,… 0 - - 

𝝂𝟐 = −𝝂𝟒 ≠ 𝟎 0,1,2,… 0,2,4,… 1,2,3,… 2,4,6,… 1,2,3,… 0 - - 

𝝂𝟐 = 𝝂𝟒 ≠ 𝟎 1,3,5,… 0,2,4,… 1,3,5,… 2,4,6,… 1,3,5,… 0 - - 

𝝂𝟐 = 𝝂𝟒 = 𝟎 1 0,2,4,… 1 2,4,6,… - - - - 

Table 2.3. Different permutations for modal indexes, 𝑝𝑖  and 𝑞𝑖 , of TE and TM modes that receive power from TE10 

mode (𝑝𝑚 = 1, 𝑞𝑚 = 0) by means of direct or intermediate-mode coupling by considering the different symmetry 

combinations of the pair 𝜈2, 𝜈4; with the cases 𝜈1 = 𝜈3 ≠ 0 and 𝜈1 = 𝜈3 = 0. The pair of values 𝑝𝑖 = 0 and 𝑞𝑖 = 0 is 

forbidden. 

In order to conclude this subsection, it is important to highlight that closed-form 

expressions have been obtained for the coupling coefficients of a nonuniform rectangular 

waveguide as a function of its physical dimensions. Moreover, the relevant modes that are 

directly coupled to the fundamental TE10 have been determined, and the ones that may indirectly 

receive power from it have been identified for the different symmetries that can be found between 

the metallic walls of the rectangular waveguide. Therefore, the electromagnetic behavior of the 

nonuniform waveguide structure, as well as its frequency response, can be completely 

determined just by solving the coupled-mode equation system of (2.44). In the following section, 

the single-mode operation assumption will be employed to calculate the waveguide height and 

width dimensions so as to satisfy a certain coupling coefficient. Moreover, the relationship 

between the coupling coefficient and the dimensions of the waveguide will be obtained for 

transmission lines that support TEM or QTEM modes, and specific expressions will be obtained 

for microstrip and microstrip coupled line technologies through the characteristic impedance of 

the transmission line. 
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2.2. SINGLE MODE OPERATION ASSUMPTION 

FOR THE SOLUTION OF THE SYNTHESIS 

PROBLEM 

In the previous section 2.1, the Coupled-Mode Theory has been carefully formulated 

without taking any approximation, leading to a theoretical framework that allows us to describe 

completely the electromagnetic behavior of a general nonuniform waveguide structure. 

However, the problem addressed by the Coupled-Mode Theory can be greatly simplified by 

performing several reasonable approximations that lead to the single-mode operation 

assumption, which is necessary to address the synthesis with Inverse Scattering techniques as it 

will be shown in CHAPTER 4. 

Consequently, the general Coupled-Mode Theory will be reassessed for modelling a 

nonuniform waveguide structure when a unique mode is considered. Closed-form relationships 

will be found between the coupling coefficient and the frequency response, as well as between 

the coupling coefficient and the physical dimensions of the waveguide, as a result of the single-

mode assumption. In fact, the relation with the physical dimensions will be specifically studied 

for the cases of rectangular waveguide and transmission lines that support TEM or QTEM 

modes, paying special attention to single and coupled microstrip line technologies.  

Furthermore, in order to allow the implementation of synthetized responses using 

waveguide technologies where the variation of the physical dimensions drives to a change of the 

phase constant along the propagation direction, a novel modelling method based on a normalized 

propagation axis where the phase constant remains unaltered will be presented in detail. 

Finally, the possible parasitic effects caused by the neglected contributions of cut-off 

modes, that may degrade the expected frequency response under single-mode approximation, 

will be modelled as a continuous variation of the phase constant of the fundamental mode along 

the propagation direction. Thanks to this modelling, two methods to assimilate the effects of 

these higher-order modes into the single-mode equation system will be presented for the case of 

closed-boundary waveguides. 
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2.2.1. Relationship between the Coupling 

Coefficient, the Frequency Response 

and the Physical Dimensions under 

Single-Mode Operation 

A general relationship between the coupling coefficient and the frequency response of a 

nonuniform waveguide structure can be achieved when considering that only a single mode is 

excited, taking into account its associated forward and backward travelling waves, as it was 

shown in [18]-[20]. For doing so, the continuous spectrum modes will be neglected since the 

energy of these modes is mainly radiated. The error caused by this approximation will be 

minimum regarding this thesis, since the aim is to synthesize non-radiating smooth structures in 

open waveguides, while radiation in closed-boundary waveguides will be completely null 

indeed. Referring to the discrete spectrum modes, in the operational bandwidth of interest only 

one propagating mode is assumed, being the rest under the cut-off regime. In this case, the more 

the structure prevents the coupling to other modes, the more the ideal single-mode operation will 

fit reality. Thus, if only one mode is considered, the total electric, �⃗� ̂(𝑥, 𝑦, 𝑧), and magnetic, 

�⃗⃗� ̂(𝑥, 𝑦, 𝑧), fields along the nonuniform waveguide of (2.1) and (2.2) will be simplified to [18]-

[20]: 

�⃗� ̂(𝑥, 𝑦, 𝑧) = 𝑎+(𝑧) · �⃗� +(𝑥, 𝑦, 𝑧) + 𝑎−(𝑧) · �⃗� −(𝑥, 𝑦, 𝑧) (2.89) 

�⃗⃗� ̂(𝑥, 𝑦, 𝑧) = 𝑎+(𝑧) · �⃗⃗� +(𝑥, 𝑦, 𝑧) + 𝑎−(𝑧) · �⃗⃗� −(𝑥, 𝑦, 𝑧) (2.90) 

where 𝑎+ and 𝑎− stand for the complex amplitude of the forward and backward travelling waves 

of the mode along the propagation direction, respectively; while �⃗� +(𝑥, 𝑦, 𝑧) and �⃗⃗� +(𝑥, 𝑦, 𝑧) are 

the vector mode patterns of the electric and magnetic fields of the forward travelling wave for 

the cross section of interest; and finally �⃗� −(𝑥, 𝑦, 𝑧) and �⃗⃗� −(𝑥, 𝑦, 𝑧) are the vector mode patterns 

but for the backward propagating case. 

Regarding the two coupling coefficients, 𝐶1,−1 and 𝐶−1,1, that affect both, forward and 

backward travelling waves, it must be noted that they will be identical due to (2.41). Therefore, 

they will be denoted by 𝐾, with 𝐾 = 𝐶1,−1 = 𝐶−1,1. On the other hand, the other relevant 

coupling coefficients, 𝐶1,1 and 𝐶−1,−1, will be null due to (2.38), since the normalization factor 
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of the mode, 𝑁1 = −𝑁−1, will remain constant with z.  Thus, the general couple-mode equation 

system of (2.3), (2.4) can be simplified to [18]: 

𝑑𝑎+

𝑑𝑧
= −𝑗 · 𝛽 · 𝑎+ +𝐾 · 𝑎− (2.91) 

𝑑𝑎−

𝑑𝑧
= 𝑗 · 𝛽 · 𝑎− +𝐾 · 𝑎+ (2.92) 

being 𝛽, the phase constant of the mode. An expression to calculate 𝐾 is directly obtained by 

setting 𝑖 = −𝑚 in (2.34), giving rise to (2.93). 

𝐾 = 𝐶1,−1 = 𝐶−1,1 =
−𝜋 · 𝑓 · ∮ 𝜈 · [𝜇0 · (𝐻𝑧

1 · 𝐻𝑧
−1 − 𝐻𝑡

1 · 𝐻𝑡
−1) + 휀 · 𝐸𝑛

1 · 𝐸𝑛
−1] ⋅ 𝑑𝑡

𝑁1 · (𝛽1 − 𝛽−1)
 (2.93) 

In order to obtain a more compact equation for 𝐾, the sign convention of (2.15)-(2.20) 

can be applied to the 𝑛, 𝑡, 𝑧 coordinate system as follows: 

𝐸𝑡
−𝑖 = 𝐸𝑡

𝑖 (2.94) 

𝐸𝑛
−𝑖 = 𝐸𝑛

𝑖  (2.95) 

𝐸𝑧
−𝑖 = −𝐸𝑧

𝑖  (2.96) 

𝐻𝑡
−𝑖 = −𝐻𝑡

𝑖 (2.97) 

𝐻𝑛
−𝑖 = −𝐻𝑛

𝑖  (2.98) 

𝐻𝑧
−𝑖 = 𝐻𝑧

𝑖  (2.99) 

If the set of sign conventions (2.11), (2.13), (2.94)-(2.98) are applied to (2.93), the 

coupling coefficient gets reduced to: 

𝐾 =
−𝜋 · 𝑓 · ∮ 𝜈 · {𝜇0 · [(𝐻𝑧

+)2 + (𝐻𝑡
+)2] + 휀 · (𝐸𝑛

+)2} ⋅ 𝑑𝑡

2 · 𝑁+ · 𝛽
 (2.100) 

where 𝐻𝑧
+ and 𝐻𝑡

+ are the 𝑧 and 𝑡 components of the magnetic field of the forward travelling 

wave, respectively; 𝐸𝑛
+ is the 𝑛 component of the electric field of that wave; and 𝑁+ is the 

normalization factor of that forward travelling wave, which is defined as: 
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𝑁+ =∬ (�⃗� + × �⃗⃗� +) · �̂� · 𝑑�̆�
�̆�

= −𝑁− (2.101) 

It is demonstrated in [18] that the coupling coefficient expression of (2.100) can be even 

further simplified to: 

𝐾 = 𝐶−1,1 = 𝐶1,−1 =
1

2 · 𝛽
·
𝑑𝛽

𝑑𝑧
−
𝜋 · 𝑓

𝑁+ · 𝛽
· ∮𝜈 · 𝜇0 · (𝐻𝑡

+)2 · 𝑑𝑡 (2.102) 

It must be highlighted that the coupling coefficient completely determines the complex 

amplitudes 𝑎+(𝑧) and 𝑎−(𝑧), once the boundary (excitation) conditions for 𝑎+(𝑧) and 𝑎−(𝑧) 

have been fixed, because of the coupled-mode equation system of (2.91), (2.92) and hence, it 

also determines the amplitude of the fields of (2.89) and (2.90). Since the scattering parameters 

under single-mode operation will be also a function of the amplitude of that waves at certain 

points of 𝑧, it can be concluded that the coupling coefficient governs the frequency response of 

the structure. In fact, the scattering parameter definition of (2.26) can be adjusted for a two-port 

waveguide structure where only one mode is allowed: 

𝑆𝑙𝑘 =
𝑏𝑙
𝑎𝑘
|
𝑎𝑟=0 ∀ 𝑟≠𝑘

 (2.103) 

Thereby, the scattering matrix allows us to relate the complex amplitudes of the reflected 

waves at the ports 1 and 2, 𝑏1 and 𝑏2, respectively, with the incident ones at those ports, 𝑎1 and 

𝑎2, by means of [27]-[31]: 

[
𝑏1
𝑏2
] = [

𝑆11 𝑆12
𝑆21 𝑆22

] · [
𝑎1
𝑎2
] (2.104) 

Now that the scattering parameters have been defined in (2.103), and considering the 

complex amplitudes of (2.91), (2.92), 𝑎+ and 𝑎−, as well as the normalization factor of (2.101), 

the scattering parameters can be rewritten as [19]: 

𝑆11(𝑓) =
𝑏1(𝑓)

𝑎1(𝑓)
|
𝑎2=0

=
√𝑁+(𝑧 = 0) · 𝑎−(𝑧 = 0, 𝑓)

√𝑁+(𝑧 = 0) · 𝑎+(𝑧 = 0, 𝑓)
|

𝑎−(𝑧=𝐿,𝑓)=0

= 

(2.105) 

=
𝑎−(𝑧 = 0, 𝑓)

𝑎+(𝑧 = 0, 𝑓)
|
𝑎−(𝑧=𝐿,𝑓)=0
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𝑆21(𝑓) =
𝑏2(𝑓)

𝑎1(𝑓)
|
𝑎2=0

=
√𝑁+(𝑧 = 𝐿) · 𝑎+(𝑧 = 𝐿, 𝑓)

√𝑁+(𝑧 = 0) · 𝑎+(𝑧 = 0, 𝑓)
|

𝑎−(𝑧=𝐿,𝑓)=0

 (2.106) 

𝑆12(𝑓) =
𝑏1(𝑓)

𝑎2(𝑓)
|
𝑎2=0

=
√𝑁+(𝑧 = 0) · 𝑎−(𝑧 = 0, 𝑓)

√𝑁+(𝑧 = 𝐿) · 𝑎−(𝑧 = 𝐿, 𝑓)
|

𝑎+(𝑧=0,𝑓)=0

 (2.107) 

𝑆22(𝑓) =
𝑏2(𝑓)

𝑎2(𝑓)
|
𝑎2=0

=
√𝑁+(𝑧 = 𝐿) · 𝑎+(𝑧 = 𝐿, 𝑓)

√𝑁+(𝑧 = 𝐿) · 𝑎−(𝑧 = 𝐿, 𝑓)
|

𝑎+(𝑧=0,𝑓)=0

= 

(2.108) 

=
𝑎+(𝑧 = 𝐿, 𝑓)

𝑎−(𝑧 = 𝐿, 𝑓)
|
𝑎+(𝑧=0,𝑓)=0

 

It must be noted that if the normalization factor at 𝑧 = 0 and 𝑧 = 𝐿 is identical, a condition 

that implies that both ports have the same dimensions, or that the normalization factor remains 

constant with z, then (2.106) and (2.107) get compacted to: 

𝑆21(𝑓) =
𝑏2(𝑓)

𝑎1(𝑓)
|
𝑎2=0

=
𝑎+(𝑧 = 𝐿, 𝑓)

𝑎+(𝑧 = 0, 𝑓)
|
𝑎−(𝑧=𝐿,𝑓)=0

 (2.109) 

𝑆12(𝑓) =
𝑏1(𝑓)

𝑎2(𝑓)
|
𝑎2=0

=
𝑎−(𝑧 = 0, 𝑓)

𝑎−(𝑧 = 𝐿, 𝑓)
|
𝑎+(𝑧=0,𝑓)=0

 (2.110) 

As in the general multimode case of the Coupled-Mode Theory, an implicit relationship 

has been established for single-mode operation between the coupling coefficient and the 

frequency response by means of the coupled-mode equation system of (2.91), (2.92). This 

relationship is based on the dependence of the complex amplitudes, 𝑎+and 𝑎−, with the coupling 

coefficient, 𝐾, being the formers evaluated at 𝑧 = 0 and 𝑧 = 𝐿, the basis of the scattering 

parameters. Thus, it can be concluded that 𝐾 determines the frequency response of the waveguide 

structure under the single-mode operation. However, this relationship is not mathematically 

clarified since there is not an expression that directly relates any 𝑆-parameter, 𝑆𝑙𝑘 , with 𝐾, 

something that will be the aim of the synthesis methods of CHAPTER 4-CHAPTER 6. In fact, 

the different equations for 𝐾 presented in this subsection, (2.93), (2.100), and (2.102), are more 

directly related with the physical parameters of the waveguide. It is interesting to note that, in 

the general case, the coupling coefficient is frequency dependent, since the phase constant also 

depends on frequency, as well as on the propagation direction. Indeed, for the development of 

the inverse scattering methods, the phase constant must be assumed not to vary along the 
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propagation direction. Nevertheless, this limitation will be overcome for the cases where this 

assumption is not satisfied, as it will be thoroughly explained in section 2.2.2. 

2.2.1.1. Relationship between the Coupling 

Coefficient and the Physical 

Dimensions in Rectangular Waveguide 

Technology 

The relationship between the different coupling coefficients and the physical dimensions 

of the nonuniform rectangular waveguide was obtained in subsection 2.1.2.1 by considering the 

different modes and all the symmetry conditions that can be found between its metal-dielectric 

interfaces. However, as it can be expected, this relationship is greatly simplified by assuming 

single-mode operation as it was firstly studied in [19]. Since the fundamental (first propagating) 

mode of a rectangular waveguide is the TE10, something that is satisfied if 𝑎(𝑧) > 𝑏(𝑧) ∀ 𝑧, the 

coupling coefficient, 𝐾, will be the one that concerns the forward and backward travelling waves 

of that mode. Consequently, if the modal indexes 𝑝𝑚 = 𝑝𝑖 = 1 and 𝑞𝑚 = 𝑞𝑖 = 0 in the 𝐶𝑚,±𝑖
𝑇𝐸−𝑇𝐸 

equation (2.74) are taken, and the lower sign is chosen to select 𝐶𝑚,−𝑖
𝑇𝐸−𝑇𝐸 , the coupling coefficient 

for single-mode operation will be obtained, i.e. 𝐾 = 𝐶1,−1 = 𝐶1,−1
𝑇𝐸−𝑇𝐸 . It is important to stress that 

the modal indexes 𝑝𝑚 = 𝑝𝑖 = 1 and 𝑞𝑚 = 𝑞𝑖 = 0 lead to: 𝑁𝑚 = 𝑁𝑖, 𝑟𝑚 = 𝑟𝑖 = √2 (2.57), 

𝑘𝑐𝑚(𝑧) = 𝑘𝑐𝑖(𝑧) =
𝜋

𝑎(𝑧)
 (2.49), 𝛽(𝑧) = 𝛽𝑚(𝑧) = 𝛽𝑖(𝑧) (2.45), 𝑐𝑝,𝑎(𝑧) = 𝑎(𝑧) (2.77), 𝑠𝑝,𝑎(𝑧) =

𝑎(𝑧)

2
 (3.15), 𝑐𝑞,𝑏 = 𝑏(𝑧) (2.79), and 𝑠𝑞,𝑏(𝑧) = 0 (2.80). If the value of the previous parameters is 

incorporated in (2.74), the result will be the one that is given below [19], [21]: 

𝐾(𝑧) = 𝐶1,−1
𝑇𝐸−𝑇𝐸(𝑧) =

𝜋2

2 · 𝛽2(𝑧) · 𝑎3(𝑧) · 𝑏(𝑧)
· 

(2.111) 

· {[
𝑎(𝑧)

2
−
𝑎3(𝑧) · 𝛽2(𝑧)

2 · 𝜋2
−
𝑎3(𝑧)𝑘2

2 · 𝜋2
] · (𝜈1 + 𝜈3) + 𝑏(𝑧) · (𝜈4 + 𝜈2)} 

After performing some mathematical manipulations, (2.111) can be rewritten as [19]: 

𝐾(𝑧) = 𝐶1,−1
𝑇𝐸−𝑇𝐸(𝑧) = −

1

2 · 𝑏(𝑧)
· (𝜈1 + 𝜈3) +

𝜋2

2 · 𝛽2(𝑧) · 𝑎3(𝑧)
· (𝜈4 + 𝜈2) (2.112) 
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Then, taking into account the identities of 𝜈1 , 𝜈2 , 𝜈3 , and 𝜈4 given in (2.64)-(2.67), 𝐾(𝑧) 

can be expressed as a function of the derivatives of the profiles of each metallic wall, i.e.: 

𝐾(𝑧) = 𝐶1,−1
𝑇𝐸−𝑇𝐸(𝑧) = −

1

2 · 𝑏(𝑧)
· [−

𝑑𝑦𝑑(𝑧)

𝑑𝑧
+
𝑑𝑦𝑢(𝑧)

𝑑𝑧
] 

(2.113) 

+
𝜋2

2 · 𝛽2(𝑧) · 𝑎3(𝑧)
· [−

𝑑𝑥𝑟(𝑧)

𝑑𝑧
+
𝑑𝑥𝑙(𝑧)

𝑑𝑧
] 

In view of (2.68) and (2.69), it is clear that the derivative terms of (2.113) can be 

formulated in terms of the derivatives of the waveguide width, 𝑎(𝑧), and height, 𝑏(𝑧), as follows: 

𝑑𝑎(𝑧)

𝑑𝑧
=
𝑑𝑥𝑙(𝑧)

𝑑𝑧
−
𝑑𝑥𝑟(𝑧)

𝑑𝑧
 (2.114) 

𝑑𝑏(𝑧)

𝑑𝑧
=
𝑑𝑦𝑢(𝑧)

𝑑𝑧
−
𝑑𝑦𝑑(𝑧)

𝑑𝑧
 (2.115) 

Thus, when (2.114) and (2.115) are introduced in (2.113), it is obtained that [19]: 

𝐾(𝑧) = 𝐶1,−1
𝑇𝐸−𝑇𝐸(𝑧) = −

1

2 · 𝑏(𝑧)
·
𝑑𝑏(𝑧)

𝑑𝑧
+

𝜋2

2 · 𝛽2(𝑧) · 𝑎3(𝑧)
·
𝑑𝑎(𝑧)

𝑑𝑧
 (2.116) 

At this point, it is important to highlight that 𝐾(𝑧) depends on the dimensions of the cross 

section of interest, 𝑎(𝑧) and 𝑏(𝑧), and on their derivatives with 𝑧. Nonetheless, 𝐾(𝑧) also has an 

inherent dependence on the frequency, 𝑓, since 𝛽(𝑧) must be determined by means of 𝑓, i.e. 

𝛽(𝑧, 𝑓), as it is demonstrated below for 𝑝𝑚 = 1 and 𝑞𝑚 = 0 (TE10 mode) by using (2.45), (2.46), 

and (2.49): 

𝛽(𝑧, 𝑓) = √𝑘2 − 𝑘𝑐
2(𝑧) =

2 · 𝜋 · 𝑓

𝑐
· √1 − [

𝑓𝑐
𝑇𝐸10(𝑧)

𝑓
]

2

 (2.117) 

where 𝑓𝑐
𝑇𝐸10(𝑧) is the cut-off frequency of the fundamental TE10 mode along the propagation 

direction [27]-[31], which is calculated by means of (2.50): 

𝑓𝑐
𝑇𝐸10(𝑧) =

𝑐

2 · 𝑎(𝑧)
 (2.118) 

Thus, an alternative expression for 𝛽(𝑧, 𝑓) based exclusively on 𝑎(𝑧) and 𝑓 can be 

provided: 
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𝛽(𝑧, 𝑓) =
2 · 𝜋 · 𝑓

𝑐
· √1 − [

𝑐

2 · 𝑎(𝑧) · 𝑓
]
2

 (2.119) 

Accordingly, the coupling coefficient is no longer a sole function of the dimensions of 

the cross section of interest, 𝑎(𝑧) and 𝑏(𝑧), and becomes also frequency dependent, i.e. 𝐾(𝑧, 𝑓). 

Then, equation (2.116) can be rewritten considering that 𝑓-dependence, yielding to: 

𝐾(𝑧, 𝑓) = −
1

2 · 𝑏(𝑧)
·
𝑑𝑏(𝑧)

𝑑𝑧
+

𝜋2

2 · 𝛽2(𝑧, 𝑓) · 𝑎3(𝑧)
·
𝑑𝑎(𝑧)

𝑑𝑧
 (2.120) 

Indeed, if the 𝛽(𝑧, 𝑓) definition of (2.119) is introduced into 𝐾(𝑧, 𝑓), (2.120) can be 

expressed exclusively in terms of the dimensions 𝑏(𝑧), 𝑎(𝑧), and 𝑓, as: 

𝐾(𝑧, 𝑓) = −
1

2 · 𝑏(𝑧)
·
𝑑𝑏(𝑧)

𝑑𝑧
+

𝜋2

2 · 𝛽2(𝑧, 𝑓) · 𝑎3(𝑧)
·
𝑑𝑎(𝑧)

𝑑𝑧
= 

(2.121) 
= −

1

2 · 𝑏(𝑧)
·
𝑑𝑏(𝑧)

𝑑𝑧
+

𝑐2

8 · 𝑓2 · 𝑎(𝑧) · [𝑎2(𝑧) − (
𝑐
2 · 𝑓

)
2

 ]

·
𝑑𝑎(𝑧)

𝑑𝑧
 

Now, by inspecting (2.116), (2.120), (2.121), it is clear that 𝐾(𝑧, 𝑓) can be divided into 

two parts: the first, 𝐾𝑏(𝑧), only depends on 𝑏(𝑧), while the other one is a function of 𝑎(𝑧) and 

𝑓, 𝐾𝑎(𝑧, 𝑓). Following this criterion: 

𝐾(𝑧, 𝑓) = 𝐾𝑏(𝑧) + 𝐾𝑎(𝑧, 𝑓) (2.122) 

where: 

𝐾𝑏(𝑧) = −
1

2 · 𝑏(𝑧)
·
𝑑𝑏(𝑧)

𝑑𝑧
 (2.123) 

𝐾𝑎(𝑧, 𝑓) =
𝜋2

2 · 𝛽2(𝑧, 𝑓) · 𝑎3(𝑧)
·
𝑑𝑎(𝑧)

𝑑𝑧
=

𝑐2

8 · 𝑓2 · 𝑎(𝑧) · [𝑎2(𝑧) − (
𝑐
2 · 𝑓

)
2

 ]

·
𝑑𝑎(𝑧)

𝑑𝑧
 

(2.124) 

It is very important to stress that the coupling coefficient under the single-mode operation 

assumption, 𝐾(𝑧, 𝑓), for the case of nonuniform rectangular waveguides has been expressed just 

in terms of its dimensions, 𝑏(𝑧) and 𝑎(𝑧), and of the considered frequency, 𝑓, even though the 

latter only applies for structures that exhibit variations in 𝑎(𝑧). This frequency dependence may 
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be troublesome regarding the synthesis methods that will be presented in CHAPTER 3-

CHAPTER 6, since all of them rely on the premise that 𝐾(𝑧) is not a function of frequency. 

Therefore, it is clear that when a certain synthesized 𝐾(𝑧) is intended to be implemented by 

means of any variation in 𝑎(𝑧), the result is expected to be exclusively exact for a single 

frequency, something that does not happen when considering the same 𝐾(𝑧) but for being 

implemented by means of changes in the 𝑏(𝑧) dimension. Once this point has been clarified it is 

very important to highlight that the dimensions 𝑏(𝑧) and 𝑎(𝑧) can be deduced from their 

corresponding terms of 𝐾(𝑧, 𝑓), 𝐾𝑏(𝑧) and 𝐾𝑎(𝑧, 𝑓), respectively, by solving the necessary first 

order differential equations to extract 𝑏(𝑧) in (2.123) as well as 𝑎(𝑧) in (2.124). By doing so, it 

will be possible to satisfy any synthesized 𝐾(𝑧) = 𝐾𝑏(𝑧) + 𝐾𝑎(𝑧, 𝑓), and its associated 

frequency response under the single-mode assumption, by imposing suitable profiles in 𝑏(𝑧) and 

𝑎(𝑧). 

2.2.1.1.1. Deduction of Rectangular Waveguide Height 

As it has been already mentioned, the height dimensions, 𝑏(𝑧), of the nonuniform 

rectangular waveguide can be obtained by solving the differential equation in 𝑏(𝑧) from the 

𝐾𝑏(𝑧) expression of (2.123). For doing so, 𝑧 and 𝑏(𝑧) are going to be substituted by the dummy 

variables 𝑟 and 𝑝(𝑟) (or briefly 𝑝, for the sake of simplicity), respectively, in (2.123), i.e.: 

𝐾𝑏(𝑟) = −
1

2 · 𝑝
·
𝑑𝑝

𝑑𝑟
 (2.125) 

Firstly, both sides of the equation (2.125) are multiplied by 𝑑𝑟 yielding to: 

𝐾𝑏(𝑟) · 𝑑𝑟 = −
1

2 · 𝑝
· 𝑑𝑝 (2.126) 

Then, the left-hand side of (2.126) is integrated in 𝑟 with lower and upper integration 

limits of 0 and 𝑧, respectively. Regarding the right-hand side, the integration variable will be 𝑝, 

defining its limits from 𝑏(0) to 𝑏(𝑧). As a consequence, (2.126) yields to an identity between 

those integrals of the following form: 

∫ 𝐾𝑏(𝑟) · 𝑑𝑟
𝑧

0

= ∫ [−
1

2 · 𝑝
] · 𝑑𝑝

𝑏(𝑧)

𝑏(0)

 (2.127) 

The right hand side of (2.127) can be analytically solved [33], and hence: 
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∫ 𝐾𝑏(𝑟) · 𝑑𝑟
𝑧

0

= ∫ [−
1

2 · 𝑝
] · 𝑑𝑝

𝑏(𝑧)

𝑏(0)

= −
1

2
· ∫

1

𝑝
· 𝑑𝑝 =

𝑏(𝑧)

𝑏(0)

 

(2.128) 

= −
1

2
· ln[𝑝]|

𝑏(0)

𝑏(𝑧)

= −
1

2
· {ln[𝑏(𝑧)]−ln[𝑏(0)]} = −

1

2
· ln [

𝑏(𝑧)

𝑏(0)
]  

Now, taking the exponential of both sides of (2.128), it is obtained that: 

𝑒−2·∫ 𝐾𝑏(𝑟)·𝑑𝑟
𝑧
0 =

𝑏(𝑧)

𝑏(0)
 (2.129) 

Finally, the corresponding waveguide height for 𝐾𝑏(𝑧) is attained by solving for 𝑏(𝑧) in 

the last equation (2.129) as: 

𝑏(𝑧) = 𝑏(0) · 𝑒−2·∫ 𝐾𝑏(𝑟)·𝑑𝑟
𝑧
0  (2.130) 

where 𝑏(0) is the waveguide height value at 𝑧 = 0 that can be arbitrarily chosen. 

2.2.1.1.2. Deduction of Rectangular Waveguide Width 

The procedure to determine the waveguide width, 𝑎(𝑧), from 𝐾𝑎(𝑧, 𝑓) is similar to the 

one carried out in the previous subsection for 𝑏(𝑧), although the integrals involved are slightly 

more complex. Firstly, the auxiliary dummy variable 𝑟 will substitute again 𝑧, while 𝑝 = 𝑝(𝑟) 

will substitute now 𝑎(𝑧), and (2.124) gets rewritten as: 

𝐾𝑎(𝑟, 𝑓) =
𝑐2

8 · 𝑓2 · 𝑝 · [𝑝2 − (
𝑐
2 · 𝑓

)
2

 ]

·
𝑑𝑝

𝑑𝑟
 

(2.131) 

The denominator of (2.131) can be factorized and isolated by determining its roots. After 

doing so, the resulting sides of the equation are multiplied by 𝑑𝑟, and hence: 

2 · (
2 · 𝑓

𝑐
)
2

· 𝐾𝑎(𝑟, 𝑓) · 𝑑𝑟 =
𝑑𝑝

𝑝 · [𝑝 +
𝑐
2 · 𝑓 

] · [𝑝 −
𝑐
2 · 𝑓 

]
 (2.132) 

Then, (2.132) is ready to be integrated with integration limits of 0 and 𝑧 in 𝑟 (left side) as 

well as 𝑎(0) and 𝑎(𝑧) in 𝑝 (right side), with 𝑎(0) being the width of the waveguide at its 
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beginning, which can be freely selected. By doing so, the integral form of the identity (2.132) 

will be the following: 

2 · (
2 · 𝑓

𝑐
)
2

· ∫ 𝐾𝑎(𝑟, 𝑓) · 𝑑𝑟
𝑧

0

= ∫
𝑑𝑝

𝑝 · (𝑝 +
𝑐
2 · 𝑓 

) · (𝑝 −
𝑐
2 · 𝑓 

)

𝑎(𝑧)

𝑎(0)

 

 

(2.133) 

Unfortunately, it is not possible to solve the right-hand side integral of (2.133) as directly 

as in the case of the previous section, devoted to the determination of 𝑏(𝑧). Nevertheless, the 

considered integrand can be divided into a sum of three different terms (applying partial fraction 

decomposition) that lead to the following three integrals, due to the linear property of integration: 

∫
𝑑𝑝

𝑝 · (𝑝 +
𝑐
2 · 𝑓 

) · (𝑝 −
𝑐
2 · 𝑓 

)

𝑎(𝑧)

𝑎(0)

= 

 (2.134) 

= −(
2𝑓

𝑐
)
2

· ∫
𝑑𝑝

𝑝

𝑎(𝑧)

𝑎(0)

+ 2(
𝑓

𝑐
)
2

· ∫
𝑑𝑝

(𝑝 +
𝑐
2𝑓 
)

𝑎(𝑧)

𝑎(0)

+ 2(
𝑓

𝑐
)
2

· ∫
𝑑𝑝

(𝑝 −
𝑐
2𝑓 
)

𝑎(𝑧)

𝑎(0)

 

where the resultant integrals already have direct solutions that are available in [33]. For the 

concerning case, those solutions yield to: 

−(
2𝑓

𝑐
)
2

· ∫
𝑑𝑝

𝑝

𝑎(𝑧)

𝑎(0)

+ 2(
𝑓

𝑐
)
2

· ∫
𝑑𝑝

(𝑝 +
𝑐
2𝑓 
)

𝑎(𝑧)

𝑎(0)

+ 2(
𝑓

𝑐
)
2

· ∫
𝑑𝑝

(𝑝 −
𝑐
2𝑓 
)

𝑎(𝑧)

𝑎(0)

= 

(2.135) 

= −(
2𝑓

𝑐
)
2

· ln[𝑝]|

𝑎(0)

𝑎(𝑧)

+ 2 · (
𝑓

𝑐
)
2

· ln [𝑝 +
𝑐

2𝑓
]|

𝑎(0)

𝑎(𝑧)

+ 2 · (
𝑓

𝑐
)
2

· ln [𝑝 −
𝑐

2𝑓
]|

𝑎(0)

𝑎(𝑧)

= 

= 2 · (
𝑓

𝑐
)
2

· ln {[
𝑎(0)

𝑎(𝑧)
]

2

} + 2 · (
𝑓

𝑐
)
2

· ln [
𝑎(𝑧) +

𝑐
2 · 𝑓

𝑎(0) +
𝑐
2 · 𝑓

] + 2 · (
𝑓

𝑐
)
2

· ln [
𝑎(𝑧) −

𝑐
2 · 𝑓

𝑎(0) −
𝑐
2 · 𝑓

] = 

= 2 · (
𝑓

𝑐
)
2

· (ln {[
𝑎(0)

𝑎(𝑧)
]

2

} + ln [
𝑎(𝑧) +

𝑐
2 · 𝑓

𝑎(0) +
𝑐
2 · 𝑓

] + ln [
𝑎(𝑧) −

𝑐
2 · 𝑓

𝑎(0) −
𝑐
2 · 𝑓

]) = 
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= 2 · (
𝑓

𝑐
)
2

· ln

[
 
 
 𝑎2(0) · 𝑎2(𝑧) − 𝑎2(0) · (

𝑐
2 · 𝑓

)
2

𝑎2(𝑧) · 𝑎2(0) − 𝑎2(𝑧) · (
𝑐
2 · 𝑓

)
2

]
 
 
 

 

Therefore, the combination of the identity (2.134) and the solution of (2.135) gives rise 

to: 

∫
𝑑𝑝

𝑝 · (𝑝 +
𝑐
2 · 𝑓

 ) · (𝑝 −
𝑐
2 · 𝑓

 )

𝑎(𝑧)

𝑎(0)

= 2 · (
𝑓

𝑐
)
2

· ln

[
 
 
 𝑎2(0) · 𝑎2(𝑧) − 𝑎2(0) · (

𝑐
2 · 𝑓

)
2

𝑎2(𝑧) · 𝑎2(0) − 𝑎2(𝑧) · (
𝑐
2 · 𝑓

)
2

]
 
 
 

 

 

(2.136) 

Now, by introducing (2.136) into (2.133), it is obtained that: 

4 · ∫ 𝐾𝑎(𝑟, 𝑓) · 𝑑𝑟
𝑧

0

= ln

[
 
 
 𝑎2(0) · 𝑎2(𝑧) − 𝑎2(0) · (

𝑐
2 · 𝑓

)
2

𝑎2(𝑧) · 𝑎2(0) − 𝑎2(𝑧) · (
𝑐
2 · 𝑓

)
2

]
 
 
 

 

 

(2.137) 

If the exponentials of both sides of (2.137) are taken, the following relation is attained: 

𝑒4·∫ 𝐾𝑎(𝑟,𝑓)·𝑑𝑟
𝑧
0 =

𝑎2(0) · 𝑎2(𝑧) − 𝑎2(0) · (
𝑐
2 · 𝑓

)
2

𝑎2(𝑧) · 𝑎2(0) − 𝑎2(𝑧) · (
𝑐
2 · 𝑓

)
2 

 

(2.138) 

Finally, by performing the necessary rearrangements in order to solve for 𝑎(𝑧), it is lastly 

obtained that: 

𝑎(𝑧) =
𝑐

2 · 𝑓
·

𝑒−2·∫ 𝐾𝑎(𝑟,𝑓)·𝑑𝑟
𝑧
0

√𝑒−4·∫ 𝐾𝑎(𝑟,𝑓)·𝑑𝑟
𝑧
0 + ([

𝑐
2 · 𝑎(0) · 𝑓

])
2

− 1

 
(2.139) 

In order to conclude this subsection, which is devoted to determine the width of a 

nonuniform rectangular waveguide for a given 𝐾𝑎(𝑧, 𝑓), it must be pointed out that in view of 

(2.139), 𝑎(𝑧) depends on the particular frequency that is being considered, something that is 

fully coherent with the 𝐾𝑎(𝑧, 𝑓) definition of (2.124). This conclusion is very important for the 

physical implementation of microwave components in rectangular waveguide technology, since 

the synthesis of the device must be focused on obtaining the desired coupling coefficient for a 
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single frequency value, which must be employed subsequently in the 𝑎(𝑧) calculation, because 

if we don’t proceed in that way, the resulting device will neither achieve the desired dimensions 

at its output port, nor the expected frequency response. 

2.2.1.2. Relationship between the Coupling 

Coefficient and the Physical 

Dimensions for Transmission Lines 

that Support TEM or QTEM Modes 

This subsection is focused on the relationship between the coupling coefficient and the 

physical dimensions for the case of waveguides that are able to propagate TEM or QTEM modes 

by applying the single-mode operation assumption. The collection of waveguides that support 

these modes are commonly known as transmission lines. 

Firstly, the pure TEM mode is a mode category for those that feature null electric and 

magnetic field components in the propagation direction [27]-[30], i.e. 𝐸𝑧 = 0 and 𝐻𝑧 = 0. This 

kind of mode is inherent from ideal lossless waveguides composed by two conductors that are 

placed in parallel to each other in a homogeneous dielectric medium, being the stripline and the 

coaxial line classical examples of these transmission lines (see Fig. 2.4).  

However, in some cases both conductors are not enclosed into a homogeneous dielectric 

medium, something that forcibly leads to 𝐸𝑧 ≠ 0 and 𝐻𝑧 ≠ 0. Nevertheless, if the dielectric 

thickness is much smaller than the operating wavelength [29], the 𝑧-components of both fields, 

electric and magnetic, will tend to be approximately null, 𝐸𝑧 ≈ 0 and 𝐻𝑧 ≈ 0, so the mode is 

called Quasi-TEM (QTEM) and its behavior is assumed to be quite close to a TEM mode from 

a practical point of view. Typical transmission lines that support QTEM modes are the microstrip 

and the coplanar waveguides that are depicted in Fig. 2.5, among others. 
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(a) 

 

(b) 

Fig. 2.4. Sketch of some examples of transmission lines that allow TEM-mode propagation: (a) Stripline. (b) 

Coaxial line. 

 

(a) 

 

(b) 

Fig. 2.5. Sketch of some transmission lines that propagate a QTEM mode: (a) Microstrip line. (b) Coplanar line. 

If the Coupled-Mode Theory is applied to the case of a fundamental 𝑚 TEM or QTEM 

mode, the discrete-spectrum mode 𝐶𝑚,𝑖 equation of (2.34), for 𝑖 = −𝑚, i.e. 𝐶𝑚,−𝑚, can be 

conveniently rewritten in terms of the characteristic impedance of the mode, 𝑍0𝑚, as it was 

demonstrated in [18], where alternative expressions for the modes of the discrete and continuous 

spectrum are besides provided. Therefore, by starting from (2.34) and after performing several 

mathematical manipulations, it can be demonstrated [18] that for any 𝑚 discrete spectrum mode 

and assuming that 𝑁𝑚 is constant with 𝑧, the resulting 𝐶𝑚,−𝑚 can be expressed as: 

𝐶𝑚,−𝑚 = −
1

2 · 𝑍0𝑚
·
𝑑𝑍0𝑚
𝑑𝑧

+
1

𝑁𝑚
·∬ (𝑒 𝑚 ×

𝜕ℎ⃗ 𝑚

𝜕𝑧
) · �̂� · 𝑑�̆�

�̆�

 (2.140) 

where the normalized vector mode patterns, 𝑒 𝑚 and ℎ⃗ 𝑚 , are related with the vector mode patterns 

of the 𝑚 mode, �⃗� 𝑚 and �⃗⃗� 𝑚, of the uniform waveguide associated with the cross section of 

interest, as they were defined in (2.1) and (2.2), in the following manner: 
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�⃗� 𝑚 = √𝑍0𝑚 · 𝑒 
𝑚 (2.141) 

�⃗⃗� 𝑚 =
1

√𝑍0𝑚
· ℎ⃗ 𝑚 (2.142) 

Regarding the concept of characteristic impedance, it is well known [29] that when 

dealing with TEM modes, the voltage, 𝑉, and the current, 𝐼, can be defined in a univocal way, 

so the characteristic impedance of the 𝑚 mode, 𝑍0𝑚, is accordingly defined as: 

𝑍0𝑚 =
𝑉+

𝐼+
= −

𝑉−

𝐼−
 (2.143) 

where 𝑉+ and 𝑉− stand for the voltage forward and backward travelling waves, respectively; 

while 𝐼+ and 𝐼− represent the corresponding current waves. 

However, when dealing with no pure TEM modes, i.e. QTEM modes, the definitions of 

𝑉 and 𝐼 are no longer unique and depend on the choice of the specific points within the cross 

section selected, so 𝑍0𝑚 cannot be univocally specified. In this case, a suitable definition of 𝑍0𝑚 

for determining the coupling coefficient 𝐶𝑚,−𝑚 must be found. Moreover, the sought 𝑍0𝑚 must 

feature the variations that the cross section presents along the waveguide. Indeed, the most 

suitable 𝑍0𝑚 is the one that accomplishes the same reflection coefficient as the one that is directly 

produced by the forward and backward travelling waves of the 𝑚 mode [18], [19]. Taking into 

account this definition, the field-dependent part of (2.140) can be neglected and 𝐶𝑚,−𝑚 can be 

approximated for the discrete spectrum modes as: 

𝐶𝑚,−𝑚 ≈ −
1

2 · 𝑍0𝑚
·
𝑑𝑍0𝑚
𝑑𝑧

 (2.144) 

Since single-mode operation is assumed,  𝐾 = 𝐶1,−1, yielding to: 

𝐾(𝑧) = −
1

2 · 𝑍0(𝑧)
·
𝑑𝑍0(𝑧)

𝑑𝑧
 (2.145) 

It is important to note that (2.145) can be solved so as to calculate 𝑍0(𝑧) from 𝐾(𝑧). 

Indeed, equation (2.145) has the same form as (2.123) but for 𝑍0(𝑧) instead of 𝑏(𝑧), and 𝐾(𝑧) 

instead of 𝐾𝑏(𝑧). If the mathematical procedure that is fully detailed in subsection 2.2.1.1.1 

within equations (2.125)-(2.130) is applied for (2.145), it will be obtained that: 

𝑍0(𝑧) = 𝑍0(0) · 𝑒
−2·∫ 𝐾(𝑟)·𝑑𝑟

𝑧
0  (2.146) 
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where 𝑍0(0) is the characteristic impedance of the line at its beginning that can be arbitrarily 

chosen, while 𝑟 is just a dummy variable of integration. 

The planar transmission lines are of great interest in the design of microwave components 

due to their flexibility and high integration capability between their different specific 

technologies. Therefore, the following subsection will be devoted to relate the characteristic 

impedance with the physical dimensions for the microstrip case, which is one of the most 

employed planar technologies because it can be fabricated by means of low-cost 

photolithographic processes and it is easily miniaturized and integrated with both passive and 

active microwave devices as well [29]. However, similar relationships can be found in the 

literature for other planar technologies [19], [20] ,[29]-[31], [34]. 

 

2.2.1.2.1. Deduction of the Physical Dimensions for 

Microstrip Lines 

The microstrip line consists on a single thin metallic strip of width 𝑊, placed on a 

dielectric substrate of thickness, ℎ, that is situated, in turn, over a metallic plane, as it is shown 

in Fig. 2.6a. 

As it has been stated, the microstrip propagation medium is inhomogeneous, as it can be 

observed in Fig. 2.6b, so the mode under consideration will be QTEM since the different 

propagation velocity in the dielectric, 𝑣𝑝,𝑑𝑖𝑒𝑙, and in the air, 𝑣𝑝,𝑎𝑖𝑟, will lead to the appearance of 

a 𝑧-component in the fields, being: 

𝑣𝑝,𝑑𝑖𝑒𝑙 =
𝑐0

√휀𝑟
=
𝑣𝑝,𝑎𝑖𝑟

√휀𝑟
 (2.147) 

𝑣𝑝,𝑎𝑖𝑟 = 𝑐0 = 𝑣𝑝,𝑑𝑖𝑒𝑙 · √휀𝑟 (2.148) 

In order to describe the electromagnetic properties of the microstrip line, an effective 

value of the electric relative permittivity, 휀𝑒𝑓𝑓 , is introduced. The 휀𝑒𝑓𝑓  can be interpreted as the 

electric relative permittivity that would equivalently correspond if an auxiliary homogeneous 

medium were considered instead of the actual inhomogeneous one. Thus, 휀𝑒𝑓𝑓  will have an 

intermediate value between the relative permittivities of the air and the dielectric, i.e. 1 < 휀𝑒𝑓𝑓 <

휀𝑟. The value of 휀𝑒𝑓𝑓  can be calculated by taking into account the electric relative permittivity 

of the dielectric, 휀𝑟, the substrate thickness, ℎ, and the conductor width, 𝑊, as [29]: 
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(a) 

 

(b) 

Fig. 2.6. Sketch of the microstrip line: (a) Structure and relevant dimensions. (b) Distribution of the electric field.  

휀𝑒𝑓𝑓 =
휀𝑟 + 1

2
+
휀𝑟 − 1

2

1

√1+
12 · ℎ
𝑊

 
(2.149) 

Thereby, the propagation velocity of the QTEM wave is taken as: 

𝑣𝑝 =
𝑐0

√ 휀𝑒𝑓𝑓
 (2.150) 

Therefore, when dealing with a microstrip line, the phase constant 𝛽 can be calculated as 

follows: 

𝛽 =
2 · 𝜋 · 𝑓

𝑣𝑝
=
2 · 𝜋 · 𝑓

𝑐0
· √휀𝑒𝑓𝑓  (2.151) 

In view of (2.149) it is clear that 휀𝑒𝑓𝑓   will depend on the strip width, which is a function 

of the characteristic impedance in turn. Thus, if the characteristic impedance varies along the 

propagation 𝑧 axis, 휀𝑒𝑓𝑓  will be also a function of 𝑧, i.e. 휀𝑒𝑓𝑓(𝑧), and the phase constant will 

carry that dependence. Fortunately, the dependence on 𝑧 can be compensated exactly for a single 

frequency by using the technique that will be detailed in section 2.2.2, which results in a modified 

propagation axis. More sophisticated models reveal also a relationship between 휀𝑒𝑓𝑓  and 

frequency [35]-[43], leading to 휀𝑒𝑓𝑓(𝑧, 𝑓). Therefore, the correspondence between the 

interconnected variables 휀𝑒𝑓𝑓 , 𝑍0 and 𝑊 is only exact for a single frequency value, and the 

microstrip technology is considered as a dispersive waveguide technology as a consequence. 

It is possible to relate the physical dimensions of the microstrip line with the characteristic 

impedance, 𝑍0, for each combination of relative permittivity of the substrate, 휀𝑟, dielectric 

thickness, ℎ, and line width, 𝑊, as [29]: 
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𝑊

ℎ
=

{
 

 
8𝑒𝐴

𝑒2𝐴 − 2
2

𝜋
· {𝐵 − 1 − ln(2𝐵 − 1) +

휀𝑟 − 1

2휀𝑟
[(𝐵 − 1) + 0.39 −

0.61

휀𝑟
]}

 

 

for 
𝑊

ℎ
< 2 

(2.152)  

for 
𝑊

ℎ
> 2 

being: 

𝐴 =
𝑍0
60
√
휀𝑟 + 1

2
+
휀𝑟 − 1

휀𝑟 + 1
(0.23+

0.11

휀𝑟
) (2.153) 

𝐵 =
377𝜋

2𝑍0√휀𝑟
 (2.154) 

More refined relationships between the characteristic impedance and the physical 

dimensions of the microstrip line can be obtained by means of KeysightTM ADS Linecalc Tool, 

which are based on [35]-[41], where the frequency and the thickness of the upper conductor are 

employed for the accurate calculation of the impedance value. 

Finally, it must be stressed that in order to guarantee the assumed single-mode operation, 

while avoiding the coupling to higher order modes, the selection of a suitable dielectric may 

become critical depending on the specific structure considered to be implemented using 

microstrip technology. This effect could limit the frequency operation range due to strong 

coupling between the fundamental QTEM mode and the lowest TM mode. Besides, additional 

frequency restrictions should be taken into account to avoid the so-called transverse-resonant 

mode. In order to operate in a safe frequency range, the expressions that approximate the 

frequencies where the coupling to the higher TM mode, 𝑓𝑐,𝑇𝑀, and the transversal-resonance, 

𝑓𝑐,𝑇𝑅, may start to be troublesome, are provided below [42], [43]: 

𝑓𝑐,𝑇𝑀 =
𝑐0 · tan

−1(휀𝑟)

𝜋 · ℎ · √2 · (휀𝑟 − 1)
 (2.155) 

𝑓𝑐,𝑇𝑅 =
𝑐0

√휀𝑟 · (2 · 𝑊𝑚𝑎𝑥 + 0.8 · ℎ)
 (2.156) 

where 𝑊𝑚𝑎𝑥 in (2.156) is the maximum width of the metallic strip. 

To finish this subsection, it must be highlighted that the characteristic impedance and the 

physical dimensions of the microstrip line are related between them. Since the characteristic 

impedance has been already linked with the coupling coefficient under single-mode operation 

by means of (2.145) and (2.146), it can be concluded that a complete relationship has been 
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established between that coupling coefficient and the dimensions of the microstrip line. 

Therefore, using the methods that will be thoroughly detailed in CHAPTER 4-CHAPTER 6 to 

calculate the coupling coefficient required to obtain a target frequency response, it will be 

possible to implement that coupling coefficient by providing a suitable microstrip line that 

feature the necessary variations in the dimensions of its cross section. These changes will be 

actually performed in the width of the metallic strip, since it is not currently possible to modify 

the thickness of the substrate. Hence, the target frequency response will be satisfied by the 

resulting device. 

2.2.1.3. Relationship between the Coupling 

Coefficient, the Frequency Response, 

and the Physical Dimensions for TEM 

or QTEM Symmetrical Edge Coupled 

Transmission Lines 

The coupled line configurations were early employed for coupler design [44]-[46], but 

recent examples can be also found in the literature [47], [48]. Besides, it has been recently 

employed to implement several analog signal processors in transmission operation mode [49], 

also in the context of the Coupled-Mode Theory and the inverse scattering synthesis methods 

[50]. 

The study of the symmetrical edge coupled transmission lines, from the point of view of 

the Coupled-Mode Theory, can be easily carried out thanks to the mode decomposition that can 

be performed to the total fields that actually propagate along this kind of structures, giving rise 

to the so-called even and odd modes [51], [52]. Since two modes are going to be taken into 

account, the single-mode operation assumption will not be rigorously valid, and hence it should 

be presented in section 2.1. However, it will be shown that the foundations of the single-mode 

operation can be reasonably employed for dealing with the symmetrical edge coupled line 

structures. 

Regarding the structure of the symmetrical edge coupled transmission lines, it strongly 

depends on the specific technology employed to implement them (see Fig. 2.7), although their 

common characteristic may be described by considering two transmission lines that are placed  
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(a) 

 

(b) 

Fig. 2.7. Sketch of some examples of coupled transmission lines in different planar technologies: (a) Stripline. (b) 

Microstrip. 

sufficiently close so as to couple energy between each other, being the profile of both lines 

symmetric with respect to the longitudinal plane to the propagation direction. 

If the presence of higher-order spurious modes is avoided, the mode decomposition of an 

ideal symmetrical edge coupled transmission line will result in orthogonal even and odd modes. 

Moreover, it will be assumed that those modes belong to the discrete spectrum mode category 

and they are not be able to couple energy between each other. By doing so, the coupled-mode 

equation system of (2.3) can be rewritten as: 

𝑑𝑎𝑒
+

𝑑𝑧
= −𝑗 · 𝛽𝑒 · 𝑎𝑒

+ + 𝐶𝑒,−𝑒 · 𝑎𝑒
− (2.157) 

𝑑𝑎𝑒
−

𝑑𝑧
= 𝑗 · 𝛽𝑒 · 𝑎𝑒

− + 𝐶−𝑒,𝑒 · 𝑎𝑒
+ (2.158) 

𝑑𝑎𝑜
+

𝑑𝑧
= −𝑗 · 𝛽𝑜 · 𝑎𝑜

+ + 𝐶𝑜,−𝑜 · 𝑎𝑜
− (2.159) 

𝑑𝑎𝑜
−

𝑑𝑧
= 𝑗 · 𝛽𝑜 · 𝑎𝑜

− + 𝐶−𝑜,𝑜 · 𝑎𝑜
+ (2.160) 

where 𝑎𝑒
+ and 𝑎𝑒

− are the complex amplitudes of the forward and backward travelling waves of 

the even mode, respectively, whereas 𝑎𝑜
+ and 𝑎𝑜

− are the complex amplitudes of the same waves 

but for the odd mode case; 𝛽𝑒  and 𝛽𝑜 stand for the phase constant of the even and odd modes, 

respectively; and the set of 𝐶±𝑒,±𝑒 and 𝐶±𝑜,±𝑜 are the coupling coefficients between the forward 

and backward travelling waves of the even and odd modes, respectively. 

It is important to note that the equation system of (2.157)-(2.160) can be divided into two 

independent systems, since there is not a coupling between the waves of the even and odd modes. 

Furthermore, if the property (2.41) is considered, the coupling coefficients can be denoted as 
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𝐾𝑒 = 𝐶𝑒,−𝑒 = 𝐶−𝑒,𝑒 for the even mode, and as 𝐾𝑜 = 𝐶𝑜,−𝑜 = 𝐶−𝑜,𝑜 for the odd mode. Thus, the 

resulting system for the even mode results in [19], [20]: 

𝑑𝑎𝑒
+

𝑑𝑧
= −𝑗 · 𝛽𝑒 · 𝑎𝑒

+ +𝐾𝑒 · 𝑎𝑒
− (2.161) 

𝑑𝑎𝑒
−

𝑑𝑧
= 𝑗 · 𝛽𝑒 · 𝑎𝑒

− +𝐾𝑒 · 𝑎𝑒
+ (2.162) 

while for the odd mode case it is obtained that: 

𝑑𝑎𝑜
+

𝑑𝑧
= −𝑗 · 𝛽𝑜 · 𝑎𝑜

+ +𝐾𝑜 · 𝑎𝑜
− (2.163) 

𝑑𝑎𝑜
−

𝑑𝑧
= 𝑗 · 𝛽𝑜 · 𝑎𝑜

− +𝐾𝑜 · 𝑎𝑜
+ (2.164) 

Therefore, it can be considered that both systems (2.161), (2.162) and (2.163), (2.164) are 

fully identical to the single transmission line case of (2.91), (2.92) and hence, it can be 

demonstrated by following the same reasoning employed in section 2.2.1.2 that [19], [20]: 

𝐾𝑒(𝑧) = −
1

2 · 𝑍0,𝑒(𝑧)
·
𝑑𝑍0,𝑒(𝑧)

𝑑𝑧
 (2.165) 

𝐾𝑜(𝑧) = −
1

2 · 𝑍0,𝑜(𝑧)
·
𝑑𝑍0,𝑜(𝑧)

𝑑𝑧
 (2.166) 

being 𝑍0,𝑒(𝑧) and 𝑍0,𝑜(𝑧) the characteristic impedances of the even and odd modes Moreover, 

taking into account the solution of (2.146) for the case of a single TEM or QTEM line, it will be 

automatically satisfied that 𝑍0,𝑒(𝑧) and 𝑍0,𝑜(𝑧) can be obtained from 𝐾𝑒(𝑧) and 𝐾𝑜(𝑧), 

respectively, as [19], [20]: 

𝑍0,𝑒(𝑧) = 𝑍0,𝑒(0) · 𝑒
−2·∫ 𝐾𝑒(𝑟)·𝑑𝑟

𝑧
0  (2.167) 

𝑍0,𝑜(𝑧) = 𝑍0,𝑜(0) · 𝑒
−2·∫ 𝐾𝑜(𝑟)·𝑑𝑟

𝑧
0  (2.168) 

being 𝑍0,𝑒(0) and 𝑍0,𝑜(0) the characteristic impedance of the even and odd modes, respectively, 

that can be arbitrarily chosen. 
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Regarding the frequency response of the symmetrical edge coupled transmission lines, 

the following useful relationship between the four port scattering parameters and the reflection 

and transmission coefficients of even and odd modes can be stated [34]: 

𝑆11(𝑓) =
𝛤𝑒(𝑓) + 𝛤𝑜(𝑓)

2
 (2.169) 

𝑆21(𝑓) =
𝑇𝑒(𝑓) + 𝑇𝑜(𝑓)

2
 (2.170) 

𝑆31(𝑓) =
𝛤𝑒(𝑓) − 𝛤𝑜(𝑓)

2
 (2.171) 

𝑆41(𝑓) =
𝑇𝑒(𝑓) − 𝑇𝑜(𝑓)

2
 (2.172) 

where 𝛤𝑒(𝑓) and 𝑇𝑒(𝑓) are the reflection and transmission coefficients of the even mode, while 

𝛤𝑜(𝑓) and 𝑇𝑜(𝑓) are the concerning ones of the odd mode. The nomenclature of the 𝑆-parameters 

follows the port-convention defined in Fig. 2.8. 

If the Coupled-Mode Theory notation of (2.161), (2.162) and (2.163), (2.164) is applied 

to 𝛤𝑒(𝑓), 𝑇𝑒(𝑓), 𝛤𝑜(𝑓), and 𝑇𝑜(𝑓), it will be obtained that: 

Γ𝑒(𝑓) =
𝑏1,𝑒(𝑓)

𝑎1,𝑒(𝑓)
|
𝑎2,𝑒=0

=
√𝑁𝑒

+(𝑧 = 0) · 𝑎𝑒
−(𝑧 = 0, 𝑓)

√𝑁𝑒+(𝑧 = 0) · 𝑎𝑒+(𝑧 = 0, 𝑓)
|

𝑎𝑒
−(𝑧=𝐿,𝑓)=0

= 

(2.173) 

=
𝑎𝑒
−(𝑧 = 0, 𝑓)

𝑎𝑒
+(𝑧 = 0, 𝑓)

|
𝑎𝑒
−(𝑧=𝐿,𝑓)=0

 

 

Fig. 2.8. Assignation of port numbers for a generic symmetrical edge coupled transmission line and port naming 

under the classical coupler nomenclature for the sake of clarity [34]. 
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𝑇𝑒(𝑓) =
𝑏2,𝑒(𝑓)

𝑎1,𝑒(𝑓)
|
𝑎2,𝑒=0

=
√𝑁𝑒

+(𝑧 = 𝐿) · 𝑎𝑒
+(𝑧 = 𝐿, 𝑓)

√𝑁𝑒+(𝑧 = 0) · 𝑎𝑒+(𝑧 = 0, 𝑓)
|

𝑎𝑒
−(𝑧=𝐿,𝑓)=0

 (2.174) 

Γ𝑜(𝑓) =
𝑏1,𝑜(𝑓)

𝑎1,𝑜(𝑓)
|
𝑎2,𝑜=0

=
√𝑁𝑜

+(𝑧 = 0) · 𝑎𝑜
−(𝑧 = 0, 𝑓)

√𝑁𝑜
+(𝑧 = 0) · 𝑎𝑜

+(𝑧 = 0, 𝑓)
|

𝑎𝑜
−(𝑧=𝐿,𝑓)=0

 

(2.175) 

=
𝑎𝑜
−(𝑧 = 0, 𝑓)

𝑎𝑜
+(𝑧 = 0, 𝑓)

|
𝑎𝑜
−(𝑧=𝐿,𝑓)=0

 

𝑇𝑜(𝑓) =
𝑏2,𝑜(𝑓)

𝑎1,𝑜(𝑓)
|
𝑎2,𝑜=0

=
√𝑁𝑜

+(𝑧 = 𝐿) · 𝑎𝑜
+(𝑧 = 𝐿, 𝑓)

√𝑁𝑜+(𝑧 = 0) · 𝑎𝑜+(𝑧 = 0, 𝑓)
|

𝑎𝑜
−(𝑧=𝐿,𝑓)=0

 (2.176) 

where 𝑁𝑒
+ and 𝑁𝑜

+ are the normalization factors of the forward travelling wave of the even and 

odd modes, respectively. If it is assumed that these normalization factors are constant along 𝑧, it 

will be concluded that: 

𝑇𝑒(𝑓) =
𝑎𝑒
+(𝑧 = 𝐿, 𝑓)

𝑎𝑒
+(𝑧 = 0, 𝑓)

|
𝑎𝑒
−(𝑧=𝐿,𝑓)=0

 (2.177) 

𝑇𝑜(𝑓) =
𝑎𝑜
+(𝑧 = 𝐿, 𝑓)

𝑎𝑜
+(𝑧 = 0, 𝑓)

|
𝑎𝑜
−(𝑧=𝐿,𝑓)=0

 (2.178) 

Finally, the most important conclusion of this section devoted to symmetrical edge 

coupled transmission lines is that a relationship has been exposed between de coupling 

coefficients, 𝐾𝑒 and 𝐾𝑜, and the frequency response of the structure, since they govern the 

complex amplitudes 𝑎𝑒
+, 𝑎𝑒

−, 𝑎𝑜
+, and 𝑎𝑜

− along the propagation direction and therefore, the 

reflection and transmission coefficients of both modes at the ports as well as the 𝑆-parameters. 

Thus, the next subsection will be focused on defining the relation between the characteristic 

impedance of both modes with the physical dimension for the microstrip case, due to the fact 

that the symmetrical edge coupled transmission line configuration in this technology will be 

particularly interesting because it features the low-cost and easy manufacturing advantages 

mentioned for the single line case. Nonetheless, the concerning relationships for other coupled 

transmission line technologies such as stripline can be found in the literature [29]-[31], [34]. 
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2.2.1.3.1. Deduction of the Physical Dimensions for 

Symmetrical Edge Coupled Microstrip Lines 

The physical structure of a symmetrical edge coupled microstrip transmission line 

consists of two metallic strips of width 𝑊, that are placed close enough between each other with 

a distance, 𝑠, that allows the coupling of energy between them. The strips are situated over a 

grounded dielectric substrate of relative permittivity, 휀𝑟, and thickness, ℎ, as it can be seen in 

Fig. 2.9a. 

As it has been previously explained, the even an odd mode decomposition may be 

employed if the coupling to spurious modes is avoided. The corresponding distribution of the 

electric field of the even and odd modes is represented in Fig. 2.9b and Fig. 2.9c, respectively. 

In view of Fig. 2.9b and Fig. 2.9c, it is clear that the propagation medium for both modes 

is not homogeneous and consequently, the propagation velocity is going to be different at the air 

and at the dielectric substrate, yielding to a 𝑧-component of the electromagnetic fields for both 

modes. Therefore, the even and odd modes belong to the QTEM mode category. In order to deal 

with this difference in the electrical permittivity, an effective value of the latter is defined as it  

 

 

(a) 

 

(b) 

 

(c) 

Fig. 2.9. Sketch of microstrip coupled-lines: (a) Structure and relevant dimensions. Distribution of the electric field 

for the even (b) and odd (c) modes. 
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was already done in for the case of a single microstrip transmission line. However, in this case, 

a different effective relative electrical permittivity needs to be defined for the even, 휀𝑒𝑓𝑓,𝑒, and 

odd, 휀𝑒𝑓𝑓,𝑜, mode cases, since their field distributions depicted in Fig. 2.9b and Fig. 2.9c do not 

cover the same parts of air and substrate. The immediate consequence of this difference is that 

both modes will propagate with different velocities, being 𝑣𝑝,𝑒 the proper from the even mode, 

and 𝑣𝑝,𝑜 the corresponding one for the odd case. These velocities can be calculated as: 

 𝑣𝑝,𝑒 =
𝑐0

√ 휀𝑒𝑓𝑓,𝑒
 (2.179) 

𝑣𝑝,𝑜 =
𝑐0

√ 휀𝑒𝑓𝑓,𝑜
 (2.180) 

It is noticeable that due to (2.179) and (2.180), the phase constant of the two modes will 

be also different, as it is shown below: 

𝛽𝑒 =
2 · 𝜋 · 𝑓

𝑣𝑝,𝑒
=
2 · 𝜋 · 𝑓

𝑐0
· √휀𝑒𝑓𝑓,𝑒  (2.181) 

𝛽𝑜 =
2 · 𝜋 · 𝑓

𝑣𝑝,𝑜
=
2 · 𝜋 · 𝑓

𝑐0
· √휀𝑒𝑓𝑓,𝑜 (2.182) 

The value of 휀𝑒𝑓𝑓,𝑒 can be calculated for a symmetrical edge coupled transmission lines 

that feature a width in their metallic strips of 𝑊, that are also separated a distance 𝑠, over a 

substrate of relative electrical permittivity of 휀𝑟, and thickness ℎ, by means of [34]: 

휀𝑒𝑓𝑓,𝑒 = 0.5 · (휀𝑟 + 1) + 0.5 · (휀𝑟 − 1) · (1 +
10

𝜈
)
−[𝑎𝑒(𝜈)·𝑏𝑒(𝜀𝑟)]

 (2.183) 

where: 

𝜈 = 𝑢 ·
(20 + 𝑔2)

(10 + 𝑔2)
+ 𝑔 · 𝑒−𝑔 (2.184) 

𝑎𝑒( 𝜈) = 1 +
1

49
· ln [

𝜈4 + (
𝜈
52
)
2

𝜈4 + 0.432
] +

1

18.9
· ln [1 + (

𝜈

18.1
)
3

] (2.185) 

𝑏𝑒(휀𝑟) = 0.564 · (
휀𝑟 − 0.9

휀𝑟 + 3
)
0.053

 (2.186) 
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and being, 

𝑢 =
𝑊

ℎ
 

 
(2.187) 

𝑔 =
𝑠

ℎ
  (2.188) 

Similar expressions are available for calculating 휀𝑒𝑓𝑓,𝑜, taking into account the identities 

of (2.187) and (2.188) [34]: 

휀𝑒𝑓𝑓,𝑜 = [0.5 · (휀𝑟 + 1) + 𝑎𝑜(𝑢, 휀𝑟) − 휀𝑒𝑓𝑓,𝑖𝑛] · 𝑒
(−𝑐𝑜·𝑔

𝑑𝑜) + 휀𝑒𝑓𝑓,𝑖𝑛  (2.189) 

where: 

𝑎𝑜(𝑢, 휀𝑟) = 0.7287 · [휀𝑒𝑓𝑓,𝑖𝑛 − 0.5 · (휀𝑟 + 1)] · [1 − 𝑒
(−0.179·𝑢)] (2.190) 

𝑐𝑜 = 𝑏𝑜(휀𝑟) − [𝑏𝑜(휀𝑟) − 0.207] · 𝑒
(−0.414·𝑢) (2.191) 

𝑑𝑜 = 0.593 + 0.694 · 𝑒
(−0.562·𝑢) (2.192) 

being 

𝑏𝑜 =
0.747 · 휀𝑟
0.15 + 휀𝑟

 (2.193) 

where 휀𝑒𝑓𝑓,𝑖𝑛, is the effective relative electrical permittivity of a single microstrip line of width 

𝑊. 

It must be highlighted that this difference in the propagation velocity as well as in the 

phase constants may result troublesome when synthetizing a device in microstrip coupled lines 

technology. Moreover, the values of 휀𝑒𝑓𝑓,𝑒 and 휀𝑒𝑓𝑓,𝑜 will depend on 𝑊 and 𝑠, that will be related 

in turn with the characteristic impedances of both modes. Accordingly, if the characteristic 

impedances of both modes are not constant along 𝑧, then 휀𝑒𝑓𝑓,𝑒 and 휀𝑒𝑓𝑓,𝑜 will be also a function 

of 𝑧. Nonetheless, the differences in the phase constant as well as in the propagation velocities 

of both modes will be compensated by using the procedure that is fully detailed in section 2.2.2.1 

that will lead to a modified propagation axis. As in the case of the single microstrip line, the most 

accurate models also employ the frequency [53], [54] for determining 휀𝑒𝑓𝑓,𝑒 and 휀𝑒𝑓𝑓,𝑜, so in 

general it can be concluded that 휀𝑒𝑓𝑓,𝑒 = 휀𝑒𝑓𝑓,𝑒(𝑧, 𝑓) and 휀𝑒𝑓𝑓,𝑜 = 휀𝑒𝑓𝑓,𝑜(𝑧, 𝑓) and thus, the width 

of the metallic strips, as well as the characteristic impedances of the modes, will be frequency 

dependent. 
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Regarding the characteristic impedances of the even and odd modes, 𝑍0,𝑒 and 𝑍0,𝑜, 

respectively, they must satisfy that: 

𝑍0,𝑒 · 𝑍0,𝑜 = 𝑍0
2 (2.194) 

where 𝑍0 is the characteristic impedance of the coupled lines. Thus, the quasi-static even-mode 

characteristic impedance, 𝑍0,𝑒, can be calculated using (2.187) and (2.188) from the physical 

dimensions of the line as [34]: 

𝑍0,𝑒 = 𝑍0 ·
√
휀𝑒𝑓𝑓,𝑖𝑛
휀𝑒𝑓𝑓,𝑒

1 −
𝑍0
377

· √휀𝑒𝑓𝑓,𝑖𝑛 · 𝑄4

 (2.195) 

being: 

𝑄4 =
2 · 𝑄1
𝑄2

·
1

𝑒−𝑔 · 𝑢𝑄3 + (2 − 𝑒−𝑔) · 𝑢−𝑄3
 (2.196) 

with: 

𝑄1 = 0.8695 · 𝑢
0.194 (2.197) 

𝑄2 = 1+ 0.7519 · 𝑔 + 0.189 · 𝑔
2.31 (2.198) 

𝑄3 = 0.1975 + [16.6 + (
8.4

𝑔
)
6

]

−0.387

+

ln [
𝑔10

1 + (
𝑔
3.4)

10]

241
 

(2.199) 

With regard to the quasi-static odd-mode characteristic impedance, 𝑍0,𝑜, it can be 

calculated taking under consideration again (2.187) and (2.188), as follows [34]: 

𝑍0,𝑜 = 𝑍0 ·
√
휀𝑒𝑓𝑓,𝑖𝑛
휀𝑒𝑓𝑓,𝑜

1 −
𝑍0
377 · √휀𝑒𝑓𝑓,𝑖𝑛 · 𝑄10

 (2.200) 

being: 

𝑄10 =
𝑄2 · 𝑄4 − 𝑄5 · 𝑒

ln(𝑢)·𝑄6·𝑢
−𝑄9  

𝑄2
 (2.201) 
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with: 

𝑄5 = 1.794 + 1.14 · ln (1 +
0.638

𝑔 + 0.517 · 𝑔2.43
)   (2.202) 

𝑄6 = 0.2305 +

ln [
𝑔10

1 + (
𝑔
5.8
)
10]

281.3
+
ln(1 + 0.598 + 𝑔1.154)

5.1
 

(2.203) 

𝑄7 =
10 + 190 · 𝑔2

1 + 82.3 · 𝑔3
 (2.204) 

𝑄8 = 𝑒
−6.5−0.95·ln(𝑔)−(

𝑔
0.15

)
5

 (2.205) 

𝑄9 = ln(𝑄7) · (𝑄8 +
1

16.5
) (2.206) 

As in the case of the single microstrip transmission line, more accurate expressions that 

take into account the thickness of the metallic strips and the frequency can be obtained by using 

the KeysightTM ADS Linecalc software tool, which is based on [34], [36], [53], [54]. 

In order to conclude this subsection, it must be highlighted that closed-form expressions 

have been found to relate the characteristic impedance of the even and odd modes with the 

physical dimensions of the symmetrical edge coupled microstrip transmission lines. Since these 

characteristic impedances are related with the coupling coefficients of both modes, the 

dimensions of the coupled microstrip transmission lines can be calculated so as to satisfy those 

coupling coefficients as well as the frequency response determined by them.  
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2.2.2. Modelling of Non-Uniform 

Waveguides that Exhibit a Variable 

Phase Constant along the Propagation 

Direction 

As it has been already mentioned, the single-mode operation assumption will allow us to 

solve the synthesis problem under the coupled-mode formulation, using the analytical 

expressions of CHAPTER 3, as well as the inverse scattering techniques that will be covered in 

depth throughout CHAPTER 4, CHAPTER 5, and CHAPTER 6. However, it will be also 

exposed that an additional assumption must be performed in order to be able to reach a solution 

for the synthesis problem: the nonuniform waveguide structure, and specifically the operation 

mode, must be assumed to feature a phase constant that remains unaltered along the propagation 

direction. This principle means that the phase constant for a certain frequency must not vary 

along the propagation variation, being only a function of frequency, i.e. 𝛽(𝑓, 𝑧) = 𝛽(𝑓) . 

However, in many cases the change of the electrical or dimensional properties of a 

nonuniform waveguide leads to an implicit change of the phase constant along the propagation 

direction, i.e., 𝛽 = 𝛽(𝑓, 𝑧). For instance, the variation of the width, 𝑎, of a rectangular waveguide 

along the propagation direction involves a variation of 𝛽 along 𝑧, something that becomes 

obvious by checking (2.117). On the other hand, when dealing with a microstrip transmission 

line with changes in its strip width, 𝑊, an inherent variation of the effective electric permittivity 

in the propagation direction will be caused due to (2.149), i.e. 휀𝑒𝑓𝑓(𝑧). Therefore, in view of 

(2.151) it will be clear that if 휀𝑒𝑓𝑓  is a function of 𝑧, then 𝛽 will also show a dependence on the 

position, i.e. 𝛽 = 𝛽(𝑓, 𝑧). Finally, it is worth noting that the phase constants of the even, 𝛽𝑒 , and 

odd, 𝛽𝑜, modes associated to microstrip coupled lines will also exhibit this undesired aspect when 

the width, 𝑊, or the gap, 𝑔, between the metallic strips do not remain unaltered along 𝑧. In this 

case 휀𝑒𝑓𝑓,𝑒 and 휀𝑒𝑓𝑓,𝑜 will be also 𝑧-dependent because of (2.183)-(2.186) and (2.189)-(2.193), 

respectively, leading in turn to 𝛽𝑒 = 𝛽𝑒(𝑓, 𝑧) and 𝛽𝑜 = 𝛽𝑜(𝑓, 𝑧), see (2.181) and (2.182). 

However, in these cases where 𝛽 = 𝛽(𝑓, 𝑧), it will be possible to model approximately 

the electromagnetic behavior of the structure under the single-mode operation assumption by 

means of a reference phase constant, 𝛽𝑟𝑒𝑓 , that will be assumed not to vary along a normalized 

propagation axis, 𝜒. The approximation made using 𝛽𝑟𝑒𝑓  and 𝜒 will be exact for an arbitrarily 
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selected frequency, 𝑓𝑡 , although the accuracy will decrease as the frequency under consideration 

deviates from 𝑓𝑡 . 

Firstly, the relationship between the frequency, 𝑓, and the reference phase constant, 𝛽𝑟𝑒𝑓 , 

must be univocal, while also being a monotonically increasing function in the operation 

bandwidth. For example, if the dimensions of the final device along 𝑧 are unknown, 𝛽𝑟𝑒𝑓  can be 

calculated from that of the input port of the device, 𝛽𝑟𝑒𝑓 = 𝛽(𝑓, 𝑧 = 0), since it is the only point 

where the dimensions can be chosen as desired, because of (2.130), (2.139) for rectangular 

waveguide and (2.146) for transmission line technologies. However, any other point of the 

propagation axis can be selected to determine the relationship 𝛽𝑟𝑒𝑓(𝑓), and it can be even 

calculated as the average phase constant, for each frequency, between the two extremes of the 

device, 𝑧 = 0 and 𝑧 = 𝐿, i.e. 𝛽𝑟𝑒𝑓(𝑓) =
𝛽(𝑓,𝑧=0)+𝛽(𝑓,𝑧=𝐿)

2
, as it was done in [55] for the design of 

tapered matching sections in rectangular waveguide.  

In order to carry out the synthesis process, it will be assumed that 𝛽𝑟𝑒𝑓  will not vary along 

a normalized propagation axis, 𝜒. For the mathematical formulation to be consistent, the 

differential electrical length achieved along a certain 𝑑𝜒, i.e., 𝛽𝑟𝑒𝑓 ⋅ 𝑑𝜒, must be the same caused 

by the actual 𝛽 in 𝑑𝑧, i.e., 𝛽𝑟𝑒𝑓 · 𝑑𝜒 = 𝛽 · 𝑑𝑧. This relationship implies that: 

𝑑𝑧

𝑑𝜒
=
𝛽𝑟𝑒𝑓
𝛽

  (2.207) 

In view of (2.207), the actual propagation axis 𝑧 can be calculated from the normalized 

propagation axis 𝜒, by means of (2.208): 

𝑧(𝑓𝑡 , 𝜒) = ∫
𝛽𝑟𝑒𝑓(𝑓𝑡)

𝛽(𝑓𝑡 , 𝑟)
· 𝑑𝑟

𝜒

0

  (2.208) 

where 𝑟 is a dummy variable of integration. 

Let’s consider now the single-mode coupled-mode equations of (2.91), (2.92) that are 

shown again below for the sake of clarity: 

𝑑𝑎+

𝑑𝑧
= −𝑗 · 𝛽 · 𝑎+ +𝐾 · 𝑎− (2.91) 

𝑑𝑎−

𝑑𝑧
= 𝑗 · 𝛽 · 𝑎− +𝐾 · 𝑎+ (2.92) 
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In order to rewrite (2.91) as a function of the normalized propagation axis 𝜒, and of the 

reference propagation constant, 𝛽𝑟𝑒𝑓, the following procedure will be applied: 

𝑑𝑎+

𝑑𝑧
=
𝑑𝑎+

𝑑𝜒
·
𝑑𝜒

𝑑𝑧
  (2.209) 

Proceeding in the same way, and taking into account the dependence of the coupling 

coefficient 𝐾(𝑧) on 𝜈, see (2.93) and (2.100), with 𝜈 = tan(𝛼), calculated as the derivative with 

𝑧 of the corresponding physical dimension, it will be possible to rewrite: 

𝐾(𝑧) = 𝐾(𝜒) ·
𝑑𝜒

𝑑𝑧
  (2.210) 

Moreover, taking into account (2.207), 𝛽 can be also expressed as a function of 𝛽𝑟𝑒𝑓  and 

𝑑𝜒 𝑑𝑧⁄ : 

𝛽 = 𝛽𝑟𝑒𝑓 ·
𝑑𝜒

𝑑𝑧
  (2.211) 

Now, by substituting (2.209), (2.210) and (2.211) into (2.91), equation (2.212) is finally 

obtained. Moreover, proceeding in a similar manner with (2.92), equation (2.213) will be found: 

𝑑𝑎+

𝑑𝜒
= −𝑗 · 𝛽𝑟𝑒𝑓 · 𝑎

+ + 𝐾(𝜒) · 𝑎− (2.212) 

𝑑𝑎−

𝑑𝜒
= 𝑗 · 𝛽𝑟𝑒𝑓 · 𝑎

− + 𝐾(𝜒) · 𝑎+ (2.213) 

It is important to highlight that (2.212) and (2.213) constitute a system of coupled-mode 

equations, fully analogous to (2.91), (2.92), but formulated for the normalized position 𝜒, and 

the reference propagation constant  𝛽𝑟𝑒𝑓, that does not vary with 𝜒. This will allow us to consider 

a medium where 𝛽 does not vary with the normalized position, which is one of the main 

requirements of the synthesis techniques that will be presented between CHAPTER 3-

CHAPTER 6, but it will be necessary to employ 𝛽𝑟𝑒𝑓  and 𝜒 instead of 𝛽 and 𝑧. In the last step 

of the synthesis process 𝑧(𝜒) will be calculated by means of (2.208). By doing so, the result of 

the synthesis will be fully suitable for a position dependent 𝛽, and the undesired effects will be 

avoided. Nevertheless, it must be noted that the 𝑧(𝜒) transformation is done for a single 

frequency, 𝑓𝑡 , and it works properly for the frequency range where the quotient 𝛽𝑟𝑒𝑓(𝑓) 𝛽(𝑓, 𝑧)⁄  

does not vary much with respect to 𝛽𝑟𝑒𝑓(𝑓𝑡) 𝛽(𝑓𝑡 , 𝑧)⁄ . Due to this fact, it is advisable to perform 
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the transformation for a 𝑓𝑡  located at the center of the operation bandwidth of the device under 

consideration. 

Finally, in order to summarize the contents of this section, it must be highlighted that the 

modelling proposed for nonuniform waveguide structures that present a variation of 𝛽 along the 

propagation axis allows us to synthetize structures assuming that 𝛽 remains constant along a 

normalized axis 𝜒. Once the synthesis has been performed, it will be necessary to denormalize 

𝜒, or in other words to calculate 𝑧(𝜒) using (2.208), so as to obtain a device that meets the 

pursued frequency response despite of being implemented in a waveguide structure where 𝛽 

varies with the position 𝑧. 

2.2.2.1. Modelling for Microstrip Edge 

Coupled Transmission Lines 

In the previous section, a method has been proposed to model a waveguide technology 

whose phase constant, 𝛽, can vary along the propagation axis 𝑧, as a waveguide where it remains 

always constant along the propagation direction, so as to allow the application of the synthesis 

procedures using a reference phase constant, 𝛽𝑟𝑒𝑓 , and a normalized propagation axis, 𝜒. In the 

last step of the synthesis the actual propagation axis, 𝑧, is calculated by means of (2.208), 

considering the 𝛽𝑟𝑒𝑓  selected as well as the actual phase constant that is achieved at each point 

of the normalized propagation axis, i.e. 𝛽(𝑓𝑡 , 𝜒). It must be noted that this modelling method can 

be only applied when considering single mode operation. However, when considering edge 

coupled transmission lines, the mode decomposition that has been employed in section 2.2.1.3 

for the analysis of this kind of structures results in the so-called even and odd modes. In that 

section it was shown how that modes have their independent coupled-mode equations, being 

(2.61), (2.62) the concerning ones for the even case, while (2.63), (2.64) are the proper ones for 

the odd mode case. Thus, if the modelling method of (2.208) is directly applied to each mode, 

and the same 𝛽𝑟𝑒𝑓  is considered for both modes, the corresponding transformations will lead to 

different propagation axis for the even and odd modes, 𝑧𝑒(𝜒) and 𝑧𝑜(𝜒), respectively, that will 

be obtained by applying (2.208) as: 

𝑧𝑒(𝑓𝑡 , 𝜒) = ∫
𝛽𝑟𝑒𝑓(𝑓𝑡)

𝛽𝑒(𝑓𝑡 , 𝑟)
· 𝑑𝑟

𝜒

0

  (2.214) 
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𝑧𝑜(𝑓𝑡 , 𝜒) = ∫
𝛽𝑟𝑒𝑓(𝑓𝑡)

𝛽𝑜(𝑓𝑡 , 𝑟)
· 𝑑𝑟

𝜒

0

  (2.215) 

where 𝛽𝑒(𝑓𝑡 , 𝑟) and 𝛽𝑜(𝑓𝑡 , 𝑟) stand for the actual phase constant of the even and odd mode, 

respectively. Indeed, if the expressions for 𝛽𝑒  and 𝛽𝑜 provided in (2.181) and (2.182), 

respectively, are incorporated into (2.214) and (2.215), it will be found that 𝑧𝑒(𝜒) and 𝑧𝑜(𝜒) can 

be expressed in terms of the effective electrical permittivity of both modes as: 

𝑧𝑒(𝑓𝑡 , 𝜒) = ∫ √
휀𝑒𝑓𝑓,𝑟𝑒𝑓(𝑓𝑡)

휀𝑒𝑓𝑓,𝑒(𝑓𝑡 , 𝑟)
· 𝑑𝑟

𝜒

0

  (2.216) 

𝑧𝑜(𝑓𝑡 , 𝜒) = ∫ √
휀𝑒𝑓𝑓,𝑟𝑒𝑓(𝑓𝑡)

휀𝑒𝑓𝑓,𝑜(𝑓𝑡 , 𝑟)
· 𝑑𝑟

𝜒

0

  (2.217) 

where 휀𝑒𝑓𝑓,𝑟𝑒𝑓(𝑓𝑡) can be defined as the reference effective electrical permittivity of both modes 

at the frequency 𝑓𝑡 , which will be determined as: 

휀𝑒𝑓𝑓,𝑟𝑒𝑓(𝑓𝑡) = [
𝛽𝑟𝑒𝑓(𝑓𝑡) · 𝑐0
2 · 𝜋 · 𝑓

]

2

 (2.218) 

It is important to note that since 𝛽𝑟𝑒𝑓  can be arbitrarily chosen, the value of 휀𝑒𝑓𝑓,𝑟𝑒𝑓(𝑓𝑡) 

can be also selected as desired so as to achieve a certain sought value of 𝛽𝑟𝑒𝑓 . For example, in 

those cases where 𝑍0,𝑒(𝜒) ≥  𝑍0,𝑒(𝜒 = 0) and 𝑍0,𝑜(𝜒) ≤  𝑍0,𝑜(𝜒 = 0), one of the most useful 

choices that can be performed for the 휀𝑒𝑓𝑓,𝑟𝑒𝑓(𝑓𝑡) value is 휀𝑒𝑓𝑓,𝑟𝑒𝑓(𝑓𝑡) = 휀𝑒𝑓𝑓,𝑖𝑛(𝑓𝑡 , 𝑧 = 0), with 

휀𝑒𝑓𝑓,𝑖𝑛(𝑓𝑡 , 𝑧 = 0) defined as in section 2.2.1.3.1, i.e. the effective relative electrical permittivity 

of a single microstrip line of width 𝑊. By doing so, 𝜒 will be a good first approximation of 𝑧𝑒  

and 𝑧𝑜, since 휀𝑒𝑓𝑓,𝑜(𝑓𝑡) < 휀𝑒𝑓𝑓,𝑖𝑛(𝑓𝑡) < 휀𝑒𝑓𝑓,𝑒(𝑓𝑡). An example of this choice is provided in Fig. 

2.10a. 

Therefore, if it is required to maintain a certain relationship between 𝐾𝑒(𝜒) and 𝐾𝑜(𝜒) 

(or alternatively between 𝑍0,𝑒(𝜒) and 𝑍0,𝑜(𝜒)), due to (2.167) and (2.168), respectively, for the 

achievement of a desired frequency response of a microstrip coupled line structure (see section 

2.2.1.3), it will be necessary to denormalize the 𝜒 propagation axis in 𝑧𝑒  and 𝑧𝑜 for the even and 

odd modes respectively. Thus, the final impedance profiles will be 𝑍0,𝑒(𝑧𝑒) and 𝑍0,𝑜(𝑧𝑜) as it is  
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(a) 

 

(b) 

Fig. 2.10. Sketch of the modelling of a generic microstrip coupled-line structure: (a) the constant value of 

휀𝑒𝑓𝑓,𝑟𝑒𝑓(𝑓𝑡) has been selected following the criterion 휀𝑒𝑓𝑓,𝑟𝑒𝑓(𝑓𝑡) = 휀𝑒𝑓𝑓,𝑖𝑛(𝑓𝑡 , 𝑧 = 0) and the actual values of 

휀𝑒𝑓𝑓,𝑒(𝑓𝑡 , 𝜒) and 휀𝑒𝑓𝑓,𝑜(𝑓𝑡 , 𝜒) are also provided. (b) 𝑍0,𝑒 and 𝑍0,𝑜 profiles in the normalized 𝜒 propagation axis 

(dotted and dashed black traces, respectively) and in the actual 𝑧 axis (red and blue traces, respectively). The 

uniform transmission line section added to reach the length 𝐿 = 𝐿𝑒 = 𝐿𝑜 is highlighted with a green dashed circle. 

depicted in the sketch of Fig. 2.10. By doing so, the difference between their corresponding phase 

constants, 𝛽𝑒  and 𝛽𝑜, will be equalized and the frequency response will be the expected for the 

combination of 𝐾𝑒(𝜒) and 𝐾𝑜(𝜒). It is noticeable that the device will achieve a length 𝐿′ in the 

normalized propagation axis, 𝜒, while different lengths for the even and odd modes, 𝐿𝑒 =

max{𝑧𝑒} and 𝐿𝑜 = max{𝑧𝑜}, respectively, will be finally obtained as a consequence of the 

denormalization process. Indeed, it will be always obtained that 𝐿𝑒 < 𝐿𝑜 since 휀𝑒𝑓𝑓,𝑜(𝑓𝑡 , 𝑧) <

휀𝑒𝑓𝑓,𝑒(𝑓𝑡) ∀ 𝑧. Therefore, it will be necessary to complete the shortest even impedance profile 

with an uniform transmission line section of the final even impedance value, 𝑍0,𝑒(𝑧𝑒 = 𝐿𝑒), so 

as to artificialy reach the same length for both modes, 𝐿, with 𝐿 = 𝐿𝑒 = 𝐿𝑜. In the red trace of 

Fig. 2.10b that corresponds to the even mode impedance profile, the mentioned uniform 
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transmission line section addition can be appreciated (it is highlighted with a green dashed circle) 

at the end of the profile. 

Nonetheless, as in the case of a single line, this modelling that allows the synthesis is fully 

exact for the selected frequency, 𝑓𝑡 , and approximated around that frequency. Thus, it will be 

advisable to choose 𝑓𝑡  in the center of the operational bandwidth or at a specific frequency where 

the most accurate modelling is required. It is worth noting that this modelling technique was 

successfully demonstrated by Chudzik et al. in [50] for the design of arbitrary order 

differentiators implemented in microstrip coupled lines for the achievement of effective 

transmission operation. Nevertheless, it is obvious that the proposed methodology can be also 

applied to other kind of coupled transmission lines with characteristics that are not covered in 

this thesis although they are studied in [19], [20], [34].  
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2.2.3. Assimilation of the Effects of Cut-

Off Modes in Closed-Boundary 

Waveguides Using the Single-Mode 

Operation Approach 

The single-mode operation approach must be the starting point to deal with the synthesis 

problem as it has been stated during this chapter. However, the single-mode coupled-mode 

equation system of (2.91), (2.92) may not be an accurate enough approximation of the general 

system of (2.3) so as to represent the frequency response of a certain waveguide device, even in 

the cases where the fundamental mode is propagating and all the higher-order ones remain under 

cut-off regime, due to the parasitic reactive couplings between all of them. An intuitive 

approximation based on the general equation system of the Coupled-Mode Theory can be 

performed in order to take into account the effects of the cut-off modes in closed-boundary 

waveguides to make the synthesis procedure more accurate.  

Firstly, when the expression (2.3) is particularized for the case of 𝑚 = 1 (forward 

travelling wave of the fundamental mode), neglecting the continuous spectrum modes due to the 

closed-boundary condition, its corresponding coupled-mode equation is achieved. Moreover, 

assuming that the normalization factor of the mode, 𝑁1, remains constant with 𝑧 (and 

consequently 𝐶1,1 = 0 due to (2.38)), and extracting the corresponding term of the backward 

travelling wave of the first mode (𝑖 = −1) from the summation, the following expression will 

be attained: 

𝑑𝑎1
𝑑𝑧

= −𝑗 · 𝛽1 · 𝑎1 + 𝐶1,−1 · 𝑎−1 + ∑ 𝐶1,𝑖 · 𝑎𝑖
|𝑖|>1

 (2.219) 

It is very important to stress that (2.91) and (2.219) are quite similar between them (except 

for the cut-off modes term) if the following identities, 𝐶1,−1 = 𝐾, 𝑎1 = 𝑎
+, 𝑎−1 = 𝑎

−, and 𝛽1 =

𝛽 are recalled. In fact, a useful rearrangement can be applied to the cut-off modes term of (2.219), 

yielding to:  

𝑑𝑎1
𝑑𝑧

= −𝑗 · [𝛽1 + 𝑗 ∑
𝐶1,𝑖 · 𝑎𝑖
𝑎1|𝑖|>1

] · 𝑎1 + 𝐶1,−1 · 𝑎−1 (2.220) 
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Now, by inspecting (2.220), and comparing it with (2.91), it is clear that the parasitic 

effect of the higher-order mode couplings can be interpreted as an effective change of the 

propagation constant of the first mode along the propagation direction. In fact, the effective 

complex propagation constant, 𝛽′, can be defined to incorporate the parasitic effects of the cut-

off modes to the phase term, leading to: 

𝑑𝑎1
𝑑𝑧

= −𝑗 · 𝛽′ · 𝑎1 + 𝐶1,−1 · 𝑎−1 (2.221) 

where 𝛽′ = 𝛽𝑒𝑓𝑓 − 𝑗 · 𝛼𝑒𝑓𝑓, with 𝛽𝑒𝑓𝑓  and 𝛼𝑒𝑓𝑓 being the effective phase and loss constants, 

respectively, that can be defined as: 

𝛽𝑒𝑓𝑓 = 𝛽1 − 𝐼𝑚 {∑
𝐶1,𝑖 · 𝑎𝑖
𝑎1|𝑖|>1

} (2.222) 

𝛼𝑒𝑓𝑓 = −𝑅𝑒 {∑
𝐶1,𝑖 · 𝑎𝑖
𝑎1|𝑖|>1

} (2.223) 

It is also worth noting that equation (2.221) encompasses the term associated to higher-

order modes by means of the definition of 𝛽′, giving rise to a differential equation that is fully 

analogous to (2.91). 

It is important to stress that the expressions (2.222) and (2.223) can be applied only when 

the fundamental mode is propagating and the higher order ones are under cut-off regime, since 

the border between cut-off and propagation may lead to singularities in 𝐶1,𝑖 and 𝑎𝑖, which will 

involve infinite values of 𝛽𝑒𝑓𝑓  and 𝛼𝑒𝑓𝑓. 

Therefore, it can be considered that the parasitic couplings to higher-order modes cause 

a double effect in the expected behavior of the waveguide structure when assuming single-mode 

operation: firstly, a continuous change in the effective phase constant of the first mode that is 

represented by 𝛽𝑒𝑓𝑓 . On the other hand, the term associated with 𝛼𝑒𝑓𝑓 mathematically describes 

the local “loss” or “recovery” of energy by the fundamental mode due to the coupling to cut-off 

modes that are able to locally store and “give back” the energy. 

It must be highlighted that the complex propagation constant, 𝛽′, will no longer be 

constant in the propagation direction, 𝑧, since it depends on the complex amplitudes 𝑎1 and 𝑎𝑖, 

as well as on the coupling coefficients of the form 𝐶1,𝑖, with |𝑖| > 1, that are also variable with 

𝑧. In order to deal with this situation, two different approaches may be followed. The first one 

can be employed as a first simple approximation, and it will be known as the uniform scaling 
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method, while the most accurate one will be based on an iterative distributed scaling of the 

propagation axis. 

2.2.3.1. Uniform-Scaling Method 

The simplest solution to assimilate the effects of cut-off modes to the single-mode 

operation assumption is the uniform scaling method. In order to apply it, the first task is to solve 

the coupled mode equation system (2.3) only for discrete spectrum modes (a closed waveguide 

is assumed), after having calculated the necessary coupling coefficients, 𝐶𝑚,𝑖. Thus,  the problem 

that we have to solve is a system of first order linear ordinary differential equations that must be 

solved between 𝑧 = 0 and 𝑧 = 𝐿. If it is assumed that the structure is going to be excited with 

the forward-travelling wave of the fundamental mode (𝑚 = 1) at 𝑧 = 0, while featuring the 

output port matched for all modes, it will be possible to calculate the complex amplitude of each 

mode (specifically of its forward and backward travelling waves) along the waveguide structure 

as well as its 𝑆 parameters. These assumptions will constitute the boundary conditions of the 

problem and they can be mathematically formulated as follows: 

It is worth noting that due to (2.224) and (2.225) an exclusive unitary excitation of the 

fundamental mode is set at the input port of the device, whereas  (2.226) represents the matching 

condition at the output port. With these boundary conditions, the problem of (2.3) becomes a 

two-point boundary value problem. In order to solve it, the numerical method implemented in 

the Matlab function “bvp4c.m” for the solution of boundary value problems can be employed 

[56], [57]. By doing so, the complex amplitudes 𝑎1 and 𝑎𝑖 will be determined, allowing us to 

calculate 𝛽′ as well as 𝛽𝑒𝑓𝑓  and 𝛼𝑒𝑓𝑓 from (2.222) and (2.223). Then, it will be possible to deduce 

the average value of both parameters as: 

𝛽′̅ =
∫ 𝛽′ · 𝑑𝑧
𝐿

0

𝐿
=
∫ (𝛽𝑒𝑓𝑓 − 𝑗 · 𝛼𝑒𝑓𝑓) · 𝑑𝑧
𝐿

0

𝐿
= �̅�𝑒𝑓𝑓 − 𝑗 · �̅�𝑒𝑓𝑓  (2.227) 

 

 

where �̅�𝑒𝑓𝑓 and �̅�𝑒𝑓𝑓 are the average phase and loss constants, respectively. 

𝑎1(𝑧 = 0) = 1 (2.224) 

𝑎𝑚(𝑧 = 0) = 0 ∀ 𝑚 > 1 (2.225) 

𝑎𝑚(𝑧 = 𝐿) = 0 ∀ 𝑚 < 0 (2.226) 
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Now, it is important to realize that the effective loss term is locally not null, i.e., 

𝛼𝑒𝑓𝑓(𝑧) ≠ 0. However, the Coupled-Mode Theory does not consider dissipative losses and thus, 

all the power supplied to the waveguide structure in the fundamental mode must leave the 

structure also in that mode (all the higher order modes are under cut-off) and consequently, the 

average loss constant must satisfy �̅�𝑒𝑓𝑓 = 0. Taking that into account, the average propagation 

constant is identified with the average phase constant, i.e., 𝛽′̅ = �̅�𝑒𝑓𝑓 , giving rise to a coupled-

mode equation (2.228) that is fully analogous to the one of the single-mode assumption of (2.91), 

but considering the average effective phase constant, �̅�𝑒𝑓𝑓 , instead of the one of the fundamental 

mode, 𝛽1. 

𝑑𝑎1
𝑑𝑧

= −𝑗 · �̅�𝑒𝑓𝑓 · 𝑎1 + 𝑎−1 · 𝐶1,−1 (2.228) 

Therefore, if the single-mode operation assumption is employed to synthetize a 

waveguide structure, the expected frequency response will be shifted in frequency, because of 

the difference between the value used in the synthesis procedure, 𝛽1, and the effective value 

resulting from the coupling of cut-off modes, �̅�𝑒𝑓𝑓 . Fortunately, the scaling property of the 

coupling coefficient (2.229) that was originally reported in [58], can be applied to relate the 

required scaling of the propagation axis with the shift produced in the frequency response in 

reflection: 

𝜓 · 𝐾(𝑧 · 𝜓)↔ 𝑆11 (
𝛽

𝜓
) (2.229) 

In order to be coherent with (2.229), the final propagation axis must be calculated as 𝑧/𝜓, 

and the amplitude of the coupling coefficient must be scaled as 𝜓 · 𝐾(𝑧). The scaling factor, 𝜓, 

can be calculated from (2.230) as a relation between �̅�𝑒𝑓𝑓  and 𝛽1. 

𝜓(𝑓𝑡) =
�̅�𝑒𝑓𝑓(𝑓𝑡)

𝛽1(𝑓𝑡)
 (2.230) 

where 𝑓𝑡 , is the frequency where both phase constants, 𝛽1(𝑓) and �̅�𝑒𝑓𝑓, are calculated. In fact, it 

must be noticed that the scaling factor is also frequency dependent and the approximation 

employed to consider the reactive couplings between the fundamental and the cut-off modes is 

exact at the frequency where the scaling factor is calculated, i.e., 𝑓𝑡 . Accordingly, this 

approximation becomes less accurate when considering frequencies far away from 𝑓𝑡 . 

The uniform scaling method may result accurate enough as a first approximation, since it 

only models the shift of the expected frequency response produced as a result of the parasitic 
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couplings to cut-off modes that were neglected with the single-mode approximation. However, 

the effects of these reactive couplings could be not exclusively limited to a frequency 

displacement, and more dramatical degradation of the frequency response can be caused. Thus, 

in certain cases, the uniform scaling method could be not accurate enough and it will be necessary 

to resort to the more complex recursive distributed scaling method. 

2.2.3.2. Recursive Distributed Scaling Method 

The most accurate method to assimilate the parasitic effects of cut-off modes in the single-

mode coupled-mode equation system of (2.91) and (2.92) will lead to a distributed scaling of the 

propagation axis that is performed in an iterative manner. 

As it has been explained in the mathematical procedure carried out between (2.219) and 

(2.223), the effect of cut-off modes can be modelled using a complex propagation constant, 𝛽′, 

that can be divided into effective phase and loss constants as 𝛽′ = 𝛽𝑒𝑓𝑓 − 𝑗 · 𝛼𝑒𝑓𝑓. Furthermore, 

as it has been previously commented, 𝛽′ will vary with 𝑧 since it depends on 𝑎1, 𝑎𝑖, and 𝐶1,𝑖 that 

are functions of 𝑧, i.e. 𝛽′(𝑧) = 𝛽𝑒𝑓𝑓(𝑧) − 𝑗 · 𝛼𝑒𝑓𝑓(𝑧).  

As it was also explained, the loss aspect of the effects of cut-off modes, 𝛼𝑒𝑓𝑓(𝑧), stands 

for the reactive energy transferring between the fundamental and higher-order modes. This local 

energy interchange cannot be compensated up to date, but fortunately its effects will be limited 

since the average value of 𝛼𝑒𝑓𝑓(𝑧) will be null as it was previously explained. 

However, the term 𝛽𝑒𝑓𝑓(𝑧) implies a continuous variation of the effective phase constant 

of the fundamental mode along 𝑧. As it was studied in detail in section 2.2.2, this kind of variation 

of 𝛽 along 𝑧 for the same frequency, i.e. 𝛽 = 𝛽(𝑓, 𝑧), can be modelled using a normalized axis 

𝜒, and a reference phase constant, 𝛽𝑟𝑒𝑓 , which is assumed not to vary along 𝜒. Taking that into 

account, it will be possible to assimilate that effect associated to higher-order cut-off modes, 

which is expressed by 𝛽𝑒𝑓𝑓(𝑧), using a single-mode modelling of the waveguide device where 

𝛽𝑟𝑒𝑓  remains constant along the normalized propagation axis, 𝜒, as it was done in section 2.2.2. 

For the case under study in this section, the normalized axis will be denoted by 𝑧1, i.e. 𝑧1 = 𝜒, 

whereas the fixed phase constant along this axis will correspond to the phase constant of the 

fundamental mode, 𝛽1, i.e. 𝛽1 = 𝛽𝑟𝑒𝑓 . Regarding the variable effective phase constant and the 

actual propagation axis, they will be expressed by 𝛽𝑒𝑓𝑓  and 𝑧2, respectively. Therefore, the 

modelling of the pair 𝑧2, 𝛽𝑒𝑓𝑓  (where 𝛽𝑒𝑓𝑓  varies along the propagation axis) with the pair 𝑧1, 
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𝛽1 (where 𝛽1 remains constant along the propagation axis) will be based on the fulfillment of the 

following relationship:  

𝛽1 · 𝑑𝑧1 = 𝛽𝑒𝑓𝑓 · 𝑑𝑧2  (2.231) 

Recalling (2.207) and (2.208), equation (2.231) yields to the following expression for the 

calculation of 𝑧2(𝑓𝑡 , 𝑧1), see section 2.2.2: 

𝑧2(𝑓𝑡 , 𝑧1) = ∫
𝛽1(𝑓𝑡)

𝛽𝑒𝑓𝑓(𝑓𝑡 , 𝑟)
· 𝑑𝑟

𝑧1

0

  (2.232) 

where 𝑟 is a dummy variable of integration and 𝑓𝑡  is the frequency selected for the modelling, as 

it is explained in section 2.2.2.  

Therefore, when considering a certain closed-boundary waveguide structure, it can be 

modelled in a first approximation by assuming single-mode operation, with a normalized 

propagation axis, 𝑧1, and a phase constant, 𝛽1, which will be only a  function of frequency. If 

just the fundamental mode is in propagation along the structure (all the higher order modes are 

cut-off throughout the device), it will be possible to perform the assimilation of the effect of cut-

off modes that are neglected by the single-mode version of the coupled-mode equation system 

of (2.91) and (2.92). For doing so, the first task is to calculate 𝐶1,𝑖(𝑓𝑡 , 𝑧1), together with the rest 

of the necessary coupling coefficients, to solve the general coupled-mode equation system of 

(2.3) as it was explained at the beginning of subsection 2.2.3.1, so as to calculate the complex 

amplitudes 𝑎1(𝑓𝑡 , 𝑧1) and 𝑎𝑖(𝑓𝑡 , 𝑧1). At this point, 𝛽𝑒𝑓𝑓  can be obtained by means of (2.222). If 

the denormalization 𝑧2(𝑧1) is performed using (2.232), the obtained structure in 𝑧2 should 

compensate for the non-ideal behavior predicted by 𝛽𝑒𝑓𝑓(𝑓𝑡 , 𝑧1). 

However, it must be noted that if the resulting structure in 𝑧2 is again analyzed using the 

general coupled-mode equation system of (2.3), the complex amplitudes 𝑎1 and 𝑎𝑖 will not be 

exactly the ones that were predicted with the previous analysis performed considering the 

structure in 𝑧1, i.e. 𝑎1[𝑓𝑡 , 𝑧2(𝑧1)] ≠ 𝑎1(𝑓𝑡 , 𝑧1) and 𝑎i[𝑓𝑡 , 𝑧2(𝑧1)] ≠ 𝑎i(𝑓𝑡 , 𝑧1). Therefore, the 

effective phase constant in 𝑧2, 𝛽𝑒𝑓𝑓(𝑓𝑡 , 𝑧2), will be slightly different from the one predicted by 

𝛽𝑒𝑓𝑓(𝑓𝑡 , 𝑧1), i.e. 𝛽𝑒𝑓𝑓[𝑓𝑡 , 𝑧2(𝑧1)] ≠ 𝛽𝑒𝑓𝑓(𝑓𝑡 , 𝑧1). Fortunately, it will be possible to perform a 

recursive denormalization process in order to achieve a sufficiently accurate prediction of 𝛽𝑒𝑓𝑓 . 

Taking this aim into account, it will be advisable to introduce a small change in the notation in 

order to avoid the use of confusing nomenclature. Accordingly, 𝛽𝑒𝑓𝑓,1(𝑧1) = 𝛽𝑒𝑓𝑓(𝑧1) will be 

employed as the prediction for the 𝑧2 axis through the function 𝑧2(𝑧1) of (2.232), as 
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𝛽𝑒𝑓𝑓,1[𝑓𝑡 , 𝑧2(𝑧1)] = 𝛽𝑒𝑓𝑓,1(𝑓𝑡 , 𝑧1). Finally, the actual 𝛽𝑒𝑓𝑓  calculated from the multimode 

analysis of (2.3) for the structure in 𝑧2 will be expressed by 𝛽𝑒𝑓𝑓,2(𝑧2) = 𝛽𝑒𝑓𝑓(𝑧2). 

It is worth noting that at this point, a new denormalization step can be carried out by 

considering the predicted 𝛽𝑒𝑓𝑓,1[𝑓𝑡 , 𝑧2(𝑧1)] and the actual 𝛽𝑒𝑓𝑓,2(𝑧2) found. If equation (2.232) 

is adapted for these phase constants, a new propagation axis, 𝑧3, will be reached as: 

𝑧3(𝑓𝑡 , 𝑧2) = ∫
𝛽𝑒𝑓𝑓,1[𝑓𝑡 , 𝑟(𝑧1)]

𝛽𝑒𝑓𝑓,2(𝑓𝑡 , 𝑟)
· 𝑑𝑟

𝑧2

0

  (2.233) 

The procedure can be repeated recursively until we achieve a certain 𝑧𝑁 that accomplishes 

a convergence limit in the similarity between 𝑧𝑁 and 𝑧𝑁−1. Indeed, this limit will be reached 

when the predicted 𝛽𝑒𝑓𝑓,𝑁−2[𝑓𝑡 , 𝑧𝑁−1(𝑧𝑁−2 )] is close enough to the calculated 

𝛽𝑒𝑓𝑓,𝑁−1(𝑓𝑡 , 𝑧𝑁−1). The distributed scaling method will provide satisfactory results when the 

following approximated condition is attained: 

𝛽1(𝑓𝑡) · 𝑑𝑧1 ≈ 𝛽𝑒𝑓𝑓,𝑁(𝑓𝑡 , 𝑧𝑁) · 𝑑𝑧𝑁    (2.234) 

It will be possible to generalize (2.233) for each iteration step 𝑙, with 1 ≤ 𝑙 ≤ 𝑁 − 1 as: 

𝑧𝑙+1(𝑓𝑡 , 𝑧𝑙) = ∫
𝛽𝑒𝑓𝑓,𝑙−1[𝑓𝑡 , 𝑟(𝑧𝑙−1)]

𝛽𝑒𝑓𝑓,𝑙(𝑓𝑡 , 𝑟)
· 𝑑𝑟

𝑧𝑙

0

  (2.235) 

where 𝛽𝑒𝑓𝑓,𝑙−1[𝑓𝑡 , 𝑟(𝑧𝑙−1)] is the effective phase constant prediction for the structure in the 

𝑧𝑙(𝑧𝑙−1) axis, obtained from the solution of the multimode coupled-mode equation system of 

(2.3) considering the structure in the 𝑧𝑙−1 propagation axis. Regarding 𝛽𝑒𝑓𝑓,𝑙(𝑓𝑡 , 𝑧𝑙), it denotes 

the effective phase constant that results from (2.222) by performing the multimode analysis of 

(2.3) for the waveguide device in the 𝑧𝑙 propagation axis. It must be noted that in the case of 𝑙 =

1, the resulting 𝛽𝑒𝑓𝑓,0[𝑓𝑡 , 𝑟(𝑧0)] that will be required to evaluate the numerator of (2.235) will 

correspond to 𝛽1(𝑓𝑡), i.e. 𝛽𝑒𝑓𝑓,0[𝑓𝑡 , 𝑟(𝑧0)] = 𝛽1(𝑓𝑡 , 𝑧1) = 𝛽1(𝑓𝑡), being 𝛽1(𝑓𝑡) the phase constant 

of the fundamental mode for the frequency 𝑓𝑡 , which is assumed to remain constant along the 

normalized axis 𝑧1. 

Finally, it must be pointed out that the solution (2.235) depends on the election of 𝑓𝑡 , and 

hence the assimilation of the effects of cut-off modes, as well as the resulting structure, will 

depend on the specific value of 𝑓𝑡  selected. It is advisable to choose 𝑓𝑡  as the central frequency 

of the operation bandwidth, in order to reach the best assimilation in the whole frequency range. 

Nevertheless, alternative interesting frequency points can be considered for other cases, like the 
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cut-off frequency of low-pass filters, or the center of the passband for band-pass filters. 

Moreover, it is worth noting that (2.222) is a generalized version of the solution (2.208) found 

in the previous section 2.2.2, and therefore it should model properly the cases where the 

fundamental mode 𝛽1 is not constant along the propagation axis, while taking also into account 

the effects of cut-off modes. 
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 SYNTHESIS USING 

ANALYTICAL EXPRESSIONS: 

ELECTROMAGNETIC BAND GAP 

STRUCTURES 

An Electromagnetic Bandgap (EBG) may be defined as a microwave or millimeter 

waveguide structure that features periodical perturbations of its cross section along the 

propagation direction [1]-[4], causing the prohibition of propagation for certain frequency bands. 

The roots of the EBGs originally come from the concept of Photonic Bandgap (PBG) 

structures or Photonic Crystals (PC) that were introduced by Yablonovich in the latest ’80 [5] 

from the point of view of physics. The PBGs are periodic structures where the propagation of 

certain frequency bands is prohibited, giving rise to stopbands in the frequency response. In 

1991, the same author proposed one of the firsts PBGs by drilling holes periodically in a 

dielectric substrate of high dielectric constant [6]. The PBG research was firstly focused on the 

design of optical filters, distributed feedback lasers (DFB), distributed Bragg reflector (DBR) 

lasers, grating couplers, phase matching in nonlinear interactions and signal processing [7]-[9]. 

However, the physical operating principle can be automatically extended to different 

wavelengths or frequency ranges, leading to the concept of EBG when it is applied for 

microwave and millimeter wave regions [4]. Nonetheless, the term PBG was shared between the 
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optic and microwave ranges in the early research stage of EBGs and indeed, the relationship 

between the period of the perturbation and the central frequency of the rejection band was 

explained in terms of the Bragg’s law [10]. 

The simplicity of the concept and features of the EBG made it very attractive for the 

design of a wide variety of components for different applications [11]. Due to the inherent 

selectivity characteristics of EBG structures, they have been employed for designing controllable 

band-pass and stop-band filters [12], [13]. Regarding this utility, several examples can be found 

in the literature for EBG-based filters implemented in different planar technologies [12]-[19] as 

well as in rectangular waveguide [20], [21]. Taking also advantage of that frequency-selective 

behavior, different couplers [22], [23] and multiplexers [24] have been recently proposed. 

Moreover, the EBG did not promote only the most obvious filtering applications and important 

contributions were also performed in the scope of Analog Signal Processing (ASP) [25], such as 

chirped-delay lines [26], [27] and real-time Fourier transformers [28], [29]. Additionally, the 

performance of antennas, reflectors, absorbers, and frequency selective surfaces, among others, 

have been also benefited from the EBG concept [30]-[36]. 

Regarding the electromagnetic analysis of an EBG, it is noticeable that like any other 

nonuniform waveguide structure, they can be analyzed from the point of view of the Coupled-

Mode Theory, as it was deeply studied in [18], [37]. In fact, if the appropriate circumstances that 

were commented in CHAPTER 2 are applicable to the case under study, the single-mode 

operation  can be assumed and thus, the frequency response of an EBG will be determined by 

means of the single-mode equation system (2.91), (2.92) that is conveniently provided below. 

𝑑𝑎+

𝑑𝑧
= −𝑗 · 𝛽 · 𝑎+ +𝐾 · 𝑎− (2.91) 

𝑑𝑎−

𝑑𝑧
= 𝑗 · 𝛽 · 𝑎− +𝐾 · 𝑎+ (2.92) 
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(a) 

 

(b) 

Fig. 3.1. Example of periodic structures implemented in (a) microstrip and (b) rectangular waveguide. In both cases, 

the period, Λ, is highlighted.  

It can be demonstrated that if an EBG structure of certain length, 𝐿, is periodic with a 

period, Λ, along the propagation direction, 𝑧, then the coupling coefficient, 𝐾(𝑧), will also 

exhibit the same period. In order to illustrate this relation, let’s consider a periodic microstrip or 

rectangular waveguide (with exclusive height variations for the sake of simplicity) structure like 

the ones that are depicted in Fig. 3.1. As it was explained in CHAPTER 2, in absence of 

variations of the width dimension, the waveguide height, 𝑏(𝑧) is directly related with the 

coupling coefficient, 𝐾(𝑧) = 𝐾𝑏(𝑧), by (2.122)-(2.124). On the other hand, the width of the 

microstrip line rules the characteristic impedance, 𝑍0(𝑧), which in turn determines 𝐾(𝑧), due to 

(2.145). Therefore, if it is satisfied that 𝑏(𝑧) = 𝑏(𝑧 +𝑚 · Λ) for rectangular waveguide or 

𝑍0(𝑧) = 𝑍0(𝑧 + 𝑚 · Λ) for the microstrip line case, with 𝑚 =  1, 2, … , then the result of the 

derivatives (2.123), (2.145) will be also a periodic function, i.e. 𝐾(𝑧) = 𝐾(𝑧 +𝑚 · Λ). 

Therefore, the coupling coefficient can be expanded in its Fourier series [38] as: 

𝐾(𝑧) = ∑ 𝐾𝑛 ∙ 𝑒
𝑗∙
2∙𝜋
𝛬
∙𝑛∙𝑧

𝑛=∞

𝑛=−∞

 (3.1) 

𝐾𝑛 =
1

𝛬
∙ ∫ 𝐾(𝑧) ∙ 𝑒−𝑗∙

2∙𝜋
𝛬
∙𝑛∙𝑧 ∙ 𝑑𝑧

𝛬

 (3.2) 

where 𝐾𝑛 is the amplitude of the 𝑛-th term of the Fourier series that will also determine the 𝑛-th 

rejected band, with 𝑛 = 1 for the fundamental one. 

At this point, it must be noticed that in the subsequent steps, the frequency response 

parameters of the EBGs will be formulated in terms of the phase constant, 𝛽, for the sake of 
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generality. The specific relationship between the frequency, 𝑓, and 𝛽 will depend on the choice 

of technology for the physical implementation of the EBG. 

If the coupling coefficient, 𝐾, of (2.91), (2.92) is substituted by its Fourier series 

expression of (3.1) and several mathematical manipulations are subsequently performed, 

approximate analytical solutions, valid around the 𝑛-th rejected band, will be obtained for the 

complex amplitudes of the forward and backward travelling waves [37], 𝑎+ and 𝑎−, respectively, 

in the EBG structure with length 𝐿 as: 

𝑎+(𝑧) =
Δ𝛽 · sinh[𝛾 · (𝑧 − 𝐿)] + 𝑗 · 𝛾 · cosh[𝛾 · (𝑧 − 𝐿)]

−Δ𝛽 · sinh(𝛾 · 𝐿) + 𝑗 · 𝛾 · cosh(𝛾 · 𝐿)
· 𝑎+(0) · 𝑒−

𝑗·𝜋·𝑛·𝑧
𝛬  (3.3) 

𝑎−(𝑧) =
−𝑗 · 𝐾𝑛 · sinh[𝛾 · (𝑧 − 𝐿)]

−Δ𝛽 · sinh(𝛾 · 𝐿) + 𝑗 · 𝛾 · cosh(𝛾 · 𝐿)
· 𝑎+(0) · 𝑒

𝑗·𝜋·𝑛·𝑧
𝛬  (3.4) 

where: 

Δ𝛽 = 𝛽 −
𝑛 · 𝜋

𝛬
 (3.5) 

γ = +√|𝐾𝑛|
2 − Δ𝛽2 (3.6) 

Taking advantage of the approximate expressions of (3.3) and (3.4) for 𝑎+ and 𝑎−, 

respectively, analytical expressions can be deduced [37] for the 𝑆-parameters of the EBG 

structure using (2.105)-(2.110), also valid around the 𝑛-th rejected band. A typical example of 

for the 𝑆11 and 𝑆21 parameters of a general EBG is depicted in Fig. 3.2, while the analytical 

expressions to calculate them are provided below: 

𝑆11 =
𝑎−(𝑧 = 0, 𝑓)

𝑎+(𝑧 = 0, 𝑓)
|
𝑎−(𝑧=𝐿,𝑓)=0

=
−𝑗 · 𝐾𝑛 · sinh[𝛾 · (𝑧 − 𝐿)]

−Δ𝛽 · sinh(𝛾 · 𝐿) + 𝑗 · 𝛾 · cosh(𝛾 · 𝐿)
 (3.7) 

𝑆21 =
𝑎+(𝑧 = 𝐿, 𝑓)

𝑎+(𝑧 = 0, 𝑓)
|
𝑎−(𝑧=𝐿,𝑓)=0

=
𝑗 · 𝛾 · 𝑒−

𝑗·𝜋·𝑛·𝐿
𝛬

−Δ𝛽 · sinh(𝛾 · 𝐿) + 𝑗 · 𝛾 · cosh(𝛾 · 𝐿)
 (3.8) 
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Fig. 3.2. Example of the frequency response of a generic EBG: 𝑆11 (blue line) and 𝑆21 (red line) parameters. 

The maximum rejection value that is achieved at the 𝑛-th band of an EBG from the point 

of view of the 𝑆11 and 𝑆21 parameteres, |𝑆11|𝑚𝑎𝑥,𝑛  and |𝑆21|𝑚𝑖𝑛,𝑛 respectively, can be determined 

from (3.7) and (3.8), yielding to: 

|𝑆11|𝑚𝑎𝑥,𝑛 = tanh(|𝐾𝑛| · 𝐿) (3.9) 

|𝑆21|𝑚𝑖𝑛,𝑛 = sech(|𝐾𝑛| · 𝐿) (3.10) 

Regarding the phase constant value where the 𝑛-th rejected band is centered, 𝛽0,𝑛, it can 

be determined by means of the period of the perturbation, Λ, and the considered band 𝑛, with 

𝑛 = 1, 2, 3, …, as: 

𝛽0,𝑛 =
𝜋 · 𝑛

𝛬
 (3.11) 

It must be stressed that the |𝑆11|𝑚𝑎𝑥,𝑛  and |𝑆21|𝑚𝑖𝑛,𝑛 will be reached at the center of each 

rejection band. 

Furthermore, the lower and upper limits of the 𝑛-th stopband, 𝛽𝑙,𝑛 and 𝛽𝑢,𝑛, respectively, 

can be calculated using the expressions (3.12) and (3.13). At this phase constant points, it will 

be ideally satisfied that 𝑆11(𝛽 =  𝛽𝑙,𝑛) = 𝑆11(𝛽 =  𝛽𝑢,𝑛) = 0, or alternatively 𝑆21(𝛽 =  𝛽𝑙,𝑛) =

𝑆21(𝛽 = 𝛽𝑢,𝑛) = 1. 
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𝛽𝑙,𝑛 =
𝜋 · 𝑛

𝛬
−√|𝐾𝑛|

2 + (
𝜋

𝐿
)
2

 (3.12) 

𝛽𝑢,𝑛 =
𝜋 · 𝑛

𝛬
+ √|𝐾𝑛|

2 + (
𝜋

𝐿
)
2

 (3.13) 

The 𝛽𝑙,𝑛, 𝛽𝑢,𝑛 equations of (3.12), (3.13) allow us to define a 0 dB bandwidth for each 𝑛-

th band, 𝐵𝑊𝛽,𝑛
0 𝑑𝐵, as the expected bandwidth (in terms of 𝛽) between the lower and upper nulls 

of the 𝑆11 parameter for the same stopband. The 𝐵𝑊𝛽,𝑛
0 𝑑𝐵 can be calculated using (3.12) and 

(3.13) as: 

𝐵𝑊𝛽,𝑛
0 𝑑𝐵 = 𝛽𝑢,𝑛 − 𝛽𝑙,𝑛 = 2 · √|𝐾𝑛|

2 + (
𝜋

𝐿
)
2

 (3.14) 
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3.1. SPURIOUS-FREE EBG 

As it has been already explained, a general EBG structure will exhibit the fundamental 

stopband centered at 𝛽0,1 =
𝜋

𝛬
, while the higher ones will be expected at 𝛽0,𝑛 =

𝜋·𝑛

𝛬
, with 𝑛 > 1 

as it can be observed in Fig. 3.2. These last stopbands are also known as spurious bands since 

they may not be desired for the design in many cases. Fortunately, it is possible to synthesize an 

EBG structure that does not feature those residual bands (see Fig. 3.3) as it was brilliantly 

demonstrated in [19]. The method to achieve that spurious-free EBG is based on making null all 

𝐾𝑛 coefficients of the Fourier series of (3.1), (3.2) that satisfy 1 < |𝑛| < ∞, while leaving 𝐾±1 

as the only coefficients that feature an amplitude 𝐴/2, with 𝐴 > 0, and phase, 𝜃, a solution that 

can be mathematically expressed as: 

𝐾𝑛 = {

𝐴

2
· 𝑒±𝑗·𝜃

0

 
for |𝑛| = 1 

(3.15)  

otherwise 

It is straightforward to demonstrate that by following the criterion of (3.15) in the 

coupling coefficient expression of (3.1), the result will be a simple cosine function given by: 

𝐾(𝑧) = 𝐴 · cos(
2 · 𝜋

𝛬
· 𝑧 + 𝜃) (3.16) 

being this expression rigorously applicable for waveguides where the phase constant does not 

vary with the position, being only a function of frequency, i.e. 𝛽(𝑧, 𝑓) = 𝛽(𝑓)  ∀ 𝑧 . 

 

Fig. 3.3. Frequency response of a spurious-free EBG: 𝑆11 (blue line) and 𝑆21 (red line) parameters. 
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The relationship between the center of the unique stopband, 𝛽0, and the period of the 

spurious-free EBG, 𝛬, will be obtained by setting 𝑛 = 1 in (3.11), which results in: 

𝛽0 =
𝜋

 𝛬
 (3.17) 

Moreover, the corresponding 0 dB bandwidth, 𝐵𝑊𝛽
0 𝑑𝐵, will be also determined if 𝑛 = 1 

and |𝐾±1| = 𝐴/2 are taken in (3.14), leading to: 

𝐵𝑊𝛽
0 𝑑𝐵 = 𝛽𝑢 − 𝛽𝑙 = 2 · √(

𝐴

2
)
2

+ (
𝜋

𝐿
)
2

 (3.18) 

where 𝛽𝑙  and 𝛽𝑢  obviously stand for the lower and upper limits of the stopband, where 

𝑆11(𝛽 =  𝛽𝑙) = 𝑆11(𝛽 =  𝛽𝑢) = 0 and 𝑆21(𝛽 =  𝛽𝑙) = 𝑆21(𝛽 =  𝛽𝑢) = 1. From (3.12) and 

(3.13), it can be deduced that: 

𝛽𝑙 =
𝜋

𝛬
−√(

𝐴

2
)
2

+ (
𝜋

𝐿
)
2

 (3.19) 

𝛽𝑢 =
𝜋

𝛬
+ √(

𝐴

2
)
2

+ (
𝜋

𝐿
)
2

 (3.20) 

Furthermore, the maximum value of the 𝑆11-parameter, |𝑆11|𝑚𝑎𝑥, and the corresponding 

minimum one for the |𝑆21|, |𝑆21|𝑚𝑖𝑛 , are directly inferred from (3.9) and (3.10) as: 

|𝑆11|𝑚𝑎𝑥 = tanh(
𝐴

2
· 𝐿) (3.21) 

|𝑆21|𝑚𝑖𝑛 = sech (
𝐴

2
· 𝐿) (3.22) 

It must be highlighted that it is possible to attain an analytical expression for the  

characteristic impedance profile, 𝑍0(𝑧), when dealing with TEM or QTEM transmission lines, 

by introducing the simple coupling coefficient cosine function of (3.16) into (2.146), giving rise 

to: 

𝑍0(𝑧) = 𝑍0(0) · 𝑒
−
𝐴·𝛬
𝜋
·[sin(

2·𝜋
𝛬
·𝑧)−sin 𝜃]

 (3.23) 

If it is considered in (3.23) that the number of periods, 𝑁Λ, is an integer number, then it 

will be directly deduced that 𝑍0(𝐿) = 𝑍0(0). 
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In view of (3.23) it will be possible to calculate the extreme values of 𝑍0(𝑧), i.e. 𝑍0,𝑚𝑎𝑥 

and 𝑍0,𝑚𝑖𝑛, as: 

𝑍0,𝑚𝑖𝑛 = 𝑍0(0) · 𝑒
𝐴·𝛬
𝜋
·(sin 𝜃−1)

 (3.24) 

𝑍0,𝑚𝑎𝑥 = 𝑍0(0) · 𝑒
𝐴·𝛬
𝜋
·(sin𝜃+1)

 (3.25) 

where 𝑍0,𝑚𝑖𝑛 and 𝑍0,𝑚𝑎𝑥 will be the minimum or maximum values of 𝑍0(𝑧). 

On the other hand, a closed-form expression for the physical dimensions of EBGs that 

are implemented introducing exclusive height variations in rectangular waveguide technology 

can be reached. It must be reminded that in this case, 𝐾(𝑧) = 𝐾𝑏(𝑧), see (2.122)-(2.124). Due to 

the similarity between the expressions (2.130) and (2.146), it is obtained that: 

𝑏(𝑧) = 𝑏(0) · 𝑒−
𝐴·𝛬
𝜋
·[sin(

2·𝜋
𝛬
·𝑧)−sin 𝜃]

 (3.26) 

As in the case of transmission lines, an integer number of periods leads to 𝑏(𝐿) = 𝑏(0). 

Moreover, the minimum and maximum values of 𝑏(𝑧), 𝑏𝑚𝑖𝑛 and 𝑏𝑚𝑎𝑥, respectively, will 

be obtained if 𝑍0(0) is substituted by 𝑏(0) in (3.24) and (3.25), yielding to: 

𝑏𝑚𝑖𝑛 = 𝑏(0) · 𝑒
𝐴·𝛬
𝜋
·(sin 𝜃−1)

 (3.27) 

𝑏𝑚𝑎𝑥 = 𝑏(0) · 𝑒
𝐴·𝛬
𝜋
·(sin 𝜃+1)

 (3.28) 

3.1.1. Spurious-Free EBG with Controlled 

Extreme Dimensions 

If the expressions (3.24), (3.25) and (3.27), (3.28) for the calculation of 𝑍0,𝑚𝑖𝑛 , 𝑍0,𝑚𝑎𝑥 

and 𝑏𝑚𝑖𝑛, 𝑏𝑚𝑎𝑥, respectively, are carefully examined, it will be clear that these values will be 

exclusively determined by the amplitude of the coupling coefficient, 𝐴, as well as by the phase 

of the spurious-free EBG, 𝜃. Indeed, it will be possible to calculate the ratio between extreme 

impedance values, Δ𝑍0,𝑒𝑥𝑡, and the corresponding ratio for rectangular waveguide extreme 

heights, Δ𝑏𝑒𝑥𝑡, that will be necessary to synthetize an EBG of a given amplitude, 𝐴, as: 



96 Jon Mikel Percaz Ciriza 

 

Δ𝑍0,𝑒𝑥𝑡 =
𝑍0,𝑚𝑎𝑥
𝑍0,𝑚𝑖𝑛

=
𝑍0(0) · 𝑒

𝐴·𝛬
𝜋
·(sin 𝜃+1)

𝑍0(0) · 𝑒
𝐴·𝛬
𝜋
·(sin 𝜃−1)

= 𝑒
2·𝐴·Λ
π  (3.29) 

Δ𝑏𝑒𝑥𝑡 =
𝑏𝑚𝑎𝑥
𝑏𝑚𝑖𝑛

=
𝑏(0) · 𝑒

𝐴·𝛬
𝜋
·(sin 𝜃+1)

𝑏(0) · 𝑒
𝐴·𝛬
𝜋
·(sin 𝜃−1)

= 𝑒
2·𝐴·Λ
π  (3.30) 

Therefore, if a certain 0-dB bandwidth, 𝐵𝑊𝛽
0 𝑑𝐵, or a maximum rejection level, |𝑆21|𝑚𝑖𝑛 , 

must be satisfied by an EBG of length 𝐿, and period Λ, the required amplitude for the coupling 

coefficient, 𝐴, can be deduced from (3.18) and (3.22), respectively, and the extreme 

characteristic impedance or height ratios will be known through (3.29) or (3.30). It is important 

to stress that this conclusion leads to the possibility of fixing an extreme value of 𝑍0(𝑧) and 𝑏(𝑧) 

for given values of 𝐴 and Λ, while the other extreme will be immediately determined by using 

the corresponding expressions for Δ𝑍0,𝑒𝑥𝑡 and Δ𝑏𝑒𝑥𝑡 of (3.29) and (3.30), respectively. In fact, 

this property was successfully employed for the synthesis of a directional coupler with enhanced 

coupling in microstrip coupled lines in [22], where the value for the minimum gap between the 

metallic strips of a microstrip coupled-line structure (which is a function of the characteristic 

impedance of the even and odd mode) was imposed. It is straightforward to demonstrate from 

(3.29) and (3.30) that: 

𝑍0,𝑚𝑎𝑥 = 𝑍0,𝑚𝑖𝑛
𝑠𝑝𝑒𝑐

· 𝑒
2·𝐴·Λ
π  (3.31) 

𝑍0,𝑚𝑖𝑛 = 𝑍0,𝑚𝑎𝑥
𝑠𝑝𝑒𝑐

· 𝑒
−2·𝐴·Λ
π  (3.32) 

𝑏𝑚𝑎𝑥 = 𝑏𝑚𝑖𝑛
𝑠𝑝𝑒𝑐

· 𝑒
2·𝐴·Λ
π  (3.33) 

𝑏𝑚𝑖𝑛 = 𝑏𝑚𝑎𝑥
𝑠𝑝𝑒𝑐

· 𝑒
−2·𝐴·Λ
π  (3.34) 

where 𝑍0,𝑚𝑖𝑛
𝑠𝑝𝑒𝑐

 and 𝑍0,𝑚𝑎𝑥
𝑠𝑝𝑒𝑐

 stand for an hypothetic minimum and maximum required value of 

𝑍0(𝑧), while 𝑏𝑚𝑖𝑛
𝑠𝑝𝑒𝑐

 and 𝑏𝑚𝑎𝑥
𝑠𝑝𝑒𝑐

 are the corresponding ones when dealing with an EBG implemented 

in a rectangular waveguide that must only exhibit variations in its height. 

However, it must be highlighted that the expressions (3.31)-(3.34) neither specify the 

characteristic impedance, 𝑍0(0), nor the waveguide height, 𝑏(0), at the input port that are needed 

to satisfy the corresponding extreme ratios as they were previously defined in (3.29) and (3.30). 

Due to the inherent periodic essence of the EBG, it is obvious that the impedance or height of 

that port can be arbitrarily chosen so as to satisfy 𝑍0,𝑚𝑖𝑛 ≤ 𝑍0(0) ≤ 𝑍0,𝑚𝑎𝑥 or 𝑏𝑚𝑖𝑛 ≤ 𝑏(0) ≤
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𝑏𝑚𝑎𝑥. In order to synthesize an EBG that achieves the expected extreme values 𝑍0,𝑚𝑖𝑛, 𝑍0,𝑚𝑎𝑥 

or 𝑏𝑚𝑖𝑛, 𝑏𝑚𝑎𝑥 while starting with an input port of 𝑍0(0) or 𝑏(0), respectively, it will be necessary 

to determine the phase constant term, 𝜃, of the coupling coefficient of (3.16) that satisfies both 

conditions. For doing so, it must be considered that from (3.24) and (3.25), the product 

𝑍0,𝑚𝑖𝑛 · 𝑍0,𝑚𝑎𝑥 will result in: 

𝑍0,𝑚𝑖𝑛 · 𝑍0,𝑚𝑎𝑥 = 𝑍0
2(0) · 𝑒

2·𝐴·𝛬·sin 𝜃
𝜋  (3.35) 

If we solve equation (3.35) for sin𝜃, it will be obtained that: 

sin 𝜃 =
π

2 · 𝐴 · 𝛬
· ln [

𝑍0,𝑚𝑖𝑛 · 𝑍0,𝑚𝑎𝑥
𝑍0
2(0)

] (3.36) 

Before performing the last step of the 𝜃 deduction, it must be reminded that the following 

property between the sine and its inverse function is going to fulfilled: 

sin𝛼 = 𝐵⇔ {
𝛼 = asin(𝐵)

𝛼 = 𝜋 − asin(𝐵)
 (3.37) 

Taking (3.37) into account, it will be clear that the phase 𝜃 will have two different 

solutions that lead to two dual EBGs that comply with the requirements of featuring a period, Λ, 

an amplitude of the coupling coefficient, 𝐴, and a characteristic impedance, 𝑍0(𝑧), which 

satisfies 𝑍0,𝑚𝑖𝑛 ≤ 𝑍0(𝑧) ≤ 𝑍0,𝑚𝑎𝑥. The options for the phase term, 𝜃, will be obtained from 

(3.36) and (3.37) and are given below: 

𝜃 =

{
 
 

 
 asin{

π

2 · 𝐴 · 𝛬
· ln [

𝑍0,𝑚𝑖𝑛 · 𝑍0,𝑚𝑎𝑥
𝑍0
2(0)

]}

π − asin{
π

2 · 𝐴 · 𝛬
· ln [

𝑍0,𝑚𝑖𝑛 · 𝑍0,𝑚𝑎𝑥
𝑍0
2(0)

]}

 (3.38) 

It is straightforward to demonstrate that if the mathematical development provided 

between (3.35)-(3.38) is performed for the rectangular waveguide case with exclusive variations 

in height, i.e. considering 𝑏𝑚𝑖𝑛, 𝑏𝑚𝑎𝑥, and 𝑏(0), as well as (3.27) and (3.28), the necessary values 

will be given by: 

𝜃 =

{
 

 asin {
π

2 · 𝐴 · 𝛬
· ln [

𝑏𝑚𝑖𝑛 · 𝑏𝑚𝑎𝑥
𝑏2(0)

]}

π − asin {
π

2 · 𝐴 · 𝛬
· ln [

𝑏𝑚𝑖𝑛 · 𝑏𝑚𝑎𝑥
𝑏2(0)

]}

 (3.39) 
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An interesting solution can be also deduced so as to obtain equidistant values of 𝑍0,𝑚𝑖𝑛 

and 𝑍0,𝑚𝑎𝑥 with respect to 𝑍0(0), by also choosing the appropriate value for the phase term, 𝜃𝑒𝑞. 

This equidistant solution implies that: 

𝑍0(0) =
(𝑍0,𝑚𝑖𝑛 + 𝑍0,𝑚𝑎𝑥)

2
 (3.40) 

Then, by using (3.24), (3.25) it will be possible to develop (3.40) as: 

𝑍0(0) =
(𝑍0,𝑚𝑖𝑛 + 𝑍0,𝑚𝑎𝑥)

2
=
𝑍0(0) · 𝑒

−
𝐴·𝛬
𝜋
·[1− sin 𝜃𝑒𝑞] + 𝑍0(0) · 𝑒

𝐴·𝛬
𝜋
·[1+sin 𝜃𝑒𝑞]

2
 

(3.41) 

= 𝑍0(0)𝑒
𝐴·𝛬
𝜋
·sin 𝜃𝑒𝑞 ·

(𝑒−
𝐴·𝛬
𝜋 + 𝑒

𝐴·𝛬
𝜋 )

2
= 𝑍0(0)𝑒

𝐴·𝛬
𝜋
·sin 𝜃𝑒𝑞 · cosh (

𝐴 · 𝛬

𝜋
) 

If we solve equation (3.41) for the term sin𝜃𝑒𝑞, it is obtained: 

sin 𝜃𝑒𝑞 =
𝜋

𝐴 · Λ
· ln [sech(

𝐴 · Λ

𝜋
)] (3.42) 

Then, the two possible values of 𝜃𝑒𝑞 that allow us to reach the equidistant condition 

between the extreme values of impedance, 𝑍0,𝑚𝑖𝑛   and 𝑍0,𝑚𝑎𝑥, and the impedance of the input 

port, 𝑍0(0), are revealed by taking under consideration (3.37): 

𝜃𝑒𝑞 = {
asin {

𝜋

𝐴 · Λ
· ln [sech(

𝐴 · Λ

𝜋
)]}

𝜋 − asin {
𝜋

𝐴 · Λ
· ln [sech(

𝐴 · Λ

𝜋
)]}

 (3.43) 

Finally, it must be highlighted that the result of (3.43) neither depends on characteristic 

impedances, nor on height values. Indeed, if the reasoning carried out within (3.41) and (3.42) 

is applied for the rectangular waveguide heights 𝑏1, 𝑏2, and 𝑏(0), the expression (3.43) will be 

also achieved, and thus, this equidistant solution can be considered as general and independent 

form the selected technology. 
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3.1.2. Port-Matched Spurious-Free EBG 

with Non-Integer Number of Periods 

One of the most frequent limitations when synthetizing an EBG structure, as well as in 

the case of almost any other microwave device, is the maximum length, 𝐿𝑚𝑎𝑥, allowed for the 

device. Moreover, if it is also considered that the characteristic impedance range that can be 

typically fabricated must belong to the range 𝑍0,𝑚𝑖𝑛 ≤ 𝑍0(𝑧) ≤ 𝑍0,𝑚𝑎𝑥 (or 𝑏𝑚𝑖𝑛 ≤ 𝑏(𝑧) ≤ 𝑏𝑚𝑎𝑥 

when dealing with rectangular waveguide technology), due to the inherent limitations of the 

fabrication techniques, the maximum amplitude of the coupling coefficient, 𝐴𝑚𝑎𝑥, will be also 

constrained due to the relationships between 𝐴 and the extreme impedance and height ratios of 

(3.29) and (3.30), respectively. Therefore, if both 𝐿𝑚𝑎𝑥 and 𝐴𝑚𝑎𝑥 are limited, it will be clear that 

the maximum rejection that may be achieved, |𝑆11|𝑚𝑎𝑥 and |𝑆21|𝑚𝑖𝑛 , will be also restricted 

because of (3.21) and (3.22), and the 0-dB bandwidth, 𝐵𝑊𝛽
0 𝑑𝐵, will be also limited in view of 

(3.18). Furthermore, it must be stressed that in the most frequent case it is desired that 𝑍0(𝐿) =

𝑍0(0) or 𝑏(𝐿) = 𝑏(0), being that condition directly satisfied if an integer number of periods, 

𝑁Λ, is enforced to synthetize the EBG. In order to follow this last criterion, 𝑁Λ should be chosen 

as the highest one that ensures 𝐿𝑚𝑎𝑥 ≥ 𝑁Λ · Λ = 𝐿. It must be pointed out that the situation where 

the condition 𝐿𝑚𝑎𝑥 = 𝑁Λ · Λ = 𝐿 is directly satisfied with an integer 𝑁Λ is quite unlikely. 

Accordingly, both the bandwidth and the rejection level that are achieved by an EBG of length 

𝐿, will not be the best ones that would be obtained if the device featured a length 𝐿𝑚𝑎𝑥, because 

of (3.18), (3.21), and (3.22). 

Fortunately, it is possible to choose the optimum phase term 𝜃 = 𝜃𝑜𝑝𝑡  in (3.16), so as to 

guarantee that a non-integer number of periods, 𝑁Λ, of the EBG can satisfy 𝐿𝑚𝑎𝑥 = 𝐿 = 𝑁Λ · Λ, 

as well as the condition 𝑍0(𝐿𝑚𝑎𝑥) = 𝑍0(0) or 𝑏(𝐿𝑚𝑎𝑥) = 𝑏(0) at the same time. Thus, the 

rejection level will be the highest possible. The reasoning of this aspect will be carried out by 

considering TEM or QTEM transmission lines not to extend unnecessarily the explanation, but 

it can be automatically translated to the rectangular waveguide height. 

Firstly, it is necessary to consider that the condition 𝑍0(𝐿𝑚𝑎𝑥) = 𝑍0(0) implies from 

(3.23) that: 

𝑍0(𝐿𝑚𝑎𝑥) = 𝑍0(0) · 𝑒
−
𝐴·𝛬
𝜋
·[sin(

2·𝜋
𝛬
·𝐿𝑚𝑎𝑥)−sin 𝜃𝑜𝑝𝑡] = 𝑍0(0) (3.44) 

and then: 
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𝑒−
𝐴·𝛬
𝜋
·[sin(

2·𝜋
𝛬
·𝐿𝑚𝑎𝑥)−sin𝜃𝑜𝑝𝑡] = 1 (3.45) 

It must be realized that (3.45) neither depends on the characteristic impedance of the 

transmission line, nor on the waveguide height, and hence the reasoning is applicable for both 

technology realms. In order to satisfy (3.45) the following expression must be fulfilled: 

sin 𝜃𝑜𝑝𝑡 = sin(
2 · 𝜋

𝛬
· 𝐿𝑚𝑎𝑥) (3.46) 

From (3.37) and (3.46) it may be directly inferred that in order to exploit the maximum 

available length to reach the maximum rejection level with a non-integer number of periods 

while satisfying that 𝑍0(𝐿𝑚𝑎𝑥) = 𝑍0(0) or 𝑏(𝐿𝑚𝑎𝑥) = 𝑏(0), the phase 𝜃𝑜𝑝𝑡  should be calculated 

using  one of the two solutions that are provided below: 

𝜃𝑜𝑝𝑡 = {

2 · 𝜋

𝛬
· 𝐿𝑚𝑎𝑥

𝜋 −
2 · 𝜋

𝛬
· 𝐿𝑚𝑎𝑥

 (3.47) 

However, it must be noted that due to the fact that a non-integer number of periods is 

employed, the frequency response of the EBG structure may not completely fit the expected 

behavior, which is described by the approximated equations (3.3)-(3.14) and (3.17)-(3.22), 

although the deviations are almost negligible in most of the practical cases (if the number of 

periods taken is large enough). Moreover, since 𝜃 = 𝜃𝑜𝑝𝑡  has been chosen in order to synthetize 

an EBG with a non-integer number of periods, it will be neither possible to choose the required 

values of 𝑍0,𝑚𝑖𝑛
𝑠𝑝𝑒𝑐

 nor 𝑍0,𝑚𝑎𝑥
𝑠𝑝𝑒𝑐

 (or 𝑏𝑚𝑖𝑛
𝑠𝑝𝑒𝑐

 and 𝑏𝑚𝑎𝑥
𝑠𝑝𝑒𝑐

), because the achieved extreme values 𝑍0,𝑚𝑖𝑛 

and 𝑍0,𝑚𝑎𝑥 (𝑏𝑚𝑖𝑛 and 𝑏𝑚𝑎𝑥) will be the ones provided by 𝜃 = 𝜃𝑜𝑝𝑡  in (3.24) and (3.25), 

respectively (or (3.27) and (3.28) alternatively when dealing with rectangular waveguide 

technology). If it is necessary to obtain an EBG that features a non-integer number of periods, 

as well as 𝑍0(𝐿𝑚𝑎𝑥) = 𝑍0(0) or 𝑏(𝐿𝑚𝑎𝑥) = 𝑏(0), while keeping under control 𝑍0,𝑚𝑖𝑛 and 

𝑍0,𝑚𝑎𝑥, or 𝑏𝑚𝑖𝑛 and 𝑏𝑚𝑎𝑥, the only remaining option will be to synthesize a so-called tapered 

spurious-free EBG. 

3.1.3. Tapered Spurious-Free EBG 

In order to conclude this section focused on the synthesis of optimum EBG structures, the 

case where the coupling coefficient is tapered using a windowing function, 𝑊(𝑧), is going to be 
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analyzed. This tapering technique is typically devoted to the reduction of the sidelobe level in 

the 𝑆11 parameter of an EBG, being the result dependent on the specific 𝑊(𝑧) employed. In [22] 

a microstrip coupled-line EBG-based coupler was synthesized with this windowing method 

while looking also for an additional objective that was to keep the extreme values of 

characteristic impedances under control. Indeed, the windowing technique can be employed also 

with the aim of modulating the profile of the characteristic impedance using an arbitrary function 

of interest so as to guarantee that the extreme values of the impedance does not lead to physical 

dimensions that cannot be manufactured. Whatever the case may be under consideration, it is 

obvious that the synthesis equations of the spurious-free EBG must be reviewed for the case of 

a tapered EBG, since the coupling coefficient will be altered, and its associated frequency 

response will be different as a result. 

Firstly, the expression (3.17) that links the period of the EBG with the center of the 

stopband remains unaltered.  

Nonetheless, the expression for the highest rejection level of (3.21) and (3.22) will need 

to be reformulated since the amplitude of the coupling coefficient is going to be modified. Thus, 

the maximum rejection level will be calculated as a function of an effective EBG length [40], 

𝐿𝑒𝑓𝑓, instead of the physical length, 𝐿, as : 

|𝑆11|𝑚𝑎𝑥 = tanh(
𝐴

2
· 𝐿𝑒𝑓𝑓) (3.48) 

where 𝐿𝑒𝑓𝑓 is the effective length of the EBG and will be determined by means of the windowing 

function, 𝑊(𝑧), and the physical length, 𝐿, following the relation provided below: 

𝐿𝑒𝑓𝑓 = ∫ 𝑊(𝑧) · 𝑑𝑧
𝐿

0

 (3.49) 

where |𝑊(𝑧)| is assumed to have a unitary maximum amplitude, i.e. max{|𝑊(𝑧)|} = 1. 

3.1.4. Design of Multiplexer based on EBG 

concept 

The use of the expressions obtained for the synthesis of optimum EBGs, the backward 

and forward coupling characteristics of symmetrical edge coupled lines, and the different phase 

velocity of microstrip coupled lines, can be employed to design four-port multiplexers to direct 
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different frequency components of the same signal to different ports. The central frequency of 

the backward-coupled band is controlled by the period of the EBG structure, while the 

frequencies of the forward coupled bands are fixed by the length of the device. The rest of the 

frequencies go to the direct port giving rise to a device with the input port matched at all the 

frequencies and where the coupled bands are easily controllable by adjusting the corresponding 

design parameter.  

Coupled lines have been widely used at microwave and millimeter wave frequencies for 

a long time, with very important applications like the implementation of directional couplers, 

filters, and transformers [41], [42]. Two different coupling mechanisms have been identified for 

the coupled line structures: the backward coupling and the forward coupling. Depending on the 

coupling mechanism employed the structures are classified into two different groups [41]-[43]. 

The first group comprises the coupled line structures that couple the energy to the port adjacent 

to the input port (through a wave propagating in the backward direction) and are based on the 

use of different even and odd characteristic impedances. The second group includes the 

structures that couple the energy to the port adjacent to the direct port (through a wave 

propagating in the forward direction) and are based on the use of different even and odd 

propagation constants [44]. In both groups, the length of the structure controls the central 

frequency of the coupled band and only the corresponding mechanism (backward or forward 

coupling) is employed [41]. 

However, in this thesis a methodology is proposed to produce and exploit simultaneously 

the forward and backward coupling in coupled line structures. In contrast with the classical 

designs, the backward coupling will be achieved by introducing an EBG structure that allows to 

obtain a strong coupling and a single backward-coupled band whose central frequency is 

independent of the length of the structure [22], [23]. A technology with distinct even and odd 

propagation constants will be used to obtain the forward-coupled bands. A related EBG structure 

was also successfully demonstrated but for differential microstrip lines, with the very different 

application of common-mode suppression, and consequently with very different design 

methodology and operation [45]. 

The operation principle of the EBG-assisted coupled line structure proposed here, with 

independent control of the couplings, rests on the fact that the signal introduced in the input port 

(P1) is backward-coupled to P3 by the EBG structure, and forward-coupled to P4 by the 

difference between the even and odd propagation constants, see Fig. 3.4. The central frequency 

of the single backward-coupled band obtained in P3 solely depends on the period of the EBG 

structure, Λ, while the central frequencies of the forward-coupled bands obtained in P4 are 

determined by the total length of the device. The rest of the frequencies go to the direct port (P2), 

ensuring good matching at the input port (P1) for all the frequencies. 
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Fig. 3.4. Schematic of the EBG-assisted coupled line structure with EBG period Λ. The ground plane is kept unaltered. 

Microstrip technology has been selected for the implementation of the device since it 

fulfills the required condition of distinct even and odd propagation constants and it ensures low 

cost, direct integration, and easy fabrication using printed circuit technology. 

An EBG structure is implemented in coupled line technology by introducing an adequate 

periodic variation of the coupled strips width and separation. The resulting four-port side-by-side 

symmetrical device (see Fig. 3.4) can be studied employing the even and odd mode 

decomposition of symmetrical edge coupled transmission lines that was mentioned in section 

2.2.1.3. The mode decomposition allows us to relate the reflection, 𝛤𝑒(𝑓) and 𝛤𝑜(𝑓), and 

transmission coefficients, 𝑇𝑒(𝑓) and 𝑇𝑜(𝑓), of the even and odd modes, respectively, with the 𝑆-

parameters of the four-port structure, leading to the identities (2.169)-(2.172) that are rewritten 

below for the sake of clarity: 

𝑆11(𝑓) =
𝛤𝑒(𝑓) + 𝛤𝑜(𝑓)

2
 (2.169) 

𝑆21(𝑓) =
𝑇𝑒(𝑓) + 𝑇𝑜(𝑓)

2
 (2.170) 

𝑆31(𝑓) =
𝛤𝑒(𝑓) − 𝛤𝑜(𝑓)

2
 (2.171) 

𝑆41(𝑓) =
𝑇𝑒(𝑓) − 𝑇𝑜(𝑓)

2
 (2.172) 

where the port numbers follow the convention shown in Fig. 3.4. 

As it can be seen in (2.169), if the design condition 𝛤𝑒(𝑓) = −𝛤𝑜(𝑓) is satisfied, then 

𝑆11(𝑓) = 0 and 𝑆31(𝑓) = 𝛤𝑒(𝑓) due to (2.171), producing a device with the input port P1 

matched for all the frequencies and where the EBG stopband is backward-coupled to P3. If the 

coupling coefficients of even, 𝐾𝑒(𝑧), and odd, 𝐾𝑜(𝑧), modes are chosen to satisfy, 𝐾𝑒(𝑧) =

P2 

P4 

P1 

P3 
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−𝐾𝑜(𝑧), then the condition 𝛤𝑒(𝑓) = −𝛤𝑜(𝑓) will be automatically accomplished due to the sign 

property reported in [19]. Thus, 𝐾𝑒(𝑧) and 𝐾𝑜(𝑧) can be selected as an EBG of initial phase, 𝜃 =

−
𝜋

2
, and opposite sign, as: 

𝐾𝑒(𝑧) = −𝐾𝑜(𝑧) = 𝐴 · sin (
2 · 𝜋

Λ
· 𝑧) (2.169) 

then a spurious-free EBG structure that features only the fundamental backward-coupled band 

is obtained. Taking into account the expression (2.151) that relates the frequency, 𝑓, and the 

phase constant, 𝛽, considering a QTEM mode, the EBG period, Λ, will determine the central 

frequency, 𝑓31, of the single backward-coupled band due to (3.17) as: 

𝛬 =
𝜋

𝛽0
=

𝜋 · 𝑐0

2 · 𝜋 · 𝑓31 · √휀𝑒𝑓𝑓
=

𝑐0

2 · 𝑓31 · √휀𝑒𝑓𝑓
 (3.50) 

Moreover, since the backward wave will be coupled to the port P3, the maximum 

coupling level will be placed at 𝑓31, and according to (3.21) the maximum coupling 

level, |𝑆31( 𝑓31)|, will be: 

|𝑆31( 𝑓31)| = |𝑆31|𝑚𝑎𝑥 = tanh(
𝐴

2
· 𝐿) (3.51) 

Regarding the frequency bandwidth between zeros in the backward coupled band, 

𝐵𝑊𝑓,31
0 𝑑𝐵, it can be calculated by means of the 𝛽, 𝑓 pair relationship of (2.151) and the 𝐵𝑊𝛽

0 𝑑𝐵 

expression of (3.18) as: 

𝐵𝑊𝑓,31
0 𝑑𝐵 = 𝐵𝑊𝛽

0 𝑑𝐵 ·
𝑐0

2 · 𝜋 · √휀𝑒𝑓𝑓
=

𝑐0

𝜋 · √휀𝑒𝑓𝑓
· √(

𝐴

2
)
2

+ (
𝜋

𝐿
)
2

 (3.52) 

It is important to highlight that by using the EBG structure, the central frequency of the 

backward-coupled band, 𝑓31 , is fully independent of 𝐿 as it can be observed in (3.50). 

Considering now the transmission coefficients 𝑇𝑒(𝑓) and 𝑇𝑜(𝑓) used in (2.170) and 

(2.172), it is important to notice that out of the single backward-coupled band, the reflection 

coefficients 𝛤𝑒(𝑓) and 𝛤𝑜(𝑓) will be negligible since the reflection is governed by the spurious-

free EBG structure carefully designed to forbid propagation only around 𝑓31. Therefore, out of 

the single backward-coupled band, the magnitudes of 𝑇𝑒(𝑓) and 𝑇𝑜(𝑓) will be approximately 

equal to 1, while their phases will be a product, with minus sign, of the propagation constant of 

the even or odd mode, 𝛽𝑒  or 𝛽𝑜, respectively, and the length of the device, 𝐿. Inspecting (2.172), 
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it can be seen that if 𝑇𝑒(𝑓) = −𝑇𝑜(𝑓), with magnitudes equal to 1, then |𝑆41( 𝑓41)| = 1 and the 

signal with frequency 𝑓41 will be forward-coupled to P4. This condition will be satisfied when: 

𝛽𝑒 · 𝐿 − 𝛽𝑜 · 𝐿 = 𝑚 · 𝜋 (3.53) 

where 𝑚 =  1, 3, 5,…, and will give rise to a full coupling of the energy to P4 at the 

corresponding frequencies. 

The length necessary for the EBG-assisted coupled line structure to get the first forward-

coupled band to P4 at the frequency f41 is obtained from (3.53) when 𝑚 = 1, as [41]: 

𝐿 =
𝑐0

2 · 𝑓41 · (√휀𝑒𝑓𝑓,𝑒 − √휀𝑒𝑓𝑓,𝑜)
 (3.54) 

where 휀𝑒𝑓𝑓,𝑒 and 휀𝑒𝑓𝑓,𝑜 are the mean even and odd effective dielectric constants along the device 

that are directly associated to 𝛽𝑒  and 𝛽𝑜 through the expressions (2.181) and (2.182), 

respectively. 

For higher values of 𝑚 = 3, 5, 7, …, additional forward-coupled bands will be obtained at 

the frequencies 𝑚 · 𝑓41, see (3.53). Moreover, when 𝑚 = 0, 2, 4,…,  𝑇𝑒(𝑓) and 𝑇𝑜(𝑓) will be in 

phase, see (3.53), and if their magnitudes are equal to 1 then 𝑇𝑒(𝑓) = 𝑇𝑜(𝑓) and |𝑆21( 𝑓21)| = 1, 

see (2.170). As a result, the signal with frequency 𝑓21  will be fully routed to the direct port (P2), 

where 𝑓21 can take the values 𝑚 · 𝑓41 with 𝑚 = 0, 2, 4,… It should be noted that in order to avoid 

the need of an excessive length for the device, a significant difference between 휀𝑒𝑓𝑓,𝑒 and 휀𝑒𝑓𝑓,𝑜 

is necessary in the implementation technology. 

In general, for the frequencies out of the single backward-coupled band produced by the 

EBG structure (where the magnitudes of 𝑇𝑒(𝑓) and 𝑇𝑜(𝑓) are approximately equal to 1), the 

frequency behavior of the forward-coupled bands, |𝑆41( 𝑓)|, and of the direct bands, |𝑆21( 𝑓)|, 

is given by [41]: 

|𝑆41( 𝑓)| = sin [
𝜋 · 𝐿 · 𝑓 · (√휀𝑒𝑓𝑓,𝑒 −√휀𝑒𝑓𝑓,𝑜)

𝑐0
] (3.55) 

|𝑆21( 𝑓)| = cos [
𝜋 · 𝐿 · 𝑓 · (√휀𝑒𝑓𝑓,𝑒 − √휀𝑒𝑓𝑓,𝑜)

𝑐0
] (3.56) 

Since the coupling coefficient for both modes are known, the expressions (2.167) and 

(2.168) can be employed to determine their corresponding characteristic impedances, 𝑍0,𝑒(𝑧) 

and 𝑍0,𝑜(𝑧), leading to: 
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𝑍0,𝑒(𝑧) = 𝑍0,𝑒(0) · 𝑒
−
𝐴·𝛬
𝜋
·[cos(

2·𝜋
𝛬
·𝑧)−1]

 (3.57) 

𝑍0,𝑜(𝑧) = 𝑍0,𝑜(0) · 𝑒
𝐴·𝛬
𝜋
·[cos(

2·𝜋
𝛬
·𝑧)−1]

 (3.58) 

where 𝑍0,𝑒(0) is the 𝑍0,𝑒(𝑧) value at the beginning of the device, and Λ and 𝐿 are calculated 

using (3.50) and (3.54), respectively, to obtain the backward- and forward-coupled bands around 

the frequencies 𝑓31  and 𝑓41, respectively. The amplitude parameter, 𝐴, controls the coupling 

level, |𝑆31( 𝑓31)|, and bandwidth between zeros, 𝐵𝑊𝑓,31
0 𝑑𝐵, of the backward-coupled band through 

(3.51) and (3.52), as explained above, and fixes the maximum value for 𝑍0,𝑒(𝑧), 𝑍0,𝑒 𝑚𝑎𝑥, due to 

(3.25). 

Finally, a tapering function, 𝑊(𝑧), is applied to the 𝑍0,𝑒(𝑧) and 𝑍0,𝑜(𝑧) profiles in order 

to smoothly adjust the values of the characteristic impedances at the ports P2 and P4, when a 

non-integer number of periods is necessary to complete the calculated device length, 𝐿. 

Additionally, the tapering function minimizes the ripple (side-lobe level) produced in frequency 

by the EBG structure, but it also reduces the level of energy coupled throughout the EBG and, 

consequently, the length 𝐿 employed in (3.51) and (3.52) needs to be replaced by the effective 

length of the tapered EBG structure, 𝐿𝑒𝑓𝑓, that can be calculated using (3.49). 

Moreover, due to the fact that the even and odd modes propagate at different speeds, the 

𝑍0,𝑒 and 𝑍0,𝑜 profiles are redistributed along the propagation direction using the 휀𝑒𝑓𝑓,𝑒  and 휀𝑒𝑓𝑓,𝑜 

values in such a way that both modes are affected at each time instant by the same pair of 

impedances as in the case of equal speed propagation. The details about the employed 

compensation procedure are given in section 2.2.2.1. In this way, the design condition 𝐾𝑒(𝑧) =

−𝐾𝑜(𝑧) is still satisfied in our device, although the even and odd modes feature different 

propagation constants. 

The physical parameters of the EBG-assisted microstrip coupled-line structure (strip 

width and separation) are finally calculated from the obtained 𝑍0,𝑒(𝑧) and 𝑍0,𝑜(𝑧) profiles using 

the expressions available in [41] and Agilent ADS LineCalc tool, where even the thickness of the 

metallic strips is taken into account. 
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3.1.4.1. Example of Application: GSM and 

WLAN Triplexer 

As an example of application, a microstrip triplexer working at GSM900 (𝑓21 = 900 

MHz) and both WLAN bands (𝑓31 = 2.4 GHz and 𝑓41 = 5.5 GHz) has been designed using an 

EBG-assisted coupled line structure, see Fig. 3.5. 

The substrate employed is Rogers RO3010 (휀𝑟=10.2, ℎ = 0.635 mm) with 50 Ω input 

and output ports. The minimum separation between the metallic strips is fixed to 25 μm, which 

results in a maximum 𝑍0,𝑒(𝑧) value of 𝑍0,𝑒 𝑚𝑎𝑥 = 109.7 Ω (calculated using Agilent ADS 

LineCalc), guaranteeing a large value for the A parameter (see (3.25)) and consequently a high 

backward-coupling level, see (3.51). Again, using Agilent ADS LineCalc, the effective 

permittivities 휀𝑒𝑓𝑓,𝑒 = 7.1 and 휀𝑒𝑓𝑓,𝑜 = 5.7 are obtained for 𝑓31 = 2.4 GHz, resulting in a mean 

value of 휀𝑒𝑓𝑓 = 6.4. Taking 𝑍0,𝑒(0) = 50.5 Ω and 𝑍0,𝑜(0) = 49.5 Ω for convenience, and using 

(3.50) and (3.25), the parameters to fix the 𝑍0,𝑒(𝑧) and 𝑍0,𝑜(𝑧) profiles (3.57), (3.58) to get the 

backward-coupled band at 𝑓31 = 2.4 GHz are obtained: Λ = 24.8 mm, 𝐴 =  49.2 m-1. The 

device length is calculated using (3.54) to get a forward-coupled band at 𝑓41 = 5.5 GHz, with 

휀𝑒𝑓𝑓,𝑒 = 7.3 and 휀𝑒𝑓𝑓,𝑜 = 5.6. The result obtained is 𝐿 = 81.3 mm, which gives a number of 

periods of 𝑁Λ = 3.3. The direct band will be placed around 0 GHz (𝑚 · 𝑓41, with 𝑚 = 0), 

encompassing the intended value of 𝑓21 = 900 MHz. Due to the non-integer number of periods, 

and to minimize the ripple introduced in frequency by the EBG structure, an asymmetrical 

Bohman window [47] is applied over the 𝑍0,𝑒(𝑧) and 𝑍0,𝑜(𝑧) profiles. Finally, the spatial 

redistribution process of (2.216) and (2.217) is applied to 𝑍0,𝑒(𝑧) and 𝑍0,𝑜(𝑧), respectively, as it 

can be seen in Fig. 3.6. The designed device has been simulated using CST Microwave Studio,  

 

Fig. 3.5. Photograph of the microstrip triplexer, with labeled ports, implemented using an EBG-assisted coupled line 

structure. 
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fabricated with a LPKF ProtoLaser 200 laser PCB milling machine (see Fig. 3.5) and measured 

by means of an AgilentTM 8722 VNA. The results are shown in Fig. 3.7 and Fig. 3.8. 

 

Fig. 3.6. Even (black line) and odd (grey line) characteristic impedances before (dashed line) and after (solid line) the 

spatial redistribution process. 

 

 

Fig. 3.7. Simulated (dashed line) and measured (solid line) |S11| (grey line) and |S31| (black line) parameters for the 

triplexer. The WLAN band operating at 2.4-2.45 GHz (IEEE 802.11b/g) backward-coupled to P3 is shaded in grey. 
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Fig. 3.8. Simulated (dashed line) and measured (solid line) |S21| (grey line) and |S41| (black line) parameters for the 

triplexer. The GSM band operating at 890-960 MHz (GSM900) directed to P2 and the WLAN band operating at 5.15-

5.85 GHz (IEEE 802.11a) forward-coupled to P4 are shaded in grey. 

A very good agreement is achieved between the simulated and measured results. As it 

can be seen, the input port (P1) is matched at all the frequencies, while the bands around 𝑓21 =

900 MHz, 𝑓31 = 2.4 GHz, and 𝑓41 = 5.5 GHz, are routed to the ports P2, P3, and P4, 

respectively, as intended, with measured coupling levels of |𝑆21(𝑓21)| = −0.7 dB, |𝑆31(𝑓31)| =

−1.7 dB, and |𝑆41(𝑓41)| = −1.5 dB. The differences with the theoretical coupling levels (-0.2 

dB, -0.8 dB, and 0 dB), calculated using (3.56), (3.51), and (3.55), respectively, can be attributed 

to the conductor and dielectric losses. 
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 THE GEL’FAND, LEVITAN 

& MARCHENKO EXACT SERIES 

SOLUTION FOR THE SYNTHESIS 

PROBLEM 

The one-dimensional Inverse Scattering synthesis problem of how to directly calculate 

the coupling coefficient, 𝐾(𝑧), as a function of the complex frequency response in reflection can 

be expressed as a system of Gel’fand-Levitan-Marchenko coupled-integral equations [1], [2] as 

it was firstly demonstrated by Peral et al. in [3] in 1996 for the synthesis of fiber gratings for the 

optics range. In the microwave range, numerical solutions were attained by discretizing the 

system and using it as a recurrence relation in an iterative manner [4] being this method 

successfully applied for the synthesis of microwave filters with strict specifications [5]. Similar 

results were obtained by Kritikos et al. for the reconstruction of dielectric profiles [6] using an 

algorithm that was subsequently refined by other authors in [7], [8]. Finally, the series solution 

of the coupling coefficient for the microwave domain was brilliantly achieved by Arnedo et al. 

in [9], while an optimized algorithm based in that solution was published by Chudzik et al. in 

[10]. 
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In order to formulate the exact series solution for the coupling coefficient for any causal, 

stable and passive frequency response in reflection, it is necessary to start from the single-mode 

coupled-mode equation system of (2.91), (2.92): 

𝑑𝑎+

𝑑𝑧
= −𝑗 · 𝛽 · 𝑎+ +𝐾 · 𝑎− (2.91) 

𝑑𝑎−

𝑑𝑧
= 𝑗 · 𝛽 · 𝑎− +𝐾 · 𝑎+ (2.92) 

As it was mentioned in CHAPTER 2, when dealing with two propagating waves of the 

same mode, 𝐾(𝑧) is a real function, i.e. 𝐾(𝑧) = 𝐾∗(𝑧), where ∗ stands for the complex 

conjugate. Accordingly, (2.91), (2.92) can be expressed as a Zakharov-Shabat system for 

quantum mechanics [11] as: 

𝑗 ⋅ [

𝑑

𝑑𝑧
−𝐾

𝐾∗
−𝑑

𝑑𝑧

] ⋅ [𝑎
+

𝑎−
] = 𝛽 ⋅ [𝑎

+

𝑎−
] (4.1) 

We introduce two linearly independent solutions of the Zakharov-Shabat system (two of 

the so-called Jost functions) which satisfy in the limit [9], [11]: 

lim
𝑧→−∞

[
𝜙1(𝑧, 𝛽)
𝜙2(𝑧, 𝛽)

] = [
1
0
] ⋅ 𝑒−𝑗⋅𝛽⋅𝑧 (4.2) 

lim
𝑧→−∞

[
𝜙
1
(𝑧, 𝛽)

𝜙
2
(𝑧, 𝛽)

] = [
0
1
] ⋅ 𝑒𝑗⋅𝛽⋅𝑧 (4.3) 

Now, in order to solve the synthesis problem, the coupling region is assumed to be located 

within 𝑧 = 0 and 𝑧 = 𝐿, and therefore 𝐾(𝑧) = 0 for 𝑧 < 0 and 𝑧 > 𝐿. A solution of the 

Zakharov-Shabat system (and hence of the coupled-mode equations) with the boundary 

conditions 𝑎+(𝑧 = 0, 𝛽) = 1 and 𝑎−(𝑧 = 𝐿, 𝛽) = 0 (i.e., output port matched) can be obtained 

as a linear combination of the previous Jost functions (4.2) and (4.3) of the form [9], [11]: 

[
𝑢1(𝑧, 𝛽)
𝑢2(𝑧, 𝛽)

] = [
𝜙1(𝑧, 𝛽)
𝜙2(𝑧, 𝛽)

] + 𝑆11(𝛽) ⋅ [
𝜙
1
(𝑧, 𝛽)

𝜙
2
(𝑧, 𝛽)

] (4.4) 

being: 
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𝑆11(𝛽) =
𝑎−(𝑧 = 0, 𝛽)

𝑎+(𝑧 = 0, 𝛽)
|
𝑎−(𝑧=𝐿,𝛽)=0

 (4.5) 

where the solution 𝑎+(𝑧, 𝛽) = 𝑢1(𝑧, 𝛽), 𝑎
−(𝑧, 𝛽) = 𝑢2(𝑧, 𝛽), corresponds to the situation when 

the output port is matched, and the values at the input port of the filter are 𝑎+(𝑧 = 0, 𝛽) =

𝑢1(𝑧 = 0, 𝛽) = 1 and 𝑎−(𝑧 = 0, 𝛽) = 𝑢2(𝑧 = 0, 𝛽) = 𝑆11(𝛽).  

Taking into account these considerations, and the behavior of the Jost functions at the 

limit (4.2) and (4.3) that will remain valid up to the input port of the structure at 𝑧 = 0 (since 

𝐾(𝑧) = 0 for 𝑧 < 0), the validity of (4.4) can be easily verified. 

One of the previous Jost functions (solution of the Zakharov-Shabat system) can be 

represented as [9], [11]: 

[
𝜙1(𝑧, 𝛽)
𝜙2(𝑧, 𝛽)

] = [
1
0
] ⋅ 𝑒−𝑗⋅𝛽⋅𝑧 + ∫ [

𝐴1(𝑧, 𝜏)
𝐴2(𝑧, 𝜏)

]

∞

−∞

⋅ 𝑒−𝑗⋅𝛽⋅𝜏 ⋅ 𝑑𝜏 (4.6) 

where the first term corresponds to the propagation of the forward traveling wave in the absence 

of coupling region (behavior at the limit (4.2)), and 𝐴1(𝑧, 𝜏), 𝐴2(𝑧, 𝜏), are the kernel functions 

that characterize the scattering effect produced by the coupling region (i.e. the synthetized 

structure). 

Additionally, using symmetry properties of the Zakharov-Shabat system (4.1), it can be 

easily demonstrated that our two Jost functions are related as [11]: 

[
𝜙
1
(𝑧, 𝛽)

𝜙
2
(𝑧, 𝛽)

] = [
𝜙2
∗(𝑧, 𝛽)

𝜙1
∗(𝑧, 𝛽)

] (4.7) 

As it was stated in [12], [13], it is important to highlight that 𝛽 is the independent variable 

in the Zakharov-Shabat system, while frequency, 𝑓, is the final independent variable in the 

coupled-mode equations. Therefore, it is necessary to assume that variables 𝛽 and 𝑓 are 

univocally related once the technology is chosen, and it means that 𝛽 does not vary with 𝑧 for a 

given frequency. This aspect may be troublesome when considering several technologies, but it 

can be exactly compensated for a single frequency using the strategy that was presented in 

section 2.2.2. Moreover, it will be assumed in the application of the synthesis method that 𝛽 does 

not depend on 𝑧 (as it is needed), and the obtained solution will be subsequently corrected when 

needed using the aforementioned strategy. 
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In order to solve the synthesis problem by applying causality considerations, it is recalled 

that the coupling region (i.e. the area of designed device) begins at 𝑧 = 0, and therefore 𝐾(𝑧) =

0 for 𝑧 < 0. Accordingly, the problem is reformulated in the time domain using the Fourier 

Transform [14], by introducing the variables 𝑉+(𝑧, 𝜏) and 𝑉−(𝑧, 𝜏) that are related to the 

amplitudes of the forward and backward travelling waves, respectively, as: 

𝑉+(𝑧, 𝜏) =
1

2 · 𝜋
· ∫ 𝑎+(𝑧, 𝛽) · 𝑒𝑗·𝛽·𝜏 · 𝑑𝛽

∞

−∞

 (4.8) 

𝑉−(𝑧, 𝜏) =
1

2 · 𝜋
· ∫ 𝑎−(𝑧, 𝛽) · 𝑒𝑗·𝛽·𝜏 · 𝑑𝛽

∞

−∞

 (4.9) 

By taking the inverse Fourier Transform of (4.8), (4.9) in the solution of the Zakharov-

Shabat system of (4.4), and after several mathematical manipulations, the subsequent expression 

can be obtained [9], [11]: 

[
𝑈1(𝑧, 𝜏)
𝑈2(𝑧, 𝜏)

] = [𝛿
(𝜏 − 𝑧)
0

] + [
𝐴1(𝑧, 𝜏)
𝐴2(𝑧, 𝜏)

] + [
0
1
] · 𝐹(𝑧 + 𝜏) + ∫ [

𝐴2
∗ (𝑧, 𝑦)
𝐴1
∗(𝑧, 𝑦)

]

∞

−∞

· 𝐹(𝑦 + 𝜏) ⋅ 𝑑𝑦 (4.10) 

where 

𝐹(𝜏) =
1

2 · 𝜋
· ∫ 𝑆11(𝛽) · 𝑒

𝑗·𝛽·𝜏 · 𝑑𝛽
∞

−∞

 (4.11) 

and 

𝑆11(𝛽) = ∫ 𝐹(𝜏) · 𝑒−𝑗·𝛽·𝜏 · 𝑑𝜏
∞

−∞

 (4.12) 

being 𝐹(𝜏) the inverse Fourier Transform of the 𝑆11(𝛽)-parameter. Due to the causality 

principle, 𝐹(𝜏) must satisfy the condition [3], [9]: 

𝐹(𝜏) = 0  ∀  𝜏 < 0 (4.13) 

Moreover, applying causality considerations, it follows that [11]: 

[
𝐴1(𝑧, 𝜏)
𝐴2(𝑧, 𝜏)

] = 0  ∀  𝑧 < |𝜏| (4.14) 

At this point, new functions 𝑌1(𝑧, 𝜏) and 𝑌2(𝑧, 𝜏) can be conveniently defined as: 
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[
𝑌1(𝑧, 𝜏)
𝑌2(𝑧, 𝜏)

] = [
𝑈1(𝑧, 𝜏)
𝑈2(𝑧, 𝜏)

] − [𝛿
(𝜏 − 𝑧)
0

] (4.15) 

and considering again the causality principle [11]: 

[
𝑌1(𝑧, 𝜏)
𝑌2(𝑧, 𝜏)

] = 0 ∀  |𝑧| > 𝜏 (4.16) 

Using (4.13) and (4.14), the integration range of (4.10) can be limited from – 𝜏 to 𝑧. 

Additionally, using (4.10) in (4.15), (4.16), the so-called Gel’fand-Levitan-Marchenko coupled-

integral equations can be obtained as it is provided below: 

𝐴1(𝑧, 𝜏) + ∫
 

𝐴2
∗ (𝑧, 𝑦) ⋅ 𝐹(𝑦 + 𝜏) ⋅ 𝑑𝑦 = 0

𝑧

−𝜏

 , |𝑧| > 𝜏 (4.17) 

𝐴2(𝑧, 𝜏) + 𝐹(𝑧 + 𝜏) + ∫
 

𝐴1
∗(𝑧, 𝑦) ⋅ 𝐹(𝑦 + 𝜏) ⋅ 𝑑𝑦 = 0

𝑧

−𝜏

 , |𝑧| > 𝜏 (4.18) 

At this point, it will be necessary to deduce the relationship between the functions 

𝐴1(𝑧, 𝜏), 𝐴2(𝑧, 𝜏) that appear in the Gel’fand-Levitan-Marchenko equations of (4.17), (4.18) and 

the coupling coefficient, 𝐾(𝑧), required to obtain the targeted frequency response that is 

expressed in its time-domain version, 𝐹(𝜏), of (4.11). In order to achieve that relationship, the 

problem is formulated in the 𝜏-domain by taking the inverse Fourier Transform of the coupled-

mode equation system of (2.91), (2.92), as well as the inverse Fourier Transforms of 𝑎+(𝑧, 𝛽) 

and 𝑎−(𝑧, 𝛽), 𝑉+(𝑧, 𝜏) and 𝑉−(𝑧, 𝜏), respectively, of (4.8) and (4.9), leading to [9]: 

𝜕𝑉+(𝑧, 𝜏)

𝜕𝑧
+
𝜕𝑉+(𝑧, 𝜏)

𝜕𝜏
= 𝐾(𝑧) · 𝑉−(𝑧, 𝜏) (4.19) 

𝜕𝑉−(𝑧, 𝜏)

𝜕𝑧
−
𝜕𝑉−(𝑧, 𝜏)

𝜕𝜏
= 𝐾(𝑧) · 𝑉+(𝑧, 𝜏) (4.20) 

It must be highlighted that the transformation is performed assuming that 𝐾(𝑧) does not 

depended on 𝛽, or in other words, on frequency, 𝑓. 

Now, it must be reminded that the functions 𝑢1(𝑧, 𝛽) and 𝑢2(𝑧, 𝛽) defined in (4.4) are a 

solution of the Zhakarov-Shabat system and thus, their corresponding inverse Fourier 

transformed pairs 𝑈1(𝑧, 𝜏), 𝑈2(𝑧, 𝜏) of (4.10), must be also a solution of the 𝜏-domain coupled-

mode equations of (4.19) and (4.20). From (4.15), 𝑈1(𝑧, 𝜏) and 𝑈2(𝑧, 𝜏) can be rewritten as: 
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[
𝑈1(𝑧, 𝜏)
𝑈2(𝑧, 𝜏)

] = [
𝑌1(𝑧, 𝜏)
𝑌2(𝑧, 𝜏)

] + [𝛿
(𝜏 − 𝑧)
0

] (4.21) 

If the identity (4.21) is introduced into the equation (4.20), it will lead to: 

𝜕𝑌2(𝑧, 𝜏)

𝜕𝑧
−
𝜕𝑌2(𝑧, 𝜏)

𝜕𝜏
= 𝐾(𝑧) · [𝑌1(𝑧, 𝜏) + 𝛿(𝜏 − 𝑧)] (4.22) 

Then, if a coordinate transformation is performed in (4.22) and both sides are integrated 

by taking into account (4.16), (4.22) will yield to [9]: 

−𝑌2(𝑧, 𝑧
+) =

1

2
· 𝐾(𝑧) (4.23) 

The expression of 𝐾(𝑧) can be deduced from (4.23), by getting the expression for 

𝑌2(𝑧, 𝑧
+) from (4.15) and (4.10), as well as by taking under consideration (4.14), leading to: 

𝐾(𝑧) = −2 · 𝐹(2𝑧) − 2 · ∫ 𝐴1
∗(𝑧, 𝑦) · 𝐹(𝑦 + 𝑧) · 𝑑𝑦

𝑧

−𝑧

 (4.24) 

This equation (4.24) allows the analytical calculation of the coupling coefficient, 𝐾(𝑧), 

necessary to obtain the target frequency response (that is expressed in its 𝜏-domain through the 

function 𝐹(𝜏) of (4.11)) from the 𝐴1(𝑧, 𝜏)-parameter that is employed in the Gel’fand-Levitan-

Marchenko equations of (4.17) and (4.18). It must be noted that since the coupling region have 

been restricted to 𝑧 ≥ 0 due to the consideration of the causality principle, it will be necessary 

to know 𝐴1(𝑧, 𝜏) in the región |𝜏| < 𝑧 that is fully included within the limits of the Gel’fand-

Levitan-Marchenko equations of (4.17) and (4.18). 

If the integral term of (4.24) is neglected, the zero-th order approximation for the coupling 

coefficient will be obtained as: 

𝐾(𝑧) ≅ −2 · 𝐹(2𝑧) (4.25) 

It must be highlighted that the zero-th order approximation of (4.25) is fully coincident 

with the classical Fourier Transform approximation that was early reported in [15], [16], which 

is only valid for devices that feature low reflectivity. The physical meaning of this approximation 

is that the coupling is so weak that the amplitude of the incident mode can be approximated as 

constant along the whole structure. 
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4.1. ITERATIVE SOLUTION 

The final necessary step to achieve the series solution for the synthesis problem is to solve 

the Gel’fand-Levitan-Marchenko system for 𝐴1(𝑧, 𝜏) by using an iterative method reported 

originally in [3]. For doing so, the Gel’fand-Levitan-Marchenko system of (4.17) and (4.18) can 

be rewritten as follows: 

𝐴1(𝑧, 𝜏) = − ∫
 

𝐴2
∗ (𝑧, 𝑦) ⋅ 𝐹(𝑦 + 𝜏) ⋅ 𝑑𝑦

𝑧

−𝜏

 , |𝑧| > 𝜏 (4.26) 

𝐴2(𝑧, 𝜏) = −𝐹(𝑧 + 𝜏) − ∫
 

𝐴1
∗(𝑧, 𝑦) ⋅ 𝐹(𝑦 + 𝜏) ⋅ 𝑑𝑦 = 0

𝑧

−𝜏

 , |𝑧| > 𝜏 (4.27) 

If the integral term of (4.27) is neglected, the zero-th order approximation for 𝐴2(𝑧, 𝜏) 

will be attained: 

𝐴2(𝑧, 𝜏) ≅ −𝐹(𝑧 + 𝜏) (4.28) 

And then, by introducing (4.28) into (4.26), the first-order approximation for 𝐴1(𝑧, 𝜏) will 

be obtained as: 

𝐴1(𝑧, 𝜏) ≅ ∫ 𝐹∗(𝑧 + 𝑦) · 𝐹(𝑦 + 𝜏) · 𝑑𝑦
𝑧

−𝜏

 (4.29) 

If the solution of (4.29) is introduced into the coupling coefficient expression of (4.24), 

the first-order approximate solution for 𝐾(𝑧) can be deduced as [9]: 

𝐾(𝑧) = −2 · 𝐹(2𝑧) − 2 · ∫ 𝑑𝑥1 ⋅ 𝐹(𝑥1 + 𝑧) · ∫ 𝑑𝑥2 ⋅ 𝐹(𝑧 + 𝑥2) ⋅ 𝐹
∗(𝑥1 + 𝑥2)

𝑧

−𝑥1

𝑧

−𝑧

 (4.30) 

Proceeding in an iterative manner, i.e. introducing (4.29) into (4.27), and its result 

subsequently into (4.26), the second-order approximation for 𝐴1(𝑧, 𝜏) is obtained, which can be 

used in turn in (4.24) so as to achieve the second-order approximate solution for the coupling 

coefficient. If the procedure is further iterated while taking into account that 𝐹(𝜏) must be real 

for any physical device, the exact analytical series solution for the coupling coefficient will be 

eventually attained as [9]: 
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𝐾(𝑧) = −2 · 𝐹(2𝑧) + 

(4.31) 

−2 · ∫ 𝑑𝑥1𝐹(𝑥1) · ∫ 𝑑𝑥2
′𝐹(𝑥2

′ )
𝑥1

0

𝐹(𝑥2
′ − 𝑥1 + 2𝑧) +

2𝑧

0

 

−2∫ 𝑑𝑥1𝐹(𝑥1)∫ 𝑑𝑥2
′𝐹(𝑥2

′ )∫ 𝑑𝑥3
′𝐹(𝑥3

′ )∫ 𝑑𝑥4
′𝐹(𝑥4

′ )
𝑥3

0

𝑥2

0

𝑥1

0

𝐹(𝑥4
′ − 𝑥3 + 2𝑧)

2𝑧

0

+ 

−⋯+ 

−2∫ 𝑑𝑥1𝐹(𝑥1)
2𝑧

0

∫ 𝑑𝑥2
′𝐹(𝑥2

′ )∫ …∫ 𝑑𝑥2𝑁
′ 𝐹(𝑥2𝑁

′ )
𝑥2𝑁−1

0

𝑥2

0

𝑥1

0

𝐹(𝑥2𝑁
′ − 𝑥2𝑁−1 + 2𝑧) + 

−⋯+ 

where 𝑥𝑖
′ = 𝑥𝑖 + 𝑥𝑖−1 − 2𝑧 for 𝑖 > 1. 

The analytical solution of (4.31) allows us to calculate the coupling coefficient, 𝐾(𝑧), 

required to implement a target frequency response 𝑆11(𝛽) that has its counterpart in the 𝜏-domain 

as 𝐹(𝜏) = 𝑇𝐹−1{𝑆11(𝛽)}, as it was stated in (4.11). It must be highlighted that the only 

approximations taken to obtain the synthesis solution of (4.31) are the single-mode operation, 

the assumption that the phase constant, 𝛽, does not vary with 𝑧 for a given frequency along the 

whole device, and the assumption that 𝐾(𝑧) does not depend on frequency. 

It must be noted that in order to practically employ (4.31), it will be necessary to truncate 

the approximation order, 𝑁. Indeed, it is worth noting that the higher the approximation order 𝑁 

taken for the solution of (4.31), the higher the reflectivity achievable for the device, and the more 

accurate the coupling coefficient calculated, as it was demonstrated in [12]. This aspect was also 

addressed in [10], where an efficient computation algorithm was proposed for the calculation of 

the 𝑁-th approximation of (4.31). 

Finally, it is worth noting that the feasibility of synthesizing microwave devices by means 

of the GLM series solution technique was originally demonstrated in [9] and it has been 

successfully employed in many cases since then [18]-[21], being some quite recent. 
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4.2. GENERAL SYNTHESIS OF TAPERED 

MATCHING SECTIONS FOR SINGLE-MODE 

OPERATION 

Tapered matching sections, or simply tapers, for microwave transmission lines and 

waveguides are a mature research topic that can be traced back almost a century [22]-[24]. They 

can be defined as a smooth intermediate structure that allows us to connect two transmission 

lines or waveguides of different characteristic impedances or cross-sections, with a profile that 

varies continuously in a smooth fashion from one transmission line or waveguide to the other. 

The taper is designed to minimize the excitation of unwanted modes (including reflection), 

keeping the excitation level under a given design value. Following that broad definition, it is 

easy to understand the importance of tapers, since they solve a common problem in numerous 

different microwave devices, technologies and systems. 

Many different techniques for the design of tapers have been developed using the 

transmission line theory [25], [26]. Linear, hyperbolic, parabolic and exponential functions, 

among others, have been proposed. However, two sophisticated solutions must be highlighted. 

The first one was proposed by Klopfenstein [27] and later on completed by other authors [28]-

[30], and it is also known as the Dolph-Chebyshev function. It achieves the optimum taper in the 

sense that its reflection level is below the maximum specified for the frequencies above the 

minimum required, with a tapering function of minimum length. However, the taper always 

exhibits discontinuities (steps) at its extremes that are inherent to the function. These critical 

steps can result in manufacturability problems and in the excitation of higher order modes that 

can be troublesome for certain applications. The second solution was proposed by Hecken [31] 

and it is also known as the modified Dolph-Chebyshev function. It is considered as a near-

optimum taper and achieves a performance close to the Klopfenstein optimum proposal, 

employing a fully smooth tapering function with no discontinuities, but with a slightly larger 

length. Anyway, both Klopfenstein and Hecken tapers were developed for ideal transmission 

lines, in terms of the characteristic impedance parameter. 

Very interesting proposals have been done to extend the theory of transmission line tapers 

to non-ideal transmission lines, synthesizing the taper in terms of the characteristic impedance 

but taking into account dispersion. Implementations in microstrip technology have been 

proposed [32], [33] and even tapers in finline have been carefully designed. For the finline case, 
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the synthesis has been done in terms of the wave impedance [32] or using the mode coupling 

coefficient [34], [35] by introducing several approximations valid for that technology. 

Tapers have been also widely studied and employed in microwave waveguide 

technologies, especially in rectangular and circular waveguides [36], [37]. Initially, simple tapers 

with linear profiles were proposed for circular (conical taper) [38] and rectangular waveguides 

(pyramidal taper) [39], [40]. The excitation of parasitic modes (including reflection) in linear 

tapers is often relatively high, and to reduce it the length of the taper must be increased often to 

large values. A better taper design was achieved by successive connection of several cones with 

different contour angles [41], [42]. However, when the number of conical sections employed is 

large, these tapers approach the superior nonlinear smooth tapers, where the contour angle is 

changed continuously. Several techniques have been proposed to design nonlinear smooth 

tapers, most of them resting on the use of the coupled-mode theory [36], [37]. Some elegant and 

solid synthesis procedures are available for circular waveguide tapers [36], [37], [43]-[45], also 

applicable to rectangular tapers where the height of the waveguide is kept constant [36]. 

Guidelines to extend the synthesis procedures to arbitrary cross sections are given in [37] and an 

analytical solution for parabolic tapers is obtained in [46]. All these synthesis procedures achieve 

nonlinear smooth tapers for overmoded (highly multimode) waveguides, with very low 

excitation of the parasitic mode, where only the most strongly coupled unwanted (parasitic) 

mode is taken into account, and assuming that both modes are far above cutoff. These devices 

are of high interest in the field of high-power microwaves or to transmit microwave signals with 

very low losses. If several higher-order parasitic modes need to be taken into account in the 

synthesis, then a quasidiagonalization of the coupled-mode equations can be performed, [36], 

[47], [48]. Using this technique, a more accurate synthesis can be achieved but still assuming 

that all the relevant modes are far above cutoff. More complex taper synthesis techniques (based 

on the use of horn modes) have been proposed for the case when the parasitic mode is close to 

cutoff [36], or even when the parasitic mode is below cutoff in a region of the taper [36], [37]. 

In any case, all these synthesis techniques have been developed assuming multimode operation 

in the taper and with the aim of minimizing the coupling to the main parasitic mode. 

A systematic and general synthesis procedure to design microwave waveguide tapers for 

single-mode operation able to implement the Klopfenstein and Hecken analytical responses, 

among others, is not available in the literature. Those single-mode tapers are of high interest for 

microwave telecommunication devices like filters and couplers. Recently, a novel and interesting 

design method based on the use of generalized superellipses and optimization algorithms has 

been proposed, demonstrating successful results in microstrip and rectangular waveguide single-

mode tapers [49].  
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It can be summarized that there is an absence of a technique to translate the Klopfenstein 

and Hecken analytical responses from the transmission line theoretical background to the general 

waveguide domain. However, by using the general synthesis workflow that is followed within 

the present thesis it will be possible to calculate the coupling coefficient, 𝐾(𝑧), from both 

analytical responses, and the specific implementation will depend on the required technology. 

Furthermore, it will be possible to employ a modified version of the frequency response of 

multisection Chebyshev transformers so as to synthetize tapered matching sections shorter than 

the classical approaches of Klopfenstein and Hecken. Last but not least, it must be highlighted 

that the GLM synthesis technique is very suitable for the design of general waveguide tapers for 

single-mode operation, since the reflection required for the targeted 𝑆11(𝛽) will be typically very 

low, and thus the required coupling coefficient, 𝐾(𝑧), will be accurately calculated by taking 

into account only a few terms (low order solution) of the GLM series solution of (4.31). 

The maximum reflectivity, 𝜌𝑚, allowed for the taper, i.e. |𝑆11| ≤ 𝜌𝑚, can be formulated 

in terms of the return loss level, 𝑅𝐿, in dBs as: 

𝜌𝑚 = 10−𝑅𝐿 20⁄  (4.32) 

In the case of a tapered matching section, it is worth noting that there is an inherent port 

mismatch level, 𝜌0 = 𝑆11(𝛽 = 0), whose specific value will depend on the difference between 

the cross-sections of its ports. Following the notation of the single-mode coupled-mode equation 

system of (2.91), (2.92), 𝜌0 can be defined as: 

𝜌0 = 𝑆11(𝛽 = 0) =
𝑎−(𝑧 = 0, 𝛽 = 0)

𝑎+(𝑧 = 0, 𝛽 = 0)
|
𝑎−(𝑧=𝐿)=0

 (4.33) 

where 𝐿 is the length of the taper. Taking into account the 𝜌0 definition of (4.33), and setting 

𝛽 = 0 and 𝑧 = 0 in the coupled-mode equations (2.91), (2.92), a useful relationship between 𝜌0 

and 𝐾(𝑧) can be obtained after some mathematical manipulations: 

𝜌0 = tanh [−∫ 𝐾(𝑧) · 𝑑𝑧
𝐿

0

] (4.34) 

It is interesting to note that the coupling coefficient, 𝐾(𝑧), depends finally on the physical 

dimensions of the waveguide and, therefore, for a target coupling coefficient obtained through 

the GLM synthesis method, the waveguide physical parameters can be deduced using the 

expressions found for the technologies studied in section 2.2. 
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However, it must be highlighted that the change in the waveguide dimensions may 

involve a change in the phase constant along the propagation axis, and thus, it will be necessary 

to employ the modelling method carefully developed in section 2.2.2 for the concerning cases. 

As it was stated in that section, the application of this modelling requires the definition of a 

reference phase constant, 𝛽𝑟𝑒𝑓 , that will be assumed to remain constant along a normalized 

propagation axis 𝜒. Since the dimensions of the ports will be a typical requirement for the taper 

design, 𝛽𝑟𝑒𝑓  can be conveniently chosen as the average phase constant between the ports, �̅�, 

defined as: 

𝛽𝑟𝑒𝑓 = �̅�(𝑓) =
𝛽(𝑓, 𝑧 = 0) + 𝛽(𝑓, 𝑧 = 𝐿)

2
  (4.35) 

It must be reminded that this modelling using a reference phase constant, 𝛽𝑟𝑒𝑓 , of 

structures with 𝛽 variable along 𝑧, will be exact for an arbitrarily selected frequency, 𝑓𝑡 . The 

selection of 𝑓𝑡  will eventually determine the relationship between the normalized propagation 

axis, 𝜒, and the actual, 𝑧. Therefore, taking into account the expression (2.208) that determines 

the relation 𝑧(𝜒), and the identity (4.35), it can be concluded that for the synthesis of general 

waveguide tapers, 𝑧(𝜒) will be calculated as: 

𝑧(𝜒) = ∫
�̅�(𝑓𝑡)

𝛽(𝑓𝑡 , 𝑟)
· 𝑑𝑟

𝜒

0

  (4.36) 

Not only for the propagation axis transformation, but the average propagation constant of 

(4.35) will be also relevant when the specifications of the starting prototype are defined. 

Actually, as it will be shown for technologies where the coupling coefficient is a function of the 

phase constant, it is necessary to consider 𝐾(𝑧, �̅�𝑚𝑖𝑛), with �̅�𝑚𝑖𝑛 = �̅�(𝑓 = 𝑓𝑚𝑖𝑛), where 𝑓𝑚𝑖𝑛  is 

the minimum frequency that is required to satisfy the 𝜌𝑚 level, in order to extrapolate the 𝜌0 

level through (4.34) that would correspond to 𝑆11(𝛽 = 0) if 𝐾(𝑧) were constant with 𝛽. 

Therefore, when the taper is designed for a waveguide where 𝛽 varies along the propagation 

direction, 𝜌0 must be calculated for �̅�𝑚𝑖𝑛  (or its corresponding 𝑓𝑚𝑖𝑛) so as to synthetize a suitable 

frequency response, 𝑆11(�̅�), that will eventually meet the expected performance. Moreover, this 

criterion must be followed also when relating 𝐾(𝑧) with the physical dimensions of the 

waveguide because, if it is not, the waveguide cross-section achieved at 𝑧 = 𝐿 will not result in 

the required one for the output port.  

Finally, as it was commented in section 2.2.2, it must be highlighted that the 𝑧(𝜒) 

transformation is performed for 𝑓𝑡  and it will be accurate when the quotient �̅�(𝑓) 𝛽(𝑓, 𝑧)⁄  does 



The Gel’fand, Levitan & Marchenko Exact Series Solution for the Synthesis Problem 127 

 

 

not vary much with respect to �̅�(𝑓𝑡) 𝛽(𝑓𝑡 , 𝑧)⁄ . Accordingly, it will be recommended to select 𝑓𝑡  

as the frequency that corresponds to the center of the operational bandwidth of the taper. 

4.2.1. Synthesis of the Classical 

Klopfenstein and Hecken Tapers 

Based on the Coupled-Mode Theory 

Taking advantage of the single-mode approximation of the coupled-mode theory 

presented in 2.2, together with the GLM inverse scattering synthesis technique found in section 

4.1, classical Klopfenstein and Hecken tapers can be synthetized for transmission line and 

waveguide technologies. In essence, both taper solutions were originally developed for an ideal 

transmission line model [27], [31] and, consequently, they were intended to match two 

transmission lines of different characteristic impedances, 𝑍𝑝1 and 𝑍𝑝2, being 𝑍𝑝1 the 

characteristic impedance of the incoming transmission line to the taper (port 1) and 𝑍𝑝2 the 

characteristic impedance of the outcoming transmission line (port 2). 

Focusing on the Klopfenstein classical taper solution, its ideal frequency response in 

reflection exhibits an equiripple behavior with a maximum reflection level of 𝜌𝑚, when the 

propagation constant is higher than a given value, 𝛽𝑚𝑖𝑛 , as depicted in Fig. 4.1. Its frequency 

response can be expressed analytically as a function of the propagation constant, 𝛽, as [27], [50]: 

 

Fig. 4.1. |𝑆11|-parameter as a function of the propagation constant for classical tapers: Klopfenstein (black solid line) 

and Hecken (grey dashed line). 
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𝑆11(𝛽) = 𝜌0 ⋅
cos(√(𝛽𝐿)2 −𝐴2)

cosh(𝐴)
⋅ 𝑒−𝑗𝛽𝐿 (4.37) 

where 𝐴 is given in (4.38), 𝜌0 is defined in (4.33) and 𝐿 is the taper length. 

𝐴 = cosh−1 (
|𝜌0|

𝜌𝑚
) (4.38) 

An analogous expression for 𝑆11(𝛽) is also presented in [50], deduced from [31], for the 

case of the Hecken taper, see (4.39). As it is shown in Fig. 4.1, the frequency response of the 

Hecken taper is somewhat different from that of the Klopfenstein taper. In particular, the 

|𝑆11(𝛽)| of the Hecken taper exhibits a decreasing (not equiripple) maximum reflection level 

beyond 𝛽𝑚𝑖𝑛  , where the maximum in-band reflection 𝜌𝑚 is reached. 

𝑆11(𝛽) = 𝜌0 ⋅
𝐵

sinh(𝐵)
⋅
sin(√(𝛽𝐿)2 − 𝐵2)

√(𝛽𝐿)2 −𝐵2
⋅ 𝑒−𝑗𝛽𝐿  (4.39) 

The 𝐵 parameter in (4.39) can be calculated by using (4.40) to achieve the required 𝜌𝑚: 

𝐵

sinh(𝐵)
⋅ 0.21723 =

𝜌𝑚
|𝜌0|

  (4.40) 

If a transmission line model is used, the coupling coefficient, 𝐾(𝑧), is related to the 

characteristic impedance of the taper along the propagation direction, 𝑍0(𝑧), through the 

expression (2.145) that is provided below to ease the following of the procedure: 

𝐾(𝑧) = −
1

2 · 𝑍0(𝑧)
·
𝑑𝑍0(𝑧)

𝑑𝑧
 (2.145) 

Substituting this last expression into (4.34), it is obtained that: 

𝜌0 = tanh [−∫ 𝐾(𝑧) · 𝑑𝑧
𝐿

0

] = tanh [
1

2
· ln (

𝑍𝑝2
𝑍𝑝1

)] (4.41) 

Taking into account that tanh(𝑥) = (𝑒𝑥 − 𝑒−𝑥)/(𝑒𝑥 + 𝑒−𝑥), and after some 

mathematical manipulations, the familiar expression for 𝜌0 as a function of the characteristic 

impedances of the ports [25], [26] can be deduced from (4.41): 
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𝜌0 =
𝑍𝑝2 − 𝑍𝑝1
𝑍𝑝2 + 𝑍𝑝1

  (4.42) 

Now, in order to calculate the required coupling coefficient for the Klopfenstein and 

Hecken taper responses, a 𝑁 = 0 (0-th order) approximation of the exact series solution of the 

synthesis problem (4.31) is taken. As it was demonstrated in [50], this is equivalent to the low 

reflectivity approximation that was employed in [27], [31]. By following this procedure, an 

analytical expression for 𝐾(𝑧) will be obtained for both cases. Thus, the coupling coefficient for 

the Klopfenstein taper results in (4.43) as it was presented in [50], deduced from [27]: 

𝐾(𝑧) =
−𝜌0

cosh(𝐴)
⋅

[
 
 
 
 
 
 

𝐴2

𝐿
⋅

𝐼1(𝐴 ⋅ √1 − (
𝑧 − 𝐿 2⁄
𝐿 2⁄

)
2

)

𝐴 ⋅ √1 − (
𝑧 − 𝐿 2⁄
𝐿 2⁄

)
2

+
1

2
⋅ 𝛿(𝑧) +

1

2
⋅ 𝛿(𝑧 − 𝐿)

]
 
 
 
 
 
 

  (4.43) 

where 𝐼1(𝑥) is the modified Bessel function of the first kind of first order. The impulse functions 

𝛿(𝑧) and 𝛿(𝑧 − 𝐿) present in the coupling coefficient will produce the characteristic step 

discontinuities at the beginning and at the end of the Klopfenstein taper profile. 

In the same way, the expression of 𝐾(𝑧) for the Hecken taper results in (4.44), as it was 

presented in [50], deduced from [31]: 

𝐾(𝑧) = −𝜌0 ⋅
𝐵 𝐿⁄

sinh(𝐵)
⋅ 𝐼0 [𝐵 ⋅ √1 − (

𝑧 − 𝐿 2⁄

𝐿 2⁄
)

2

]  (4.44) 

where 𝐼0(𝑥) is the modified Bessel function of the first kind of zero order. 

It must be noted that the use of the 0-th order (low reflectivity) approximation leads to an 

inaccuracy in the synthesized coupling coefficient because, if the actual 𝜌0 value is taken, the 

taper will not reach 𝑍𝑝2 at 𝑧 = 𝐿, with 𝑍0(𝑧) being calculated by (2.146), as it was shown in 

[50]. In order to overcome this issue, the actual value of 𝜌0 has to be overestimated and given by 

its 0-th order (low reflectivity) approximation, 𝜌0
′ , which can be obtained by performing the 

Fourier transform of (4.31) for 𝑁 = 0, leading to [14]: 

𝜌0
′ = 𝑆11(𝛽 = 0) |

𝑁=0
= −∫ 𝐾(𝑧) · 𝑑𝑧

𝐿

0

 (4.45) 
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Now, if (2.145) is substituted into (4.45), it will be obtained 𝜌0
′  as a function of 𝑍𝑝1 and 

𝑍𝑝2, with an expression identical to that proposed in [27], [31] for an ideal transmission line 

model: 

𝜌0
′ =

1

2
· ln (

𝑍𝑝2
𝑍𝑝1

) (4.46) 

Hence, 𝜌0 in the synthesis equations (4.38), (4.40), (4.43) and (4.44), must be substituted 

by the new overestimated 𝜌0
′  in order to guarantee that the taper achieves the intended impedance 

values or cross-section dimensions at its ports. Once the suitable synthesis parameters are known, 

the resulting length of the Klopfenstein taper will be determined by 𝐿 = 𝐴 𝛽𝑚𝑖𝑛⁄  [27], whereas 

for the Hecken taper case will be 𝐿 = √𝐵2 + 6.523 𝛽𝑚𝑖𝑛⁄  [31]. 

However, it must be stressed that when dealing with waveguides where the phase constant 

does not remain constant with 𝑧 and the coupling coefficient is a function of the phase constant, 

it will be necessary to calculate 𝜌0
′  from (4.45) considering 𝐾(𝑧) = 𝐾(𝑧, �̅�𝑚𝑖𝑛), or its 

corresponding 𝐾(𝑧, 𝑓𝑚𝑖𝑛) in order to synthetize a taper that will meet the expected performance.  

Finally, it is worth noting that the inaccuracy of the low reflectivity approximation in 

these classical tapers was surpassed in [50] by employing a higher order 𝑁 > 0 in the series 

solution of the synthesis problem. Unfortunately, this solution results in an increase of the taper 

length that is not practical. 

4.2.2. New Taper Solutions Based on 

Multisection Quarter-Wave 

Chebyshev Transformers 

The use of multisection quarter-wave matching transformers is a classical method to 

achieve impedance matching between two different transmission lines [25], [26], [51]. 

The multisection Chebyshev transformer consists of 𝑀 commensurate transmission lines 

in cascade, all of them with the same electrical length, but with different characteristic 

impedances 𝑍𝑖 (with 1 ≤ 𝑖 ≤ 𝑀), featuring a Chebyshev frequency response of order 𝑀. The 

commensurate lines have the same frequency behavior due to their identical electrical lengths. 

In fact, all lines have ideally the same physical length, 𝑙, and show the same wavelength, 𝜆𝑔, and 

propagation constant, 𝛽, at any particular frequency. These properties allow us to define the 
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frequency behavior of the prototype as a function of the electrical length of the line, 𝜃, or 

equivalently as a function of 𝛽: 

𝜃 = 𝛽 · 𝑙 =
2 · 𝜋

𝜆𝑔
· 𝑙  (4.47) 

In order to extend the validity of the multisection Chebyshev transformer prototype to 

general waveguide technologies, 𝑍𝑝1, 𝑍𝑝2 can be employed since they have been defined in such 

a way that the 𝜌0 achieved by them (calculated with (4.42)) is identical to the actual 𝜌0 produced 

by the waveguide ports mismatch, as calculated by (4.34). If 𝑍𝑝1=1 Ω is set for convenience, 𝑍𝑝2 

can be obtained from (4.42) as: 

𝑍𝑝2 =
1+ 𝜌0
1 − 𝜌0

  (4.48) 

Once the equivalent impedances, 𝑍𝑝1 and 𝑍𝑝2, are defined (or the actual values are known 

for the case of transmission line technologies), the normalized characteristic impedance of each 

commensurate line, 𝑍𝑖, can be determined by applying the well-known Richards’ transformation 

and the iterative extraction procedure fully detailed in [52]. Alternative calculation methods for 

the 𝑍𝑖′𝑠 are explained in [25], [26], [51], although they are less convenient when the order 𝑀 of 

the multisection transformer is increased. The values of 𝑍𝑖 can be also calculated using 

commercial software synthesis tools like S/Filsyn. 

Now the 𝑆11(𝛽) of the multisection transformer prototype can be deduced by means of 

the [ABCD] matrix [25], [26], just by cascading the 𝑍𝑖 transmission line sections (multiplying 

their matrices) and loading the output port with 𝑍𝑝2, employing 𝑍𝑝1 as the reference impedance.  

 

Fig. 4.2. |𝑆11|-parameter as a function of the propagation constant for a classical 𝑀 = 3 (3-rd order) multisection 

quarter-wave Chebyshev transformer (grey line) and an example of target response for the novel taper to be 

synthetized with 𝛽𝑧 = 3 · 𝛽0 (black line). 
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As it is shown in Fig. 4.2, the frequency response 𝑆11(𝛽) has a periodic behavior which repeats 

every 2 · 𝛽0 . The matched bandwidth is centered at 𝛽0, that is the propagation constant value at 

which the electrical length of the commensurate lines is 𝜃0 = 𝛽0 · 𝑙 = 𝜋 2⁄ , leading to 𝑙 = 𝜆𝑔0/4, 

with 𝜆𝑔0 = (2 · 𝜋)/𝛽0 .  

The lower and upper limits of the propagation constant range, 𝛽𝑚𝑖𝑛  and 𝛽𝑚𝑎𝑥 , that 

complies with the required 𝜌𝑚 level for a 𝑀-th order multisection Chebyshev transformer can 

be calculated using (4.49) and (4.50):  

𝛽𝑚𝑖𝑛 = 𝛽0 ·
2 · 𝜃𝑚
𝜋

  (4.49) 

𝛽𝑚𝑎𝑥 = 2 · 𝛽0 · (1 −
𝜃𝑚
𝜋
)  (4.50) 

where 𝜃𝑚 = cos
−1 {sech [

1

𝑀
· cosh−1 (

|𝜌0|

𝜌𝑚
· √

1−𝜌𝑚
2

1−𝜌0
2)]} 

When obtaining the multisection transformer prototype, it is convenient to consider a 

transformer whose 𝛽𝑚𝑖𝑛  is as close as possible to the required 𝛽𝑙𝑜𝑤  for the taper, while fulfilling 

also the required matched bandwidth. This election will eventually lead to the shortest taper. 

When a valid multisection transformer prototype is found, the procedure proposed in [53] (and 

fully detailed in section 5.2.2.2.2) to achieve a fully smooth device from a periodic 𝑆11(𝛽), as 

the one obtained here, can be applied. The method requires just to set the 𝑆11(𝛽) to zero beyond 

a certain 𝛽𝑧 (see Fig. 4.2), retaining just several full periods of the frequency response (with the 

basic period defined symmetrically around 𝛽 = 0). This technique will allow us to synthetize 

fully smooth tapered matching sections, by applying the exact series solution of (4.31) to the 

obtained 𝑆11 (𝛽), while maintaining a physical length similar to that of the initial multisection 

Chebyshev transformer prototype. 

4.2.3. Rectangular Waveguide: a Specific 

Application Technology 

The series solution of the synthesis problem attained in section 4.1 provides a general 

method to calculate the coupling coefficient required for both classical and novel tapers. 

However, in order to extract the physical dimensions of the taper, a specific waveguide 

technology needs to be chosen and the relationship between physical parameters and coupling 
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coefficient must be stablished. Several examples will be shown in rectangular waveguide, since 

it is one of the most widely employed waveguide technologies. 

As it was shown in section 2.2.1.1, the propagation constant of the 𝑇𝐸10 fundamental 

mode of rectangular waveguide can be calculated with the expression (2.119): 

𝛽(𝑧, 𝑓) =
2 · 𝜋 · 𝑓

𝑐
· √1 − [

𝑐

2 · 𝑎(𝑧) · 𝑓
]
2

 (2.119) 

Moreover, the coupling coefficient of rectangular waveguide for single mode (𝑇𝐸10) 

operation exhibits an analytical expression (2.120) that depends on its width and height, 𝑎(𝑧) 

and 𝑏(𝑧) respectively, and on the propagation constant, 𝛽: 

𝐾(𝑧, 𝑓) = −
1

2 · 𝑏(𝑧)
·
𝑑𝑏(𝑧)

𝑑𝑧
+

𝜋2

2 · 𝛽2(𝑧, 𝑓) · 𝑎3(𝑧)
·
𝑑𝑎(𝑧)

𝑑𝑧
  (2.120) 

being 𝑐 = 𝑐0 √휀𝑟⁄ , with 𝑐0 the speed of light in vacuum, and 휀𝑟 the relative electrical permittivity 

that fills the inner volume of the rectangular waveguide. It is worth noting that 𝐾(𝑧) will exhibit 

an inherent dependence on frequency, since the propagation constant, 𝛽, depends on it, see 

(2.119). 

In order to set the requirements of a taper, the first task is to determine 𝜌0 just by 

introducing (2.120) in (4.34) for the case of rectangular waveguide. The final solution for 𝜌0 is 

shown in (4.51), revealing that it can be calculated just by considering the required values of 

𝑎(𝑧) and 𝑏(𝑧) at 𝑧 = 0 and 𝑧 = 𝐿 (i.e. at the input and output ports of the taper): 

𝜌0 = tanh

{
 

 
1

4
ln

[
 
 
 

(
𝑏(𝐿)

𝑏(0)
)

2

·
1 − (

𝑐
2 · 𝑓𝑚𝑖𝑛 · 𝑎(0)

)
2

1 − (
𝑐

2 · 𝑓𝑚𝑖𝑛 · 𝑎(𝐿)
)
2

]
 
 
 

}
 

 

  (4.51) 

Regarding the 0-th order (low reflectivity) approximation of 𝜌0
′ , which is employed for 

the case of Klopfenstein and Hecken tapers, it can be calculated by introducing (2.120) in (4.45), 

again for the case of rectangular waveguide, resulting in: 

𝜌0
′ =

1

4
ln

[
 
 
 

(
𝑏(𝐿)

𝑏(0)
)

2

·
1 − (

𝑐
2 · 𝑓𝑚𝑖𝑛 · 𝑎(0)

)
2

1 − (
𝑐

2 · 𝑓𝑚𝑖𝑛 · 𝑎(𝐿)
)
2

]
 
 
 

  (4.52) 



134 Jon Mikel Percaz Ciriza 

 

Furthermore, paying attention to (2.120), it is clear that 𝐾(𝑧) can be divided into two 

parts with respect to the physical dimensions of the rectangular waveguide as it was stated in 

section 2.2.1.1. The left-side summand is only a function of 𝑏(𝑧), while the right-side one has 

an exclusive dependency with 𝑎(𝑧). This allows us to rewrite the coupling coefficient as 𝐾(𝑧) =

𝐾𝑏(𝑧) + 𝐾𝑎(𝑧), with 𝐾𝑏(𝑧) and 𝐾𝑎(𝑧) as in (4.53) and (4.54): 

𝐾𝑏(𝑧) =
−1

2 · 𝑏(𝑧)
·
𝑑𝑏(𝑧)

𝑑𝑧
= 𝑘𝑏 · 𝐾(𝑧)  (4.53) 

𝐾𝑎(𝑧) =
𝜋2

2 · 𝑎(𝑧)3 · 𝛽𝑚𝑖𝑛
2 ·
𝑑𝑎(𝑧)

𝑑𝑧
= 𝑘𝑎 · 𝐾(𝑧)  (4.54) 

where 𝑘𝑏 and 𝑘𝑎 are the constants that control which fraction of the general coupling coefficient 

𝐾(𝑧) corresponds to 𝐾𝑏(𝑧) and 𝐾𝑎(𝑧). The expressions to calculate both constants, 𝑘𝑏 and 𝑘𝑎, 

are available in (4.55) and (4.56), and they exclusively depend on the dimensions of the cross-

sections at 𝑧 = 0 and 𝑧 = 𝐿, as expected: 

𝑘𝑏 =
∫ 𝐾𝑏(𝑧) · 𝑑𝑧
𝐿

0

∫ 𝐾(𝑧) · 𝑑𝑧
𝐿

0

=
−
1
2 · ln

[
𝑏(𝑧 = 𝐿)
𝑏(𝑧 = 0)

]

−𝜌0
′   (4.55) 

𝑘𝑎 =
∫ 𝐾𝑎(𝑧) · 𝑑𝑧
𝐿

0

∫ 𝐾(𝑧) · 𝑑𝑧
𝐿

0

=

1
4
· ln

[
 
 
 1 − (

𝑐
2 · 𝑓𝑚𝑖𝑛 · 𝑎(𝐿)

)
2

1 − (
𝑐

2 · 𝑓𝑚𝑖𝑛 · 𝑎(0)
)
2

]
 
 
 

−𝜌0
′  

 (4.56) 

where 𝜌0
′  is given in (4.52). It is interesting to note that 𝑘𝑏 and 𝑘𝑎 satisfy 𝑘𝑏 + 𝑘𝑎 = 1, 

guaranteeing that 𝐾𝑏(𝑧) + 𝐾𝑎(𝑧) = 𝑘𝑏 · 𝐾(𝑧) + 𝑘𝑎 · 𝐾(𝑧) = 𝐾(𝑧). 

The 𝑏(𝑧) profile of the rectangular waveguide taper can be calculated with the expression 

(2.130) originally obtained in section 2.2.1.1.1 and provided here again for the sake of clarity:  

𝑏(𝑧) = 𝑏(0) · 𝑒−2·∫ 𝐾𝑏(𝑟)·𝑑𝑟
𝑧
0   (4.57) 

Regarding the 𝑎(𝑧) profile, it can be calculated by imposing 𝑓 = 𝑓𝑚𝑖𝑛  in its analytical 

expression of (2.139) so as to achieve the desired dimensions at the extreme (input and output 

ports) of the synthetized taper, giving rise to: 
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𝑎(𝑧) =

𝑐
2 · 𝑓𝑚𝑖𝑛

· 𝑒−2·∫ 𝐾𝑎(𝑟)·𝑑𝑟
𝑧
0

√𝑒−4·∫ 𝐾𝑎(𝑟)·𝑑𝑟
𝑧
0 + (

𝑐
2 · 𝑎(0) · 𝑓𝑚𝑖𝑛

)
2

− 1

 
 (4.58) 

where 𝑟 in (4.57) and (4.58) is a dummy variable of integration. 

Finally, it must be highlighted that if we want to synthetize a taper that features a variable 

width, i.e. 𝑘𝑎 ≠ 0, we will need to apply the ideal modelling of technologies with 𝛽 variable 

along 𝑧 that was thoroughly developed in section 2.2.2, because of the variation of the 

propagation constant with the position. The denormalization expression for the calculation of the 

actual 𝑧 from the normalized 𝜒 axis was given in (4.36).  

The robustness and flexibility of the proposed taper synthesis method was verified by 

synthetizing tapers fulfilling certain frequency specifications, between two rectangular 

waveguides, in three different scenarios: mismatch in cross-section heights, widths and both 

heights and widths simultaneously. 

4.2.3.1. Rectangular Waveguide Tapers 

Implemented with Variations in Height 

Only 

The possibility of synthetizing tapers by means of the coupled-mode theory with 

exclusive variation in the height of the rectangular waveguide cross sections is going to be 

demonstrated for each of the following cases: a Klopfenstein taper, a Hecken taper, and a novel 

taper based on a multisection Chebyshev transformer. In all cases, they must interconnect a 

standard WR90 port with a waveguide with half of that height and the same width, while 

achieving 𝑅𝐿 ≥ 40 dB (𝜌𝑚 = 0.01 by (4.32)) for the whole WR90 frequency range, between 

𝑓𝑙𝑜𝑤= 8.2 GHz and 𝑓𝑢𝑝= 12.4 GHz. In order to obtain the shortest tapers, 𝑓𝑚𝑖𝑛=𝑓𝑙𝑜𝑤  will be 

chosen. 

Firstly, the mismatch 𝜌0 (defined in (4.33)) caused by the height difference needs to be 

calculated. The waveguide height of the WR90 standard is 𝑏(0) = 10.16 mm, and thus 𝑏(𝐿) =

𝑏(0) 2⁄ = 5.08 mm. Applying (4.51), 𝜌0 = −1 3⁄ , while 𝜌0
′ = −0.3465 by (4.52). Finally, 

considering that the width of the WR90 standard is 𝑎 = 22.86 mm in (2.119), the corresponding  
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propagation constant values for 𝛽𝑚𝑖𝑛 = 𝛽(𝑓𝑚𝑖𝑛) = 103.19 rad/m and 𝛽(𝑓𝑢𝑝) = 220.58 rad/m 

can be specified. 

Since 𝜌0
′ , 𝜌𝑚, and 𝛽𝑚𝑖𝑛  are known, the coupling coefficient, 𝐾(𝑧), for the Klopfenstein 

taper can be immediately calculated by means of (4.43). Since a taper that matches waveguides 

with different heights only is needed, then 𝐾𝑎(𝑧) = 0, and hence 𝐾𝑏(𝑧) = 𝐾(𝑧), and 

consequently 𝑘𝑏= 1. Then, calculating 𝑏(𝑧) using (4.57), we will obtain the physical dimensions 

of the Klopfenstein taper with a total length 𝐿 = 𝐴 𝛽𝑚𝑖𝑛⁄ = 41.07 mm. The coupling coefficient 

as well as the height profile are depicted in Fig. 4.3a. 

 

(a) 

 

(b) 

Fig. 4.3. (a) Coupling coefficient (black line) of the Klopfenstein taper and its rectangular waveguide height variation 

profile (grey line). (b) Comparison of the |𝑆11(𝑓)|-parameters for the Klopfenstein taper: target response (grey solid 

line) and CST Microwave Studio simulation (black dotted line). Inset: view of the inner hollow volume of the taper. 

 

(a) 

 

(b) 

Fig. 4.4. (a) Coupling coefficient (black line) of the Hecken taper and its rectangular waveguide height variation profile 

(grey line). (b) Comparison of the |𝑆11(𝑓)|-parameters for the Hecken taper: target response (grey solid line) and CST 

Microwave Studio simulation (black dotted line). Inset: view of the inner hollow volume of the taper. 
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(a) 

 

(b) 

Fig. 4.5. (a) Coupling coefficient (black line) of the novel taper based on a 4-th order multisection Chebyshev transformer 

and its rectangular waveguide height variation profile (grey line). (b) Comparison of the |𝑆11(𝑓)|-parameters of the novel 

taper based on a 4-th order multisection Chebyshev transformer: target response (grey solid line) and CST Microwave 

Studio simulation (black dotted line). Inset: view of the inner hollow volume of the taper. 

Regarding the Hecken taper, its 𝐾(𝑧) can be calculated by means of (4.44). Then, we can 

follow a reasoning similar to that of the Klopfenstein taper, ensuring 𝐾𝑏(𝑧) = 𝐾(𝑧) and applying 

(4.57) to obtain 𝑏(𝑧). Both, 𝐾(𝑧) and 𝑏(𝑧) for the Hecken taper are shown in Fig. 4.4a. The final 

length of this taper is 𝐿 = √𝐵2 + 6.523 𝛽𝑚𝑖𝑛⁄ = 47.08 mm in this case, larger than the 

Klopfenstein taper as expected. 

The last taper that is going to be considered for waveguides with changes only in height 

is based on the frequency response of a Chebyshev transformer. The first step is to calculate the 

impedance of the output port assuming an equivalent input port of 𝑍𝑝1= 1 Ω. Considering that 

𝜌0 = −1 3⁄ , the impedance for the equivalent output port must be 𝑍𝑝2 = 0.5 Ω, see (4.48). 

Then, the minimum order, 𝑀, of the multisection Chebyshev transformer that is capable 

of meeting the proposed frequency specifications must be determined, resulting in 𝑀=4. The 

propagation constant 𝛽0=178.798 rad/m at which the commensurate lines exhibit an electrical 

length of 𝜃 = 𝜋 2⁄  rad is calculated. By using it, the values of 𝛽𝑚𝑖𝑛  = 103.19 rad/m and 𝛽𝑢𝑝 <

𝛽𝑚𝑎𝑥  = 254.4 rad/m are obtained by (4.49) and (4.50), respectively. 

The calculated normalized characteristic impedances of each commensurate line are: 𝑍1 

= 0.934 Ω, 𝑍2 = 0.789 Ω, 𝑍3 = 0.633 Ω, and 𝑍4 = 0.535 Ω. The 𝑆11(𝛽) of the transformer is 

calculated by cascading its transmission lines loaded at the end with 𝑍𝑝2, for an input impedance 

of 𝑍𝑝1, by employing the [ABCD] matrix for every 𝛽 value from 0 rad/m to 50·𝛽0 in regular 

intervals of 𝛽0/50. Then, the obtained 𝑆11(𝛽) of the transformer is modified by applying 

𝑆11(𝛽 > 𝛽𝑧) = 0 for 𝛽𝑧 = 3·𝛽0. The obtained 𝑆11(𝛽) is synthetized using the exact series solution 

of (4.31) and (4.11) with an order 𝑁 = 4, see Fig. 4.5a. As for Klopfenstein and Hecken tapers, 
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the physical dimensions of the novel taper are obtained by means of (4.57) with 𝐾𝑏(𝑧) = 𝑘𝑏 ·

𝐾(𝑧) = 𝐾(𝑧). The height profile, 𝑏(𝑧), is also depicted in Fig. 4.5a. 

It must be highlighted that the resulting taper based on a 4-th order multisection 

Chebyshev transformer has a length 𝐿 = 39.53 mm, being a bit shorter than the Klopfenstein 

taper that was classically considered as the shortest possible taper solution. 

Finally, the synthetized structures were simulated with CST Microwave Studio and the 

results are depicted in Fig. 4.3b (Klopfenstein), Fig. 4.4b (Hecken), and Fig. 4.5b (4-th order 

multisection Chebyshev transformer-based). In all cases, the frequency requirements are 

achieved, obtaining 𝑅𝐿 ≥ 40 dB for the whole frequency range of the WR90 waveguide 

standard. 

4.2.3.2. Rectangular Waveguide Tapers 

Implemented with Variations in Width 

Only 

The synthesis of rectangular waveguide tapers involving width changes along the 

propagation direction implies that the propagation constant will depend on the position, as it was 

detailed in section 4.2, where the strategy for dealing with that situation was explained. Taking 

that into account, two different tapers will be synthetized: a classical Hecken taper and a new 

taper based on multisection Chebyshev transformers. 

Regarding the dimensions of the taper waveguide ports, the incoming waveguide cross-

section width will be the WR90 width, i.e., 𝑎(0) = 22.86 mm, and the width of the cross-section 

of the outcoming waveguide will be the WR62 width, i.e., 𝑎(𝐿) = 15.799 mm. The height of the 

cross section will be fixed to the WR62 height, i.e., 𝑏 = 7.899 mm. In this case, the required 

performance of the taper must fulfill 𝑅𝐿 levels higher than 40 dB (𝜌𝑚 = 0.01 by (4.32)) in a 

frequency range defined from 𝑓𝑙𝑜𝑤=𝑓𝑚𝑖𝑛=11 GHz up to 𝑓𝑢𝑝=13 GHz. 

Due to the change of the propagation constant caused by the width variation, we need to 

consider the propagation constants 𝛽(𝑓, 𝑧 = 0) and 𝛽(𝑓, 𝑧 = 𝐿) in order to define the average 

propagation constant, �̅�(𝑓), see (4.35). Thus, 𝛽(𝑓, 𝑧 = 0) is calculated using (2.119) for 𝑎(0), 

while the value of 𝛽(𝑓, 𝑧 = 𝐿) is obtained employing 𝑎(𝐿). Therefore, for 𝑓 = 𝑓𝑚𝑖𝑛 = 11 GHz, 

 𝛽(𝑓𝑚𝑖𝑛 , 𝑧 = 0) = 185.1 rad/m and 𝛽(𝑓𝑚𝑖𝑛 , 𝑧 = 𝐿) = 116.66 rad/m, and consequently, 

�̅�𝑚𝑖𝑛(𝑓 = 𝑓𝑚𝑖𝑛) = 150.88 rad/m by (4.35). Regarding the upper frequency specification, the 

average propagation constant is �̅�𝑢𝑝(𝑓 = 𝑓𝑢𝑝) = 210.76 rad/m. The use of the average 
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propagation constant implies that the synthesis process is going to be performed in the 

normalized propagation axis, 𝜒, and the real position 𝑧 will be determined in a subsequent step. 

Moreover, as it was explained in sections 4.2 and 4.2.1, the values of 𝜌0 and 𝜌0
′  for �̅�𝑚𝑖𝑛 =

�̅�(𝑓 = 𝑓𝑚𝑖𝑛) must be determined. In the particular case of a rectangular waveguide, 𝜌0 and 𝜌0
′  

are directly expressed as a function of 𝑓𝑚𝑖𝑛  through (4.51) and (4.52). Solving both expressions 

for 𝑓𝑚𝑖𝑛= 11 GHz, and the aforementioned waveguide dimensions at the taper extremes, it will 

be finally obtained that 𝜌0 = 0.227 and 𝜌0
 ′ = 0.231. 

The coupling coefficient along the normalized propagation axis, 𝐾(𝜒), of the Hecken 

taper can be directly calculated by (4.44) using �̅�𝑚𝑖𝑛  and 𝜌0
′  and it is represented in Fig. 4.6a. 

Then, due to the fact that the height is constant, 𝐾𝑏(𝜒)  = 0 because of (4.53) and 𝑘𝑏 = 0 as well. 

Hence, 𝑘𝑎 = 1 leads to 𝐾𝑎(𝜒)=𝐾(𝜒) in (4.54) and the a(𝜒) profile shown in Fig. 4.6a can be 

calculated employing (4.58). Finally, in order to calculate the waveguide width along the actual 

propagation axis 𝑧, we must choose the transformation frequency, 𝑓𝑡 , fixing it at the center of the 

required matched frequency range, i.e., 𝑓𝑡  = 12 GHz. Hence, �̅�𝑡(𝑓 = 𝑓𝑡) = 182.31 rad/m. By 

employing �̅�𝑡  and 𝛽𝑡(𝑓𝑡 , 𝜒) in (4.36), the final width of the waveguide along the propagation 

direction, 𝑎(𝑧), can be obtained as it is depicted in Fig. 4.6a. The length of the resulting Hecken 

taper is 𝐿 = 30.04 mm. 

 

(a) 

 

(b) 

Fig. 4.6. (a) Hecken taper: Coupling coefficient (black solid line) and width profile dimensions (dark grey dashed line) 

along the normalized propagation axis, 𝜒. The final width profile along the actual propagation axis, 𝑧, is also included 

(light grey solid line). (b) Comparison of |𝑆11(𝑓)|-parameters of the Hecken taper. Target response (grey solid line) 

and CST Microwave Studio simulations:  taper with 𝑎(𝜒) width profile (grey dotted line) and taper with 𝑎(𝑧) width 

profile (black dotted line). Inset: view of the inner hollow volume of the definitive taper. 
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(a) 

 

(b) 

Fig. 4.7. (a) Novel taper based on a 2-nd order multisection Chebyshev transformer: Coupling coefficient (black solid 

line) and width profile dimensions (dark grey dashed line) along the normalized propagation axis, 𝜒. The final width 

profile along the actual propagation axis, 𝑧, is also included (light grey solid line). (b) Comparison of |𝑆11(𝑓)|-
parameters of the novel taper based on 2-nd order multisection Chebyshev transformer. Target response (grey solid 

line) and CST Microwave Studio simulations: taper with 𝑎(𝜒) width profile (grey dotted line) and taper with 𝑎(𝑧) 
width profile (black dotted line). Inset: view of the inner hollow volume of the definitive taper. 

For the case of the novel multisection Chebyshev transformer-based taper, an output 

auxiliary impedance, 𝑍𝑝2= 1.587 Ω, is calculated for 𝜌0=0.227 and 𝑍𝑝1= 1 Ω by means of (4.48). 

A minimum order 𝑀=2 and �̅�0 = 184.97 rad/m yields to �̅�𝑚𝑖𝑛 = 150.69 rad/m and �̅�𝑚𝑎𝑥 = 

219.24 rad/m using (4.49) and (4.50), respectively, ensuring the fulfilment of the requirements. 

The normalized characteristic impedances of the multisection Chebyshev transformer are 𝑍1 = 

1.128 Ω and 𝑍2 = 1.407 Ω. Once these characteristic impedances are known, the 𝑆11(�̅�) is 

calculated making use of the transmission matrix by defining �̅� from 0 rad/m to 50 · �̅�0 every 

�̅�0/50. The final response intended to be synthetized is attained after setting 𝑆11(�̅� > �̅�𝑧) = 0 for 

�̅�𝑧 = 3·�̅�0. Then, 𝐾(𝜒) is calculated with (4.31) and the result is depicted in Fig. 4.7a. As 𝐾𝑏(𝜒) 

must be 0, 𝑘𝑎=1 and 𝐾𝑎(𝜒) = 𝐾(𝜒). The width dimensions of the rectangular waveguide taper 

along the normalized propagation axis, a(𝜒), are calculated with (4.58) and are also displayed in 

Fig. 4.7a. The last transformation step is carried out like in the case of the Hecken taper by means 

of (4.36) for �̅�𝑡(𝑓𝑡) with 𝑓𝑡  = 12 GHz and hence, the relation 𝑧(𝜒) is obtained. The resulting 𝑎(𝑧) 

profile is presented in Fig. 4.7a. The final Chebyshev transformer-based taper has a length 𝐿 = 

21.67 mm. 

A CST Microwave Studio simulation is performed for the Hecken taper as well as for the 

taper based on the 2-nd order multisection Chebyshev transformer, and the attained |𝑆11(𝑓)|-

parameters are shown in Fig. 4.6b and Fig. 4.7b, respectively. An excellent agreement is 

achieved between both simulations and their corresponding target frequency responses. 

Moreover, the matching specifications are also fulfilled in terms of frequency range and level. 
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To conclude this subsection that shows the feasibility of the method to synthesize tapers 

for rectangular waveguides of different widths and same height, a final remark must be done. If 

we pay attention to the waveguide width profiles, 𝑎(𝜒) and 𝑎(𝑧), that have been obtained and 

shown in Fig. 4.6a for the Hecken taper as well as in Fig. 4.7a for the novel taper, we can realize 

that 𝑎(𝜒) and 𝑎(𝑧) are pretty similar to each other in both cases. Therefore, one might think that 

the propagation axis transformation of (4.36) may not be actually necessary because the 

transformed width profile, 𝑎(𝜒), is close enough to the actual one, 𝑎(𝑧). As a result, it could be 

considered that if the taper of 𝑎(𝑧) meets the specifications, one defined by 𝑎(𝜒) perhaps meets 

them too, something that would render the propagation axis transformation of (4.36) in a trivial 

and useless synthesis step. Additional CST Microwave Studio simulations have been done with 

both tapers but defining the width profile with 𝑎(𝜒) instead of 𝑎(𝑧). The results of those 

simulations are displayed in Fig. 4.6b for the Hecken taper and in Fig. 4.7b for the Chebyshev 

transformer-based taper. In both cases, the obtained frequency response does not meet the 

required specifications and, actually, it is quite far from the expected behavior of the taper. This 

demonstrates the importance of the propagation axis transformation proposed in this thesis. 

4.2.3.3. Rectangular Waveguide Tapers 

Implemented with Variations in Height 

and Width Simultaneously 

Now that in previous subsections several examples have been presented of tapers 

matching rectangular waveguides where only the width or height changed, this subsection will 

be devoted to show how to synthetize tapers for the most complicated case where the cross-

sections of both waveguides do not have neither the same height, nor same width. A Klopfenstein 

taper, a Hecken taper, and three different models of multisection Chebyshev transformer-based 

tapers will be synthetized for this case. 

The specifications are going to be the same as with width variations only, i.e. minimum 

𝑅𝐿 level of 40 dB (𝜌𝑚 = 0.01) between 𝑓𝑙𝑜𝑤= 11 GHz and 𝑓𝑢𝑝= 13 GHz. In order to obtain the 

shortest tapers, 𝑓𝑙𝑜𝑤= 𝑓𝑚𝑖𝑛  is imposed. 

Regarding the geometry of the taper, the incoming waveguide will be WR90, whereas the 

outcoming waveguide will be WR62. This means that 𝑎(0)= 22.86 mm, 𝑏(0)=10.16 mm, 𝑎(𝐿)= 

15.799 mm, and 𝑏(𝐿)= 7.899 mm. Thus, 𝜌0 = 0.1046 and 𝜌0
′  = 0.105 are calculated by (4.51) 
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and (4.52). The average propagation constant, calculated by (4.35), for 𝑓𝑚𝑖𝑛  is �̅�𝑚𝑖𝑛(𝑓 = 𝑓𝑚𝑖𝑛) 

= 150.88 rad/m, while for 𝑓𝑢𝑝 is �̅�𝑢𝑝(𝑓 = 𝑓𝑢𝑝) =210.76 rad/m. 

Both Klopfenstein and Hecken tapers are synthetized by obtaining their coupling 

coefficients with (4.43) and (4.44) respectively, using the calculated values of �̅�𝑚𝑖𝑛, 𝜌0
′  and 𝜌𝑚. 

The coupling coefficient along the normalized position is depicted in Fig. 4.8a for the 

Klopfenstein case, whereas for the Hecken taper it is shown in Fig. 4.9a. 

For the synthesis of the three novel tapers, two different starting prototypes of 

multisection Chebyshev transformers have been considered, being 𝑍𝑝2 =1.234 Ω the auxiliary 

characteristic impedance for 𝜌0 and 𝑍𝑝1 =1 Ω. The first transformer has an order 𝑀 = 2 with �̅�0 

= 206.62 rad/m, and hence �̅�𝑚𝑖𝑛= 150.08 rad/m,  �̅�𝑚𝑎𝑥  = 263.17 rad/m, and the specifications 

are met as a consequence. The normalized characteristic impedances of the commensurate lines 

are 𝑍1 = 1.059 Ω and 𝑍2 = 1.165 Ω. This allows us to calculate the 𝑆11(�̅�) of the transformer 

that is going to be employed to synthetize two different responses: the first one is modified by 

applying 𝑆11(�̅� > �̅�𝑧) = 0 for �̅�𝑧=3·�̅�0, while for the second one �̅�𝑧 = 5·�̅�0 is chosen. The 

synthesis of those responses employing the series solution of  (4.31) results in the coupling 

coefficients that can be seen in Fig. 4.10a for �̅�𝑧 = 3·�̅�0 and in Fig. 4.11a for �̅�𝑧 = 5·�̅�0. On the 

other hand, the second initial prototype is a 3-rd order transformer centered at �̅�0 = 269.39 rad/m, 

which extends its matched bandwidth from �̅�𝑚𝑖𝑛 = 150.09 rad/m up to �̅�𝑚𝑎𝑥 = 388.7 rad/m, 

with 𝑍1 = 1.039 Ω, 𝑍2 = 1.111 Ω, and 𝑍3 = 1.188 Ω. The frequency response of this initial 

transformer is calculated and then modified with �̅�𝑧=3·�̅�0, and synthetized by means of (4.31). 

The resulting coupling coefficient is shown in Fig. 4.12a. 

Since all the tapers synthetized are intended to have the same cross-sections at their 

extremes, the constants calculated by (4.55) and (4.56) are the same for all of them: 𝑘𝑏= -1.199 

and 𝑘𝑎= 2.199. Then, 𝐾𝑏(𝜒) and 𝐾𝑎(𝜒) can be determined for each taper and this allows to obtain 

𝑏(𝜒) and 𝑎(𝜒) afterwards by means of (4.57) and (4.58). Finally, the transformation to the real 

propagation axis, 𝑧(𝜒), is performed employing (4.36) for �̅�𝑡(𝑓 = 𝑓𝑡) = 182.31 rad/m with 𝑓𝑡  = 

12 GHz. The final width and height profiles of both Klopfenstein and Hecken tapers are shown 

in Fig. 4.8a and Fig. 4.9a, respectively. The profiles corresponding to the novel tapers based on 

the 𝑀=2 Chebyshev transformer with �̅�𝑧 = 3·�̅�0 and �̅�𝑧 = 5·�̅�0 are depicted in Fig. 4.10a and Fig. 

4.11a. Finally, the taper based on the 3-rd order Chebyshev transformer with �̅�𝑧 = 3·�̅�0 is shown 

in Fig. 4.12a. 

The main parameters of all the synthetized tapers, as well as their final lengths, are 

summarized in Table 4.1. 



The Gel’fand, Levitan & Marchenko Exact Series Solution for the Synthesis Problem 143 

 

 

Taper 𝑀 �̅�0 (rad/m) �̅�𝑧 (rad/m) 𝐿 (mm) 

Klopfenstein - - - 20.65 

Hecken - - - 23.93 

MCTB* 1 2 206.62 3·�̅�0 19.37 

MCTB* 2 2 206.62 5·�̅�0 17.89 

MCTB* 3 3 269.39 3·�̅�0 20.82 

* MCTB: Multisection Chebyshev Transformer-Based. 

Table 4.1. Synthesis parameters for different WR-90 to WR-62 tapers operating from 11 GHz to 13 GHz with         

RL≥ 40 dBs, and their lengths.  

 

 

(a) 

 

(b) 

Fig. 4.8. (a) Klopfenstein taper: Coupling coefficient (black solid line) as well as width (light grey dashed line) and 

height (dark grey dashed line) profile dimensions along the normalized propagation axis, 𝜒. The final width (light grey 

solid line) and height (dark grey solid line) profiles along the actual propagation axis, 𝑧, are also included. (b) 

Comparison of |𝑆11(𝑓)|-parameters of the Klopfenstein taper: target response (grey dash-dotted line), CST Microwave 

Studio simulation (black dotted line), measurements performed with WR90 (light grey solid line) and WR62 (dark 

grey solid line) calibration. Inset: view of the inner hollow volume of the taper. 
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(a) 

 

(b) 

Fig. 4.9. (a) Hecken taper: Coupling coefficient (black solid line) as well as width (light grey dashed line) and height 

(dark grey dashed line) profile dimensions along the normalized propagation axis, 𝜒. The final width (light grey solid 

line) and height (dark grey solid line) profiles along the actual propagation axis, 𝑧, are also included. (b) Comparison 

of |𝑆11(𝑓)|-parameters of the Hecken taper: target response (grey dash-dotted line), CST Microwave Studio simulation 

(black dotted line), measurements performed with WR90 (light grey solid line) and WR62 (dark grey solid line) 

calibration. Inset: view of the inner hollow volume of the taper. 

 

 

(a) 

 

(b) 

Fig. 4.10. (a) Novel taper based on a 2-nd order multisection Chebyshev transformer with 𝛽𝑧 = 3 · 𝛽0: Coupling 

coefficient (black solid line) as well as width (light grey dashed line) and height (dark grey dashed line) profile 

dimensions along the normalized propagation axis, 𝜒. The final width (light grey solid line) and height (dark grey solid 

line) profiles along the actual propagation axis, 𝑧, are also included. (b) Comparison of |𝑆11(𝑓)|-parameters of the 

novel taper based on 2-nd order multisection Chebyshev transformer with 𝛽𝑧 = 3 · 𝛽0: target response (grey dash-

dotted line), CST Microwave Studio simulation (black dotted line), measurements performed with WR90 (light grey 

solid line) and WR62 (dark grey solid line) calibration. Inset: view of the inner hollow volume of the taper. 
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(a) 

 

(b) 

Fig. 4.11. (a) Novel taper based on a 2-nd order multisection Chebyshev transformer with 𝛽𝑧 = 5 · 𝛽0: Coupling 

coefficient (black solid line) as well as width (light grey dashed line) and height (dark grey dashed line) profile 

dimensions along the normalized propagation axis, 𝜒. The final width (light grey solid line) and height (dark grey solid 

line) profiles along the actual propagation axis, 𝑧, are also included. (b) Comparison of |𝑆11(𝑓)|-parameters of the 

novel taper based on 2-nd order multisection Chebyshev transformer with 𝛽𝑧 = 5 · 𝛽0: target response (grey dash-

dotted line), CST Microwave Studio simulation (black dotted line), measurements performed with WR90 (light grey 

solid line) and WR62 (dark grey solid line) calibration. Inset: view of the inner hollow volume of the taper. 

 

 

(a) 

 

(b) 

Fig. 4.12. (a) Novel taper based on a 3-rd order multisection Chebyshev transformer with 𝛽𝑧 = 3 · 𝛽0: Coupling 

coefficient (black solid line) as well as width (light grey dashed line), and height (dark grey dashed line) profile 

dimensions along the normalized propagation axis, 𝜒. The final width (light grey solid line) and height (dark grey solid 

line) profiles along the actual propagation axis, 𝑧, are also included. (b) Comparison of |𝑆11(𝑓)|-parameters of the 

novel taper based on 3-rd order multisection Chebyshev transformer with 𝛽𝑧 = 3 · 𝛽0: target response (grey dash-

dotted line), CST Microwave Studio simulation (black dotted line), measurements performed with WR90 (light grey 

solid line) and WR62 (dark grey solid line) calibration. Inset: view of the inner hollow volume of the taper. 

The five different tapers synthetized with height and width variations have been 

fabricated in AlSi10Mg aluminum alloy, by means of an Additive Manufacturing technique 

(Direct Metal Laser Sintering), using an EOS M290 printer which allows a maximum building 
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volume of 250x250x350 mm. All the tapers were fabricated growing the structures from the 

WR62 to the WR90 port, following the propagation direction in order to avoid overhanging 

surfaces. A photograph of the prototypes is shown in Fig. 4.13. The DMLS technique was 

selected since it has been lately employed to fabricate inexpensive RF parts from a few GHz to 

30 GHz, approximately [54]. Beyond that frequency, the fabrication accuracy of DMLS begins 

to become insufficient. Nevertheless, if specifications for higher frequencies are required, metal 

coated polymer Additive Manufacturing solutions like Stereolithography Apparatus (SLA) or 

Fused Deposition Modeling (FDM), among others, could be employed, since they achieve 

significantly better accuracies. Alternatively, the classical electroforming manufacturing 

technique could be also used for an inexpensive fabrication of these structures, for example. 

Since the designed tapers operate between different waveguide standards, two different 

measurement set-ups had to be employed to test the tapers using a Keysight (Agilent) 8722 

Vector Network Analyzer (VNA). The first one (set-up 1) consisted in calibrating the VNA with 

a WR90 calibration kit and the tapers were tested loading their WR62 port with a waveguide 

sliding load of a WR62 calibration kit. For the second set-up (set-up 2), the VNA was calibrated 

using a WR62 calibration kit and the tapers were tested loading the WR90 port with the sliding 

load of a WR90 calibration kit. 

A comparison between the target responses, CST Microwave Studio simulations and 

measurement results is shown in Fig. 4.8b (Klopfenstein), Fig. 4.9b (Hecken), Fig. 4.10b (2-nd 

order multisection Chebyshev transformer with 𝛽𝑧 = 3 · 𝛽0), Fig. 4.11b (2-nd order multisection 

Chebyshev transformer with 𝛽𝑧 = 5 · 𝛽0), and Fig. 4.12b (3-rd order multisection Chebyshev 

transformer with 𝛽𝑧 = 3 · 𝛽0). 

A very good agreement is achieved between simulation and measurement results in all 

cases. In fact, the aim specifications, 𝑅𝐿 ≥ 40 dB from 𝑓𝑙𝑜𝑤  = 11 GHz up to 𝑓𝑢𝑝 = 13 GHz, are 

fully achieved in simulation and very close to be achieved in measurements. The small 

discrepancies found between simulations and measurements can be attributed to two main 

reasons. The first one is related to the DMLS manufacturing tolerances, as fabrication 

inaccuracies of ±100 µm can be easily expected using this technique of Additive Manufacturing 

of metallic parts. However, the main reason for discrepancies is the measurement set-up itself, 

because two sliding waveguide loads were employed to load the port that was not connected to 

the VNA. During the measurements, these loads were not operating in their native frequency 

range, since the VNA is calibrated for another standard with its own optimal frequency range. 

Actually, measurements made with set-up 1 are more troublesome than measurements performed 

with set-up 2, because the WR62 load is operating from 10 GHz to 13 GHz, and the WR62 

standard range starts at 12.4 GHz. Nevertheless, the propagation regime is ensured for WR62 in 

the whole operation bandwidth. On the other hand, set-up 2 employs the WR90 load from 10 



The Gel’fand, Levitan & Marchenko Exact Series Solution for the Synthesis Problem 147 

 

 

GHz to 13 GHz, and the native WR90 bandwidth is defined from 8.2 GHz to 12.4 GHz. Finally, 

it must be pointed out that a minor shift to lower frequencies can be observed when comparing 

the target and the simulated frequency responses. That frequency shift is caused by parasitic 

reactive coupling to higher order modes that are under cut-off but suffer a small excitation 

somewhat noticeable for these tapers with simultaneous variations in height and width. However, 

since the minor shift is towards lower frequencies, the tapers obtained continue fulfilling the aim 

specifications as it has been shown in the simulation and measurement results. 

 

Fig. 4.13. Photographs of the tapers fabricated by means of Direct Metal Laser Sintering technique: (a) Klopfenstein 

taper; (b) Hecken taper; multisection Chebyshev transformer-based taper with (c) 𝑀=2, 𝛽�̅�=3·𝛽0̅; (d) 𝑀=2, 𝛽�̅�=5·𝛽0̅; 

and (e) 𝑀=3, 𝛽�̅�=3·𝛽0̅. 

 
                              (a)                                                            (b)                              

 
                              (c)                                                           (d)                              

 
(e) 
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 THE CONTINUOUS 

LAYER PEELING (CLP) SYNTHESIS 

TECHNIQUE 

The inverse scattering layer peeling methods arose in the decade of the 80’s from the field 

of geophysics, in order to exploit the physical properties of a layered media in which waves 

propagate [1]. Their solutions were referred to as dynamic deconvolution methods [1]-[3], and 

they were formulated in terms of a discretized layered earth model. They were employed to 

reconstruct the earth medium in a layer-by-layer recursive manner following the algorithm of 

Schur [4]. The layer peeling method was initially translated to the microwave realm by 

Bruckstein and Kilath in [5] and [6]. 

The main basis of the layer peeling techniques is the principle of causality, and its concept 

can be easily understood from an intuitive point of view by considering a TEM or QTEM 

transmission line, being the method fully valid for other kind of waveguides such as the 

rectangular waveguide. However, the reasoning becomes much trickier when dealing with 

technologies of dispersive nature, since it is not possible to relate the propagation distance and 

the time employed for that propagation through a unique propagation velocity. Therefore, if a 

transmission line device is considered by dividing it into infinitesimal layers of thickness 𝑑𝑧, 

being this device excited at its input port (𝑧 = 0) by an incident wave, the distance that the wave 

will need to travel to come back to the input port after going forward and being backward 

reflected at 𝑑𝑧 will be 𝑑𝜏 = 2 · 𝑑𝑧, being 𝜏 the “reflection distance”. It is important to stress that 
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if the device has a length 𝑧𝑚𝑎𝑥 = 𝐿, the corresponding maximum of the reflection distance will 

be 𝜏𝑚𝑎𝑥 = 2 · 𝑧𝑚𝑎𝑥 = 2 · 𝐿. 

 

(a) 
 

(b) 

 

(c) 

 

(d) 

 

(e) 

Fig. 5.1. Schematic representation of the operation principle of the CLP method: (a) unknown physical structure 

intended to be synthetized by calculating its coupling coefficient with CLP and its (b) target impulse response in 

reflection,  ℎ(𝑡). (c) The first 𝑑𝑡 instant of  ℎ(𝑡) must be governed only by the first 𝑑𝑧 layer of the device due to the 

causality principle and thus, it is possible to calculate the coupling coefficient, 𝐾(𝑧), for 𝑑𝑧. (d) Once the first layer is 

peeled-off, a new  ℎ(𝑡) must be accomplished by the rest of the device, and by applying the same procedure of the first 

layer, the coupling coefficient between 𝑑𝑧 and 2𝑑𝑧 can be calculated. (e) Once all layers have been peeled-off, the 

coupling coefficient of the whole structure is determined. 



The Continuous Layer Peeling (CLP) Synthesis Technique 155 

 

 

Thus, if time is denoted by 𝑡, the first 𝑑𝑡 instant, i.e. 0 < 𝑡 ≤ 𝑑𝑡, of the impulse response 

in reflection, ℎ(𝑡), must be completely determined through the propagation velocity, 𝑣𝑝, due to 

the causality principle and 𝑑𝑡 =
𝑑𝜏

𝑣𝑝
=

2·𝑑𝑧

𝑣𝑝
. Therefore, the time domain evolution of the first 𝑑𝑡 

of the impulse response does not depend on the properties of the structure beyond the considered 

block of 𝑑𝑧, which also corresponds to 𝑑𝜏 when considering the reflection distance (see Fig. 

5.1). If this last reasoning is reversed, it will be possible to state that the first 𝑑𝑡 instant of the 

impulse response in reflection, ℎ(𝑡), will completely determine the properties of the first 𝑑𝑧 =

𝑣𝑝 2⁄ ⋅ 𝑑𝑡 layer of the structure. Once the sought properties of this first 𝑑𝑧 layer have been 

determined, it will be possible to remove the contribution of that layer to the impulse response, 

giving rise to a different impulse response that must be accomplished by the rest of the structure 

as it is shown in Fig. 5.1. At this point the first 𝑑𝑧 layer can be peeled-off, and the initial situation 

is repeated, but in this case the new target impulse response will characterize the following layer 

that was originally placed within 𝑑𝑧 ≤ 𝑧 ≤ 2 · 𝑑𝑧. It is noticeable that if the process is performed 

for each layer between 𝑧 = 0 and 𝑧 = 𝐿, the properties of the whole structure will be revealed, 

according to the workflow graph of Fig. 5.1. This qualitative description of the method would 

be strictly valid if the thickness of the layers were finite, something that would give rise to the 

Discrete Layer Peeling method. However, when the thickness of the layers tends to be 

infinitesimal, i.e. 𝑑𝑧 → 0, the layer concept lacks sense and thus, the method is known as 

Continuous Layer Peeling (CLP). 

The Inverse Scattering layer peeling procedure was originally developed in the time 

domain for the synthesis of fiber Bragg gratings in the optical range by Feced et al. [7], but the 

works of Skaar [8], [9] and Poladian [10], [11] translated the technique to the frequency domain 

where the computational efficiency is better, although still restricted to Bragg gratings in the 

optical domain. All these contributions were the basis for the development of the method 

presented in this thesis, implemented in the frequency domain and valid for the synthesis of 

microwave and millimeter wave devices. 

As it was demonstrated for the GLM series solution of the synthesis problem that has 

been carefully developed in CHAPTER 4, the coupling coefficient, 𝐾(𝑧), can be expressed as a 

function of the target frequency response in reflection, 𝑆11(𝛽), through the series solution (4.31) 

that is conveniently provided again: 
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𝐾(𝑧) = −2 · 𝐹(2𝑧) + 

(4.31) 

−2 · ∫ 𝑑𝑥1𝐹(𝑥1) · ∫ 𝑑𝑥2
′𝐹(𝑥2

′ )
𝑥1

0

𝐹(𝑥2
′ − 𝑥1 + 2𝑧) +

2𝑧

0

 

−2∫ 𝑑𝑥1𝐹(𝑥1)∫ 𝑑𝑥2
′𝐹(𝑥2

′ )∫ 𝑑𝑥3
′𝐹(𝑥3

′ )∫ 𝑑𝑥4
′𝐹(𝑥4

′ )
𝑥3

0

𝑥2

0

𝑥1

0

𝐹(𝑥4
′ − 𝑥3 + 2𝑧)

2𝑧

0

+ 

−⋯+ 

−2∫ 𝑑𝑥1𝐹(𝑥1)
2𝑧

0

∫ 𝑑𝑥2
′𝐹(𝑥2

′ )∫ …∫ 𝑑𝑥2𝑁
′ 𝐹(𝑥2𝑁

′ )
𝑥2𝑁−1

0

𝑥2

0

𝑥1

0

𝐹(𝑥2𝑁
′ − 𝑥2𝑁−1 + 2𝑧) + 

−⋯+ 

where 𝑥𝑖
′ = 𝑥𝑖 + 𝑥𝑖−1 − 2𝑧 for 𝑖 > 1 and 𝐹(𝜏) is the inverse Fourier transform of the 𝑆11(𝛽)-

parameter, as it was originally defined in (4.11): 

𝐹(𝜏) =
1

2 · 𝜋
· ∫ 𝑆11(𝛽) · 𝑒

𝑗·𝛽·𝜏 · 𝑑𝛽
∞

−∞

 (4.11) 

Particularizing the series solution of (4.31) for the beginning of the device, 𝑧 = 0, it can 

be seen that just the first term of the series is not null, whose expression is, rigorously speaking, 

−2 · 𝐹(𝜏 = 𝑧 + 𝑧+), obtaining at the beginning of the device: 

𝐾(𝑧 = 0) = −2 ∙ 𝐹(𝜏 = 0+)  (5.1) 

being 𝐹(𝜏 = 0+) the right-hand limit of 𝐹(𝜏) at 𝜏 = 0.  

Due to the causality principle it must be verified that 𝐹(𝜏) = 0,∀ 𝜏 < 0, and thus, 

𝐹(𝜏 = 0+) must be rigorously taken in (5.1). Accordingly, 𝐹(𝜏 = 0−) = 0, and 𝐹(𝜏) will have 

a step discontinuity at 𝜏 = 0. In order to evaluate the inverse Fourier integral at that discontinuity, 

the average value at 𝜏 = 0− and 𝜏 = 0+ needs to be used [12]: 

𝐹(𝜏 = 0) =
𝐹(𝜏 = 0+) + 𝐹(𝜏 = 0−)

2
=
𝐹(𝜏 = 0+)

2
 (5.2) 

and taking into account (4.11) and (5.2) it can be obtained: 

𝐹(𝜏 = 0+) = 2 ∙ 𝐹(𝜏 = 0) = 2 ∙
1

2𝜋
∫ 𝑆11(𝛽) ∙ 𝑒

𝑗∙𝛽∙𝜏 ∙ 𝑑𝛽
∞

−∞

|
𝜏=0

=
1

𝜋
∫ 𝑆11(𝛽) ∙ 𝑑𝛽
∞

−∞

 (5.3) 
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Incorporating this result into (5.1) it can be finally obtained: 

𝐾(𝑧 = 0) = −
2

𝜋
∫ 𝑆11(𝛽) ∙ 𝑑𝛽
∞

−∞

 (5.4) 

It is interesting to note that (5.4) allows us to calculate the coupling coefficient at the 

origin of the device, 𝑧 = 0, as a function of the reflection coefficient also at the origin of the 

device. 

In order to get the most efficient numerical implementation of (5.4), the property satisfied 

by any real physical device 𝑆𝑖𝑗(−𝑓) = 𝑆𝑖𝑗
∗ (𝑓) will be taken into account. It implies in our case 

that 𝑆11(−𝛽) = 𝑆11
∗ (𝛽). Therefore, expression (5.4) can be finally rewritten as: 

𝐾(𝑧 = 0) = −
4

𝜋
∫ ℛ𝑒{𝑆11(𝛽)} ∙ 𝑑𝛽
∞

0

 (5.5) 

Now, in order to peel-off the synthetized infinitesimal layer, the Riccati equation [13] 

will be used to propagate the target reflection coefficient along the device. The Riccati equation 

can be obtained from the single-mode coupled-mode equation system of (2.91), (2.92). The 

reflection coefficient parameter, , is introduced, being defined as: 

𝜌(𝑧, 𝛽) =
𝑎−(𝑧, 𝛽)

𝑎+(𝑧, 𝛽)
 (5.6) 

and taking its derivative it results in: 

𝑑𝜌

𝑑𝑧
=
(
𝑑𝑎−

𝑑𝑧 ∙ 𝑎+ −
𝑑𝑎+

𝑑𝑧 ∙ 𝑎−)

(𝑎+)2
 

(5.7) 

Introducing the single-mode system of couple-mode equations (2.91), (2.92), it is 

obtained that: 

𝑑𝜌

𝑑𝑧
=
(𝑗 ∙ 𝛽 ∙ 𝑎− +𝐾 ∙ 𝑎+) ∙ 𝑎+ − (−𝑗 ∙ 𝛽 ∙ 𝑎+ + 𝐾 ∙ 𝑎−) ∙ 𝑎−

(𝑎+)2
 (5.8) 

and reorganizing the equation it can be rewritten as: 

𝑑𝜌

𝑑𝑧
= 𝑗 ∙ 𝛽 ∙

𝑎−

𝑎+
+𝐾 + 𝑗 ∙ 𝛽 ∙

𝑎−

𝑎+
− 𝐾 ∙

(𝑎−)2

(𝑎+)2
 (5.9) 

Recalling that the reflection coefficient  is defined as (5.6), the expression can be finally 

rewritten as the so-called Riccati equation: 
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𝑑𝜌

𝑑𝑧
= 2 ∙ 𝑗 ∙ 𝛽 ∙ 𝜌 + 𝐾 ∙ (1 − 𝜌2) (5.10) 

Once the coupling coefficient at the origin of the device, 𝐾(0), is calculated using (5.5), 

the Riccati equation (5.10) will be employed to propagate the target reflection coefficient 

spectrum along the first infinitesimal layer of the device. With this new target spectrum, the first 

infinitesimal layer is peeled off and the origin of the rest of the device is shifted to the next layer. 

Then, the next point of the coupling coefficient can be calculated using (5.5). Following in an 

iterative manner, i.e., propagating the target spectrum with (5.10) and calculating the next value 

of the coupling coefficient by means of (5.5), the entire coupling coefficient, 𝐾(𝑧), for the 

targeted 𝑆11(𝛽) is synthesized. 

In order to conclude this subsection it must be highlighted that the CLP method is able to 

synthetize frequency responses that feature a maximum rejection level substantially higher than 

the one that can be achieved by means of GLM [14], which features an approximate limit for the 

achievable rejection level of −15 dB, as it was reported in [15]. 
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5.1. RELEVANT NUMERICAL ASPECTS FOR 

THE IMPLEMENTATION OF THE CLP 

METHOD 

In order to implement the CLP synthesis method in practice, and due to the inherent 

limitations of computation, it will be mandatory to employ discretized versions of the target 

frequency response in reflection, 𝑆11(𝛽), and of its corresponding inverse Fourier transform, 

𝐹(𝜏). Therefore, it is needed to explore the optimum relationship between the sampling period 

of the 𝑧 axis and the resolution employed for the definition of the transform pair variables 𝛽 and 

𝜏. It is important to highlight that this relationship will also determine the optimum number of 

points, 𝑁𝑧, that must be employed for the correct discretization of the 𝑧 axis of a structure of 

length 𝐿.Thus, if 𝑁𝑧 is the optimum number of points for a length 𝐿, then the discretization period 

for the propagation axis, 𝑇𝐷,𝑧, will be: 

𝑇𝐷,𝑧 =
𝐿

𝑁𝑧
 (5.11) 

Firstly, we must recall the inverse Fourier transform relationship that was previously 

stablished between 𝑆11(𝛽) and 𝐹(𝜏) in (4.11): 

𝐹(𝜏) =
1

2 · 𝜋
· ∫ 𝑆11(𝛽) · 𝑒

𝑗·𝛽·𝜏 · 𝑑𝛽
∞

−∞

 (4.11) 

where the forward Fourier transform was provided in (4.12) and is rewritten below: 

𝑆11(𝛽) = ∫ 𝐹(𝜏) · 𝑒−𝑗·𝛽·𝜏 · 𝑑𝜏
∞

−∞

 (4.12) 

being 𝜏 the “reflection distance”, which satisfies: 

𝜏 = 2 · 𝑧 (5.12) 

When dealing with discretized versions of signals that compose a transform pair of the 

form 𝑆11(𝛽) = 𝐹𝑇{𝐹(𝜏)}, the sequence 𝐹𝐷[𝑛] is defined as the sampled version of 𝐹(𝜏) and 

satisfies 𝐹𝐷[𝑛] = 𝐹(𝜏 = 𝑛 · 𝑇𝐷,𝜏), see Fig. 5.2a. The sampled 𝐹𝐷[𝑛] can be alternatively written 

as: 
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𝐹𝐷[𝑛] = ∑ 𝐹(𝜏 = 𝑖 · 𝑇𝐷,𝜏)

𝑁−1

𝑖=0

⋅ 𝛿[𝑛 − 𝑖] (5.13) 

where 𝑇𝐷,𝜏 is the sampling period of the 𝜏 aixs, 𝛿[𝑛] is the discrete-time unit impulse, and 𝑖 =

0, … ,𝑁 − 1, with 𝑁 being the number of samples. It must be noticed that for the sake of 

simplicity 𝑁 will be assumed to be an even number in the subsequent steps. 

The set of discrete points along 𝜏, 𝜏𝐷,𝑛, for whom 𝐹(𝜏) is sampled, i.e. 𝐹𝐷[𝑛] =

𝐹(𝜏 = 𝜏𝐷,𝑛), can be deduced according to (5.13) as: 

𝜏𝐷,𝑛 = 𝑛 · 𝑇𝐷,𝜏 = 0 · 𝑇𝐷,𝜏 , 1 · 𝑇𝐷,𝜏 , 2 · 𝑇𝐷,𝜏 ,… , (𝑁 − 1) · 𝑇𝐷,𝜏 (5.14) 

Considering the principles of discrete signal processing that are thoroughly discussed in 

the textbook reference [16], it is possible to define the sampling phase constant, 𝛽𝑆, (in analogy 

to the sampling frequency employed in the classical sampling theorem [16], see Fig. 5.2b) that 

is needed to sample the 𝜏 axis with period 𝑇𝐷,𝜏 as: 

𝛽𝑆 =
2 · 𝜋

𝑇𝐷,𝜏
 (5.15) 

If the Fast Fourier Transform (FFT) is applied to a real 𝐹𝐷[𝑛] while taking into account 

the properties of  discrete signal processing [16], the sampled version of the 𝑆11-parameter, 𝑆11,𝐷, 

will be also composed of 𝑁 samples (see Fig. 5.2b), given by:  

𝑆11,𝐷[𝑘] = 𝑇𝐷,𝜏 · 𝐹𝐹𝑇{𝐹𝐷[𝑛]} = ∑ 𝑆11(𝛽 = 𝑖 · Δ𝛽𝐷)

𝑁−1

𝑖=0

⋅ 𝛿[𝑘 − 𝑖] (5.16) 

where Δ𝛽𝐷  is the sampling period in 𝛽, which is related in turn with the sampling phase constant, 

𝛽𝑆, see Fig. 5.2b, by the expression: 

Δ𝛽𝐷 =
𝛽𝑆
𝑁

 (5.17) 

It is important to stress that (5.17) states that the phase constant range between 𝛽 = 0 

rad/m and 𝛽𝑆 will be divided into 𝑁 uniform portions and hence, each of them covers a bandwidth 

of Δ𝛽𝐷 . Regarding Δ𝛽𝐷 , the discrete points of 𝛽 where the 𝑆11,𝐷(𝛽) is sampled, 𝛽𝐷,𝑘, can be 

accordingly determined from (5.16) as: 

𝛽𝐷,𝑘 = 𝑘 · Δ𝛽𝐷  (5.18) 
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On the other hand, if it is desired to calculate 𝐹𝐷[𝑛] from 𝑆𝐷,11[𝑘], the inverse FFT will 

be needed with an additional 
1

𝑇𝐷,𝜏
 scaling factor, which is fully coherent with (5.16), i.e.: 

𝐹𝐷[𝑛] =
1

𝑇𝐷,𝜏
· 𝐹𝐹𝑇−1{𝑆𝐷,11[𝑘]} = ∑ 𝐹(𝜏 = 𝑖 · 𝑇𝐷,𝜏)

𝑁−1

𝑖=0

⋅ 𝛿[𝑛 − 𝑖] (5.19) 

Taking under consideration (5.15) in (5.17), alternative expressions for Δ𝛽𝐷  can be 

attained: 

Δ𝛽𝐷 =
𝛽𝑆
𝑁
=

2 · 𝜋
𝑇𝐷,𝜏
𝑁

=
2 · 𝜋

𝑇𝐷,𝜏 · 𝑁
 

(5.20) 

where the term 𝑇𝐷,𝜏 · 𝑁 of the denominator of (5.20) corresponds to the total duration of the 

sampled 𝜏 axis, 𝜏𝐷,𝑚𝑎𝑥 , that in turn will be two times the total length of the structure along 𝑧 due 

to (5.12), i.e.: 

𝜏𝐷,𝑚𝑎𝑥 = 2 · 𝐿 = 𝑇𝐷,𝜏 · 𝑁 (5.21) 

Incorporating the definition of (5.21) in (5.20), the resolution Δ𝛽𝐷  can be directly related 

with 𝜏𝐷,𝑚𝑎𝑥 as: 

Δ𝛽𝐷 =
𝛽𝑆
𝑁
=

2 · 𝜋

𝑇𝐷,𝜏 · 𝑁
=

2 · 𝜋

𝜏𝐷,𝑚𝑎𝑥
 (5.22) 

At this point, it is important to stress that if the 𝑧 axis of a structure of length 𝐿 is sampled 

with an optimum number of points, 𝑁𝑧, it must be automatically satisfied that: 

𝑁𝑧 =
𝐿

𝑇𝐷,𝑧
 (5.23) 

where 𝑇𝐷,𝑧 stands for the sampling period of the 𝑧 axis, which is obviously related with 𝑇𝐷,𝜏 by 

(5.12) as: 

𝑇𝐷,𝑧 =
𝑇𝐷,𝜏
2

 (5.24) 

Thus, the 𝑧 axis will be optimally discretized in the 𝑧𝐷,𝑛  points that will be defined 

according to Fig. 5.2c and (5.24) as: 

𝑧𝐷,𝑛 = 𝑛 · 𝑇𝐷,𝑧 = 0 ·  𝑇𝐷,𝑧 , 1 · 𝑇𝐷,𝑧 , 2 · 𝑇𝐷,𝑧 , … , (𝑁 − 1) · 𝑇𝐷,𝑧 (5.25) 
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(a) 

 

(b) 

 

(c) 

Fig. 5.2. Sketch of the correspondence between the original (blue lines) and discretized (black circles) versions of (a) 

the impulse response in reflection, 𝐹(𝜏), (b) the 𝑆11(𝛽)-parameter, and (c) the propagation axis, 𝑧, of a physical 

structure that features a dimensional profile, 𝐺(𝑧), for the case of 𝑁 = 𝑁𝑧 = 6. In (b), the redundant samples of the 

𝑆11,𝐷(𝛽𝐷,𝑛) that are consequence of the discretization are highlighted with a red dashed line. 

If the expressions (5.21) and (5.24) are properly incorporated in (5.23), the optimum 

number of points for the 𝑧 axis, 𝑁𝑧, will be determined as a result: 

𝑁𝑧 =
𝐿

𝑇𝐷,𝑧
=
2 · 𝐿

𝑇𝐷,𝜏
=
𝜏𝐷,𝑚𝑎𝑥
𝑇𝐷,𝜏

=
𝑇𝐷,𝜏 · 𝑁

𝑇𝐷,𝜏
= 𝑁 (5.26) 

Therefore, the optimum number of points, 𝑁𝑧, that must be considered in the propagation 

axis 𝑧, for the synthesis of a structure of length, 𝐿, which is defined by a sampled impulse 

response in reflection, 𝐹𝐷[𝑛], will be the number of samples, 𝑁, of 𝐹𝐷[𝑛], see Fig. 5.2c. 
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Nevertheless, since the CLP method actually starts from the 𝑆11(𝛽), it will be worth to relate 

𝑇𝐷,𝑧 and 𝑁𝑧 with a parameter of the target 𝑆11,𝐷[𝑘]. 

However, it must be firstly stressed that due to the inherent properties of the FFT [16], 

only the first (
𝑁

2
+ 1) values of 𝑆11,𝐷[𝑘] will be relevant, since the remaining (

𝑁

2
− 1) values 

will correspond to the complex conjugate of the former, i.e. 𝑆11,𝐷[𝑘] = 𝑆11,𝐷
∗ [𝑁 − 𝑘] and can be 

considered redundant as a result, see Fig. 5.2b. Therefore, the useful values of 𝑆11,𝐷[𝑘] will be 

𝑆11,𝐷[𝑟], with 𝑟 = 0,… ,
𝑁

2
. Consequently, the spectral information of the frequency response in 

reflection will be limited up to the sample 𝑆11,𝐷 [
𝑁

2
], which will correspond to the maximum 

phase constant that can be univocally determined, 𝛽𝐷,𝑚𝑎𝑥, using the sampling phase constant 𝛽𝑆. 

It is obvious that 𝛽𝐷,𝑚𝑎𝑥 can be determined from (5.18) for the last value of 𝑟, i.e. 𝑟 =
𝑁

2
 as: 

𝛽𝐷,𝑚𝑎𝑥 = 𝛽𝐷,𝑘=𝑁
2
= Δ𝛽𝐷 ·

𝑁

2
 (5.27) 

Thus, in view of (5.20) it will be straightforward to deduce: 

𝛽𝐷,𝑚𝑎𝑥 = Δ𝛽𝐷 ·
𝑁

2
=
𝛽𝑆
2

 (5.28) 

It is important to highlight that the expression (5.28) is fully coherent with the Nyquist-

Shannon sampling theorem [17], [18]. Recalling (5.12) and (5.15) it will be deduced that: 

𝛽𝐷,𝑚𝑎𝑥 =
𝛽𝑆
2
=

2 · 𝜋
𝑇𝐷,𝜏
2

=
𝜋

𝑇𝐷,𝜏
=

𝜋

2 · 𝑇𝐷,𝑧
 

(5.29) 

The relationship (5.29) states the maximum phase constant, 𝛽𝐷,𝑚𝑎𝑥, that can be 

determined considering a sampling period, 𝑇𝐷,𝑧, for the 𝑧 axis. However, the most interesting 

conclusion is extracted by reversing the last reasoning, i.e. if the frequency response in reflection, 

𝑆11,𝐷, prescribed to apply any synthesis procedure is defined up to 𝛽𝐷,𝑚𝑎𝑥, then the optimum 

sampling period for the 𝑧 axis that should be considered must be 𝑇𝐷,𝑧, where 𝑇𝐷,𝑧 can be 

determined from (5.29) as: 

𝑇𝐷,𝑧 =
𝜋

2 · 𝛽𝐷,𝑚𝑎𝑥
 (5.30) 

Since the number of non-redundant samples of the 𝑆11,𝐷 is (
𝑁

2
+ 1), it can be concluded 

that the number of points in which the 𝑧 axis must be sampled, 𝑁𝑧, regarding a 𝑆11,𝐷-parameter 
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defined with (
𝑁

2
+ 1)  non-redundant samples will be 𝑁𝑧 = 𝑁. It must be noted that this result 

agrees with (5.26). 

The number of points, 𝑁𝑧 , can be alternatively deduced from 𝛽𝐷,𝑚𝑎𝑥 and Δ𝛽𝐷  by (5.28) 

as: 

𝑁𝑧 = 𝑁 =
2 · 𝛽𝐷,𝑚𝑎𝑥
Δ𝛽𝐷

 (5.31) 

Moreover, taking into account the following general relationship between 𝛽 and 𝜆𝑔: 

𝛽 =
2 · 𝜋

𝜆𝑔
 (5.32) 

where 𝜆𝑔 is the wavelength of the propagating mode in the waveguide, the maximum phase 

constant, 𝛽𝐷,𝑚𝑎𝑥, of (5.27)-(5.31) will be forcibly related with the minimum wavelength, 

𝜆𝑔,𝐷,𝑚𝑖𝑛 , that can be described when dealing with a sampled 𝑆11-parameter as follows: 

𝛽𝐷,𝑚𝑎𝑥  =
2 · 𝜋

𝜆𝑔,𝐷,𝑚𝑖𝑛
 (5.33) 

In view of (5.30) and (5.33), the optimum sampling period in 𝑧, 𝑇𝐷,𝑧, is related with 

𝜆𝑔,𝐷,𝑚𝑖𝑛  (see Fig. 5.3a) as: 

𝑇𝐷,𝑧 =
𝜆𝑔,𝐷,𝑚𝑖𝑛
4

 (5.34) 

However, in order to finish this section that has been developed considering the relevant 

numerical aspects for the practical implementation of the layer-peeling synthesis approach, it is  

 

 

(a) 

 

(b) 

Fig. 5.3. Sketch of the first 𝑇𝐷,𝑧 sample in 𝑧 of a generic structure with physical dimensions 𝐺 along the propagation 

axis, 𝑧 (light blue line): (a) The optimum sampling period selected for 𝑧, 𝑇𝐷,𝑧, should correspond to a the quarter of the 

minimum wavelength 𝜆𝑔,𝐷,𝑚𝑖𝑛 associated with 𝛽𝐷,𝑚𝑎𝑥. However, the sampling period necessary to implement properly 

the CLP method (b) is 
𝜆𝑔,𝐷,𝑚𝑖𝑛

8
. 
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important to highlight a critical peculiarity of the practical implementation of the CLP method. 

The numerical solution of the Riccati equation of (5.10) that has been implemented using the 

Matlab ordinary differential equation (ODE) solver “ode45.m”, needs to consider half of the 

discretization period 𝑇𝐷,𝑧 that has been deduced in (5.30) and (5.34) for a frequency response in 

reflection defined up to 𝛽𝐷,𝑚𝑎𝑥, in order to propagate correctly the reflection coefficient through 

the 𝑧 axis. Consequently, (5.30) and (5.34) must be reformulated taking into account the extra 

factor of 2 for the concerning CLP synthesis technique, yielding to a necessary non-optimum 

sampling period for the numerical implementation of CLP (see Fig. 5.3b), 𝑇𝐷,𝑧,𝐶𝐿𝑃, that will be 

determined by means of (5.30) and (5.34) as: 

𝑇𝐷,𝑧,𝐶𝐿𝑃 =
𝑇𝐷,𝑧
2
=

𝜋

4 · 𝛽𝐷,𝑚𝑎𝑥
=
𝜆𝑔,𝐷,𝑚𝑖𝑛
8

 (5.35) 

Therefore, the number of points that will be needed to ensure a proper convergence of the 

numerical implementation of the CLP method, 𝑁𝑧,𝐶𝐿𝑃, will be the two times the optimum 𝑁𝑧, i.e. 

𝑁𝑧,𝐶𝐿𝑃 = 2 · 𝑁𝑧, as it is shown in Fig. 5.4. Thus, considering (5.35) in (5.26) as well as in (5.31), 

it is obtained that: 

𝑁𝑧,𝐶𝐿𝑃 = 2 · 𝑁 =
4 · 𝛽𝐷,𝑚𝑎𝑥
Δ𝛽𝐷

 (5.36) 

where 𝑁 is the number of samples numerically provided for the target 𝐹(𝜏), 𝐹𝐷[𝑛]. It must be 

highlighted that the result of (5.36) is coherent with the relationship reported in [19], where a 

deduction only valid for transmission line was carried out. 

 

Fig. 5.4. Sketch of the discretization that must be employed for the 𝑧 axis for the practical implementation of the CLP 

method regarding a structure with physical dimensions 𝐺(𝑧). In this example, the discretized version of the impulse 

response in reflection of 𝐺(𝑧), 𝐹𝐷[𝑛] = 𝐹(𝜏 = 𝑛 · 𝑇𝐷,𝜏), as well as its associated frequency response, 𝑆11,𝐷[𝑘] =

𝑆11(𝛽 = 𝑘 · Δ𝛽𝐷), are defined with 𝑁 = 6 samples. Thus, the 𝑧 axis must be divided into 𝑁𝑧,𝐶𝐿𝑃 = 2 · 𝑁 = 12 points 

with a sampling period 𝑇𝐷,𝑧,𝐶𝐿𝑃 =
𝑇𝐷,𝑧

2
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Finally, the necessary discretized points of the 𝑧 axis for the CLP method, 𝑧𝐷,𝑛,𝐶𝐿𝑃, must 

be adjusted by considering 𝑛𝐶𝐿𝑃 = 0, 1,… , 𝑁𝑧,𝐶𝐿𝑃 − 1, as it is depicted in Fig. 5.4, where 

𝑁𝑧,𝐶𝐿𝑃 = 2 · 𝑁, i.e.: 

𝑧𝐷,𝑛,𝐶𝐿𝑃 = 𝑛𝐶𝐿𝑃 · 𝑇𝐷,𝑧,𝐶𝐿𝑃 = 

(5.37) = 0 ·  𝑇𝐷,𝑧,𝐶𝐿𝑃 , 1 · 𝑇𝐷,𝑧,𝐶𝐿𝑃 , 2 · 𝑇𝐷,𝑧,𝐶𝐿𝑃 ,… , (𝑁𝑧,𝐶𝐿𝑃 − 1) · 𝑇𝐷,𝑧,𝐶𝐿𝑃 = 

= 0 ·  𝑇𝐷,𝑧 , 1 ·
𝑇𝐷,𝑧
2
, 2 ·

𝑇𝐷,𝑧
2
, … , (2 · 𝑁𝑧 − 1) · 𝑇𝐷,𝑧 
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5.2. DESIGN PROCEDURE FOR LOW-PASS AND 

BAND-PASS FILTERS WITHOUT SPURIOUS 

STOPBANDS 

Microwave filters are one of the most widely employed components for microwave 

systems since they are two-port structures that provide a transmission feature between these ports 

for frequencies within a passband range, while other frequencies that belong to the stopband get 

attenuated. The definition of the characteristics of both passband and stopband determines the 

general behavior of the frequency response, leading to the four different categories of filters that 

can be typically distinguished: low-pass, high-pass, band-pass, and reject-band filter. 

A wide variety of design techniques based on different physical approaches have been 

proposed for the diverse technologies employed for the implementation of microwave 

components. Many specialized books have been published covering the topic of design of 

microwave filters, where a reduced selection is provided in [20]-[25], although an overview of 

the classical design techniques is gathered in the review papers [26]-[28]. However, a great part 

of the filter design techniques rests on the so-called insertion loss method [20], which employs 

the theory developed for the synthesis of filters based on discrete elements (resistors, capacitors, 

inductors,…) that are appropriate for lower frequencies where the wavelength is much longer 

than the physical size of these elements. The values and the association between the discrete 

components are chosen so as to obtain a frequency response given by a rational function such as 

the Butterworth, Chebyshev, Zolotarev, or Cauer. Nevertheless, the discrete elements are no 

longer suitable for the microwave range due to their excessive size with respect to the concerning 

wavelengths. Thus, the microwave distributed structures are designed and connected so as to 

achieve the functionality of one (or a set) of the discrete elements that would be needed to obtain 

the frequency response of the filter by following the insertion loss method. However, the 

equivalence between the behavior of a discrete and a distributed element is only exact for a single 

design frequency and the frequency response far from this point is rapidly degraded  when  it is 

compared with the one that may be expected from the use of ideal discrete elements. As a result, 

the selectivity provided by the microwave filter is poorer than that of the initial discrete element 

prototype. Furthermore, the appearance of spurious passbands or stopbands cannot be easily 

avoided due to the periodic essence of the frequency response of transmission lines and to the 

excitation of higher-order modes. This lack of control of the out of band behavior of the filter 

can lead to the breach of the requirements when broadband specifications are demanded. 
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In this section, a method for the design of low-pass and band-pass filtering structures that 

do not feature spurious rejection bands will be detailed. The resulting physical dimensions of the 

filters will vary in a smooth fashion along the propagation direction.  

In 2012, a method based on an Inverse Scattering technique was successfully proposed 

by Arnedo et al. [29] to synthetize smooth-shaped filters, although it was limited to pure rational 

frequency responses in reflection, i.e. responses that must be expressed as rational functions with 

a finite number of poles and zeros in the complex Laplace plane, 𝑠 = 𝜎 + 𝑗 · 𝜔. Moreover, an 

additional drawback of that technique was the lack of control by the designer over the final 

dimensions of the resulting device. Indeed, this kind of responses leads to structures that ideally 

feature an infinite length, and their coupling coefficient must be truncated with a long length in 

practice. Furthermore, the physical dimensions of the perturbations of the cross-section along 

the propagation direction are completely unknown until the structure is synthetized. Conversely, 

the design method that is going to be presented and demonstrated here drives to finite-length 

structures, while also providing an approximate insight of the physical dimensions that will be 

eventually featured by the cross-section of the synthetized device along the propagation 

direction. 

As a general description of the design method proposed here, the response in reflection 

of a classical commensurate-line filter prototype that fulfills the desired specifications will be 

properly modified by means of a bandlimited interpolation, giving rise to the target response for 

the CLP technique. The synthetized filter will feature a dimensional profile that will vary in a 

smooth fashion, while retaining similar length and physical dimensions to those of the initial 

commensurate-line prototype. Since the inverse scattering synthesis techniques are exact for the 

intended bandwidth, the frequency response of the resulting structure will not exhibit spurious 

passbands or stopbands. In order to verify the proposed design technique, a first design example 

in microstrip technology will be provided. The feasibility of the synthesis of rectangular 

waveguide filters for a subsequent fabrication with Additive Manufacturing techniques in metal 

will be also addressed in a second design example, requiring realistic specifications in terms of 

rejection levels for the target response. 

5.2.1. Classical Low-Pass Commensurate-

Line Unit-Element Prototype 

The first stage to achieve the target response for the synthesis is to obtain a 

commensurate-line distributed prototype that fulfills the frequency specifications required for 
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the filter. The prototype is formed by a cascade of N line-sections, all of them with the same 

electrical length (commensurate) and different characteristic impedances, plus an additional 

input and output line-section with the port impedances (see Fig. 5.5). 

The synthesis of commensurate-line distributed networks (composed in general of 

commensurate lossless line-sections and lumped resistors) can be formulated on an analogous 

basis to the synthesis of lumped-element networks by using the Richards’ transformation [30]-

[32]: 

𝑡 = tanh(
𝑎 ⋅ 𝑠

2
) (5.38) 

where the complex frequency (Laplace) variable s is transformed to a new complex variable t, 

and the constant 𝑎 = 𝑙/𝑐 is the ratio between the length of a commensurate line, l, and the 

velocity of propagation of electromagnetic waves in the line, c. Using the Richards’ 

transformation, the driving-point impedance of a commensurate distributed network, as well as 

the parameters of its scattering, transfer, and immittance matrices, can be expressed as rational 

functions in t [30]-[32]. The use of the half-argument 𝑎 ⋅ 𝑠/2 in the hyperbolic tangent in (5.38) 

is required so that the transmittances become rational functions in t. However, if the full 

argument 𝑎 ⋅ 𝑠 is employed, the driving-point impedance and all the matrix parameters remain 

rational functions in t, except for the possible appearance of irrational factors of the form 

(1 − 𝑡2)1 2⁄  in the transmittances [21], [31], [32]. In this case, the Richards’ transformation is 

defined as: 

𝑡 = tanh (𝑎 ⋅ 𝑠) (5.39) 

and the degree of the rational functions in t of the scattering, transfer, and immittance matrices, 

and of the driving-point impedance, is reduced by half when compared to the original 

transformation of (5.38). Actually, this last form of the Richards’ transformation is preferred and 

used in the vast majority of books and papers published in the last decades [21], [22], [31]-[37], 

where expressions identical or equivalent to (5.39) are employed, and it will be used here. 

 

Fig. 5.5. Commensurate-line distributed prototype. Each line-section has the same electrical length, 𝜃, and different 

characteristic impedance, 𝑍𝑖. 
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As it was presented in (5.38) and (5.39), the Richards’ transformation can be applied only 

to ideal transmission lines, since a constant velocity of propagation, c (not variable with 

frequency) is assumed in the definition of 𝑎 = 𝑙/𝑐. However, it can be easily extended to 

waveguides (where a phase velocity, 𝑣𝑝, variable with frequency must be considered), by 

introducing the concept of electrical length of the commensurate lines, 𝜃 = 𝛽 ⋅ 𝑙, where 𝛽 =

𝜔 𝑣𝑝⁄  is the phase constant of the waveguide operation mode, 𝜔 = 2𝜋𝑓 is the frequency in rad/s, 

and f is the frequency in Hz [21], [22]. Thus, the Richards’ transformation of (5.39) can be 

rewritten as [22]: 

𝑡 =  tanh(𝑗𝜃) = 𝑗 ⋅ tan (𝜃) (5.40) 

since the argument 𝑗𝜃 = 𝑗𝜔𝑙 𝑣𝑝 = 𝑠𝑙 𝑣𝑝⁄⁄ , where 𝜔 = 𝑠 𝑗⁄  is employed to perform the analytic 

continuation to the complex frequency plane, s. 

Inspecting (5.39) and (5.40) it can be seen that the Richards’ transformation maps the 

(imaginary) frequency axis (𝑗𝜔) of the complex frequency (Laplace) plane, s, to the (imaginary) 

frequency axis (𝑗Ω) of the Richards’ transform plane, t, through the equation [31]-[33]: 

Ω = tan (𝜃) (5.41) 

where: 

𝜃 = 𝛽𝑙 = 𝜔𝑙 𝑣𝑝⁄  (5.42) 

is the electrical length of the commensurate lines (either transmission or waveguide line-

sections). Therefore the mapping between frequency axes is periodic in 𝜃, and actually all 

responses of commensurate distributed networks will be periodic with respect to 𝜃 (and to 𝜔 for 

the case of ideal transmission lines where 𝑣𝑝 does not vary with frequency [31], [32], [34]-[37]). 

Additionally, it can be demonstrated that the right half of the s plane maps on the right half of 

the t plane, while the left half s plane maps on the left half t plane. Consequently the Richards’ 

transformation behaves adequately and a positive real function of t has the same property with 

respect to s [31], [32]. 

The input impedance, in the Richards’ transform plane, of a commensurate-line section 

(with electrical length 𝜃 and characteristic impedance 𝑍0) terminated in a short-circuit is given 

by 𝑍𝑠𝑐 = 𝑍0 ⋅ 𝑡. In the same way, it can be easily demonstrated using (5.40) that the input 

impedance of a commensurate-line section terminated in an open-circuit is 𝑍𝑜𝑐 = 𝑍𝑜 𝑡⁄ . 

Therefore, a short-circuited stub and an open-circuited stub behave, in the Richards’ transform  
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plane, as a lumped inductor and a lumped capacitor, respectively [21], [22], [31]-[37]. However,a 

commensurate-line section (with electrical length, 𝜃, and characteristic impedance, 𝑍0), viewed 

as a two-port component, has no lumped-element counterpart and is termed unit element (UE) 

[21], [22], [31]-[37]. In order to model the frequency response of the commensurate line filter, 

it will be advisable to employ the transmission matrix defined as [38]: 

(
𝑉𝑖𝑛
𝐼𝑖𝑛
) = (

𝐴 𝐵
𝐶 𝐷

) · (
𝑉𝑜𝑢𝑡
𝐼𝑜𝑢𝑡

) (5.43) 

where the equivalent voltages 𝑉𝑖𝑛 , 𝑉𝑜𝑢𝑡  and currents 𝐼𝑖𝑛, 𝐼𝑜𝑢𝑡 follow the convention stated by the 

Fig. 5.6. 

If (5.43) is developed, it will be obtained that: 

𝑉𝑖𝑛 = 𝐴 · 𝑉𝑜𝑢𝑡 +𝐵 · 𝐼𝑜𝑢𝑡 (5.44) 

𝐼𝑖𝑛 = 𝐶 · 𝑉𝑜𝑢𝑡 + 𝐷 · 𝐼𝑜𝑢𝑡 (5.45) 

The transmission matrix of a UE, i.e. a transmission or waveguide line section of length 

𝑙, and characteristic impedance 𝑍0, for a specific phase constant 𝛽, is [38]: 

(
𝐴 𝐵
𝐶 𝐷

)
𝑈𝐸
= (

cos(𝛽𝑙) 𝑗𝑍0 sin(𝛽𝑙)
𝑗

𝑍0
· sin(𝛽𝑙) cos(𝛽𝑙)

) (5.46) 

Therefore, the transmission matrix of a UE in the Richards’ transform plane can be 

obtained from (5.46) by taking into account (5.40) and (5.42), resulting in [21], [22], [32], [34], 

[35], [37]: 

(
𝐴 𝐵
𝐶 𝐷

)
𝑈𝐸
=

1

√1 − 𝑡2
[
1 𝑍0𝑡

𝑡 𝑍0⁄ 1
] (5.47) 

 

Fig. 5.6. Transmission matrix model of generic two-port element with the definition of the sign convention for the 

equivalent voltages and currents. 
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Let’s focus now on the starting commensurate-line distributed prototype of interest. It is 

formed by a cascade of N line-sections, all of them with the same electrical length and different 

characteristic impedances, with an additional input and output line-section with the port 

impedances (see Fig. 5.5). Therefore, in the Richards’ transformation domain, it can be modelled 

as a cascade of N UEs, plus the input and output ports, see Fig. 5.7a. 

By multiplying the transfer matrices of the N UEs as they are depicted in Fig. 5.7b it can 

be demonstrated that the transmission coefficient of a lossless two-port network obtained by 

cascading N UEs, as shown in Fig. 5.7a, satisfies [21], [22], [32]: 

𝑆21(𝑡) =
(1 − 𝑡2)𝑁 2⁄

𝑃𝑁(𝑡)
 (5.48) 

where 𝑃𝑁(𝑡) is a strictly Hurwitz polynomial in t of order N (a polynomial with real positive 

coefficients and all its roots in the open left half plane, Re(𝑡) < 0), and |𝑆21(𝑡 = 𝑗Ω)| ≤ 1. 

Inspecting (5.47) and (5.48) it can be seen that each UE produces a half-order 

transmission zero at 𝑡 = ±1. Other transmission zeros (even at infinity) are not possible with 

this structure [22], [31]. Therefore in order to implement the classical all-pole functions 

(Butterworth, Chebyshev, Zolotarev,…), which have all the transmission zeros at infinity, a 

mapping must be first applied to move all the transmission zeros of the all-pole function from 

𝑠 = ±𝑗∞ to 𝑡 = ±1 [22]. Starting from the normalized all-pole transfer function (with cutoff 

frequency 𝜔𝑐 = 1 rad/s, see Fig. 5.8), the following mapping function is applied: 

 

(a) 

 

(b) 

Fig. 5.7. Commensurate-line distributed prototype represented as a cascade of 𝑁 UEs with their corresponding (a) 

impedances and (b) transmission matrices. 
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𝜔 =
sin𝜃

sin 𝜃𝑐
= 𝛼 ⋅ sin 𝜃 (5.49) 

where 𝜃𝑐 is the electrical length of the commensurate lines at the cutoff frequency and 𝛼 =

1 sin 𝜃𝑐⁄ . Then the Richards’ transformation is employed in the form of (5.40), and using 𝜔 =

𝑠/𝑗 to perform the analytic continuation to the complex frequency plane s, and taking advantage 

of the identity sin 𝜃 = tan𝜃 √1 + tan2 𝜃⁄  , it results [22],: 

𝑠 =
𝛼 ⋅ 𝑡

√1 − 𝑡2
 (5.50) 

𝑡 =
±𝑠

√𝛼2 + 𝑠2
 (5.51) 

 

Fig. 5.8. Frequency response of the normalized all-pole Chebyshev function taken as example. The transmission value 

obtained at 𝜔 = 𝛼 is labeled |𝑆21|𝑚𝑖𝑛, since it will correspond to the minimum transmission (maximum attenuation) 

achieved by the commensurate-line distributed prototype. 

 

(a) 

 

(b) 

Fig. 5.9. Frequency response of the commensurate–line distributed Unit Element prototype of Fig. 5.5 and Fig. 5.7 for 

the all-pole Chebyshev function of Fig. 5.8 (taken as example). a) |𝑆21| in the Richards’ transform domain, as a 

function of the frequency axis 𝑡 = 𝑗 · Ω. b) |𝑆21| in the natural frequency domain, as a function of the electrical length 

of the commensurate lines (or UEs), 𝜃. 
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As it can be seen, by changing the complex frequency variable s of the all-pole transfer 

function 𝑆21(𝑠) = 1 𝑃𝑁
′ (𝑠)⁄  to t using (5.50), the half-order transmission zeros at 𝑡 = ±1 are 

introduced, replacing the original transmission zeros at infinity, and obtaining a transfer function 

of the form of (5.48) as intended [22]. The order of the all-pole transfer function, N, is equal to 

the number of UEs required for the implementation. The resulting frequency responses are 

shown in Fig. 5.9 for the all-pole Chebyshev function taken as example. 

The frequency responses are given in the Richards’ transform domain (in the frequency 

axis 𝑡 = 𝑗Ω), and in the natural frequency domain (as a function of the electrical length of the 

commensurate lines, 𝜃), with both frequency axes related through (5.41). Additionally, they are 

related to the normalized frequency response of Fig. 5.8 through (5.49). As it can be seen, the 

passband characteristics are identical to those of the normalized frequency response of Fig. 5.8 

(equiripple responses with identical ripple levels in our Chebyshev case), with a cutoff frequency 

of Ω𝑐 = tan (𝜃𝑐) in the Richards’ domain, and 𝜃𝑐 in the natural frequency domain (electrical 

length axis). Moreover, the maximum attenuation (minimum transmission |𝑆21|𝑚𝑖𝑛) is achieved 

for Ω⟶ ∞ (in the Richards’ domain) and for 𝜃 = 𝜋 2⁄  (in the natural frequency domain). The 

maximum attenuation value is equal to the attenuation of the normalized all-pole transfer 

function at the frequency 𝜔 = 𝛼 = 1 sin 𝜃𝑐⁄ , see (5.49) and Fig. 5.8. Beyond 𝜃 = 𝜋 2⁄  the 

frequency response repeats periodically (as indicated by (5.41), taking into account that the 

frequency responses will have Hermitian symmetry, 𝑆21(−Ω) = 𝑆21
∗ (Ω)), and as it happens in 

any commensurate distributed network. Equivalent methods to implement all-pole functions 

with commensurate–line distributed UE networks of the form of Fig. 5.5 and Fig. 5.7 are 

proposed in [21], [31], [32], [39], relying all of them on mapping functions of the form of (5.49). 

Once the required transfer function in the Richards’ transform plane, 𝑆21(𝑡), fulfilling 

(5.48) is chosen, the values (characteristic impedances) of the UEs that form the commensurate-

line distributed prototype (see Fig. 5.7a) can be calculated. 

5.2.1.1. Determination of the Unit Elements of 

the Commensurate-Line Prototype 

Different methods can be employed to perform the calculations of the Unit Elements of 

the low-pass commensurate-line filter prototype. In this section, the two most widely employed 

will be thoroughly explained. 

The first method is based on the iterative application of the Richards’ theorem, which 

allows us to extract the UEs sequentially from the input impedance of the network, leaving a 
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remainder impedance after each extraction [31], [32], [37]. The second method is easier to 

program and is based on the iterative extraction of the UEs from the transfer matrix [ABCD] of 

the network, leaving a remainder transfer matrix after each extraction [22].  

In both cases, the first task is to determine the frequency response in reflection defined in 

the complex Laplace frequency plane, 𝑠 = 𝜎 + 𝑗 · 𝜔, i.e. 𝑆11(𝑠). This frequency response must 

be normalized with 𝜔𝑐 = 1 rad/s and 𝑅𝑔 = 1 Ω. In order to reach the 𝑆11(𝑠), two different 

approaches can be employed.  

The first way to determine 𝑆11(𝑠) requires the frequency response in transmission also 

defined in the Laplace 𝑠 plane, with identical normalization (𝜔𝑐 = 1 rad/s and 𝑅𝑔 = 1 Ω), i.e. 

𝑆21(𝑠). The 𝑆11(𝑠) and 𝑆21(𝑠)-parameters of a lossless network must fulfill the following 

condition [22]: 

|𝑆11(𝑠 = 𝑗𝜔)|
2 + |𝑆21(𝑠 = 𝑗𝜔)|

2 = 1 (5.52) 

The relationship (5.52) can be alternatively expressed as: 

𝑆11(𝑠 = 𝑗𝜔) · 𝑆11(𝑠 = 𝑗𝜔)
∗ = 1− 𝑆21(𝑠 = 𝑗𝜔) · 𝑆21(𝑠 = 𝑗𝜔)

∗ (5.53) 

Then, 𝑆11(𝑠) can be obtained from (5.53) by performing the analytic continuation to the 

complex Laplace frequency plane, 𝑠, by using 𝜔 = 𝑠/𝑗. 

The alternative method to obtain 𝑆11(𝑠) is based on the values 𝑔1, 𝑔2,… , 𝑔𝑁 , 𝑔𝑁+1 of the 

lumped-element 𝐿𝐶 ladder network that conforms the low-pass filter prototype of order 𝑁 with 

𝜔𝑐 = 1 rad/s and 𝑅𝑔 = 1 Ω, which can be found in numerous textbooks like [13], [20], [22], 

[38], or using several software tools like Keysight Genesys or Filsyn, among others. The input 

impedance in the complex 𝑠 plane, 𝑍𝑖𝑛(𝑠), can be deduced from the 𝐿𝐶 network following the 

scheme shown in Fig. 5.10. 

Once 𝑍𝑖𝑛(𝑠) is achieved, the sought 𝑆11(𝑠)-parameter can be finally determined with the 

following expression: 

𝑆11(𝑠) =
𝑍𝑖𝑛(𝑠) − 1

𝑍𝑖𝑛(𝑠) + 1
 (5.54) 

Now that the 𝑆11(𝑠) has been calculated following one of the procedures explained, it 

must be expressed as the ratio of the 𝑁-degree polynomials 𝐹(𝑠) and 𝐸(𝑠) as: 
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𝑆11(𝑠) =
𝐹(𝑠)

𝐸(𝑠)
 (5.55) 

The roots of 𝐹(𝑠) and 𝐸(𝑠) must be extracted and subsequently mapped into the 

Richards’ transform plane using (5.51) and (5.49), allowing us to reconstruct the polynomials 

𝐹(𝑡) and 𝐸′(𝑡) that define 𝑆11(𝑡) as [22]: 

𝑆11(𝑡) =
𝐹(𝑡)/휀𝑅𝑡
𝐸′(𝑡)

 (5.56) 

being 휀𝑅𝑡  the constant lost when reconstructing the polynomials with their roots, that can be 

recovered as: 

휀𝑅𝑡 =
휀𝑡

√휀𝑡
2 − 1

 (5.57) 

and 

휀𝑡 =
(1 − 𝑡2)

𝑁
2

(√1 − 10−𝑅𝐿 10⁄ ) ⋅ |𝐸′(𝑡)|
|

𝑡=𝑡𝑐

 (5.58) 

 

(a) 

 

(b) 

Fig. 5.10. Definition of the 𝐿𝐶 ladder network of the low-pass filter prototype. There are two dual implementations for 

the same response with equal magnitude an opposite phase. (a) First option: the first element is a shunt capacitor and 

(b) second option: the first element is a series inductor. 
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where 𝑡𝑐 = 𝑗 ⋅ 𝑡𝑎𝑛 𝜃𝑐, 𝑅𝐿 is the required return loss level in dB, and 𝑁 is the order of the filter. 

At this point, is where the two methods for the calculation of the UEs begin to differ, even 

though the final result is the same. 

The first method  is based on the iterative application of the Richards’ theorem [31], [32], 

[37], and in order to use it the input impedance in the Richards’ transform plane, 𝑍𝑖𝑛(𝑡), must be 

deduced from 𝑆11(𝑡) as: 

𝑍𝑖𝑛(𝑡) =
1 + 𝑆11(𝑡)

1 − 𝑆11(𝑡)
 (5.59) 

Following the Richards’ theorem, the characteristic impedance of the first UE, 𝑍1 (see 

Fig. 5.7a), can be calculated from 𝑍𝑖𝑛(𝑡) as follows: 

𝑍1 = 𝑍𝑖𝑛(𝑡)|𝑡=1    (5.60) 

Moreover, the residual impedance of the network, 𝑍𝑖𝑛
′ (𝑡), after having extracted the first 

UE with value 𝑍1 will be given by: 

𝑍𝑖𝑛
′ (𝑡) = 𝑍1 ·

𝑡 · 𝑍1 − 𝑍𝑖𝑛(𝑡)

𝑡 · 𝑍𝑖𝑛(𝑡) − 𝑍1
    (5.61) 

Then, the impedance of the second UE can be calculated from 𝑍𝑖𝑛
′ (𝑡), yielding to a new 

residual impedance. If we proceed iteratively, i.e. extracting the UE impedances with (5.60) from 

the residuals of (5.61), we will find a common factor of the form (𝑡2 − 1) in both, numerator 

and denominator, that will be cancelled between each other. Hence, the order of the residual 

impedance, 𝑍𝑖𝑛
′ (𝑡), will be reduced in a unity at each UE impedance extraction. The procedure 

finishes when 𝑍𝑖𝑛
′ (𝑡) = 𝑅𝐿, i.e. the output impedance of the UE prototype, see Fig. 5.7a. It is 

important to notice that the UE prototype obtained is normalized in impedance (it has been 

calculated assuming 𝑅𝑔 = 1 Ω) and therefore all the impedances must be multiplied by 𝑍𝑆 in 

order to obtain the final denormalized UE prototype of Fig. 5.7a. 

The second method for the calculation of the characteristic impedances of the UEs is 

based on the iterative extraction of each UE from the transfer matrix [ABCD] of the network 

[22]. From the 𝑆11(𝑡) definition of (5.56), the polynomials 𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡), and 𝐷(𝑡) are 

calculated from the coefficients of 𝐸′(𝑡), 𝑒𝑖, and 
𝐹(𝑡)

𝜀𝑅𝑡
, 𝑓𝑖, with 𝑖 = 0,… ,𝑁, as: 
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𝐴(𝑡) = (𝑒0 + 𝑓0) + (𝑒2 + 𝑓2) · 𝑡
2 + (𝑒4 + 𝑓4) · 𝑡

4 +⋯   (5.62) 

𝐵(𝑡) = (𝑒1 + 𝑓1) · 𝑡 + (𝑒3 + 𝑓3) · 𝑡
3 + (𝑒5 + 𝑓5) · 𝑡

5 +⋯   (5.63) 

𝐶(𝑡) = (𝑒1 + 𝑓1) · 𝑡 + (𝑒3 + 𝑓3) · 𝑡
3 + (𝑒5 + 𝑓5) · 𝑡

5 +⋯  (5.64) 

𝐷(𝑡) = (𝑒0 + 𝑓0) + (𝑒2 + 𝑓2) · 𝑡
2 + (𝑒4 + 𝑓4) · 𝑡

4 +⋯  (5.65) 

It is worth noting that 𝐴(𝑡) and 𝐷(𝑡) will be even polynomials, and 𝐵(𝑡) and 𝐷(𝑡) will 

be odd polynomials for 𝑁 even, and vice versa for 𝑁 odd. 

The characteristic impedance of the first UE, 𝑍1, will be calculated as follows: 

𝑍1 =
𝐴(𝑡)

𝐶(𝑡)
|
𝑡=1

=
𝐵(𝑡)

𝐷(𝑡)
|
𝑡=1

 (5.66) 

Next, the residual network will be given by the residual polynomials 𝐴𝑟𝑒𝑠(𝑡), 𝐵𝑟𝑒𝑠(𝑡), 

𝐶𝑟𝑒𝑠(𝑡), and 𝐷𝑟𝑒𝑠(𝑡) that can be obtained with the expressions (5.67)-(5.70) provided here: 

𝐴𝑟𝑒𝑠(𝑡) =
𝐴(𝑡) − 𝑡 · 𝑍1 · 𝐶(𝑡)

1 − 𝑡2
  (5.67) 

𝐵𝑟𝑒𝑠(𝑡) =
𝐵(𝑡) − 𝑡 · 𝑍1 · 𝐷(𝑡)

1 − 𝑡2
  (5.68) 

𝐶𝑟𝑒𝑠(𝑡) =
𝐶(𝑡) −

𝑡
𝑍1
· 𝐴(𝑡)

1 − 𝑡2
 

(5.69) 

𝐷𝑟𝑒𝑠(𝑡) =
𝐷(𝑡) −

𝑡
𝑍1
· 𝐵(𝑡)

1 − 𝑡2
  

(5.70) 

where all numerators of (5.67)-(5.70) will have a common factor of (1 − 𝑡2) and hence, this 

term will be eliminated from the 𝐴𝑟𝑒𝑠(𝑡), 𝐵𝑟𝑒𝑠(𝑡), 𝐶𝑟𝑒𝑠(𝑡), and 𝐷𝑟𝑒𝑠(𝑡) polynomials. 

Then, if we proceed iteratively, the characteristic impedances of the rest of the UEs will 

be calculated from the residual networks until the latter will only contain the output impedance 

of the filter, see Fig. 5.7a. The value of the output impedance can be easily calculated as 𝑅𝐿 =

(𝑒0 + 𝑓0) (𝑒0 − 𝑓0)⁄ . Again, it is important to highlight that the UE prototype obtained is 

normalized in impedance (it has been calculated assuming 𝑅𝑔 = 1 Ω) and therefore all the 
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impedances must be multiplied by 𝑍𝑆 in order to obtain the final denormalized UE prototype of 

Fig. 5.7a. 

To finish this section, it is important to note that the values of the UEs can be also 

calculated using commercial software tools, like Keysight Genesys S/Filter or Filsyn, among 

others. 

5.2.2. Determination of the Target 

Response for the Synthesis 

In the previous section, a commensurate-line distributed UE prototype has been obtained 

fulfilling the required frequency specifications. The prototype is formed by a cascade of N 

transmission line sections, all of them with the same electrical length and different characteristic 

impedances, see Fig. 5.5. From this stepped-impedance prototype, a filter with smooth profile 

will be obtained while retaining similar length and physical dimensions to those of the original 

UE prototype. 

The time/frequency response of the commensurate-line UE prototype will be modified 

using a bandlimited interpolation procedure, that will be presented in both 𝜏 and 𝛽 domains, 

producing a target 𝐹(𝜏) and 𝑆11(𝛽) responses corresponding to a smooth-profiled filter, that will 

be subsequently synthesized using the CLP technique. 

5.2.2.1. Determination of the Target Response 

in the 𝜏 Domain 

The method to calculate the Unit Elements of the starting commensurate-line prototype 

has been thoroughly detailed in the previous section 5.2.1. In order to synthetize a smooth-

profiled low-pass or band-pass filter without spurious rejection bands using the CLP synthesis, 

the UE prototype response in the 𝜏 domain will be firstly calculated. Then it will be carefully 

modified exploiting properties of the relationship between the impulse response and the 

frequency response of a linear time-invariant device. In order to ease the explanation of the 

procedure followed, the simplest case where the filter is implemented in ideal transmission line 

technology will be initially considered. Next, the more complex case of implementation in 

waveguide technology will be studied. 



180 Jon Mikel Percaz Ciriza 

 

5.2.2.1.1. Case of Ideal Transmission Line Technology 

For the case of ideal transmission line, the phase velocity, 𝑣𝑝, does not vary with 

frequency, and it represents the propagation velocity along the line-sections of the UE prototype. 

All the commensurate (same electrical length) line-sections will have the same physical length 

l, see (5.42), and the propagation time through a line-section will be 𝑙 𝑣𝑝⁄ . Therefore, the impulse 

response, ℎ𝑈𝐸(𝑡), of the UE prototype (the time domain response to an impulse or Dirac delta 

function, 𝛿(𝑡)) will be an impulse train formed by a sequence of equidistant impulses separated 

T seconds apart, see Fig. 5.11a: 

ℎ𝑈𝐸(𝑡) = ∑𝑎𝑛 ⋅ 𝛿(𝑡 − 𝑛𝑇)

∞

𝑛=0

 (5.71) 

where 𝑇 = 2 ⋅ 𝑙 𝑣𝑝⁄  is the time taken by the impulse to go through a line-section, multiplied by 

2. The form of the impulse response given in (5.71) is valid for the transmission and reflection 

responses of the UE prototype, and it can be easily verified by “following” the propagation of 

the input impulse 𝛿(𝑡) through the UE prototype, as it reflects and transmits at the junctions 

between the line-sections with different characteristic impedances, see Fig. 5.5. The transmission 

impulse response would also include an initial propagation delay. The coefficients of the 

impulses in (5.71), 𝑎𝑛, could be seen as samples of an underlying continuous impulse response, 

ℎ𝑐(𝑡), multiplied by T as: 

𝑎𝑛 = ℎ𝑐(𝑡 = 𝑛𝑇) ⋅ 𝑇 (5.72) 

In this way, the frequency response of the UE prototype, 𝑆11,𝑈𝐸(𝜔), can be expressed as 

a periodic replication and superposition of the frequency response corresponding to the 

underlying continuous impulse response, 𝑆11,𝑐(𝜔) [12], [16]: 

𝑆11,𝑈𝐸(𝜔) = ∑ 𝑆11,𝑐(𝜔 + 2𝜔0𝑛)

∞

𝑛=−∞

 (5.73) 

where 

𝜔0 =
𝜋

𝑇
 (5.74) 
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(a) (b) 

Fig. 5.11. Responses in the time and frequency domains for the case of ideal transmission line. (a) Impulse response in 

reflection of the Unit Element prototype, ℎ𝑈𝐸(𝑡), formed by a sequence of equidistant impulses (black line), and 

underlying continuous impulse response, ℎ𝑐(𝑡), obtained by performing an ideal bandlimited interpolation with 𝑚 = 2 

(grey line). (b) Frequency response in reflection of the UE prototype periodic in 𝜔 (black line), and frequency response 

corresponding to the continuous impulse response obtained by performing an ideal bandlimited interpolation with 𝑚 =
2 (grey line). 

Actually, as it is shown in Fig. 5.11b for 𝑆11(𝜔), the frequency response of the UE 

prototype will be periodic in 𝜔, since it is periodic in 𝜃 (see Fig. 5.9), and the constant 𝑣𝑝 and 𝑙 

of our transmission line case will make it also periodic in 𝜔, see (5.42). Thus, the frequency 

response of the UE prototype can be seen indeed as the periodic replication and superposition of 

(5.73). 

Additionally, by applying the sampling theorem [12], performing an ideal bandlimited 

interpolation of the UE prototype impulse response of (5.71), the underlying continuous ℎ𝑐(𝑡), 

see Fig. 5.11a, can be calculated as [12], [16]: 

ℎ𝑐(𝑡) = ∑ 𝑎𝑛 ⋅
sin(𝜔𝑚𝑎𝑥(𝑡 − 𝑛𝑇))

𝜋(𝑡 − 𝑛𝑇)

∞

𝑛=−∞

 (5.75) 

where 𝜔𝑚𝑎𝑥  is the maximum frequency of the interpolated impulse response, ℎ𝑐(𝑡), in the sense 

that its frequency response, 𝑆11,𝑐(𝜔), is equal to 𝑆11,𝑈𝐸(𝜔) up to 𝜔𝑚𝑎𝑥 , and zero beyond that 

frequency. In the classical ideal bandlimited interpolation 𝜔𝑚𝑎𝑥 = 𝜋 𝑇 = 𝜔0⁄  [12], [16]. 

However, in our case of interpolating the UE prototype impulse response, ℎ𝑈𝐸(𝑡), to obtain a 

continuous ℎ𝑐(𝑡) to synthesize a filter with smooth profile, it is possible and more convenient to 

take 𝜔𝑚𝑎𝑥 = 𝑚 ⋅ 𝜔0 , with 𝑚 integer, where 𝑚 = 2 will be used to implement a low-pass filter, 

see Fig. 5.11b, and 𝑚 = 4 could be taken to implement a band-pass filter. The introduction of 

the 𝑚 factor in 𝜔𝑚𝑎𝑥  can be compensated in (5.75) simply by introducing the same factor in 𝑎𝑛 

as: 
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𝑎𝑛 = ℎ𝑐(𝑡 = 𝑛𝑇) ⋅ 𝑇 𝑚⁄  (5.76) 

For the case studied in this subsection of ideal transmission line technology (phase 

velocity, 𝑣𝑝, constant with frequency), a simple and direct relationship can be stablished between 

the inverse Fourier Transform pair of the form: 

𝐹(𝜏) =
1

2𝜋
∫ 𝑆11(𝛽) ⋅ 𝑒

𝑗𝛽𝜏 ⋅ 𝑑𝛽
∞

−∞

 (4.11) 

and the classical time-frequency pair. Actually, by applying the Fourier Transform property of 

time and frequency scaling [12], [40], it can be obtained: 

𝑣𝑝 ⋅ 𝐹(𝑣𝑝 ⋅ 𝑡) ⟷ 𝑆11 (
𝜔

𝑣𝑝
) (5.77) 

since 𝛽 = 𝜔 𝑣𝑝⁄  and 𝑣𝑝 is a positive real constant. Therefore, the impulse response in reflection 

will satisfy ℎ(𝑡) = 𝑣𝑝 ⋅ 𝐹(𝑣𝑝 ⋅ 𝑡) and 𝜏 = 𝑣𝑝 ⋅ 𝑡, and from (5.71) it can be deduced that the 

impulse response of the commensurate-line prototype in the 𝜏 domain, 𝐹𝑈𝐸(𝜏), will have the 

form (see Fig. 5.12a): 

𝐹𝑈𝐸(𝜏) =∑𝑎𝑛 ⋅ 𝛿(𝜏 − 𝑛𝑇𝜏)

∞

𝑛=0

 (5.78) 

since 𝛿(𝑣𝑝 ⋅ 𝑡) = 𝛿(𝑡) 𝑣𝑝⁄ , where 𝑇𝜏 = 𝑣𝑝 ⋅ 𝑇: 

𝑇𝜏 = 2 ⋅ 𝑙 (5.79) 

being 𝑙 the physical length of the commensurate-line sections of the UE prototype. Additionally, 

by employing the relationships that have been obtained, the ideal bandlimited interpolation of 

(5.75) can be rewritten for 𝐹𝑈𝐸(𝜏), giving rise to the continuous underlying response, 𝐹𝑐(𝜏), as: 

𝐹𝑐(𝜏) = ∑ 𝑎𝑛 ⋅
sin(𝛽𝑚𝑎𝑥(𝜏 − 𝑛𝑇𝜏))

𝜋(𝜏 − 𝑛𝑇𝜏)

∞

𝑛=−∞

 (5.80) 

where 

𝛽𝑚𝑎𝑥 = 𝑚 ⋅ 𝛽0 (5.81) 
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with 𝑚 integer and 𝛽0 = 𝜔0 𝑣𝑝⁄  defined from (5.74) as: 

𝛽0 =
𝜋

𝑇𝜏
 (5.82) 

and the coefficients of the impulses in (5.78), 𝑎𝑛, satisfying a similar relationship to that of 

(5.76): 

𝑎𝑛 = 𝐹𝑐(𝜏 = 𝑛𝑇𝜏) ⋅ 𝑇𝜏 𝑚⁄  (5.83) 

 

(a) 

 
(b) 

 

(c) 

Fig. 5.12. Responses in the 𝜏 and 𝛽 domains for the cases of ideal transmission line and rectangular waveguide. (a) 

Impulse response in reflection of the Unit Element prototype, 𝐹𝑈𝐸(𝜏), formed by a sequence of equidistant impulses 

(black line), and underlying continuous impulse response, 𝐹𝑐(𝜏), obtained by performing an ideal bandlimited 

interpolation with 𝑚 = 2 (grey line). Periodic frequency responses of the UE prototype (black lines) and the resulting 

response from the application of a bandlimited interpolation procedure with 𝑚 = 2 (grey lines) in 𝛽: (b) in 

reflection, |𝑆11|-parameters, and (c) in transmission, |𝑆21|-parameters (grey line). 
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Thus, by interpolating the impulse response in reflection of the UE prototype of (5.78), 

as shown in (5.80), a continuous 𝐹𝑐(𝜏) is obtained to synthesize a filter with smooth profile 

whose frequency response in reflection, 𝑆11,𝑐(𝛽), is identical to that of the UE prototype up to 

𝛽𝑚𝑎𝑥 , and zero beyond that frequency (see Fig. 5.12b). The coefficients of the impulses in (5.78), 

𝑎𝑛, are equal to those of (5.71) (identical impulse coefficients in the time and 𝜏 domains), and 

they can be easily calculated from the characteristic impedances of the UE prototype, 𝑍𝑖, see 

section 5.2.2.1.3. 

Finally, it is worth noting that 𝑆11,𝑐(𝛽) can be obtained by performing the Fourier 

Transform of (4.12) for 𝐹𝑐(𝜏), i.e.: 

𝑆11,𝑐(𝛽) = ∫ 𝐹𝑐(𝜏) ⋅ 𝑒
−𝑗𝛽𝜏 ⋅ 𝑑𝜏

∞

−∞

 (5.84) 

It is important to highlight that the 𝑆11,𝑐(𝛽) obtained as a result of (5.84) will be the same 

that is obtained by following the alternative procedure that will be detailed in section 5.2.2.2. 

5.2.2.1.2. Case of Rectangular Waveguide Technology 

In the case of rectangular waveguide technology, the fundamental TE10 mode will be 

employed, keeping the width of the waveguide constant, and varying its height along the device. 

In this way, the phase constant, 𝛽, will not vary along the filter, and will remain constant for a 

given frequency [38]. Consequently, the frequency response of the UE prototype that is periodic 

in 𝜃 (see Fig. 5.9b) will be also periodic in 𝛽, as it can be easily deduced from (5.42), with all 

the line-sections having the same physical length, 𝑙. Thus, the frequency response of the UE 

prototype will have the form of Fig. 5.12b and Fig. 5.12c, and can be seen as a periodic 

replication and superposition in 𝛽 of the form of (5.73), where 𝜔 is substituted by 𝛽: 

𝑆11,𝑈𝐸(𝛽) = ∑ 𝑆11,𝑐(𝛽 + 2𝛽0𝑛)

∞

𝑛=−∞

 (5.85) 

Therefore, the impulse response of the UE prototype in the 𝜏 domain, 𝐹𝑈𝐸(𝜏), will have 

the form of Fig. 5.12a, with an expression given by (5.78), (5.79), where the coefficients of the 

impulses, 𝑎𝑛, can be seen as samples of an underlying continuous impulse response, 𝐹𝑐(𝜏), 

satisfying (5.83). By applying the ideal bandlimited interpolation of (5.80), a continuous impulse 

response 𝐹𝑐(𝜏) is obtained (see Fig. 5.12a), corresponding to a rectangular waveguide filter with 

smooth profile. The resulting filter will have a length and profile excursion similar to those of 

the UE prototype, with a frequency response 𝑆11,𝑐(𝛽) identical to that of the UE prototype up to 
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𝛽𝑚𝑎𝑥 , and zero beyond that frequency. The value of 𝛽𝑚𝑎𝑥  is fixed through (5.81) and (5.82), 

where 𝛽𝑚𝑎𝑥 = 2 ⋅ 𝛽0 is taken to implement a low-pass filter (𝑚 = 2), and 𝛽𝑚𝑎𝑥 = 4 ⋅ 𝛽0  could 

be used to implement a band-pass filter (𝑚 = 4). The introduction of the 𝑚 factor in 𝛽𝑚𝑎𝑥  must 

be formally compensated in (5.85) by introducing a 1/𝑚 factor on the right-hand side of the 

equation. 

As it can be seen, the equations employed to modify the UE prototype response to 

subsequently synthesize a filter with smooth profile, are identical in the case of rectangular 

waveguide and ideal transmission line. This is due to the fact that both technologies produce UE 

prototypes with frequency responses 𝑆11,𝑈𝐸(𝛽) periodic in 𝛽, and impulse responses 𝐹𝑈𝐸(𝜏) 

formed by a sequence of equidistant impulses in 𝜏, that can be interpolated using the same 

procedure and equations. In the same way, the coefficients of the impulses of 𝐹𝑈𝐸(𝜏), 𝑎𝑛, can be 

calculated from the 𝑍𝑖’s of the UE prototype (see section 5.2.2.1.3) using also identical 

procedures for the case of rectangular waveguide and for ideal transmission line. It is interesting 

to note, however, that the expressions for the impulse response in the time domain (5.71), the 

frequency response in the frequency domain 𝜔 (5.73), and of course the interpolation in the time 

domain (5.75), are not valid for rectangular waveguide technology due to its inherent dispersion 

(phase velocity 𝑣𝑝 variable with frequency). However, the corresponding expressions in the 𝜏 

and 𝛽 domains are indeed valid as it has been explained, and they will be the equations employed 

for our inverse scattering synthesis procedure. 

5.2.2.1.3. Calculation of the Impulse Response in 

Reflection of the Commensurate-Line Unit 

Element Prototype 

The impulse response in reflection of the commensurate-line UE prototype of Fig. 5.5 

and Fig. 5.7a can be readily calculated from the values of the characteristic impedances, 𝑍𝑖, of 

the prototype. If an ideal excitation impulse 𝛿(𝑡) in the time domain (please note that in this 

section t is used as the time variable) is assumed for the input port, which is equivalent to consider 

a 𝛿(𝜏 ) for the  𝜏 domain, the resulting impulse response in reflection will consist on a sequence 

of equidistant impulses, 𝑎𝑛 · 𝛿(𝑡 − 𝑛 · 𝑇) or 𝑎𝑛 · 𝛿(𝜏 − 𝑛 · 𝑇𝜏), where the coefficients 𝑎𝑛 are 

identical in the 𝑡 and τ domains, as it was demonstrated in the previous section 5.2.2.1.1. These 

coefficients, 𝑎𝑛, can be calculated following the method detailed below. 

The procedure is based on the fact that a wave injected at the input port of the 

commensurate-line UE prototype will be scattered by each discontinuity encountered while 
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propagating throughout the structure. As it is shown in Fig. 5.5 and Fig. 5.7a, the prototype can 

be represented as a cascade of 𝑁 commensurate lines, or UEs, all with the same electrical length, 

𝜃 = 𝛽𝑙, but with different characteristic impedances, 𝑍𝑖, plus an additional input and output line-

section with the port impedances, named as 𝑍0 = 𝑍𝑆 and 𝑍𝑁+1 = 𝑍𝐿 for our calculations, see Fig. 

5.13. At the junction between two commensurate lines with different characteristic impedances 

𝑍𝑗−1 and 𝑍𝑗 a discontinuity will arise, giving rise to a reflection and a transmission coefficient 

for the impinging wave with values [38]: 

Γ𝑗−1,𝑗 =
𝑍𝑗 − 𝑍𝑗−1
𝑍𝑗 + 𝑍𝑗−1

 (5.86) 

𝑇𝑗−1,𝑗 = 1 + Γ𝑗−1,𝑗 =
2 ⋅ 𝑍𝑗

𝑍𝑗 + 𝑍𝑗−1
 (5.87) 

Thus, wave propagation along the analyzed prototype can be described in terms of an 

infinite sum of the transmitted and reflected waves at each junction between two consecutive 

commensurate lines, taking into account the multiple reflection and transmission events arising 

throughout the structure. 

If the incident wave at the input port of the prototype is a unit impulse, then the impulse 

response will be obtained. We are interested in calculating the impulse response in reflection, in 

the time or 𝜏 domain. For doing so, we need to calculate the coefficients 𝑎𝑛 of the impulse train. 

In order to determine them, we are going to define a time index, 𝑖, with time 𝑡 = 𝑖 ⋅ 𝑙 𝑣𝑝⁄  for 

ideal transmission line, and 𝜏 = 𝑖 ⋅ 𝑙 for the more general case of 𝛽 constant with position. 

Additionally, the number of the commensurate line will be represented by the 𝑗 index, including 

the input and output port lines, numbered 0 and 𝑁 + 1, respectively, see Fig. 5.13. The forward 

travelling impulses are tracked just at the end of the commensurate lines and are represented at 

the 𝐹 columns. The backward travelling impulses are tracked just at the beginning of the 

commensurate lines and are represented at the 𝐵 columns. The straight and dashed arrows 

represent the transmission and reflection events, respectively. The circles, on the other hand, 

represent each contribution to the tracked impulses, see Fig. 5.13. It is interesting to note that a 

forward travelling impulse, when reflected, produces a new backward travelling impulse, and 

when transmitted a new forward travelling impulse. Conversely, a backward travelling impulse, 

when reflected, produces a new forward travelling impulse, and when transmitted a new 

backward travelling impulse. These reflection and transmission calculations will be the core of 

the algorithm employed to obtain the impulse response in reflection of the prototype. The 

algorithm is described now in detail. 
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- Step 1: Initialize the coefficients of the forward and backward travelling impulses 

tracked in the calculations, assuming excitation by a unit impulse at the input port. 

//for all the considered time instants 

 ∀𝑖 = 0, 1, … , 𝑖𝑚𝑎𝑥 

//for all the commensurate lines 

 ∀𝑗 = 0, 1, … , (𝑁 + 1) 

//coefficients of forward traveling impulses 

 𝐹(𝑖, 𝑗) = 0 

//coefficients of backward travelling impulses 

 𝐵(𝑖, 𝑗) = 0 

//unit impulse injected at the input port 

 𝐹(𝑖 = 1, 𝑗 = 0) = 1 

- Step 2: Propagation and scattering (reflection and transmission) of the impulses, 

through the commensurate line prototype and the time or 𝜏 domain. 

//for all the considered time instants 

For 𝑖 = 1, 2,… , ( 𝑖𝑚𝑎𝑥 − 1) 

{ 

//for all the commensurate lines 

For 𝑗 = 0, 1,… ,𝑁 

{ 

//contributions of the forward travelling impulse, with 

//coefficient 𝐹(𝑖, 𝑗), located at the 𝑖 time instant at the end of 

//the 𝑗 commensurate line, for the next 𝑖 + 1 time instant 

 𝐹(𝑖 + 1, 𝑗 + 1) = 𝐹(𝑖 + 1, 𝑗 + 1) + 𝐹(𝑖, 𝑗) ⋅ 𝑇𝑗,𝑗+1 

 𝐵(𝑖 + 1, 𝑗) = 𝐵(𝑖 + 1, 𝑗) + 𝐹(𝑖, 𝑗) ⋅ Γ𝑗,𝑗+1 

//contributions of the backward travelling impulse, with 

//coefficient 𝐵(𝑖, 𝑗), loc. at the 𝑖 time instant at the beginning  

//of the 𝑗 commensurate line, for the next 𝑖 + 1 time instant 

If 𝑗 ≠ 0 

 {𝐹(𝑖 + 1, 𝑗) = 𝐹(𝑖 + 1, 𝑗) + 𝐵(𝑖, 𝑗) ⋅ Γ𝑗,𝑗−1 

 𝐵(𝑖 + 1, 𝑗 − 1) = 𝐵(𝑖 + 1, 𝑗 − 1) + 𝐵(𝑖, 𝑗) ⋅ T𝑗,𝑗−1} 

 } 

 } 

  



188 Jon Mikel Percaz Ciriza 

 

- Step 3: Extract the impulse response in reflection of the analyzed prototype, formed by 

a sequence of equidistant impulses, separated 𝑇 = 2 ⋅ 𝑙 𝑣𝑝⁄  or 𝑇𝜏 = 2 ⋅ 𝑙, by recovering 

the values of the 𝑎𝑛 coefficients. 

//coefficients of the backward travelling impulses at the 

//input line (𝑗 = 0), and at the even time instants, since in the 

//algorithm 𝑡 = 𝑖 ⋅ 𝑙 𝑣𝑝⁄  or 𝜏 = 𝑖 ⋅ 𝑙 

 𝑎𝑛 = 𝐵(𝑖 = 2 ⋅ 𝑛, 𝑗 = 0) 

 

  

 

Fig. 5.13. Schematic representation for the algorithm to calculate the impulse response in reflection of the 

commensurate-line UE prototype shown above. A time index, 𝑖, with time 𝑡 = 𝑖 ⋅ 𝑙 𝑣𝑝⁄  or 𝜏 = 𝑖 ⋅ 𝑙, and a position 

index, 𝑗, where 𝑗 is the number of commensurate line (including the input and output port lines, 0 and 𝑁 + 1), are 

employed. The forward and backward travelling impulses are tracked just at the end and beginning of the 

commensurate lines, respectively, and are represented at the corresponding 𝐹 and 𝐵 columns. To obtain the impulse 

response, the prototype is excited with a unit impulse injected at the input port, 𝐹(𝑖 = 1, 𝑗 = 0) = 1. Straight and 

dashed arrows represent the transmission and reflection events, respectively, while the circles represent each 

contribution to the tracked impulses. The sought impulse response in reflection is formed by a sequence of equidistant 

impulses, separated 𝑇 = 2 ⋅ 𝑙 𝑣𝑝⁄  or 𝑇𝜏 = 2 ⋅ 𝑙 apart, with coefficients 𝑎𝑛, encircled by a dotted line at the input port 

line 𝑎𝑛 = 𝐵(𝑖 = 2 ⋅ 𝑛, 𝑗 = 0). 
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5.2.2.2. Determination of the Target Response 

in the β Domain 

Once the Unit Elements of the commensurate-line prototype have been determined by 

means of the procedure detailed in section 5.2.1, the necessary target frequency response for the 

synthesis of low-pass and band-pass filters, with smooth profile and without spurious rejection 

bands, can be directly calculated in the phase constant, 𝛽, domain.  

The procedure is divided into two stages, where the first one consists in the deduction of 

the frequency response of the commensurate-line UE prototype, 𝑆11,𝑈𝐸(𝛽), by means of the 

transmission matrix properties that were partially introduced in section 5.2.1. In a second step, 

the final target frequency response intended to be synthetized using the CLP method, 𝑆11,𝑐(𝛽), 

will be obtained by a simple numerical modification of the 𝑆11,𝑈𝐸(𝛽). 

5.2.2.2.1. Calculation of the Frequency Response in 

Reflection of the Commensurate-Line Unit 

Element Prototype  

In order to obtain a valid frequency response in reflection for the synthesis, the first step 

will be to calculate the 𝑆11-parameter of the starting classical commensurate-line UE prototype. 

For doing so, it will be necessary to consider the 𝑁 UEs of the filter, as well as their 

corresponding transmission matrixes of Fig. 5.7. It will be possible to calculate the transmission 

matrix of the whole commensurate-line filter by multiplying the individual transmission matrices 

of its UEs (given by equation (5.47) in the Richards transform plane) as [38]: 

(
𝐴 𝐵
𝐶 𝐷

) =∏
1

√1− 𝑡2
[

1 𝑍𝑖 · 𝑡
𝑡

𝑍𝑖
1
]

𝑁

𝑖=1

= (1 − 𝑡2)−
𝑁
2 ·∏[

1 𝑍𝑖 · 𝑡
𝑡

𝑍𝑖
1
]

𝑁

𝑖=1

 (5.88) 

where 𝑍𝑖 is the characteristic impedance of the 𝑖-th UE. 
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Therefore, the transmission matrix of the commensurate-line filter will follow the 

schematic of Fig. 5.14, and hence, it will be possible to define the input impedance of the filter, 

𝑍𝑖𝑛, as: 

𝑍𝑖𝑛 =
𝑉𝑖𝑛
𝐼𝑖𝑛

 (5.89) 

Then, taking advantage of the definition of the transmission matrix given in (5.44) and 

(5.45), as well as of the result of (5.88), it will be possible to develop (5.89) as: 

𝑍𝑖𝑛(𝑡) =
𝑉𝑖𝑛(𝑡)

𝐼𝑖𝑛(𝑡)
=
𝐴(𝑡) · 𝑉𝑜𝑢𝑡(𝑡) + 𝐵(𝑡) · 𝐼𝑜𝑢𝑡(𝑡)

𝐶(𝑡) · 𝑉𝑜𝑢𝑡(𝑡) + 𝐷(𝑡) · 𝐼𝑜𝑢𝑡(𝑡)
 (5.90) 

Moreover, in view of Fig. 5.14, it will be possible to relate 𝑉𝑜𝑢𝑡  and 𝐼𝑜𝑢𝑡 through the load 

impedance, 𝑍𝐿, as: 

𝐼𝑜𝑢𝑡 =
 𝑉𝑜𝑢𝑡
𝑍𝐿

 (5.91) 

If the relationship of (5.91) is introduced in (5.90), it will be obtained that: 

𝑍𝑖𝑛(𝑡) =
𝑉𝑖𝑛(𝑡)

𝐼𝑖𝑛(𝑡)
=
𝐴(𝑡) +

𝐵(𝑡)
𝑍𝐿

𝐶(𝑡) +
𝐷(𝑡)
𝑍𝐿

=
𝐴(𝑡) · 𝑍𝐿 + 𝐵(𝑡)

𝐶(𝑡) · 𝑍𝐿 + 𝐷(𝑡)
 (5.92) 

It is important to stress that the input impedance, 𝑍𝑖𝑛, allows us to calculate the reflection 

coefficient at the input port, 𝜌𝑖𝑛, by considering a real characteristic impedance of the source 

(input port), 𝑍𝑆, as (see Fig. 5.5 and Fig. 5.14): 

𝜌𝑖𝑛(𝑡) =
𝑍𝑖𝑛(𝑡) − 𝑍𝑆
𝑍𝑖𝑛(𝑡) + 𝑍𝑆

 (5.93) 

 

Fig. 5.14. Transmission matrix model of the whole commensurate line filter. 
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Moreover, the definition of the 𝑆11-parameter is an special case of 𝜌𝑖𝑛 when the output 

port is matched, something that will be accomplished when the load impedance is equal to the 

characteristic impedance of the output port, i.e. 𝑍𝐿 (see Fig. 5.5 and Fig. 5.14). Taking that into 

account in (5.92) and incorporating the result in (5.93), the 𝑆11-parameter of the commensurate-

line UE prototype, 𝑆11,𝑈𝐸 , will be deduced as: 

𝑆11,𝑈𝐸(𝑡)  =

𝐴(𝑡) · 𝑍𝐿 + 𝐵(𝑡)
𝐶(𝑡) · 𝑍𝐿 + 𝐷(𝑡)

− 𝑍𝑆

𝐴(𝑡) · 𝑍𝐿 + 𝐵(𝑡)
𝐶(𝑡) · 𝑍𝐿 + 𝐷(𝑡)

+ 𝑍𝑆

=
𝐴(𝑡) · 𝑍𝐿 +𝐵(𝑡) − 𝑍𝑠 · [𝐶(𝑡) · 𝑍𝐿 + 𝐷(𝑡)]

𝐴(𝑡) · 𝑍𝐿 +𝐵(𝑡) + 𝑍𝑠 · [𝐶(𝑡) · 𝑍𝐿 + 𝐷(𝑡)]
 (5.94) 

Finally, the 𝑆11-parameter of the commensurate-line UE prototype calculated in the 

Richards transform domain of (5.94) can be easily converted to the phase constant domain, 𝛽,  

by applying the previously studied transformations (5.40) and (5.42), i.e.: 

𝑆11,𝑈𝐸(𝛽)  = 𝑆11,𝑈𝐸(𝑡 = 𝑗 · tan(𝛽 · 𝑙)) (5.95) 

As example, the frequency response of a 7-th order low-pass Chebyshev commensurate-

line UE filter is provided in Fig. 5.15. 

It is worth noting that 𝛽0 in Fig. 5.15 is the phase constant value that corresponds with 

the electrical length 𝜃 =
𝜋

2
 rad, see Fig. 5.9b. It is straightforward to demonstrate from (5.42) that 

the length of each transmission or waveguide line-section of the initial commensurate-line UE 

prototype can be related with 𝛽0 as: 

𝜃0 =
𝜋

2
= 𝛽0 · 𝑙 (5.96) 

 

Fig. 5.15. Frequency response of the UE prototype periodic in 𝛽: in reflection, |𝑆11,𝑈𝐸|-parameter (black line), and in 

transmission, |𝑆21,𝑈𝐸|-parameter (grey dotted line) 
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The identity (5.96) allows us to express 𝑙 as a function of the wavelength, 𝜆𝑔0, that 

corresponds to 𝛽0 in the waveguide. The relationship between 𝛽 and 𝜆𝑔 is: 

𝛽 =
2 · 𝜋

𝜆𝑔
 (5.97) 

According to (5.96) and (5.97), the length 𝑙 will be: 

𝑙 =
𝜆𝑔0
4

 (5.98) 

Furthermore, taking advantage of the identity (5.96), it will be also possible to relate the 

cut-off phase constant of the filter, 𝛽𝑐 , (see Fig. 5.15) with the electrical length 𝜃𝑐 (see Fig. 5.9b) 

of (5.49) as: 

𝜃𝑐 =
𝜋

2
·
𝛽𝑐
𝛽0

 (5.99) 

5.2.2.2.2. Modification of the Frequency Response in 

Reflection of the Commensurate-Line Unit 

Element Prototype 

Finally, as it was firstly demonstrated in [14] for planar technologies, it is possible to 

synthetize a smooth-profiled low-pass filter by performing simple modifications to the attained 

𝑆11,𝑈𝐸(𝛽). In [14] it was also shown how the physical dimensions featured by the synthetized 

filter are similar to those of the initial commensurate-line UE prototype in terms of device length 

and maximum and minimum values of the characteristic impedance. In order to provide the 

suitable target frequency response for the CLP synthesis method, the target 𝑆11,𝑐(𝛽) will be 

defined from 𝑆11,𝑈𝐸(𝛽) as:  

𝑆11,𝑐(𝛽) = {
𝑆11,𝑈𝐸(𝛽)

0

 
, for 0 ≤  𝛽 ≤ 𝑚 · 𝛽0  

(5.100) 

, for 𝛽 ≥ 𝑚 · 𝛽0 

where 𝑚 is the same parameter that has been previously employed in section 5.2.2.1 for the 

bandlimited interpolation procedure carried out in the 𝜏 domain. 

Therefore, the target low-pass response attained with 𝑚 = 2 will only feature the 

fundamental stopband of 𝑆11,𝑈𝐸(𝛽) centered at 𝛽0, while the higher-order replicas will be  
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eliminated, as it is depicted in Fig. 5.16a. However, if 𝑚 = 4 is taken, the associated band-pass 

filter response will be characterized by unique lower and upper stopbands centered at 𝛽0 and 

3 · 𝛽0 , respectively, while the center of the passband will be placed at 2 · 𝛽0 (see Fig. 5.16b). 

In order to conclude the present subsection devoted to the determination of the target 

frequency response to be synthesized using the CLP method, it must be stated that the method 

explained is valid for general all-pole frequency responses. The synthesis of this kind of 

responses will lead to waveguide structures that feature smooth variations of their cross-sections 

along the propagation direction.  

Moreover, the target frequency responses that are achieved with this method can be also 

translated to the 𝜏 domain by performing the inverse Fourier transform of (4.11) to the 𝑆11,𝑐(𝛽): 

𝐹𝑐(𝜏) = ∫ 𝑆11,𝑐(𝛽) ⋅ 𝑒
𝑗𝛽𝜏 ⋅ 𝑑𝛽

∞

−∞

 (5.101) 

The impulse response, 𝐹𝑐(𝜏), that results from (5.101) will match the response obtained 

from the bandlimited interpolation performed to the impulse response in reflection of the 

commensurate-line UE filter, 𝐹𝑈𝐸(𝜏), as it was thoroughly explained in 5.2.2.1. 

 
(a) 

 
(b) 

Fig. 5.16. Target frequency responses for an example of Chebyshev (a) low-pass and (b) band-pass filter to be 

synthetized: in reflection, |𝑆11|-parameter (black line), and in transmission, |𝑆21|-parameter (grey dotted line) 
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5.2.3. Microstrip Low-Pass Filter with 

Smooth Profile and without Spurious 

Rejection Bands 

The filter design methodology carefully developed in the previous sections will be tested 

now with the practical design of a low-pass filter with smooth profile and without spurious 

stopbands in microstrip technology. The design requirements are the following: central 

frequency of the stopband 𝑓0 = 1 GHz, maximum attenuation of 30 dB, cut-off frequency 𝑓𝑐 =

447.45 MHz, and return loss level, 𝑅𝐿 = 20 dB. In order to satisfy these requirements, a 

canonical Chebyshev response will be employed. Following the procedure detailed in section 

5.2.1, the first step is to determine the characteristic impedance of the starting 𝑁-th order classical 

commensurate-line UE filter. 

It must be reminded that when dealing with microstrip technology, the relation between 

𝛽 and 𝑓 will be determined by means of the expression (2.151), which is provided again below 

for the sake of convenience: 

𝛽 =
2 · 𝜋 · 𝑓

𝑣𝑝
=
2 · 𝜋 · 𝑓

𝑐0
· √휀𝑒𝑓𝑓  (2.151) 

It is worth noting that 휀𝑒𝑓𝑓  will eventually depend on the width of the upper conductor 

strip of the microstrip line along the propagation direction, 𝑊(𝑧), as well as on the characteristics 

of the substrate, a Rogers RO3035 with thickness ℎ = 1.524 mm, and dielectric constant 휀𝑟 =

3.5. Taking into account the provided substrate parameters, a line with 50  characteristic 

impedance (that will be subsequently required for the input port) results in 휀𝑒𝑓𝑓 = 2.744, see 

equations (2.149) and (2.152). In order to apply the modelling for technologies with 𝛽 variable 

along the propagation axis, 𝑧, presented in section 2.2.2, a reference electrical permittivity, 

휀𝑒𝑓𝑓,𝑟𝑒𝑓 = 2.744, will be employed for the definition of a reference phase constant, 𝛽𝑟𝑒𝑓 =

𝛽(𝑓, 휀𝑒𝑓𝑓,𝑟𝑒𝑓), that will be assumed to remain fixed along a normalized propagation axis, 𝜒. In 

the last synthesis step, a denormalization of the propagation axis will be needed to compensate 

for the variations of 휀𝑒𝑓𝑓  along the actual propagation axis. Therefore, from (2.151) it can be 

calculated that 𝛽(𝑓0, 휀𝑒𝑓𝑓,𝑟𝑒𝑓) = 34.69 rad/m and 𝛽(𝑓𝑐 , 휀𝑒𝑓𝑓,𝑟𝑒𝑓) = 15.52 rad/m. Then, the use 

of (5.99) will lead to 𝜃𝑐 = 0.703 rad. Once the value of 𝜃𝑐 is known, the normalized frequency 

for the maximum rejection level, 𝛼 = 1.547 rad/s, can be deduced from (5.49). 
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The minimum filter order 𝑁 = 7 for the Chebyshev response case that is required to 

satisfy the demanded performance can be calculated by means of the expression (5.102) as [14]: 

𝑁 =

acosh(√(
1

|𝑆21|𝑚𝑖𝑛
2 − 1) ∙ (10

𝑅𝐿
10 − 1))

asech(
1
α
)

 
(5.102) 

where |𝑆21|𝑚𝑖𝑛  is the minimum linear magnitude of the 𝑆21-parameter that will be achieved at 

𝛽(𝑓 = 𝑓0). Considering the required 30 dB value for the maximum rejection level, |𝑆21|𝑚𝑖𝑛 =

10(−30/20). 

Once both the order 𝑁 = 7 and return loss level 𝑅𝐿 = 20 dB parameters have been 

determined, it is possible to reach the normalized all-pole Chebyshev response. Next, from the 

𝛼 = 1.547 rad/s parameter and using (5.51), the normalized low-pass prototype is translated to 

the Richards transform domain. Then, applying the procedure detailed in section 5.2.1 and 

imposing a value of 𝑍0 = 50 Ω for the input port, the characteristic impedance of each UE is 

deduced: 𝑍1 = 𝑍7 = 34.61 Ω, 𝑍2 = 𝑍6 = 85.54 Ω, 𝑍3 = 𝑍5 = 22.40 Ω, 𝑍4 = 104.02 Ω. The 

characteristic impedances of the commensurate-line UE prototype are depicted in Fig. 5.17. 

The length of each commensurate-line section is 𝑙 = 4.528 cm, being a value that can be 

calculated by means of (5.98) and (2.151) by considering 휀𝑒𝑓𝑓,𝑟𝑒𝑓 = 2.744. 

The frequency response of the 7th-order commensurate-line UE filter is computed by 

means of the transmission matrix multiplication method developed in section 5.2.2. The results  

 

 

Fig. 5.17. Characteristic impedances of the 7th-order classical Chebyshev commensurate-line UE filter along the 

propagation direction. 
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have been translated to the frequency domain for the sake of clarity by means of (2.151) and they 

are provided in Fig. 5.18, where all the target specifications are satisfied apart from the 

appearance of the inherent spurious stopbands. The next step is to remove those spurious 

stopbands by introducing null values in the 𝑆11,𝑈𝐸(𝑓) response for frequencies higher than 

𝑓𝑚𝑎𝑥 = 2 · 𝑓0 = 2 GHz, which is equivalent to impose the design condition of (5.100) with 𝑚 =

2, but in the frequency domain, see (2.151). The resulting target frequency response is 

represented in Fig. 5.19 and Fig. 5.20. 

 

(a) 

 

(b) 

Fig. 5.18. Magnitude of the frequency response of the 7th-order Chebyshev UE prototype: the periodic (a) 𝑆11,𝑈𝐸 and 

(b) 𝑆21,𝑈𝐸 parameters are provided. 

 

(a) 

 

(b) 

Fig. 5.19. Magnitude (a) and phase (b) of the target 𝑆11,𝑐-parameter for the low-pass filter with smooth profile and 

without spurious rejection bands designed as an example. 
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Fig. 5.20. Target |𝑆21,𝑐|-parameter for the low-pass filter with smooth profile and without spurious rejection bands 

designed as an example. 

Once the target frequency response has been determined, the necessary coupling 

coefficient for the low-pass filter that does not feature spurious rejection bands can be obtained 

employing the CLP synthesis technique. Thus, from the complex (magnitude and phase) target 

𝑆11,𝑐(𝑓), defined numerically from 𝑓𝐷,𝑛=0 = 0 GHz to 𝑓𝐷,𝑚𝑎𝑥 = 200 GHz every Δ𝑓𝐷 =4 MHz, 

and partially shown in Fig. 5.19, is translated to 𝛽-domain by means of (2.151). This discretized 

definition of 𝑆11,𝑐(𝑓) yields to 𝑁𝑧,𝐶𝐿𝑃 = 200000 points for the sampled 𝑧 axis by (5.36). Then, 

the coupling coefficient at 𝑧 = 0, 𝐾(0), is obtained by means of (5.5). Using this value of 𝐾(0), 

the Riccati equation of (5.10) is solved using the Matlab ODE solver function “ode45.m”. By 

doing so, the first layer is peeled-off and 𝑆11(𝑓) is propagated to the following layer. The next 

sample of the coupling coefficient is straightforwardly calculated by means of (5.5). In a layer 

by layer iterative routine, the whole coupling coefficient is calculated and shown in Fig. 5.21a. 

The required characteristic impedance for the microstrip line is finally calculated by imposing 

𝑍0(0) = 50 Ω in the expression (2.146), which is rewritten below for the sake of convenience: 

𝑍0(𝑧) = 𝑍0(0) · 𝑒
−2·∫ 𝐾(𝑟)·𝑑𝑟

𝑧
0  (2.146) 



198 Jon Mikel Percaz Ciriza 

 

 

(a) 

 

(b) 

Fig. 5.21. (a) Coupling coefficient and (b) characteristic impedance along the propagation direction of the designed 

low-pass filter without spurious rejection bands. 

 

Fig. 5.22. Conductor strip width, 𝑊, of the microstrip structure along the propagation axis, 𝑧, for the low-pass filter 

without spurious rejection bands designed. 

 

Fig. 5.23. Photograph of the fabricated microstrip low-pass filter with smooth profile and without spurious rejection 

bands designed as an example. 
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The obtained characteristic impedance profile is displayed in Fig. 5.21b. The physical 

dimensions as well as the actual 휀𝑒𝑓𝑓(𝑧) values of the microstrip structure are obtained by means 

of the Keysight Linecalc software tool. The denormalization process explained in section 2.2.2 

is applied to the z-axis (propagation direction) using the equation (2.208) in order to compensate 

for the variation of the phase constant that is caused by the changing of the effective dielectric 

constant along the microstrip structure. For doing so, it is necessary to consider the actual phase 

constant given by 휀𝑒𝑓𝑓(𝑧) as well as the reference phase constant calculated with 휀𝑒𝑓𝑓,𝑟𝑒𝑓 =

2.744 that was employed for the synthesis process. The transformation of (2.208) was performed 

at 𝑓𝑡 = 𝑓𝑐 = 447.45 MHz. The width of the conductor strip along the propagation direction of 

the final structure is depicted in Fig. 5.22. The final length of the device is 41.43 cm. A 

photograph of the fabricated prototype is shown in Fig. 5.23. 

The designed low-pass filter structure without spurious rejection bands was simulated 

using Keysight ADS Momentum and measured with an Agilent 8722 Vector Network 

Analyzer. The simulated and measured results are depicted in Fig. 5.24. A detail of the measured 

frequency response around the rejected band is given in Fig. 5.25 and Fig. 5.26, together with 

the target response. 

The excellent agreement found between the target response, the simulations, and the 

measurements confirms the accuracy of the novel synthesis methodology proposed. Specifically, 

no spurious stopbands appear up to the 15th harmonic (15 ⋅ 𝑓0), and the return loss level out of 

the stopband is better than 20 dB in measurement up to 8 GHz (8 ⋅ 𝑓0). The return loss level 

decreases beyond that frequency due to the connectors and to the dispersion of the microstrip  

 

 

(a) 

 

(b) 

Fig. 5.24. Simulated (grey line) and measured (black line) magnitudes of the (a) S11 and (b) S21 parameters of the low-

pass filter without spurious rejection bands designed as an example. 
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(a) 

 

(b) 

Fig. 5.25. Target (thin black line) and measured (thick black line) magnitude (a) and phase (b) of the S11-parameter of 

the low-pass filter without spurious rejection bands designed as an example. 

 

Fig. 5.26. Target (thin black line) and measured (thick black line) magnitude  of the S21-parameter of the low-pass filter 

without spurious rejection bands designed as an example. 

line, but it remains better than 17 dB in measurement up to 15 GHz (15 ⋅ 𝑓0). Focusing on Fig. 

5.25 and Fig. 5.26 it can be seen that the target specifications are achieved in measurement with 

remarkable accuracy: central frequency of the stopband, 𝑓0 = 1 GHz, cut-off frequency, 𝑓𝑐 =

447.45 MHz, maximum rejection of 30 dB, and return loss level better than 20 dB. The small 

discrepancies found can be attributed to the fabrication tolerances, to the uncertainty in the 

dielectric constant of the substrate and to the connectors. 

It is worth noting that the frequency response achieved by the prototype (see Fig. 5.24) 

may be considered more characteristic from a band-stop filter than from a low-pass filter. 

However, this practical appearance of band-stop responses is inherent to the design method of 

classical low-pass filters based on commensurate lines, as it was thoroughly exposed in section 

5.2.1. Hence, the final frequency response featured by the present smooth-profiled filter is also 

classified here as a low-pass response (without spurious rejection bands), since its synthesis was 
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performed using a modified version of the frequency response in reflection of a classical 

commensurate-line low-pass filter, which also exhibits that periodical band-stop characteristic 

in practice as it can be observed in Fig. 5.18. 

To finish this section, it can be considered that the methodology proposed to synthetize 

low-pass filters with smooth profile and without spurious rejection bands provides quasi-periodic 

structures that can be considered like a fully optimum EBG. As in the case of the optimum EBG 

of section 3.1, the spurious bands are avoided while providing the required maximum rejection 

level. However, unlike in the case of EBGs, the filters proposed in the present section feature a 

passband behavior that can be fully controlled without degrading the rejection level achieved in 

the stopband. 

5.2.4. Rectangular Waveguide Low-Pass 

Filters Suitable for Direct Metal 

Laser Sintering Fabrication (I) 

The technique intended for the design of low-pass and band-pass filters with smooth 

profiles and without spurious rejection bands is going to be oriented for the synthesis of 

rectangular waveguide low-pass filters with smooth height profiles. The expected geometrical 

properties of the resulting structure will be very suitable for a final fabrication by means of Direct 

Metal Laser Sintering (DMLS) additive manufacturing techniques. Since the final filter will 

feature smooth variations, it will not feature overhanging surfaces in the propagation direction 

and hence, the necessity of auxiliary supports will be avoided by growing the piece in that 

direction. It is important to stress that the necessity of auxiliary supports is one of the most 

troublesome aspects for metal Additive Manufacturing (AM) techniques. Indeed, several 

approaches have been recently proposed so as to adapt or modify classical filtering structures in 

order to allow a latter DMLS fabrication. In [41], step-shaped geometries are employed for the 

design of filters, showing the necessity of using support structures attached to the building 

platform to sustain overhangs. In that paper, as well as in previous works [42], [43], an insightful 

analysis is performed to show the importance of determining a suitable angle to try to improve 

the fabrication tolerances of a specific device, revealing also the difficulty, the resources, and 

the post-processing required to obtain acceptable results when support structures are needed. 

In order to facilitate the manufacturing process, ellipsoid cavities and hyperbolic blended 

irises are used to obtain rounded geometries in [44], [45]. Following this approach of using 
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smooth surfaces, lollypop-shaped resonators (spheres balanced on top of poles) have been 

considered in [46] to design band-pass filters. However, the same classical design method 

employed to design conventional filters (with step-shaped geometries) is considered in the 

previous references, which is not convenient since, for example, long optimization processes 

(that are especially inadvisable with rounded profiles) are required. Therefore, it is of special 

interest to have a design technique, which allows us to directly obtain devices with smooth 

profile that can be always manufactured in the same growing direction and avoiding the use of 

support structures. 

Nevertheless, it must be pointed out that typical requirements for rectangular waveguide 

filters include higher rejection levels than those demanded for planar devices. Regarding this 

concern, it is clear that the CLP synthesis method increases the rejection level that can be 

achieved when compared to the exact series solution of GLM [14], [15], but perhaps it might not 

be enough to reach the challenging specifications typically required for rectangular waveguide 

filters. 

For this design example, the demanded passband of the filter will be defined from 10.65 

to 11.65 GHz, and a Return Loss (𝑅𝐿) level greater than 20 dB must be provided within the 

whole passband range. On the other hand, a minimum rejection level of 80 dB must be 

guaranteed for a stopband located between 14 GHz and 15 GHz. However, if the typical ±100 

µm fabrication tolerances associated to the DMLS manufacturing technique and the uncertain 

effects that they may carry in the frequency response of the filter are considered, it will be 

advisable to include additional security margins in the frequency response that will be eventually 

synthetized, in order to ensure the achievement of the aforementioned specifications at the 

measurement stage. Following this security margin criterion that is widely employed as a 

practical filter design rule, a low-pass Chebyshev frequency response was chosen to provide 

𝑅𝐿 ≥  25 dB between 10.6 GHz and 11.95 GHz, while the minimum rejection level of 80 dB 

must be achieved from 13.95 GHz up to 15 GHz. The filter will be implemented with WR75 

standard ports, which feature a width, 𝑎 = 19.05 mm, and a height, 𝑏 = 9.525 mm. 

In order to satisfy the design margins for the frequency response, the cut-off frequency of 

the filter, 𝑓𝑐, was chosen as the upper limit for the passband, i.e. 𝑓𝑐 = 11.95 GHz, while a value 

of 16.045 GHz was selected for the frequency at which the maximum rejection level will be 

achieved, 𝑓0 . 

For the present design example, it is convenient to consider the relationship between the 

frequency and the phase constant for the fundamental TE10 mode of a rectangular waveguide that 

was firstly provided in (2.117): 
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𝛽(𝑓) =
2 · 𝜋 · 𝑓

𝑐
· √1 − [

𝑓𝑐
𝑇𝐸10

𝑓
]

2

 (2.117) 

where 𝑓𝑐
𝑇𝐸10 is the cut-off frequency of the TE10 fundamental mode, which can be calculated by 

means of (2.118): 

𝑓𝑐
𝑇𝐸10(𝑧) =

𝑐

2 · 𝑎(𝑧)
 (2.118) 

The values of 𝛽𝑐 = 𝛽(𝑓 = 𝑓𝑐) = 188.496 rad/m and 𝛽0 = 𝛽(𝑓 = 𝑓0) = 293.058 rad/m 

are obtained with (2.117) by imposing the width, 𝑎 = 19.05 mm, of the WR75 standard in 

(2.118). Then, the electrical lengths, 𝜃𝑐 and 𝜃0, as well as the normalized frequencies, 𝜔𝑐  and 𝛼, 

associated with 𝛽𝑐  and 𝛽0, respectively, can be subsequently deduced. Since the electrical length 

for 𝛽0 is 𝜃0 =
𝜋

2
 rad by definition (see Fig. 5.9b), 𝜃𝑐 = 1.01 rad can be calculated from (5.99). 

Therefore, the expected normalized cut-off frequency 𝜔𝑐 = 1 rad/s for the canonical starting 

prototype is obtained, and 𝛼 = 1.181 rad/s is calculated using (5.49). Moreover, it is necessary 

to consider the corresponding electrical length, 𝜃𝑟 = 1.294 rad (calculated from (5.99) by 

changing the c index to r), and normalized frequency, 𝜔𝑟 = 1.136 rad/s (calculated from (5.49)), 

for the minimum frequency for which the rejection level of 80 dB is required, i.e., 𝑓𝑟 = 13.95 

GHz. Then, the minimum order N of the Chebyshev filter that is necessary to reach the 

aforementioned specifications can be deduced as the closest upper integer to the result of the 

following expression: 

𝑁 =

acosh(√(10
𝑅𝐽𝐿
10 − 1) ∙ (10

𝑅𝐿
10 − 1))

acosh(𝜔𝑟)
 

(5.103) 

where 𝑅𝐽𝐿 in (5.103) stands for the minimum rejection level that must be achieved at 𝜔𝑟 . 

Therefore, evaluating (5.103) for 𝑅𝐽𝐿 = 80 dB, 𝑅𝐿 = 25 dB, and 𝜔𝑟 = 1.136 rad/s, a 

minimum order 𝑁 = 25 is calculated, and the corresponding normalized Chebyshev response 

(with 𝑁 = 25, 𝑅𝐿 = 25 dB) can be translated to the Richards transform plane using (5.51). Then, 

applying the procedure detailed in section 5.2.1 and imposing a value of 𝑍0 = 𝑏𝑆 = 9.525 mm 

for the input port (height of the WR75 standard at the input port), the characteristic impedance 

of each UE is deduced, with a value equal to the height of the UE in rectangular waveguide [22]. 

The values obtained are given in Table 5.1. Furthermore, the length of each commensurate-line 

is calculated using (5.98) as 𝑙 = 5.36 mm and thus, the commensurate-line UE starting prototype 

in rectangular waveguide technology will feature the height profile depicted in Fig. 5.27. 
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Unit Element Height (mm) 

𝑏𝑆 = 𝑏𝐿 9.525 

𝑏1 = 𝑏25 7.808 

𝑏2 = 𝑏24 11.794 

𝑏3 = 𝑏23 6.148 

𝑏4 = 𝑏22 14.235 

𝑏5 = 𝑏21 5.439 

𝑏6 = 𝑏20 15.305 

𝑏7 = 𝑏19 5.215 

𝑏8 = 𝑏18 15.688 

𝑏9 = 𝑏17 5.138 

𝑏10 = 𝑏16 15.837 

𝑏11 = 𝑏15 5.107 

𝑏12 = 𝑏14 15.892 

𝑏13 5.099 

Table 5.1. Height values of the 25th-order Chebyshev commensurate-line UE prototype in rectangular waveguide 

technology for WR75 standard ports (𝑏𝑆 = 𝑏𝐿 = 9.525 mm). 

 

Fig. 5.27. Heights of the 25th-order Chebyshev commensurate-line UE prototype along the propagation direction. 
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Fig. 5.28. Magnitude of the 𝑆11,𝑐 (dashed black line) and 𝑆21,𝑐 (solid black line)-parameters for the target 25-th order 

Chebyshev low-pass response. The specification masks for the frequency response in terms of return losses (grey 

diamond pattern) and the rejection level (grey rectangle pattern) are also provided. 

Once the Unit Elements of the starting prototype have been determined, its corresponding 

𝑆11,𝑈𝐸(𝛽) is calculated by transfer matrix multiplication, following the procedure detailed in 

section 5.2.2.2. The final target frequency response, 𝑆11,𝑐(𝛽), intended to be synthetized is 

obtained after applying the modification procedure of (5.100) with 𝑚 = 2 (low-pass filter case). 

The aimed 𝑆11,𝑐(𝛽) is partially shown in Fig. 5.28, where the specification masks are also 

included. The 𝑆11,𝑐(𝛽) parameter was defined from 𝛽𝐷,𝑛=0 = 0 rad/m to 𝛽𝐷,𝑚𝑎𝑥 = 200 · 𝛽0 every 

Δ𝛽𝐷 =
𝛽0

400
. The use of these synthesis parameters results in a 𝑧 axis that must be divided into 

𝑁𝑧,𝐶𝐿𝑃 = 320000 points, according to (5.36). 

The required coupling coefficient, 𝐾(𝑧), obtained by applying the CLP synthesis 

technique to the target 𝑆11,𝑐(𝛽) is depicted in Fig. 5.29a. This coupling coefficient will be 

implemented by exclusively performing variations in the waveguide height profile, 𝑏(𝑧), and 

thus 𝐾(𝑧) = 𝐾𝑏(𝑧), see (2.122) and (2.123). Thereby, the corresponding waveguide height 

profile along the propagation direction, 𝑏(𝑧), can be calculated using the expression (2.130) that 

is rewritten below: 

𝑏(𝑧) = 𝑏(0) · 𝑒−2·∫ 𝐾𝑏(𝑟)·𝑑𝑟
𝑧
0  (2.130) 

The dimensions of 𝑏(𝑧) are attained by requiring the height of the WR75 standard for the 

input port in (2.130), i.e. 𝑏(0) = 9.525 mm, and the result is provided in Fig. 5.29b. 
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(a) 

 

(b) 

Fig. 5.29. Synthetized (a) coupling coefficient along the propagation direction calculated using the CLP synthesis 

technique and corresponding (b) waveguide height profile. 

 

Fig. 5.30. Targeted (black lines) and simulated (dark grey lines) magnitude of the 𝑆11 (dashed lines) and 𝑆21 (solid 

lines)-parameters for the 25th-order Chebyshev low-pass filter. The simulation of the synthetized waveguide structure 

was done by solving the single-mode coupled-mode equation system of (2.91) and (2.92). The specification masks for 

the frequency response in terms of return loss (grey diamond pattern) and the rejection level (grey rectangle pattern) 

are also provided. 

In order to perform an evaluation of the frequency response associated with the 

synthetized 𝐾(𝑧), the single-mode coupled-mode equation system of (2.91), (2.92) is solved for 

the complex amplitudes 𝑎+ and 𝑎− using the Matlab “bvp4c.m” function for the frequency range 

𝛽(𝑓 = 10 GHz) ≤ 𝛽(𝑓) ≤ 𝛽(𝑓 = 15 GHz). The 𝑆11(𝛽) and 𝑆21(𝛽)-parameters can be deduced 

from 𝑎+ and 𝑎− using (2.105) and (2.106), respectively, and the results are given in Fig. 5.30. 

As it can be seen in Fig. 5.30, the result of the synthesis procedure was not accurate 

enough and the frequency response featured by the synthetized 𝐾(𝑧) neither achieves the desired 

passband behavior, nor the required rejection level for the stopband. It is important to stress that 

the results of Fig. 5.30 correspond to a single-mode analysis of (2.91), (2.92) and hence, the lack 

of agreement between the target and the obtained frequency responses can be only explained by 
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a wrong calculation of 𝐾(𝑧). Indeed, the approximate maximum rejection level of 55 dB 

achieved by the synthetized structure is in accordance with the maximum rejection levels for the 

CLP synthesis method that were reported in [19]. 

It is worth noting that the reason for the inaccurate 𝐾(𝑧) synthetized must be attributed 

to the numerical implementation of the CLP method, since its theoretical foundations that have 

been developed in depth between (5.1) and (5.10) are fully exact. However, besides the 

constraints associated to the limited bandwidth employed to define 𝑆11,𝑐(𝛽) and 𝐹𝑐(𝜏), the 

solution of the Riccati equation of (5.10) is based on the use of the numerical method 

implemented in the “ode45.m” Matlab function, as it has been mentioned during the development 

of the CLP method. Since the Riccati equation is numerically solved at each discretized point in 

order to propagate the reflection coefficient, 𝜌(𝛽, 𝑧), from 𝑧 = 𝑧0 to 𝑧 = 𝑧0 + 𝑇𝐷,𝑧 so as to 

determine the reflection coefficient that must be satisfied at 𝑧0 + 𝑇𝐷,𝑧, i.e. 𝜌(𝛽, 𝑧 = 𝑧0 + 𝑇𝐷,𝑧), 

the solution for 𝜌(𝛽, 𝑧 = 𝑧0 + 𝑇𝐷,𝑧) contains a certain quantity of numerical error. Moreover, the 

coupling coefficient 𝐾(𝑧 = 𝑧0 + 𝑇𝐷,𝑧) is calculated as a function of 𝜌(𝛽, 𝑧 = 𝑧0 + 𝑇𝐷,𝑧) =

𝑆11(𝛽, 𝑧 = 𝑧0 + 𝑇𝐷,𝑧), see (5.5). Accordingly, the coupling coefficient at 𝑧 = 𝑧0 + 𝑇𝐷,𝑧 

incorporates the numerical error that was added in the calculation of 𝜌(𝛽, 𝑧 = 𝑧0 + 𝑇𝐷,𝑧). Indeed, 

it is important to realize that once the coupling coefficient has been determined, the reflection 

coefficient must be propagated again so as to determine 𝜌(𝛽, 𝑧 = 𝑧0 + 2 · 𝑇𝐷,𝑧) using (5.10) that 

depends both on 𝜌(𝛽, 𝑧 = 𝑧0 + 𝑇𝐷,𝑧) and 𝐾(𝑧 = 𝑧0 + 𝑇𝐷,𝑧). Therefore, the solution of 𝜌(𝛽, 𝑧 =

𝑧0 + 2 · 𝑇𝐷,𝑧) will add again numerical error to the solution that will be obtained using the 

variables 𝜌(𝛽, 𝑧 = 𝑧0 + 𝑇𝐷,𝑧) and 𝐾(𝑧 = 𝑧0 + 𝑇𝐷,𝑧) that already contain numerical error. 

Following this reasoning, it is clear that the numerical error gets accumulated at each layer, and 

its effect in the 𝐾(𝑧) calculation becomes critical when 𝑧 approaches 𝐿 for the cases where high 

rejection values are required, since the last layers are the ones that accumulate the larger 

numerical errors. In fact, the error in the calculation of 𝐾(𝑧) is typically found at the end of the 

structure, where 𝐾(𝑧) seems not to converge to zero at the final part of the device. This is the 

case for the synthesis carried out in this example, as it can be observed in Fig. 5.29a. The 

accuracy of the CLP synthesis solution cannot be strongly improved by using better synthesis 

parameters for the definition of the target 𝑆11,𝑐, such as the use of a higher maximum phase 

constant, 𝛽𝐷,𝑚𝑎𝑥, that implies thinner layers due to (5.35), or a finer resolution for the phase 

constant, Δ𝛽𝐷 , see [19] and [47]. Thus, the main source of errors, i.e. the limited bandwidth and 

the numerical solving of the Riccati equation, cannot be completely avoided and accordingly, 

the rejection level that can be obtained from the CLP synthesis method is limited approximately 

to the highest value of 55 dB that was obtained for this example. Therefore, if higher rejection 

levels are required, it will be necessary to employ a more accurate synthesis technique for the 
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coupling coefficient calculation. The use of the Integral Layer Peeling synthesis method that will 

be presented in CHAPTER 6 will allow us to accurately determine the coupling coefficient even 

in these challenging situations.
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 THE INTEGRAL LAYER 

PEELING (ILP) SYNTHESIS 

TECHNIQUE 

The Integral Layer Peeling (ILP) one dimensional Inverse Scattering synthesis technique 

belongs to the same layer peeling approach as the Continuous Layer Peeling (CLP) method that 

has been carefully developed in CHAPTER 5. In fact, the qualitative explanation that was 

provided in CHAPTER 5 about the essence of the layer peeling approach, whereby the method 

is based in the causality principle and allows us to relate the layer coupling coefficient with the 

beginning of the target impulse response, can be immediately applied for the ILP technique. 

Nonetheless, several differences in the initial assumptions as well as in the implementation of 

the technique will lead to accurate results for the synthesized coupling coefficient even when 

very high rejection levels are required for the frequency response. 

As in the case of GLM and CLP, the ILP Inverse Scattering synthesis technique was 

initially developed in the optics realm, for the synthesis of Fiber Bragg Gratings (FBG). 

Specifically, Rosenthal and Horowitz originally proposed the method for reconstructing strongly 

reflective FBGs in [1], where a thorough description of the method and its properties is also 

provided, being this work a great support for the development of the ILP technique in the range 

of microwave and millimeter waves. 
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The ILP method is based on an approximate analytical solution of the GLM equations, 

combined with the layer-peeling procedure. The structure is divided into layers that are neither 

uniform, nor infinitesimal. An approximate analytical solution of the GLM equation system of 

(4.26), (4.27) is employed for the propagation of the reflection coefficient through the layer, in 

contrast to the numerical solution of the Riccati equation that is employed in CLP. The 

approximate analytical solution of the GLM equations for each layer is also used to extract its 

coupling coefficient. The procedure is repeated layer by layer until the coupling coefficient of 

the entire structure is determined. It must be highlighted that since we need to solve the GLM 

equations for a narrow layer (where a large variation of the coupling coefficient is not typically 

expected) a low order of the GLM analytical series solution will be needed for reaching accurate 

results for the coupling coefficient of the layer. Therefore, the complexity of the ILP method 

remains on the same order as previous inverse scattering methods. Indeed, the computational 

complexity of ILP will be below the level reached by GLM and CLP, even when the error  

acceptable is small. 

Furthermore, as it will be later explained in detail, the ILP method is implemented by 

jointly using both 𝛽- and 𝜏-domains for the calculations, something that may be initially 

considered as a disadvantage when compared with CLP, since the latter is exclusively developed 

in the 𝛽-domain due to computational efficiency reasons. However, ILP requires for its 

numerical implementation almost only the highly-efficient FFT algorithm and does not need to 

solve the Riccati equation by using complex numerical methods. 

It must be highlighted that the main source of error for the inverse scattering methods 

comes from the fact that the target response needs to be defined and computed by using a finite 

and discretized version of the 𝑆11(𝛽) (or its associated 𝐹(𝜏)), which is characterized by a limited 

spectrum resolution in 𝛽 (equivalent to a non-infinite duration in 𝜏) and a limited maximum 𝛽  

(related to the shortest discretization period in 𝜏 that can be employed) [1]. In GLM, the 

discretization of the 𝑆11(𝛽)-parameter leads to errors of relevant magnitude when solutions of 

high order are needed for the synthesis of a highly reflective response. In the same way, the 

limited bandwidth affects CLP. At each layer, the calculation of the coupling coefficient, as well 

as the target reflection coefficient for the subsequent layer, adds a certain quantity of numerical 

error in an accumulative fashion. Therefore, in the highest reflectivity responses, synthesis errors 

tend to appear at the end of the resulting coupling coefficient. As it was explained in [1] for 

FBGs in the optics range, and as it will be equally seen in the results found in this thesis for the 

application of the ILP method for microwave devices, the error caused by the use of limited 

bandwidth for dealing with the target response in ILP is significantly smaller than the error 

obtained with the other methods. Thus, the coupling coefficient can be calculated with better 

accuracy, and higher maximum rejection levels can be achieved with ILP as a result. 
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In order to formulate the ILP method, the single-mode coupled-mode equation system of 

(2.91) and (2.92) must be firstly considered: 

𝑑𝑎+

𝑑𝑧
= −𝑗 · 𝛽 · 𝑎+ +𝐾 · 𝑎− (2.91) 

𝑑𝑎−

𝑑𝑧
= 𝑗 · 𝛽 · 𝑎− +𝐾 · 𝑎+ (2.92) 

As it was stated in CHAPTER 4, the coupled-mode equation system of (2.91) and (2.92) 

can be reformulated as a Zakharov-Shabat system of quantum mechanics obtaining [2], [3]: 

𝑗 ⋅ [

𝑑

𝑑𝑧
−𝐾

𝐾∗
−𝑑

𝑑𝑧

] ⋅ [𝑎
+

𝑎−
] = 𝛽 ⋅ [𝑎

+

𝑎−
] (4.1) 

where ∗ stands for complex conjugate. 

It must be also reminded that (4.1) has two linearly independent solutions (two of the so-

called Jost functions) firstly introduced in (4.2) and (4.3), which satisfy in the limit [3]: 

lim
𝑧→−∞

[
𝜙1(𝑧, 𝛽)
𝜙2(𝑧, 𝛽)

] = [
1
0
] ⋅ 𝑒−𝑗⋅𝛽⋅𝑧 (4.2) 

lim
𝑧→−∞

[
𝜙
1
(𝑧, 𝛽)

𝜙
2
(𝑧, 𝛽)

] = [
0
1
] ⋅ 𝑒𝑗⋅𝛽⋅𝑧 (4.3) 

Now, in order to solve the synthesis problem, it must be assumed that the coupling region (i.e., 

the synthetized structure) starts at 𝑧 = 0 and ends at 𝑧 = 𝐿, and therefore 𝐾(𝑧) = 0 for 𝑧 < 0 

and 𝑧 > 𝐿. As it was already commented in CHAPTER 4, a solution of the system of (4.1) (and 

hence of the coupled-mode equations, (2.91) and (2.92)) with the boundary conditions 

𝑎+(𝑧 = 0, 𝛽) = 1 and 𝑎−(𝑧 = 𝐿, 𝛽) = 0 (i.e., output port matched) can be obtained as a linear 

combination of the previous functions (4.2) and (4.3) of the form [1]-[3]: 

[
𝑢1(𝑧, 𝛽)
𝑢2(𝑧, 𝛽)

] = [
𝜙1(𝑧, 𝛽)
𝜙2(𝑧, 𝛽)

] + 𝑆11(𝛽) ⋅ [
𝜙
1
(𝑧, 𝛽)

𝜙
2
(𝑧, 𝛽)

] (4.4) 

where the formal definition of the 𝑆11(𝛽) in terms of the complex amplitudes, 𝑎+ and 𝑎−, was 

originally given in (4.5) as: 
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𝑆11(𝛽) =
𝑎−(𝑧 = 0, 𝛽)

𝑎+(𝑧 = 0, 𝛽)
|
𝑎−(𝑧=𝐿,𝛽)=0

 (4.5) 

and the solution 𝑎+(𝑧, 𝛽) = 𝑢1(𝑧, 𝛽), 𝑎
−(𝑧, 𝛽) = 𝑢2(𝑧, 𝛽), corresponds to the situation when the 

output port is matched, and the values at the input port of the structure are 𝑎+(𝑧 = 0, 𝛽) =

𝑢1(𝑧 = 0, 𝛽) = 1 and 𝑎−(𝑧 = 0, 𝛽) = 𝑢2(𝑧 = 0, 𝛽) = 𝑆11(𝛽).  

One of the previous Jost functions (solution of the Zakharov-Shabat system) can be 

represented as [2], [3]: 

[
𝜙1(𝑧, 𝛽)
𝜙2(𝑧, 𝛽)

] = [
1
0
] ⋅ 𝑒−𝑗⋅𝛽⋅𝑧 + ∫ [

𝐴1(𝑧, 𝜏)
𝐴2(𝑧, 𝜏)

]

∞

−∞

⋅ 𝑒−𝑗⋅𝛽⋅𝜏 ⋅ 𝑑𝜏 (4.6) 

where the first term corresponds to the propagation of the forward traveling wave in the absence 

of coupling region (behavior at the limit (4.2)), and 𝐴1(𝑧, 𝜏), 𝐴2(𝑧, 𝜏), are the kernel functions 

that characterize the scattering effect produced by the coupling region (i.e., the synthetized 

structure). 

Now, by considering the relationship (4.7) between the solutions 𝜙1(𝑧, 𝛽), 𝜙2(𝑧, 𝛽) and 

𝜙
1
(𝑧, 𝛽) and 𝜙

2
(𝑧, 𝛽) [3], as well as causality constraints, the expressions (4.26) and (4.27) of 

the GLM coupled integral equations previously found in CHAPTER 4 can be again obtained [2], 

[3]: 

𝐴1(𝑧, 𝜏) = − ∫
 

𝐴2
∗ (𝑧, 𝑦) ⋅ 𝐹(𝑦 + 𝜏) ⋅ 𝑑𝑦

𝑧

−∞

 , |𝑧| > 𝜏 (6.1) 

𝐴2(𝑧, 𝜏) = −𝐹(𝑧 + 𝜏) − ∫
 

𝐴1
∗(𝑧, 𝑦) ⋅ 𝐹(𝑦 + 𝜏) ⋅ 𝑑𝑦 = 0

𝑧

−∞

 , |𝑧| > 𝜏 (6.2) 

where 𝐴1 (𝑧, 𝜏) and 𝐴2 (𝑧, 𝜏) are the kernel functions that satisfy the GLM coupled integral 

equations. 

It is interesting to note that the integration range in the system (6.1), (6.2) has a lower 

limit of −∞, different from the restricted lower limit taken in (4.26) and (4.27) as in [2], [4]. The 

reason is that the causality restriction 𝐹(𝜏) = 0 for 𝜏 < 0 is not applied in our case due to 

considerations explained later. 

Solving the GLM coupled integral equations (6.1), (6.2), the kernel functions 𝐴1(𝑧, 𝜏), 

𝐴2(𝑧, 𝜏) can be calculated for a target frequency response, 𝑆11 (𝛽), expressed through 𝐹(𝜏), see 
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(4.11). By neglecting the integral terms of (6.1) and (6.2), the zero-order approximate solution 

of the GLM equation will be obtained as [1], [2], [4]: 

𝐴1(𝑧, 𝜏) = 0 , |𝑧| > 𝜏 (6.3) 

𝐴2(𝑧, 𝜏) = −𝐹(𝑧 + 𝜏) , |𝑧| > 𝜏 (6.4) 

This zero-order approximation ignores the multiple reflections occurred at intermediate 

points of the structure, and only the case of a single scattering event is taken into account. The 

approximation is valid for devices with low reflectivity, or at the beginning (close to the input 

port) of general devices with high reflectivity. When multiple reflections within the structure 

(cases of multiple scattering events) cannot be neglected, higher-order approximations of the 

iterative solution of the GLM equations can be employed [1], [2]. 

Moreover, it must be reminded that due to causality considerations, the condition shown 

in (4.14), which is provided conveniently below, must be satisfied [3]: 

[
𝐴1(𝑧, 𝜏)
𝐴2(𝑧, 𝜏)

] = 0 ∀  𝑧 < |𝜏| (4.14) 

In order to solve the synthesis problem, the structure will be divided into several layers 

that will have a nonuniform profile. The iterative solution of the GLM equations will be 

employed to solve each of the layers. If the length of the layers is short enough, then the very 

simple zero-order approximation of (6.3) and (6.4) will be enough to solve the problem. Each of 

the layers will be solved consecutively, from the input to the output port of the device, following 

the same principle as the technique originally proposed in [1] for reconstructing fiber Bragg 

gratings with high reflectivity in the optical field. 

Recalling the solution previously obtained with the output port matched of (4.4), and 

substituting (4.6) and (4.7), expressions for the forward travelling wave, 𝑎+(𝑧, 𝛽) = 𝑢1(𝑧, 𝛽), 

and backward travelling wave, 𝑎−(𝑧, 𝛽) = 𝑢2(𝑧, 𝛽), can be obtained as a function of 𝐴1(𝑧, 𝜏), 

𝐴2(𝑧, 𝜏) [1]. If the zero-order approximation of (6.3), (6.4) is employed to calculate the kernel 

functions 𝐴1(𝑧, 𝜏), 𝐴2(𝑧, 𝜏) in the range 𝑧 > 𝜏 (fully included within the region of validity of the 

GLM equations), and the causality restrictions of (4.14) are applied to limit the integration range, 

then the forward and backward travelling waves will have the following expressions along the 

structure: 
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𝑎+(𝑧, 𝛽) = 𝑒−𝑗⋅𝛽⋅𝑧 − 𝑆11(𝛽) ⋅ ∫𝐹
∗(𝑧 + 𝜏)

𝑧

−∞

⋅ 𝑒𝑗⋅𝛽⋅𝜏 ⋅ 𝑑𝜏 (6.5) 

𝑎−(𝑧, 𝛽) = 𝑆11(𝛽) ⋅ 𝑒
𝑗⋅𝛽⋅𝑧 − ∫𝐹(𝑧 + 𝜏)

𝑧

−∞

⋅ 𝑒−𝑗⋅𝛽⋅𝜏 ⋅ 𝑑𝜏 (6.6) 

where the solution has been obtained with the boundary conditions 𝑎+(𝑧 = 0, 𝛽) = 1 and 

𝑎−(𝑧 = 𝐿, 𝛽) = 0 (i.e., output port matched), and is valid for low reflectivity, or in general at the 

beginning of the structure (the zero-order approximation of the iterative solution of the GLM 

equations has been employed). Now, the local reflection coefficient along the structure, 𝜌(𝑧, 𝛽), 

can be obtained from (6.5) and (6.6) as: 

𝜌(𝑧, 𝛽) =
𝑎−(𝑧, 𝛽)

𝑎+(𝑧, 𝛽)
= 𝑒𝑗⋅2⋅𝛽⋅𝑧

𝑆11(𝛽) − �̅�(𝛽)

1 − 𝑆11(𝛽) ⋅ �̅�
∗(𝛽)

 (6.7) 

where �̅�(𝛽) is: 

�̅�(𝛽) = ∫ 𝐹(𝜏) ⋅ 𝑒−𝑗⋅𝛽⋅𝜏 ⋅ 𝑑𝜏

2𝑧

−∞

 (6.8) 

and the expression achieved for 𝜌(𝑧, 𝛽) in (6.7), is valid for the same conditions as (6.5) and 

(6.6). In order to apply the ILP synthesis method, the structure will be divided into layers which 

have non-uniform profile and the same length, ∆𝑧. Since the coupled-mode equations are linear, 

the local reflection coefficient, 𝜌(𝑧, 𝛽), is identical to the reflection coefficient at the input of the 

section located at the region [𝑧, 𝐿]. Thus, the reflection coefficient at the input of the 𝑚-th layer 

(𝑆11 parameter of the section located at [𝑚 ⋅ ∆𝑧, 𝐿]) can be defined as: 

𝑆11,𝑚(𝛽) = 𝜌(𝑚 ⋅ ∆𝑧, 𝛽) (6.9) 

and 𝑆11,𝑚(𝛽) can be propagated along the device, through a layer of length ∆𝑧, by using (6.7) 

as: 

𝑆11,𝑚+1(𝛽) = 𝑒
𝑗⋅2⋅𝛽·Δ𝑧 ⋅

𝑆11,𝑚(𝛽) − �̅�𝑚(𝛽)

1 − 𝑆11,𝑚(𝛽) ⋅ �̅�𝑚
∗ (𝛽)

 (6.10) 

where �̅�𝑚(𝛽) will correspond to: 
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�̅�𝑚(𝛽) = ∫ 𝐹𝑚(𝜏) ⋅ 𝑒
−𝑗⋅𝛽⋅𝜏 ⋅ 𝑑𝜏

2⋅∆𝑧

−∞

 (6.11) 

while 𝐹𝑚(𝜏) will be the inverse Fourier transform of 𝑆11,𝑚(𝛽) that is defined as: 

𝐹𝑚(𝜏) =
1

2𝜋
∫ 𝑆11,𝑚(𝛽) ⋅ 𝑒

𝑗𝛽𝜏 ⋅ 𝑑𝛽
∞

−∞

 (6.12) 

When the length of the layers ∆𝑧 is short enough, (6.10) will be accurate, since it is applied 

at the beginning of the corresponding structure section. If the use of longer layers is required, 

then higher order approximations of the iterative solution of the GLM equations could be 

employed to obtain (6.5) and (6.6), and from them (6.7) and (6.10). 

Inspecting (6.11), it can be noted that since 𝐹𝑚(𝜏) is a causal function (it is the inverse 

Fourier transform of 𝑆11,𝑚(𝛽), i.e., the impulse response in reflection of the device section at 

[𝑚 ⋅ ∆𝑧, 𝐿]), the lower limit of the integral in (6.11) could be theoretically replaced by 0. 

However, in practice, 𝐹𝑚(𝜏) is numerically calculated from 𝑆11,𝑚(𝛽) using the iFFT, and due to 

the limited bandwidth and spectral resolution employed, 𝐹𝑚(𝜏) becomes slightly inaccurate and 

noncausal. The use of the lower integration limit of −∞ in (6.11) significantly reduces the error 

caused by numerical inaccuracies, in the propagation of the reflection coefficient along the layers 

of the structure [1]. 

In order to calculate the coupling coefficient profile of a layer, the solution previously 

found in CHAPTER 4, equation (4.24), for the GLM method can be employed. If the length of 

the layer, ∆𝑧, is short enough, then the zero-order approximation of the iterative solution of the 

GLM equations of (6.3) and (6.4) can be used, resulting in [1], [2]: 

𝐾(𝑧) = −2 ⋅ 𝐹(2𝑧) (6.13) 

If the use of longer layers is required, higher order approximations of the series solution 

of (4.31) could be employed. 

Thus, the coupling coefficient required for the target 𝑆11(𝛽) can be calculated in a layer 

by layer procedure, where the contribution of the m-th layer is (assuming that its length ∆𝑧 is 

short enough), [1]: 

𝐾(𝑚 ⋅ ∆𝑧 + 𝑧′) = −2 ⋅ 𝐹𝑚(2𝑧
′),        0 ≤ 𝑧′ ≤ ∆𝑧 (6.14) 

with 𝐹𝑚(𝜏) given by (6.12). 
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Therefore, in order to synthesize a microwave device with a target frequency response 

given by its 𝑆11(𝛽) parameter, the structure is divided into layers of a short enough length, ∆𝑧, 

that have nonuniform profile. The input port will be placed at 𝑧 = 0. That point corresponds to 

the input of the 𝑚 = 0 layer. Then 𝑆11,𝑚=0(𝛽) = 𝑆11(𝛽) is taken and the coupling coefficient 

profile required for the 𝑚 = 0 layer is calculated using (6.14). Next, applying (6.10), the 

propagation of 𝑆11,𝑚=0(𝛽) along the structure is performed, obtaining 𝑆11,𝑚=1(𝛽) and effectively 

“peeling off” the 𝑚 = 0 layer. Proceeding iteratively, i.e. calculating the coupling coefficient 

profile of the 𝑚 layer with (6.14), and propagating 𝑆11,𝑚(𝛽) along the device with (6.10), 

obtaining 𝑆11,𝑚+1(𝛽) and “peeling off” the 𝑚 layer, we can continue until the end of the structure 

is reached at 𝑧 = 𝐿. In this way, the coupling coefficient of the whole structure is calculated layer 

by layer, from the input to the output port. 

It is interesting to note that in this synthesis method, the coupling coefficient profile 

calculated for each layer is not used to propagate the 𝑆11,𝑚(𝛽)-parameter along the structure, see 

(6.10). Therefore, the error produced when calculating 𝐾(𝑧) does not accumulate along the 

device through the layer peeling procedure [1]. As it has been already mentioned, this is an 

important advantage of the ILP method with respect to the CLP method. 
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6.1. RELEVANT NUMERICAL ASPECTS FOR 

THE PRACTICAL IMPLEMENTATION OF 

THE ILP METHOD 

As in the case of section 5.1, where topics concerning the sampling theorem and discrete 

signal processing were addressed for the practical implementation of the CLP method, several 

details must be considered so as to properly implement the numerical version of the ILP 

technique. Indeed, this section will cover specific features of the ILP implementation, such as 

the choice of the thickness of the layer or the determination of the amplitude of the coupling 

coefficient based on the particular method employed for the propagation of the reflection 

coefficient. Several aspects will be common with the ones that were analyzed for the CLP 

technique in section 5.1, and a comparison between the later and ILP will be possible.  

In order to deal with the introduced issues, the first part of this section will be devoted to 

the determination of the necessary sampling period of the propagation axis for ILP, by taking 

advantage of the background already developed in section 5.1 for CLP. As it will be shown, the 

selection of the desired thickness of the layer, Δ𝑧, for ILP will need to be coherent with this 

sampling period in 𝑧. Finally, a discussion comparing the computational efficiency of the CLP 

and ILP methods will be provided. 

On the second part of this section, it will be shown how the method employed for the 

propagation of the reflection coefficient at each layer, will eventually have an influence on how 

the amplitude for the coupling coefficient must be taken. 

6.1.1. Relationship between the Target 

Response, the Propagation Axis, and 

the Layer Thickness in Practical 

Discretized-Data Calculations 

In order to implement the ILP synthesis technique in practice, it is obvious that sampled 

and finite data must be employed for the definition of the target impulse response in reflection, 
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𝐹(𝜏), as well as for its corresponding Fourier transform, i.e. the target frequency response in 

reflection, 𝑆11(𝛽). Therefore, it will be necessary to maintain the coherence between the different 

sampling parameters of the reflection distance, 𝜏, the propagation axis, 𝑧, and the phase constant, 

 𝛽. Several useful relationships were found during the study of this issue for the CLP method in 

section 5.1. It is advisable to perform a thorough reading of that section since just a brief 

summary of the discrete time aspects gathered in that section will be done in the present one. 

As it was stated in section 5.1, if 𝑁 samples are considered for the 𝐹(𝜏) definition, then 

the discretized version of 𝐹(𝜏), 𝐹𝐷[𝑛], will be expressed as: 

𝐹𝐷[𝑛] = ∑ 𝐹(𝜏 = 𝑖 · 𝑇𝐷,𝜏)

𝑁−1

𝑖=0

⋅ 𝛿[𝑛 − 𝑖] (5.13) 

where the 𝜏 points where 𝐹(𝜏) is sampled are given from the sampling period of 𝜏, 𝑇𝐷,𝜏, as: 

𝜏𝐷,𝑛 = 𝑛 · 𝑇𝐷,𝜏 = 0 · 𝑇𝐷,𝜏 , 1 · 𝑇𝐷,𝜏 , 2 · 𝑇𝐷,𝜏 ,… , (𝑁 − 1) · 𝑇𝐷,𝜏 (5.14) 

The associated sampled version of the 𝑆11(𝛽)-parameter, 𝑆11,𝐷[𝑘], will be related with 

𝐹𝐷[𝑛] by the FFT algorithm through:  

𝑆11,𝐷[𝑘] = 𝑇𝐷,𝜏  · 𝐹𝐹𝑇{𝐹𝐷[𝑛]} = ∑𝑆11(𝛽 = 𝑖 · Δ𝛽𝐷)

𝑁−1

𝑖=0

⋅ 𝛿[𝑘 − 𝑖] (5.16) 

where Δ𝛽𝐷  is the sampling ratio of the 𝛽 axis, that is in turn related with the maximum duration 

of the impulse response in reflection, 𝜏𝐷,𝑚𝑎𝑥 = 𝑁 · 𝑇𝐷,𝜏, through (5.22) as: 

Δ𝛽𝐷 =
2 · 𝜋

𝜏𝐷,𝑚𝑎𝑥
 (5.22) 

Moreover, since half of the 𝑁 samples of 𝑆11,𝐷[𝑘] are redundant [5] (see section 5.1), the 

maximum phase constant sample that has non-redundant information is 𝛽𝐷,𝑚𝑎𝑥, where: 

𝛽𝐷,𝑚𝑎𝑥 = Δ𝛽𝐷 ·
𝑁

2
 (5.27) 

As it was found in (5.29), the sampling periods of 𝜏 and 𝑧, 𝑇𝐷,𝜏 and 𝑇𝐷,𝑧, respectively, are 

related with 𝛽𝐷,𝑚𝑎𝑥 as: 

𝛽𝐷,𝑚𝑎𝑥 =
𝜋

𝑇𝐷,𝜏
=

𝜋

2 · 𝑇𝐷,𝑧
 (5.29) 

Now, considering that a structure with length 𝐿 must be divided into 𝑁𝑧 optimum points 

when discretized data are considered, it can be directly deduced that: 
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𝑇𝐷,𝑧 =
𝐿

𝑁𝑧
 (5.11) 

The optimum number of points for the 𝑧-axis, 𝑁𝑧, is (see section 5.1): 

𝑁𝑧 = 𝑁 (5.31) 

and the 𝑧 axis gets discretized accordingly as: 

𝑧𝐷,𝑛 = 0 ·  𝑇𝐷,𝑧 , 1 · 𝑇𝐷,𝑧 , 2 · 𝑇𝐷,𝑧 , … , (𝑁 − 1) · 𝑇𝐷,𝑧 (5.25) 

Thus, if 𝐹𝐷[𝑛] is defined with 𝑁 samples from 𝜏 = 0 to 𝜏 = 𝜏𝐷,𝑚𝑎𝑥 every 𝑇𝐷,𝜏 then, the 𝑧 

axis should be optimally defined with 𝑁𝑧 = 𝑁 points. This condition implies that the 𝑆11,𝐷[𝑘] 

must be defined with a total of 𝑁 samples, where only the first 
𝑁

2
 provide original information 

[5]. It is possible to relate the optimum sampling period of 𝑧, 𝑇𝐷,𝑧, with the 𝛽𝐷,𝑚𝑎𝑥 where the last 

non-redundant sample of 𝑆11,𝐷 is defined, i.e. 𝑆11,𝐷 [
𝑁

2
], by means of (5.30) and (5.33) as: 

𝑇𝐷,𝑧 =
𝑇𝐷,𝜏
2
=

𝜋

2 · 𝛽𝐷,𝑚𝑎𝑥
=
𝜆𝑔,𝐷,𝑚𝑖𝑛
4

 (6.15) 

where 𝜆𝑔,𝐷,𝑚𝑖𝑛  is the wavelength that corresponds to 𝛽𝐷,𝑚𝑎𝑥, see (5.33). 

At this point, it must be reminded that it was necessary to consider a special sampling 

period of the 𝑧 axis for the CLP method, 𝑇𝐷,𝑧,𝐶𝐿𝑃 = 2 · 𝑇𝐷,𝑧 =
𝜆𝑔,𝐷,𝑚𝑖𝑛

8
, so as to obtain a 

convergent 𝐾(𝑧), due to the inherent limitations of the numerical solution of the Riccati equation 

of (5.10). Therefore, the number of points needed for the 𝑧 axis in the CLP method was 𝑁𝑧,𝐶𝐿𝑃 =

2 · 𝑁𝑧 = 2 · 𝑁. In order to propagate the reflection coefficient at each point, it was necessary to 

solve the Riccati equation at 𝑁𝑧,𝐶𝐿𝑃 points. 

Unlike the CLP technique, the ILP synthesis method does not require to solve numerically  

the Riccati equation for the propagation, since the procedure is performed by means of (6.10) 

and (6.11), which are deduced from the zero-order approximation of the GLM equations. 

Therefore, when using the ILP synthesis technique, the 𝑧 axis can be divided into the optimum 

number of points 𝑁𝑧,𝐼𝐿𝑃 = 𝑁𝑧 =
𝑁𝑧,𝐶𝐿𝑃

2
. Accordingly, the sampling period of 𝑧 that is necessary 

to employ for ILP, 𝑇𝐷,𝑧,𝐼𝐿𝑃 , will be the optimum 𝑇𝐷,𝑧, and it will be related with  𝛽𝐷,𝑚𝑎𝑥  by (6.15). 

The relationship between 𝑇𝐷,𝑧,𝐼𝐿𝑃  and 𝜆𝑔,𝐷,𝑚𝑖𝑛  is graphically depicted in Fig. 6.1. 
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Fig. 6.1. The practical ILP implementation requires a sampling period of the 𝑧 axis, 𝑇𝐷,𝑧,𝐼𝐿𝑃, that matches the optimum 

𝑇𝐷,𝑧. The optimum 𝑇𝐷,𝑧 is related with the minimum wavelength 𝜆𝑔,𝐷,𝑚𝑖𝑛 associated with the maximum defined phase 

constant, 𝛽𝐷,𝑚𝑎𝑥, of the the 𝑆11-parameter. The structure features physical dimensions 𝐺 along the propagation axis, 𝑧. 

 

Fig. 6.2. Sketch of the relationship between the sampling periods of the 𝑧, 𝑇𝐷,𝑧,𝐼𝐿𝑃 = 𝑇𝐷,𝑧, and  𝜏, 𝑇𝐷,𝜏, axes with the 

finite layer thickness, Δ𝑧, for the case 𝑀 = 3, i.e. Δ𝑧 = 3 · 𝑇𝐷,𝑧 = 6 · 𝑇𝐷,𝜏. The structure features physical dimensions 

𝐺 along the propagation axis, 𝑧. 

Moreover, it must be stressed that in contrast to CLP, in ILP the layer features a finite 

thickness, Δ𝑧, see Fig. 6.2. Accordingly, Δ𝑧 should be chosen as an integer number of samples 

in 𝑧, i.e.: 

Δ𝑧 = 𝑀 · 𝑇𝐷,𝑧 (6.16) 

being 𝑀 a positive integer number. 

Therefore, the number of layers, 𝑁𝐿, in which a structure of length 𝐿 is divided will be 

calculated taking into account (5.11) as: 

𝑁𝐿 =
𝐿

Δ𝑧
=
𝑁𝑧,𝐼𝐿𝑃
𝑀

=
𝑁𝑧,𝐶𝐿𝑃
2 · 𝑀

 (6.17) 
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The propagation of the reflection coefficient will be performed in ILP at each layer, so 

the distance between two consecutive propagations will be Δ𝑧 = 𝑀 · 𝑇𝐷,𝑧,𝐼𝐿𝑃. As a consequence, 

the shortest selectable distance will be given by 𝑀 = 1, yielding to Δ𝑧 = 𝑇𝐷,𝑧,𝐼𝐿𝑃 . 

It is worth noting that for CLP, the propagation must be carried out every 𝑇𝐷,𝑧,𝐶𝐿𝑃 in 𝑧, or 

in other words, 𝑁𝑧,𝐶𝐿𝑃 times. However, the number of propagations needed for ILP will coincide 

with the number of layers, 𝑁𝐿 =
𝑁𝑧,𝐼𝐿𝑃

𝑀
=

𝑁𝑧,𝐶𝐿𝑃

2·𝑀
. Therefore, in the worst case where 𝑀 = 1, the 

number of propagations that are needed in ILP is half of the propagations that would be necessary 

with CLP for the same pair 𝐹𝐷[𝑛], 𝑆11,𝐷[𝑘]. Indeed, this is the most important improvement that 

ILP offers when compared to CLP. As it has been already mentioned, the propagation of the 

reflection spectrum is the source of a great part of the numerical error that is added to 𝐾(𝑧). 

Therefore, the reduction of the number of propagation steps from 𝑁𝑧,𝐶𝐿𝑃 to 𝑁𝐿 =
𝑁𝑧,𝐶𝐿𝑃

2·𝑀
 results in 

a reduction of the error that is accumulated during the iterative process of layer-peeling, leading 

to a more accurate propagation of the reflection coefficient, as well as to a better result for 𝐾(𝑧). 

Furthermore, it must be pointed out that the propagation method used for ILP is not based 

on the numerical solution of the Riccati equation of (5.10) and it is more accurate as long as the 

zero-order approximation between two adjacent layers remains sufficiently accurate (see the 

development of the ILP method at the beginning of this chapter). Moreover, taking into account 

that ILP employs a non-infinitesimal layer in contrast to the infinitesimal layer of CLP, the 

discretization of the 𝑧 axis should be better assimilated by ILP. It is also worth noting that the 

addition of negative values of 𝜏 in (6.11) tends to minimize the numerical error that is added to 

the propagation process. 

On the other hand, it must be also noted that unlike the CLP case (see (5.10)), the value 

of 𝐾(𝑧) at the 𝑚-th layer is not employed in ILP for the calculation of the reflection coefficient 

at the next 𝑚+ 1 layer, 𝑆11,𝑚+1(𝛽), see (6.10) and (6.11). Thus, the calculation of 𝑆11,𝑚+1(𝛽) 

does not include the error committed in the 𝐾(𝑚 ⋅ ∆𝑧′) calculation. 

The combination of these improvements for the propagation procedure drives to a target 

reflection coefficient at each layer that features better numerical quality than the one that would 

be obtained in each discretized point of 𝑧 for CLP. As a consequence, the numerical accuracy 

and the computational efficiency of the whole synthesis process with ILP exceeds the 

performance that can be achieved with CLP. 
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6.1.2. Relationship between the Propagation 

Method and the Amplitude of the 

Coupling Coefficient 

One of the most important aspects of the ILP method is the specific procedure that is 

employed for the deduction of the reflection coefficient that must be satisfied at the 𝑚+ 1 layer, 

𝑆11,𝑚+1(𝛽). Taking under consideration the theoretical development of the ILP technique done 

at the beginning of this chapter, the 𝑆11,𝑚+1(𝛽) must be calculated using (6.10), that in turn 

depends on the previous determination of �̅�𝑚(𝛽) by means of (6.11), which is conveniently 

rewritten below: 

�̅�𝑚(𝛽) = ∫ 𝐹𝑚(𝜏) ⋅ 𝑒
−𝑗⋅𝛽⋅𝜏 ⋅ 𝑑𝜏

2⋅∆𝑧

−∞

 (6.11) 

It is obvious that the integral of (6.11) can be implemented in practice by means of 

numerical integration methods such as the trapezoidal one, which is implemented in the Matlab 

“trapz.m” function. 

However, a deeper observation reveals that (6.11) is a simple Fourier transform, where 

the upper limit +∞ of the formal definition of (4.12) has been substituted by 2 ⋅ ∆𝑧. Taking 

advantage of this fact, the FFT algorithm can be employed to perform a fast and accurate 

calculation of �̅�𝑚(𝛽), and of 𝑆11,𝑚+1(𝛽) as a consequence. Nevertheless, in order to maintain 

the coherence between the sampling parameters of 𝑆11,𝑚(𝛽) and 𝐹𝑚(𝜏), the FFT of the 

discretized version of 𝐹𝑚(𝜏), 𝐹𝐷,𝑚[𝑛], (see section 6.1.1) must be performed over the 𝑁 samples 

that compose 𝐹𝐷,𝑚[𝑛], but some of them correspond to samples of 𝜏, 𝜏𝐷,𝑛 , that will satisfy 𝜏𝐷,𝑛 >

2 ⋅ ∆𝑧, with 𝑛 = 0, 1, 2, … , 𝑁 − 1. In order to address the calculation of (6.11) with the FFT, a 

modified version of 𝐹𝑚(𝜏), 𝐹𝑚
′ (𝜏), must be defined in the following manner: 

𝐹𝑚
′ (𝜏) = {

𝐹𝑚(𝜏)

0

 
, for 𝜏 < 2 ⋅ ∆𝑧 

(6.18)  

, otherwise 

Therefore, the integral (6.11) can be rapidly calculated with the FFT algorithm by also 

taking into account the necessary scaling factor (see (5.16)) as: 
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�̅�𝑚(𝛽 = 𝑘 · Δ𝛽𝐷) = �̅�𝐷,𝑚[𝑘] = 𝑇𝐷,𝜏 · 𝐹𝐹𝑇{𝐹𝐷,𝑚
′ [𝑛]} (6.19) 

where Δ𝛽𝐷  is the sampling ratio of the 𝛽 axis, 𝑇𝐷,𝜏 is the discretization period of the 𝜏 axis and 

𝑛 is the ordinal number that corresponds to each of the 𝑁 discretized samples of 𝐹𝑚
′ (𝜏), i.e. 𝑛 =

0, 1, 2, … ,𝑁 − 1.  

In fact, when dealing with long impulse responses, the largest negative values (in 

modulus) of 𝜏 are progressively less relevant for the calculation of �̅�𝑚(𝛽), and can be 

accordingly neglected by assuming that they are null in the definition of (6.18). However, it is 

very important to keep 𝐹𝑚
′ (𝜏) = 𝐹𝑚(𝜏) for those samples that are not much lower than 𝜏𝐷,𝑛 =

2 ⋅ ∆𝑧 in order to finally obtain an accurate 𝐾(𝑧). It is important to recall that the samples 

corresponding to negative values of 𝜏 will appear at the end of the discretized version of 𝐹𝑚(𝜏), 

𝐹𝐷,𝑚[𝑛], due to the time domain aliasing [5]. 

However, it must be highlighted that the propagated impulse response in reflection 

𝐹𝑚+1(𝜏) = 𝐹𝑇
−1{𝑆11,𝑚+1(𝛽)} (calculated with (6.10), (6.11) and (6.12)) attained for the layer 

𝑚+ 1 as a result of the application of both procedures to calculate (6.11) (trapezoidal integration 

and FFT algorithm) is not exactly the same at 𝜏𝐷,𝑛 = 0, as it can be observed in the example 

provided in Fig. 6.3. The example given in that figure corresponds to the actual calculation of 

𝐹𝑚+1(𝜏), with 𝑚 = 4003, for the design example that will be thoroughly detailed in section 

6.2.1. 

In view of Fig. 6.3a, the sampled version of 𝐹𝑚+1(𝜏) that results from the numerical 

integration of �̅�𝑚(𝛽) in (6.11), 𝐹𝑚+1,𝑖𝑛𝑡(𝜏𝐷,𝑛), carries the effects predicted for the theoretical 

Fourier transform of a signal that presents a discontinuity at 𝜏𝐷,𝑛 = 0 [6]. The value of 

𝐹𝑚+1,𝑖𝑛𝑡(𝜏𝐷,𝑛 = 0) corresponds to the mean value of 𝐹𝑚+1(𝜏 = 0
−) and 𝐹𝑚+1(𝜏 = 0

+), i.e. 

𝐹𝑚+1,𝑖𝑛𝑡(𝜏𝐷,𝑛 = 0) =
𝐹𝑚+1(𝜏=0

−)+𝐹𝑚+1(𝜏=0
+)

2
, see the grey trace of Fig. 6.3b. 

However, in the case of the 𝐹𝑚+1(𝜏) obtained by employing the FFT to calculate �̅�𝑚(𝛽) 

in (6.11), 𝐹𝑚+1,𝐹𝐹𝑇(𝜏𝐷,𝑛), the value provided at 𝜏𝐷,𝑛 = 0 is directly 𝐹𝑚+1(𝜏 = 0
+), see the black 

line of Fig. 6.3b. Since the coupling coefficient at 𝑧 = 0 must be strictly taken at 𝜏 = 0+ (see 

(5.1)), the coupling coefficient at 𝑧𝐷,𝑛 = 𝑚 · Δ𝑧 to be deduced from 𝐹𝑚,𝐹𝐹𝑇(𝜏𝐷,𝑛 = 0), that will 

be annotated as 𝐾𝐹𝐹𝑇(𝑧𝐷,𝑛 = 𝑚 · Δ𝑧), will be: 

𝐾𝐹𝐹𝑇(𝑧𝐷,𝑛 = 𝑚 · Δ𝑧) = −2 · 𝐹𝑚(𝜏 = 0
+) = −2 · 𝐹𝑚,𝐹𝐹𝑇(𝜏𝐷,𝑛 = 0) (6.20) 
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(a) 

 

(b) 

Fig. 6.3. (a) Overview and (b) detail of 𝐹𝑚+1(𝜏) with 𝑚 = 4003, calculated with (6.10), (6.11) and (6.12), when the 

result of (6.11) is computed by performing the numerical integral (grey line) and the FFT (black line). 

On the other hand, if the same coupling coefficient is calculated by means of a numerical 

integration method, 𝐾𝑖𝑛𝑡(𝑧𝐷,𝑛 = 𝑚 · Δ𝑧), it will be necessary to consider that 𝐹(𝜏 = 0+) = 2 ·

𝐹(𝜏 = 0), since 𝐹(𝜏 = 0−) = 0 due to causality considerations (see (4.13)), and then: 

𝐾𝑖𝑛𝑡(𝑧𝐷,𝑛 = 𝑚 · Δ𝑧) = −2 · 𝐹𝑚(𝜏 = 0
+) = −4 · 𝐹𝑚,𝑖𝑛𝑡(𝜏𝐷,𝑛 = 0) (6.21) 

It is worth noting that the sample of 𝐹𝑚+1(𝜏) at 𝜏𝐷,𝑛 = 0 is the only one that becomes 

troublesome, since 𝐹𝑚+1,𝐹𝐹𝑇(𝜏𝐷,𝑛 ≠ 0) = 𝐹𝑚+1,𝑖𝑛𝑡(𝜏𝐷,𝑛 ≠ 0) as it can be observed in Fig. 6.3a. 

This is something that may be expected due to the fact that 𝐹𝑚(𝜏) will be continuous for 𝜏 ≠ 0. 

Thus, for 𝑚 · Δ𝑧 < 𝑧𝐷,𝑛 < (𝑚 + 1) · Δ𝑧 in (6.14), it will be satisfied that: 

𝐾𝑖𝑛𝑡(𝑚 · Δ𝑧 < 𝑧𝐷,𝑛 < (𝑚 + 1) · Δ𝑧) = −2 · 𝐹𝑚,𝑖𝑛𝑡(𝑚 · Δ𝑧 < 𝑧𝐷,𝑛 < (𝑚 + 1) · Δ𝑧) = 

(6.22) 

𝐾𝐹𝐹𝑇(𝑚 · Δ𝑧 < 𝑧𝐷,𝑛 < (𝑚 + 1) · Δ𝑧) = −2 · 𝐹𝑚,𝐹𝐹𝑇(𝑚 · Δ𝑧 < 𝑧𝐷,𝑛 < (𝑚 + 1) · Δ𝑧) 

In order to conclude this subsection devoted to explore the numerical implementation of 

the integral of (6.11) for the calculation of �̅�𝑚(𝛽) and its implications in the amplitude of the 

resulting coupling coefficient at 𝑧𝐷,𝑛 = 𝑚 · Δ𝑧, it must be highlighted that the choice between a 

numerical integration method and the FFT must be coherent with the expressions given in (6.20)-

(6.22) in order to obtain an accurate 𝐾(𝑧). It is obvious that if the presented amplitude criterion 

is not followed, the frequency response featured by the obtained 𝐾(𝑧) will not match the target 

frequency response.  

Moreover, a final remark must be done regarding the great computational efficiency of 

the implementation of the ILP method that is achieved with the use of the FFT algorithm in the 



The Integral Layer Peeling (ILP) Synthesis Technique 229 

 

 

calculation of (6.11), resulting much faster than the method based on numerical integration. 

Indeed, if the CLP propagation procedure, that consists in solving the Riccati equation, is 

compared with the FFT implementation of (6.11) that is used for ILP, the computation time 

required for the propagation in ILP will represent a small fraction of that of CLP. Therefore, the 

ILP synthesis method is much faster than CLP when the target frequency responses are defined 

with the same parameters in terms of 𝛽𝐷,𝑚𝑎𝑥, Δ𝛽𝐷  (in 𝛽 domain) or 𝑇𝐷,𝜏 and  𝜏𝐷,𝑚𝑎𝑥 (in 𝜏 

domain). The exact improvement in terms of computational time-saving achieved by performing 

a synthesis with ILP instead of CLP depends on the definition parameters of the target frequency 

response, 𝛽𝐷,𝑚𝑎𝑥 and Δ𝛽𝐷  (or their counterparts in 𝜏-domain, 𝑇𝐷,𝜏 and  𝜏𝐷,𝑚𝑎𝑥), as well as on the 

layer thickness selected for the case of ILP, Δ𝑧 (see (6.16)). However, by way of example, when 

the synthesis of the planar low-pass filter of section 5.2.3 (that was originally carried out with 

CLP) is repeated using ILP for the same target frequency response and choosing Δ𝑧 = 𝑇𝐷,𝑧, i.e. 

𝑀 = 1, the synthesis process gets approximately completed 300 times faster. 
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6.2. DESIGN OF RECTANGULAR WAVEGUIDE 

LOW-PASS FILTERS WITH HIGH 

REJECTION LEVELS 

Once the theoretical basis of the ILP synthesis method has been thoroughly described, the 

improvement in terms of synthesis accuracy that is expected from the use of this method will be 

tested in practical design examples. For doing so, the design of several rectangular waveguide 

filters, with target frequency responses that feature high rejection levels, will be addressed by 

following the filter design procedure explained in section 5.2.  

Indeed, the first aim of this section will be to complete the whole design process of the 

25-th order Chebyshev low-pass filter that was firstly considered in section 5.2.4. In that section, 

the design workflow was interrupted since the CLP synthesis method was not able to achieve an 

accurate enough coupling coefficient for the target frequency response, due to its challenging 

requirements in terms of rejection level. However, in the present section, the target response will 

be directly obtained in the 𝜏-domain by using the method detailed in section 5.2.2.1, and it will 

be subsequently synthetized with the ILP method. Moreover, as it was explained in section 2.2.3, 

the simulation results will show a degradation with respect to the single-mode expected response 

due to the parasitic couplings to cut-off modes. In order to compensate for these effects, the 

uniform scaling method that was presented in section 2.2.3.1 will be employed. The designed 

filter will be fabricated using the DMLS Additive Manufacturing technique and a later silver 

coating will be applied, being the filter measured at both stages. 

Then, a 21-st order modified Zolotarev response will be considered to design a 

rectangular waveguide filter with a length shorter than that of the previous 25-th order 

Chebyshev filter. The values of the starting Zolotarev commensurate-line UE prototype will be 

modified in order to find a commensurate-line UE prototype that will allow us to synthetize a 

smooth profile filter with suitable dimensions for a subsequent fabrication using the DMLS 

technique. The parasitic effects of cut-off modes will be compensated by means of the uniform 

scaling method of section 2.2.3.1. 

Finally, a pure 21-st order Zolotarev response will be employed to synthetize a low-pass 

filter. In this case, it will be shown how the cut-off modes can dramatically degrade the frequency 

response that can be expected with the single-mode approximation. In order to avoid these 

effects, a recursive correction based on the distributed scaling method of section 2.2.3.2 will be 
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applied. As it will be shown, the accurate compensation performed leads to a final structure that 

practically features the intended single-mode frequency response. 

6.2.1. Rectangular Waveguide Low-Pass 

Filters Suitable for Direct Metal 

Laser Sintering Fabrication (II) 

In this practical example, the design process of the 25-th order Chebyshev low-pass filter 

that was firstly addressed in section 5.2.4 will be resumed. However, the ILP synthesis technique 

will be employed for the current synthesis attempt, since the CLP method did not provide the 

necessary accuracy for the coupling coefficient calculation and the obtained structure did not 

achieve the desired requirements for the frequency response as a result (see section 5.2.4). 

Despite the difference in the synthesis technique employed, the design workflow that will be 

employed in this case will follow the general procedure thoroughly detailed in section 5.2. 

Firstly, it is convenient to remind the requirements for the filter: the passband defined 

from 10.65 to 11.65 GHz must satisfy a Return Loss (𝑅𝐿) level greater than 20 dB. Moreover, a 

minimum rejection level of 80 dB must be guaranteed for the stopband located between 14 GHz 

and 15 GHz. 

In order to achieve this final performance in measurements, several design margins will 

be included in the Chebyshev low-pass frequency response of the starting UE prototype. Thus, 

a minimum 𝑅𝐿 of 25 dB must be satisfied for an expanded passband defined from 10.6 GHz to 

11.95 GHz, and a minimum rejection level of 80 dB must be achieved from 13.95 GHz up to 15 

GHz. Accordingly, the cut-off frequency of the low-pass filter response was selected as 𝑓𝑐 =

11.95 GHz, whereas the maximum rejection frequency was fixed as 𝑓0 = 16.045 GHz. 

Furthermore, the filter must be implemented in the WR75 standard, which is 

characterized by a waveguide width, 𝑎 = 19.05 mm, and height, 𝑏 = 9.525 mm, that will be 

employed at its ports. 

The procedure for the calculation of the UEs of the 25-th order Chebyshev low-pass 

prototype is fully detailed in section 5.2.4. A summary of the different frequency translations 

applied for 𝑓𝑐 and 𝑓0 in section 5.2.4 is provided Table 6.1.  
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Frequency, 𝑓 

(GHz) 

Phase constant, 𝛽 

(rad/m) 

Electrical length, 𝜃 

(rad) 

Normalized frequency, 𝜔 

(rad/s) 

𝑓𝑐 = 11.95 𝛽𝑐 = 188.496 𝜃𝑐 = 1.01 𝜔𝑐 = 1 

𝑓0 = 16.045 𝛽0 = 293.058 𝜃0 = 𝜋/2 𝛼 = 1.181 

Table 6.1. Summary of the different translations for the frequencies 𝑓𝑐 and 𝑓0  that define the starting 25-th order 

Chebyshev UE prototype and their associated frequency transformations. 

 

Unit Element Height (mm) 

𝑏𝑆 = 𝑏𝐿 9.525 

𝑏1 = 𝑏25 7.808 

𝑏2 = 𝑏24 11.794 

𝑏3 = 𝑏23 6.148 

𝑏4 = 𝑏22 14.235 

𝑏5 = 𝑏21 5.439 

𝑏6 = 𝑏20 15.305 

𝑏7 = 𝑏19 5.215 

𝑏8 = 𝑏18 15.688 

𝑏9 = 𝑏17 5.138 

𝑏10 = 𝑏16 15.837 

𝑏11 = 𝑏15 5.107 

𝑏12 = 𝑏14 15.892 

𝑏13 5.099 

Table 6.2. Height values of the starting 25-th order Chebyshev UE low-pass filter prototype for  𝑏𝑆 = 𝑏𝐿 = 9.525 mm. 
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(a) 

 

(b) 

Fig. 6.4. (a) Impulse response in reflection of the 25-th order Chebyshev UE prototype, 𝐹𝑈𝐸(𝜏), (black line) and its 

corresponding continuous underlying version (grey line) that will be the target for the ILP method, 𝐹𝑐(𝜏), obtained 

applying the interpolation method with 𝑚 = 2. (b) Magnitude of the 𝑆11,𝑐 (dashed line) and 𝑆21,𝑐 (solid line) for the 

target 25-th order Chebyshev low-pass response. The specification masks for the frequency response in terms of return 

loss (grey diamond pattern) and the rejection level (grey rectangle pattern) are also provided. 

In the same way, for the sake of convenience, the height values of the UEs of the 

commensurate-line starting prototype that was calculated in section 5.2.4, are again given here 

in Table 6.2. 

It is important to stress that up to this point, the design workflow is exactly the same that 

was carried out in section 5.2.4. However, the ILP synthesis method needs a target impulse 

response in reflection in the 𝜏 domain, 𝐹(𝜏), as input parameter. Therefore, the procedure 

detailed in section 5.2.2.1.3 to calculate the coefficients 𝑎𝑛 of the Dirac delta train of the impulse 

response in reflection of the commensurate-line UE prototype, 𝐹𝑈𝐸(𝜏), will be employed. Taking 

into account that the length of each commensurate line was determined in section 5.2.4 as 𝑙 =

5.36 mm, then 𝑇𝜏 = 2 · 𝑙 = 10.72 mm. Since the interpolation is going to be applied for a low-

pass response design, the interpolation parameter 𝑚 = 2 must be used, and accordingly, 𝛽𝑚𝑎𝑥 =

2 ⋅ 𝛽0 = 586.116 rad/m from (5.81). Thus, the target continuous underlying impulse response, 

𝐹𝑐(𝜏), can be determined by performing the bandlimited interpolation of (5.80). Both impulse 

responses in reflection, 𝐹𝑈𝐸(𝜏) and 𝐹𝑐(𝜏), are depicted in Fig. 6.4a and the corresponding 

frequency response for 𝐹𝑐(𝜏) is provided in Fig. 6.4b. It must be noticed that the frequency 

response in reflection of the UE prototype, 𝑆11,𝑈𝐸  (𝛽), and the target one, 𝑆11,𝑐  (𝛽), will coincide 

in the bandwidth of interest considered for this design case, due to the relationship of (5.85) and 

thus, the frequency response given in Fig. 6.4b may correspond to both 𝑆11,𝑈𝐸  (𝛽) and 𝑆11,𝑐  (𝛽). 

Moreover, it is worth noting that the frequency response obtained by following the bandlimited 

interpolation method in the 𝜏 domain is the same that was obtained in section 5.2.4, where the 

direct 𝛽-domain modification of (5.100) is employed to calculate 𝑆11,𝑐  (𝛽). 
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It is obvious that discretized and non-infinite values of 𝐹𝑐(𝜏) are needed to compute the 

ILP synthesis method and accordingly, the 𝜏 axis has been discretized every 𝑇𝐷,𝜏 =
𝑇𝜏

40
 and the 

duration has been limited to 𝜏𝐷,𝑚𝑎𝑥 = 160000 · 𝑇𝐷,𝜏 . Thus, the resulting 𝑧 axis will be sampled 

with a ratio 𝑇𝐷,𝑧 =
𝑇𝐷,𝜏

2
=

𝑇𝜏

80
 because of (6.15). The length selected for each layer, Δ𝑧, will be 

two times (𝑀 = 2) the sampling period of 𝑧, i.e. Δ𝑧 = 𝑀 · 𝑇𝐷,𝑧 = 2 · 𝑇𝐷,𝑧 by (6.16). 

Consequently, 𝐾(𝑧) will be defined every 𝑇𝐷,𝑧 =
Δ𝑧

2
 but the reflection coefficient will be 

propagated once per layer, so the propagation will be performed every Δ𝑧. Finally, it must be 

stressed that the length of the synthesized structure, 𝐿, will be half of 𝜏𝐷,𝑚𝑎𝑥, and then 𝐿 =
𝜏𝐷,𝑚𝑎𝑥

2
= 80000 · 𝑇𝐷,𝜏 = 160000 · 𝑇𝐷,𝑧. Taking into account that Δ𝑧 = 2 · 𝑇𝐷,𝑧, the structure will 

be divided into 𝑁𝐿 =
𝐿

Δ𝑧
= 80000 layers in 𝑧, according to (6.17). 

Using these parameters for the definition of the target 𝐹𝑐(𝜏), the coupling coefficient is 

calculated with the ILP method at each 𝑚 layer by means of (6.14). The reflection coefficient is 

propagated with (6.10), (6.11) and (6.12). Proceeding in an iterative manner, the coupling 

coefficient, 𝐾(𝑧), that is shown in Fig. 6.5a is obtained. 

The corresponding dimensions of the rectangular waveguide device with exclusive 

variations in its height is obtained by considering 𝐾𝑏(𝑧) = 𝐾(𝑧) in (2.130), which is provided 

below: 

𝑏(𝑧) = 𝑏(0) · 𝑒−2·∫ 𝐾𝑏(𝑟)·𝑑𝑟
𝑧
0  (2.130) 

 

(a) 

 

(b) 

Fig. 6.5. (a) Coupling coefficient, 𝐾, along the propagation axis, 𝑧, calculated by means of the Integral Layer Peeling 

method for the target impulse response in reflection, 𝐹𝑐(𝜏), of Fig. 6.4. (b) Waveguide height profile, 𝑏(𝑧), along the 

propagation axis, 𝑧, calculated from 𝐾(𝑧) with 𝑏(0) = 9.525 mm (grey dotted line)  and 𝑏(0) = 7 mm (grey solid 

line). 
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where the height of the WR75 standard was initially selected for the input port, i.e. 𝑏(0) = 9.525 

mm. The waveguide height profile of the structure is shown in Fig. 6.5b. The length of the 

synthetized structure is 𝐿 =174.59 mm. 

Once the required 𝐾(𝑧) has been determined from the target 𝐹𝑐(𝜏) = 𝐹𝑇
−1{𝑆11,𝑐(𝛽)} 

with the ILP synthesis method, it is advisable to check if that synthesis technique provided an 

accurate result or not. For doing so, the target frequency response will be compared with the 

single-mode analysis that results from the numerical solution of (2.91), (2.92) for the synthetized 

𝐾(𝑧). The result of this analysis is given in Fig. 6.6, where a remarkable agreement between the 

target and the analyzed response can be observed, something that confirms the improvement of 

the accuracy that can be achieved with the use of ILP instead of CLP. In fact, it is suggested to 

compare the result of ILP of Fig. 6.6 with the one that was shown for CLP in Fig. 5.30. 

However, the resulting device features a maximum height of max{𝑏(𝑧)} = 18.41 mm, 

that may be troublesome for the application of the uniform scaling technique detailed in section 

2.2.3.1 for the compensation of the reactive effects of cut-off modes. As it was stated in that 

section, it is very important to ensure that all the relevant higher-order modes are far from the 

propagation regime along the whole structure. In this case, the first modes that can couple energy 

with the fundamental TE10 are the degenerated TE12 and TM12 (see section 2.1.2.1). The cut-off 

frequency of those modes for max{𝑏(𝑧)} can be calculated using the expression (2.50) that 

results in 18.08 GHz, being a value that is dangerously close to the operational bandwidth, which 

reaches 15 GHz in our rejection band specifications. In this situation, the performance of the 

uniform scaling method may not be good enough and thus, the height profile is recalculated for 

 

(a) 

 

(b) 

 

Fig. 6.6. Magnitude of the (a) 𝑆11 and (b) 𝑆21-parameter that correspond to the target frequency response (grey solid 

lines) and results of the single-mode analysis of 𝐾(𝑧) (black dotted lines). The specification masks for the frequency 

response in terms of return loss (grey diamond pattern) and the rejection level (grey rectangle pattern) are also 

provided. 
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 𝑏(0) = 7 mm (see Fig. 6.5b). With the selected 𝑏(0) = 7 mm, the resulting max{𝑏(𝑧)} =

13.52 mm, and the cut-off frequency of the TE12 and TM12 modes is increased up to 23.53 GHz, 

being a value that is sufficiently far from our bandwidth of interest. 

However, the use of input ports different from the specified dimensions of the WR75 

standard obliges to the employment of tapers in height in order to match the height of the WR75 

standard, 𝑏 = 9.525 mm, with the input height of the synthetized filter, 𝑏(0) = 7 mm. 

Fortunately, the section 4.2.3.1 is devoted to the synthesis of rectangular waveguide tapers in 

height. Using the procedure explained in that section, the coupling coefficient of a Hecken taper, 

𝐾𝑡𝑎𝑝𝑒𝑟(𝑧), is calculated so as to match this difference in height with 𝑅𝐿 ≥ 40 dB for a minimum 

matched frequency of 10.35 GHz, that is far enough from the lowest frequency (10.6 GHz) 

required for the filter passband (including the design margin). The resulting coupling coefficient 

for the taper features a length of 𝐿𝑡𝑎𝑝𝑒𝑟 = 28 mm. In order not to increase the length of the filter, 

𝐿, the tapers will be fully included at both extremes of the filtering structure. For doing so, it can 

be demonstrated that 𝐾𝑡𝑎𝑝𝑒𝑟(𝑧) must be added to the 𝐾(𝑧) of the filter at these extremes, in the 

following manner: 

𝐾′(𝑧) =

{
 
 

 
 

𝐾𝑡𝑎𝑝𝑒𝑟(𝑧) + 𝐾(𝑧)

𝐾(𝑧)

−𝐾𝑡𝑎𝑝𝑒𝑟(𝑧 − (𝐿 − 𝐿𝑡𝑎𝑝𝑒𝑟)) + 𝐾(𝑧)

 

, for 0 ≤ 𝑧 ≤ 𝐿𝑡𝑎𝑝𝑒𝑟  

(6.23) , for 𝐿𝑡𝑎𝑝𝑒𝑟 < 𝑧 < 𝐿 − 𝐿𝑡𝑎𝑝𝑒𝑟 

, for 𝐿 − 𝐿𝑡𝑎𝑝𝑒𝑟 ≤ 𝑧 ≤ 𝐿 

where 𝐾′(𝑧) is the coupling coefficient for the filter that includes the tapered matching sections 

at its both extremes. The modified coupling coefficient 𝐾′(𝑧) does not notably alter the original 

𝐾(𝑧) of the filter as it can be observed in their comparison, which is provided in Fig. 6.7a, and 

hence, the frequency response of the whole structure is expected to be very similar to that of the 

original filter. 

Now, if 𝐾′(𝑧) is employed to calculate 𝑏(𝑧) using 𝑏(0) = 9.525 mm in (2.130), the 

extremes of the structure will implement a combination of the taper profile with the beginning 

and the end of the filter, while the central part of the structure will be exactly the same as the one 

that was obtained for the filter with 𝑏(0) = 7 mm. The comparison between the height profile 

obtained with 𝐾(𝑧) and 𝑏(0) = 7 mm, and the one resulting from 𝐾′(𝑧) and 𝑏(0) = 9.525 mm, 

is given in Fig. 6.7b. 



The Integral Layer Peeling (ILP) Synthesis Technique 237 

 

 

 

(a) 

 

(b) 

Fig. 6.7. (a) Coupling coefficients 𝐾(𝑧) (grey solid line) and 𝐾′(𝑧) (black dash-dotted line) along the propagation axis, 

𝑧. (b) Waveguide height profile, 𝑏(𝑧), along the propagation axis, 𝑧, calculated from 𝐾(𝑧) with 𝑏(0) = 7 mm (grey 

solid line) and from 𝐾′(𝑧) with 𝑏(0) = 9.525 mm (black dash-dotted line). 

 

(a) 

 

(b) 

Fig. 6.8. Magnitude of the (a) 𝑆11 and (b) 𝑆21-parameter that correspond to the single-mode analysis performed to 𝐾(𝑧) 
(grey solid lines) and to 𝐾′(𝑧) (black dash-dotted lines). The specification masks for the frequency response in terms 

of return loss (grey diamond pattern) and the rejection level (grey rectangle pattern) are also provided. 

As it was expected, the solution of the single-mode coupled-mode equations of (2.91), 

(2.92) for 𝐾′(𝑧) confirms that the addition of the tapers does not degrade the frequency response 

that was obtained by performing the same analysis but for 𝐾(𝑧). The comparison between both 

single-mode coupled-mode analyses is shown in Fig. 6.8. 

It must be highlighted that up to this point, the frequency responses that have been shown 

resulted from the solution of the coupled-mode equation system of (2.91), (2.92) that assumes 

single-mode operation. However, if a full-wave CST Microwave Studio simulation is performed 

for the last tapered structure, see Fig. 6.7b, the result will be quite different from that obtained 

with the single-mode analysis, as it is clear in view of their comparison of Fig. 6.9. A clear shift  
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(a) 

 

(b) 

Fig. 6.9. Magnitude of the (a) 𝑆11 and (b) 𝑆21-parameter that correspond to the single-mode analysis performed to 

𝐾′(𝑧) (black dash-dotted lines) and results of the CST simulation of the same structure (grey dash-dotted lines). The 

specification masks for the frequency response in terms of return loss (grey diamond pattern) and the rejection level 

(grey rectangle pattern) are also provided. 

of the expected frequency response is registered when the effects of higher-order modes are taken 

into account in the full-wave CST Microwave Studio simulation. 

In order to compensate for the reactive impact of the cut-off modes, the uniform scaling 

method of section 2.2.3.1 will be employed. For doing so, all the coupling coefficients of the 

form 𝐶𝑚,𝑖 = 𝐶1,𝑖 for all the relevant modes for which the coupling is not null need to be firstly 

calculated (see section 2.1.2.1) using (2.74), (2.75), and (2.76). In this case, where symmetrical 

variations in height are performed, the modes that interact between each other are the TEpq with 

𝑝 = 1 and 𝑞 = 0, 2, 4, … ,∞ and the TMpq with 𝑝 = 1 and 𝑞 = 2, 4, 6, … ,∞. Since 𝑚 = 1 in 

𝐶𝑚,𝑖, the 𝑚 = 1 index refers to the forward travelling wave of the fundamental TE10 mode, while 

the 𝑖 index corresponds to the rest of the listed TEpq and TMpq modes (including their forward 

(𝑖 > 0) and backward (𝑖 < 0) travelling waves). Due to the fact that a finite number of modes 

must be employed for the numerical calculations, the subindex 𝑞 has been limited in both TE 

and TM modes up to 𝑞 = 128 for the solution of the general coupled-mode equation system of 

(2.44), where one equation of this form is included for each considered mode:  

𝑑𝑎𝑚
𝑑𝑧

+ 𝑗 · 𝛽𝑚 · 𝑎𝑚 =∑𝑎𝑖 · 𝐶𝑚𝑖
𝑖

 (2.44) 

By solving the equation system of (2.44) for 𝑓𝑡 = 𝑓𝑐 = 11.95 GHz (see section 2.2.3), the 

complex amplitudes of all the considered modes, 𝑎1 and 𝑎𝑖, along the propagation axis will be 

determined, and thus, the average effective phase constant, �̅�𝑒𝑓𝑓(𝑓𝑡), can be calculated using the 

expression (2.227), although applied just to the core of the filter where the coupling is high: 
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�̅�𝑒𝑓𝑓(𝑓𝑡) =
∫ 𝛽𝑒𝑓𝑓(𝑓𝑡) · 𝑑𝑧
𝑧1

𝑧0

𝑧1 − 𝑧0
 (6.24) 

where 𝛽𝑒𝑓𝑓  is the effective phase constant at each 𝑧-point that encompasses the phase constant 

of the fundamental mode, 𝛽1, and the reactive contributions of the cut-off modes, as it can be 

seen in the expression (2.222) that is rewritten again here for the sake of clarity: 

𝛽𝑒𝑓𝑓(𝑓𝑡) = 𝛽1(𝑓𝑡) − 𝐼𝑚 {∑
𝐶1,𝑖(𝑓𝑡) · 𝑎𝑖(𝑓𝑡)

𝑎1(𝑓𝑡)|𝑖|>1

} (2.222) 

Applying the calculation of (2.222) and (6.24) from 𝑧0 = 50 mm to 𝑧1 = 125 mm in 

order to take into account the core of the filter where the coupling is high (see Fig. 6.7a), an 

average effective phase constant, �̅�𝑒𝑓𝑓 = 206.66 rad/m is calculated. Therefore, the scaling 

factor, 𝜓, that must be applied to the 𝑧 axis will be determined from (2.230) that is given again 

here: 

𝜓(𝑓𝑡) =
�̅�𝑒𝑓𝑓(𝑓𝑡)

𝛽1(𝑓𝑡)
 (2.230) 

Taking into account that �̅�𝑒𝑓𝑓 = 206.66 rad/m and 𝛽1(𝑓𝑡) = 𝛽𝑐 = 188.496 rad/m (see 

Table 6.1), the scaling factor will be obtained from (2.230) as 𝜓(𝑓𝑡) =
206.66 𝑟𝑎𝑑/𝑚

188.496 𝑟𝑎𝑑/𝑚
= 1.098. 

Then, the necessary scaling 
𝑧

𝜓
 is performed for the final 𝑧-axis, while the initial amplitude of 

𝐾′(𝑧) must be multiplied by 𝜓, according to the scaling property of (2.229) that is being applied. 

The result of the compensated coupling coefficient is depicted in Fig. 6.10a, while its associated 

𝑏(𝑧) profile is calculated using 𝑏(0) = 9.525 mm (WR75 standard) in (2.130). In these figures, 

the original 𝐾′(𝑧) (Fig. 6.10a) and 𝑏(𝑧) (Fig. 6.10b) without the compensation of cut-off modes 

are also provided for the sake of completeness. The length of the final structure is 159.3 mm. 

A new CST Microwave studio simulation is performed for the compensated structure and 

its results are shown in Fig. 6.11, together with the single-mode simulation of 𝐾′(𝑧) and the CST 

simulation of the non-compensated structure that was previously provided in Fig. 6.9. As it can 

be observed, the uniform scaling method has compensated the parasitic reactive effects of cut-

off modes that prevented the fulfillment of the passband requirements prescribed by the mask of 

Fig. 6.9. As a consequence, the results of the CST simulation for the compensated filter almost 

fit the behavior predicted by the single-mode analysis of 𝐾′(𝑧), and the requirements for 𝑅𝐿 and 

rejection level of the frequency response are fulfilled. 
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(a) 

 

(b) 

Fig. 6.10. (a) Coupling coefficient, 𝐾′, and (b) associated waveguide height profile, 𝑏, along the propagation axis, 𝑧, 

before (black dash-dotted line) and after (black solid line) performing the compensation of cut-off modes. 

 

(a) 

 

(b) 

Fig. 6.11. Magnitude of the (a) 𝑆11 and (b) 𝑆21-parameter that correspond to the single-mode analysis performed to 

𝐾′(𝑧) (black dash-dotted lines), results of the CST simulation of the same structure (grey dash-dotted lines) and results 

of the CST simulation of the structure obtained after applying the cut-off mode compensation (black solid lines). The 

specification masks for the frequency response in terms of return loss (grey diamond pattern) and the rejection level 

(grey rectangle pattern) are also provided. 

The designed structure was fabricated in a single piece, by means of the DMLS Additive 

Manufacturing technique, by growing it following the propagation direction, 𝑧. The sintering 

system was the EOS EOSint M 280 [7] and the printing powder was the AlSi10Mg aluminum 

alloy, which was sintered in layers of nominal thickness of 100 𝜇m. Once the sintering process 

finished, the excessive roughness of both port flanges was corrected by performing a polishing 

procedure. A photograph of the prototype is shown in Fig. 6.12. 
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Fig. 6.12. Photograph of the WR75 Chebyshev filter fabricated with DMLS in AlSi10Mg and subsequently coated 

with a 40 µm silver layer. 

At this point, it must be highlighted that one of the most troublesome aspects from the 

point of view of Additive Manufacturing in metals is the existence of overhanging surfaces 

perpendicular to the growing direction, because they would eventually warp or even fall off. 

Unfortunately, if we try to print a device designed by classical techniques in the propagation 

direction, we will find plenty of problematic overhanging walls. Since it is commonly impossible 

to use inner auxiliary supports in a waveguide structure, the remaining option is to print the piece 

in a different orientation with the help of external auxiliary supports that must be designed ad-

hoc for each different structure.  

On the other hand, the ILP method automatically produces smooth profiles that avoid 

large overhanging layers and hence, the parts are directly suitable for a DMLS fabrication, unlike 

other approaches where the geometry of a classical filter is modified so as to allow a DMLS 

fabrication [8]. Moreover, these smooth profiles can be grown by following the propagation 

direction without using additional inner and/or outer auxiliary supports, something that clearly 

eases the printing process while reducing the costs as well as the insertion losses, since the 

staircase effect [8] is minimized. 

Finally, the fabricated filter was measured using an Agilent E8364B PNA vector network 

analyzer, proper waveguide-to-coaxial transitions and a calibration kit. A good agreement is 

achieved between simulation and measurement results, as it can be seen in Fig. 6.13. Moreover, 

the required frequency specifications are completely met. The small discrepancies found, like 

the slight frequency shift, can be explained by the fabrication tolerances and the high loss level  

introduced by the AlSi10Mg aluminum alloy. In fact, the insertion loss, 𝐼𝐿, reaches a worst value 

of 𝐼𝐿 = 0.87 dB at the upper limit of the passband (11.65 GHz). In order to reduce the losses, 

the filter was coated with a 40 µm silver layer and a new set of measurements were done. In the 

inset of Fig. 6.13 it can be appreciated that the 𝐼𝐿 turn to 0.15 dB as a consequence of the silver 

coating and the performance of the filter gets notably improved. 
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Fig. 6.13. Magnitude of the 𝑆11 (dotted lines) and 𝑆21-parameter (solid lines) that correspond to the CST simulation of 

the filter obtained after applying the cut-off mode compensation (grey lines), and to the measurements (black lines). In 

the inset, a detail of the |𝑆21|-parameter is provided, where the grey dash-dotted line corresponds to the measurements 

made before silver plating. The specification masks for the filter performances in terms of return loss (grey diamond 

pattern) and the minimum rejection level (grey rectangle pattern) are also provided. 

The results obtained confirm the accuracy of the ILP synthesis technique as well as the 

effectiveness of the compensation procedure for the effects of cut-off modes. 

On the other hand, the inherent benefits of a smooth-profiled filter for a final DMLS 

fabrication have been proved, since the manufactured prototype complied with all the required 

specifications with a remarkable agreement with the results obtained in simulation. 

6.2.2. High Performance Modified 

Zolotarev Low-Pass Filter in 

Rectangular Waveguide 

In this section, the design procedure developed in section 5.2 for the design of rectangular 

waveguide low-pass filters will be further exploited in order to obtain a high performance device 

in terms of length and rejection level. As it has been seen in the previous section 6.2.1, the 25-th 

order Chebyshev response achieved the desired frequency specifications with a filter length of  

159.3 mm. In the design process that will be carried out in this section, several criterions will be 

followed so as to minimize the length of the filter while ensuring the compliance of the same 

requirements that were demanded for the 25-th order Chebyshev low-pass filter. Specifically, 

the design security margins will be trimmed and a frequency response more selective than the 

canonical low-pass Chebyshev will be used. Moreover, the values of the starting UE prototype 
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will be properly optimized so as to generate a filter response adequate to subsequently synthetize 

a smooth-profiled structure that will feature safe dimensions for a final DMLS fabrication. 

Firstly, it is necessary to recall the requirements that must be satisfied by the final filter: 

the passband will be defined from 10.65 to 11.65 GHz with 𝑅𝐿 ≥ 20 dB, while a minimum 

rejection level of 80 dB must be guaranteed for the stopband located between 14 GHz and 15 

GHz. However, as it was previously explained, it is necessary to include security margins for the 

target frequency response of the initial UE prototype so as to prevent the possible effects caused 

by the nominal deviations of ±100 µm of the DMLS fabrication technique. However, in order to 

achieve a shorter filter in the current design, the passband of the target frequency response will 

be fixed from 10.6 GHz to 11.75 GHz, with a minimum 𝑅𝐿 of 25 dB. Regarding the required 

rejection level in the stopband, a minimum of 80 dB must be achieved from 13.8 GHz up to 15 

GHz. The waveguide standard to be employed for the implementation will be WR75, which 

features a width, 𝑎 = 19.05 mm and a height 𝑏 = 9.525 mm. 

In order to synthetize a rectangular waveguide filter intended to meet the aforementioned 

requirements in terms of frequency response and fabrication aspects, the first task is to select a 

starting commensurate-line UE prototype that also satisfies those specifications. It must be 

highlighted that this choice represents a critical design step, since the smooth-profiled structure 

that will be synthetized using ILP with an interpolated version of the impulse response of that 

initial UE prototype, will feature similar physical dimensions (length and heights) to the ones of 

the initial UE prototype. Thus, the transitions between adjacent UEs exhibited by the initial 

commensurate-line UE prototype will provide an intuitive knowledge of the angles that will be 

eventually found in the synthetized smooth structure. In fact, the transitions of the starting UE 

prototype can be controlled by means of two design parameters of the filter: its order, 𝑁, and the 

frequency of the highest rejection level, 𝑓0 (or its corresponding phase constant, 𝛽0). If the order 

of the filter is increased while the rejection level is kept constant (at a certain frequency), the 

difference in characteristic impedance (or equivalently in height for rectangular waveguide 

technology) between any consecutive UEs will be reduced, and the resulting angle in the 

synthetized smooth filter will be smaller as a result. On the other hand, when the value of 𝑓0 is 

reduced while maintaining the filter order constant, the length of the commensurate-line sections, 

𝑙, is increased, since that length has an inverse proportional relationship with 𝛽0, see (5.96). Thus, 

the distance between the midpoints of two consecutive line sections becomes longer in the UE 

prototype, and the corresponding transition between a maximum and a minimum in the height 

of the synthetized smooth structure will feature less abrupt angles. It is worth noting that 

increasing the order and reducing the value of 𝑓0 make the initial commensurate-line UE 

prototype longer, so the synthetized smooth filter will be longer as well. Therefore, a trade-off 
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solution must be reached between the largest angle that can be fabricated and the maximum 

affordable length for the filter, in terms of insertion losses, longest footprint allowed and 

maximum building volume of the sintering system. 

Regarding the specific case of this design example, an initial all-pole 𝑁 = 21-st order 

Zolotarev low-pass response was selected, since it will provide less abrupt transitions between 

adjacent UEs than a Chebyshev response of the same order and cut-off frequency (while being 

slightly more selective) [9], something that is desirable for an eventual DMLS fabrication 

because of the reasons previously commented. The frequency selected to exhibit the highest 

rejection level was 𝑓0  = 17.568 GHz, which corresponds to a phase constant of 𝛽0 = 329.201 

rad/m, that can be calculated employing (2.117): 

𝛽(𝑓) =
2 · 𝜋 · 𝑓

𝑐
· √1 − [

𝑓𝑐
𝑇𝐸10

𝑓
]

2

 (2.117) 

where 𝑓𝑐
𝑇𝐸10 is calculated for the width of the WR75 standard (𝑎 = 19.05 mm), according to 

(2.118). 

The upper value of the passband (including security margin) was taken as the cut-off 

frequency of the filter, i.e., 𝑓𝑐 = 11.75 GHz, leading to a cut-off phase constant of 𝛽𝑐  = 182.889 

rad/m. Furthermore, the value selected for the minimum frequency of the passband was 𝑓𝑍𝑜𝑙𝑜 = 

8.298 GHz, yielding to an associated phase constant 𝛽𝑍𝑜𝑙𝑜 = 55.199 rad/m. Since 𝛽0, 𝛽𝑐  and 𝛽𝑍𝑜𝑙𝑜 

are known, and taking into account that all the line sections of the UE prototype have identical 

electrical length at 𝛽0 of 𝜃0 =
𝜋

2
 rad, the electrical length of the lines for 𝛽𝑐  and 𝛽𝑍𝑜𝑙𝑜  can be also 

determined by (5.42), being 𝜃𝑐 = 0.873 rad and 𝜃𝑍𝑜𝑙𝑜= 0.263 rad.  

Finally, the frequency parameters of the 21-st order all-pole normalized Zolotarev 

response can be calculated by means of (5.49), i.e., the normalized cut-off frequency has the 

typical value of 𝜔𝑐  = 1 rad/s, the normalized minimum frequency of the passband is 𝜔𝑍𝑜𝑙𝑜 = 0.34 

rad/s, while the normalized frequency that specifies the highest rejection level that will be 

achieved with the commensurate-line UE prototype is 𝜔 = 𝛼 =  1.305 rad/s, see Fig. 5.8. 
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Unit Element Zolotarev heights (mm) Modified heights (mm) 

𝑏𝑆 = 𝑏𝐿 9.525 9.525 

𝑏1 = 𝑏21 5.914 5.510 

𝑏2 = 𝑏20 10.838 9.284 

𝑏3 = 𝑏19 2.933 2.446 

𝑏4 = 𝑏18 7.946 7.646 

𝑏5 = 𝑏17 1.412 2.057 

𝑏6 = 𝑏16 4.100 9.185 

𝑏7 = 𝑏15 0.646 2.253 

𝑏8 = 𝑏14 1.989 9.525 

𝑏9 = 𝑏13 0.337 2.153 

𝑏10 = 𝑏12 1.217 8.882 

𝑏11 0.259 1.984 

Table 6.3. Values of the Unit Elements for the pure and the modified Zolotarev prototypes.  

Once the normalized frequency values, 𝜔𝑐 , 𝜔𝑍𝑜𝑙𝑜 and  𝛼, have been defined, the 

normalized all-pole low-pass Zolotarev response is completely determined. Then, using (5.51), 

the normalized response can be translated to the Richards transform domain, see section 5.2.1. 

Finally, the values of the Unit Elements of the commensurate-line UE prototype that satisfies the 

intended frequency response can be calculated as explained in section 5.2.1. The results are given 

in Table 6.3. 

It must be highlighted that the minimum height of the commensurate-line UE prototype 

of the Zolotarev filter is 𝑏11 =  0.259 mm, which is a value that may become problematic for 

the DMLS manufacturing tolerances (±100 µm), even more if it is recalled that the final smooth 

filter will feature similar physical dimensions to those of the initial UE prototype. In order to 

find more suitable dimensions for the initial commensurate-line UE prototype, an optimization 

procedure was performed using Keysight Genesys by requiring a minimum UE value (height in  
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(a) 

 

(b) 

Fig. 6.14. (a) Comparison between the frequency responses of the Zolotarev (grey lines) and the modified-Zolotarev 

(black lines) commensurate-line UE prototypes: magnitude of 𝑆11 (dotted lines) and 𝑆21 (solid lines) parameters. The 

specifications for the frequency response (including security margins) for the return loss (rhombus-based pattern mask) 

and for the rejection level (rectangle–based pattern mask) are also included for a sake of clarity. (b) Impulse response 

in reflection of the modified-Zolotarev UE prototype (black line),𝐹𝑈𝐸, along the 𝜏 axis, and its corresponding 

underlying continuous version (grey line), 𝐹𝑐 , obtained after applying the interpolation method with 𝑚 = 2. 

our case of rectangular waveguide) of 1.750 mm and a maximum UE value (height) of 9.525 

mm for the commensurate-line prototype, while still demanding the fulfillment of the 

requirements made for the frequency response. This optimization procedure gave rise to a 

modified Zolotarev commensurate-line prototype that features the UE dimensions gathered in  

Table 6.3. A comparison between the frequency responses of the canonical and modified 

Zolotarev UE prototypes is shown in Fig. 6.14a, where the masks required for the return loss and 

rejection level are also included for the sake of completeness. 

Once a valid commensurate-line UE prototype was found, its impulse response in 

reflection was calculated by means of the procedure detailed in section 5.2.2.1.3. Then, the 

interpolation method explained in sections 5.2.2.1.1 and 5.2.2.1.2 was applied in order to obtain 

the underlying continuous impulse response in reflection. An interpolation parameter 𝑚 = 2 was 

selected in (5.81) since a low-pass filter response was desired, leading to 𝛽𝑚𝑎𝑥 = 2 · 𝛽0  in (5.80). 

A discretization period of 𝑇𝐷,𝜏 = 𝑇𝜏/40 was employed for an impulse response defined between 

𝜏𝐷,𝑛=0 = 0 m and 𝜏𝐷,𝑚𝑎𝑥 =  8000 · 𝑇𝜏, leading to a corresponding frequency response in 

reflection that was defined from 𝛽𝐷,𝑛=0 = 0 rad/m up to 𝛽𝐷,𝑚𝑎𝑥 = 40 · 𝛽0, every Δ𝛽 =

𝛽0/2000. Actually, the “interpft.m” Matlab function can be employed to efficiently implement 

(5.80), leading to the interpolated impulse response in reflection, 𝐹𝑐(𝜏), that is shown in Fig. 

6.14b. Nevertheless, it must be pointed out that 𝑚− 1 samples with zero value must be inserted 

between each pair of samples of 𝐹𝑈𝐸(𝜏) in order to properly compute (5.80) with “interpft.m”. 
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Fig. 6.15. (a) Coupling coefficient, 𝐾, along the propagation axis, 𝑧, calculated using the Integral Layer Peeling 

method for the interpolated impulse response in reflection of the modified-Zolotarev UE prototype: original synthesis 

(grey dotted line) and final coupling coefficient (black solid line) that was calculated after the cut-off modes 

compensation. (b) Waveguide height profile, 𝑏(𝑧), associated with both versions of 𝐾(𝑧): before (grey dotted line) and 

after cut-off mode compensation (black solid line). 

Once the target interpolated impulse response in reflection, 𝐹𝑐(𝜏), was determined, the 

ILP synthesis technique was applied, using a layer thickness of Δ𝑧 = 3 · 𝑇𝐷,𝑧 = 3 ·
𝑇𝐷,𝜏

2
=

3·𝑇𝜏

80
 

(i.e. three times the discretization period that was chosen for the propagation axis, 𝑇𝐷,𝑧), to 

calculate the required 𝐾(𝑧) that is shown in Fig. 6.15a, in grey dotted line. The length of the 

synthetized structure is 𝐿= 113 mm. It is interesting to note that the Fast Fourier Transform (FFT) 

algorithm was employed to efficiently compute the integral of (6.11). As it has been explained 

in section 6.1.2, when using the FFT to compute (6.11) in the calculation of the frequency 

response propagation, the coupling coefficient must be computed using equations (6.20) and 

(6.22). 

Once 𝐾(𝑧) has been calculated, the waveguide height profile along the propagation 

direction, 𝑏(𝑧), is immediately known by applying (2.130) with an input port height of the WR75 

standard, i.e., 𝑏(0) = 9.525 mm. The attained height profile is depicted in Fig. 6.15b, in grey 

dotted line. The maximum height obtained for the synthetized structure is max{𝑏(𝑧)} = 11.67 

mm. The cut-off frequency of the closest higher-order modes (TE12 and TM12) for that 

max{𝑏(𝑧)} is 26.87 GHz by (2.50), being a value higher than that obtained for the 25-th order 

Chebyshev filter synthetized in the previous section 6.2.1, even when 𝑏(0) = 7 mm was chosen. 

Therefore, the profile obtained by means of 𝑏(0) = 9.525 mm can be maintained for the 

subsequent stage of cut-off modes compensation. It is worth noting that the direct use of the 

required WR75 standard port avoids the need of additional tapers, as well as their extra design 

stage. Furthermore, it must be stressed that the minimum mechanical gap of the synthetized 

structure is 1.67 mm, being a gap high enough to be safely fabricated with the DMLS technique. 
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Fig. 6.16. Comparison between the (a) 𝑆11 and (b) 𝑆21-parameter of the target frequency response (black dotted line) 

and of the single-mode simulation (grey solid line) of the modified-Zolotarev filter. The specifications required 

(including security margins) for the return loss (rhombus-based pattern mask) in (a) and for the rejection level 

(rectangle –based pattern mask) in (b) are also included for a sake of clarity. 

In order to verify the accuracy of the ILP synthesis, the single-mode coupled-mode 

equation system of (2.91), (2.92) was solved, leading to the frequency responses that are shown 

in Fig. 6.16. As it can be seen in these graphs, the synthesis has been accurate enough to provide 

|𝑆11| and |𝑆21|-parameters that fulfil the return loss and rejection level requirements, 

respectively. 

In order to determine the scaling factor, 𝜓(𝑓𝑡), which is needed to compensate for the 

reactive coupling to cut-off modes, the first step is to analyze the synthetized structure using the 

coupled-mode equation system of (2.44) for a frequency, 𝑓𝑡 . The value selected for this frequency 

was 𝑓𝑡 = 𝑓𝑐 = 11.75 GHz in order to adjust the cut-off frequency of the filter with the highest 

accuracy. As it has been previously calculated, the corresponding phase constant for 𝑓𝑡 = 𝑓𝑐 in 

the case of the fundamental TE10 mode is 𝛽1(𝑓𝑡 = 𝑓𝑐) = 182.889 rad/m. For the correction of 

the effects of cut-off modes in a rectangular waveguide structure that only features symmetrical 

variations in its height (see section 2.1.2.1), the relevant higher-order modes are the TEpq as well 

as the TMpq with 𝑝 = 1 and 𝑞 = 2, 4, 6, …. The coupling coefficients between all these modes 

and the fundamental TE10 (𝑚 = 1), 𝐶𝑚,𝑖 = 𝐶1,𝑖, can be calculated using (2.74), (2.75), and (2.76). 

Once all the necessary coupling coefficients were calculated, the equation system of (2.44) was 

solved numerically using the Matlab function “bvp4c.m”. Due to the fact that a finite number of 

modes must be selected in order to compute (2.44), a maximum 𝑞 = 128 was chosen for both 

TE and TM modes, leading to an effective phase constant, 𝛽𝑒𝑓𝑓 , that was calculated by means of 

(2.222), ensuring that the number of cut-off modes that were taken was enough to obtain an 

average effective phase constant that converged to a fixed value of �̅�𝑒𝑓𝑓= 196.65 rad/m, using  
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Fig. 6.17. Phase constant of the fundamental TE10 mode for a frequency 𝑓𝑡 = 11.75 GHz  (black dashed line), effective 

phase constant caused by cut-off modes, 𝛽𝑒𝑓𝑓, along the propagation direction, 𝑧, for the same frequency (grey line), 

and its average value, 𝛽�̅�𝑓𝑓, (black solid line). 

(6.24) for the whole structure (from 𝑧0 = 0 to 𝑧1 = 𝐿). The effective phase constant at 𝑓𝑡  = 11.75 

GHz, 𝛽𝑒𝑓𝑓 , as well as its average value, �̅�𝑒𝑓𝑓, and the phase constant at that frequency for the 

TE10 fundamental mode, 𝛽1, are shown in Fig. 6.17. 

Thus, a value of the scaling factor, 𝜓(𝑓𝑡) = 1.075, is obtained by means of (2.230). 

Finally, the scaling factor is applied to 𝑧 yielding to a new propagation axis and a new coupling 

coefficient, 𝐾 · 𝜓(𝑓𝑡), along the 𝑧/𝜓(𝑓𝑡) propagation axis, according to (2.229). The resulting 

coupling coefficient is depicted in Fig. 6.15a, where it is also compared with the one that was 

originally obtained from the ILP synthesis. The final waveguide height dimensions of the filter 

are calculated again using (2.130) with 𝑏(0) = 9.525 mm (WR75 standard port). The height 

profile of the structure along the scaled propagation axis is shown in Fig. 6.15b, in black solid 

line. The designed waveguide filter features a final length of 105 mm, which implies the 65.9% 

of the length of the 25-th order Chebyshev filter of section 6.2.1. It must be highlighted that this 

reduction in size becomes more remarkable if it is taken into account that both structures have 

been designed to satisfy the same final specifications. 

The final filter was simulated with CST Microwave Studio and the results, shown in Fig. 

6.18, confirm the fulfilment of all the required specifications for the frequency response, as it 

can be seen from their corresponding masks also included in the graph. The modified-Zolotarev 

filter was fabricated in a single piece, by means of the Additive Manufacturing DMLS technique, 

employing an EOS EOSint M280 system [7] and using AlSi10Mg alloy as the material for the 

sintering powder. The structure was grown in vertical direction, i.e., following the propagation 

axis, 𝑧. As it has been previously stated, the choice of this direction has two clear advantages:  
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Fig. 6.18. Comparison of the 𝑆11 (dotted lines) and 𝑆21 (solid lines)-parameters obtained from the CST simulation 

(grey lines) and from the measurement (black lines). The specifications required for the return loss level (rhombus-

based pattern mask) and for the rejection level (rectangle –based pattern mask) are also included for a sake of clarity. 

In the inset a detail of the 𝑆21 measurement before (dashed line) and after silver plating (black line) is given. 

 

Fig. 6.19. Photograph of the final WR75 modified-Zolotarev low-pass filter fabricated by means of Additive 

Manufacturing DMLS technique. 

the first one is that additional supporting structures were not needed since the filter neither 

features overhanging walls nor critical angles greater than 45º, and consequently, we can 

consider the synthetized filter as a self-supporting structure in that direction. Moreover, the 

staircase effect [8] is minimized leading to a reduction of the insertion loss caused by this effect. 

Once the filter was fabricated, a mechanical post-processing procedure that consisted in 

polishing both port flanges was performed, looking for an improvement of their flatness as well 

as a significant reduction of their roughness, since the surface finish quality of these zones may 

become critical in a subsequent characterization stage. 

At this point, the filter was measured using an Agilent E8364B PNA vector network 

analyzer and the obtained results are depicted in Fig. 6.18. A very good agreement between the 

simulation and measurement results can be observed and the compliance of the frequency 

specifications is guaranteed. The slight differences that can be found may be attributed to the 

DMLS fabrication tolerances. In order to minimize the insertion losses, an additional post-

processing step was applied by performing a silver coating of 20 µm of thickness over the whole 

surface of the structure. A photograph of the final filter is provided in Fig. 6.19. The filter was 

again measured after the aforementioned silver-plating process by also using the same set-up as 
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in the first characterization, see the inset of Fig. 6.18. As it was expected, a remarkable reduction 

of the insertion loss is achieved, and a final worst value of these losses is obtained at the upper 

limit of the passband with a value of 0.17 dB. 

The high quality of the obtained results confirms the reliability of the design method for 

high-performance rectangular waveguide filters. Moreover, the suitability of the smooth-profiled 

waveguide structures that result from ILP for a subsequent direct DMLS fabrication was again 

proved, as it can be concluded in view of the level of agreement reached between the simulation 

and measurement results. 

6.2.3. Zolotarev Low-Pass Filter with 

Accurate Compensation of Parasitic 

Effects of Cut-Off Modes 

Up to this point, the design processes that have been previously presented within this 

section 6.2 (25-th order Chebyshev and 21-st order modified-Zolotarev) were successfully 

completed by using the uniform scaling method for the compensation of the reactive effects 

caused by the cut-off modes in the frequency response. In both examples, the addition of higher-

order modes to the single-mode simulation mainly resulted in a slight frequency shift, without 

further degradation in the shape of the frequency response. Thus, the uniform scaling method 

obtained a good performance by compensating the undesired frequency shift with a uniform 

compression of the propagation axis. The compression ratio is obtained as a function of the 

fundamental mode and the average effective phase constants. However, it must be noted that the 

addition of higher-order modes may involve more noticeable effects than a simple frequency 

displacement, being also typical the deterioration of the 𝑆11-parameter along the passband that 

leads to the infringement of the 𝑅𝐿 specifications. Thus, in the following design procedure of a 

genuine 21-st order Zolotarev low-pass filter, it will be shown a strongly degraded passband 

case, and the performance of the uniform scaling compensation method will be compared with 

the application of the recursive distributed scaling technique that was thoroughly explained in 

section 2.2.3.2. 

Unlike the low-pass filter design cases of the 25-th order Chebyshev of section 6.2.1 and 

the high-performance modified-Zolotarev of section 6.2.2, the specifications that will be required 

for this filter are a passband defined from 10 GHz to 11.75 GHz with 𝑅𝐿 ≥ 20 dB, and a 
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stopband from 14 GHz to 15 GHz with a minimum rejection level of 60 dB. Thereby, following 

the design security criterion, the demanded requirements for the frequency response of the 

Zolotarev commensurate-line UE prototype will be a safety margin of 5 dB, i.e. 𝑅𝐿 ≥ 25 dB, 

for a passband that will be extended up to 11.95 GHz, while the minimum rejection level of 60 

dB must be guaranteed beyond 13.9 GHz. The waveguide standard for the physical 

implementation of the filter will be WR75, with 𝑎 = 19.05 mm and 𝑏 = 9.525 mm.  

As in the previous design examples, the first step is to find a suitable commensurate-line 

UE starting prototype. The lower passband frequency for the Zolotarev response was fixed to 

𝑓𝑍𝑜𝑙𝑜 = 8.08 GHz, whereas the cut-off frequency of the filter was selected as the upper limit of 

the passband, 𝑓𝑐 = 11.95 GHz. The maximum rejection frequency was fixed to 𝑓0 = 15.80 GHz. 

The different frequency translations needed to achieve the normalized response and the UE 

prototype are summarized in Table 6.4: from 𝑓 to 𝛽 (2.117), from 𝛽 to 𝜃 (5.42), and from 𝜃 to 

𝜔 (5.49). 

A minimum order 𝑁 = 21 was estimated in order to comply with the specifications for 

the frequency response, and the length of each commensurate line, 𝑙 = 5.47 mm, was determined 

from (5.98). Once the normalized all-pole Zolotarev frequency response was achieved, it was 

translated to the Richards transform domain by means of (5.51) and the UEs provided in Table 

6.5 were determined following the procedure explained in section 5.2.1. 

 

Frequency, 𝑓 

(GHz) 

Phase constant, 𝛽 

(rad/m) 

Electrical length, 𝜃 

(rad) 

Normalized frequency, 𝜔 

(rad/s) 

𝑓𝑍𝑜𝑙𝑜 = 8.08 𝛽𝑍𝑜𝑙𝑜 = 384.86 𝜃𝑍𝑜𝑙𝑜 = 0.21 𝜔𝑍𝑜𝑙𝑜 = 0.243 

𝑓𝑐 = 11.95 𝛽𝑐 = 188.496 𝜃𝑐 = 1.03 𝜔𝑐 = 1 

𝑓0 = 15.80 𝛽0 = 287.158 𝜃0 = 𝜋/2 𝛼 = 1.166 

Table 6.4. Summary of the different translations for the frequencies 𝑓𝑍𝑜𝑙𝑜, 𝑓𝑐 and 𝑓0  that define the starting 21-st order 

Zolotarev commensurate-line UE prototype and their associated frequency transformations. 
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Unit Element Zolotarev heights (mm) 

𝑏𝑆 = 𝑏𝐿 9.525 

𝑏1 = 𝑏21 7.336 

𝑏2 = 𝑏20 10.528 

𝑏3 = 𝑏19 5.182 

𝑏4 = 𝑏18 10.664 

𝑏5 = 𝑏17 3.887 

𝑏6 = 𝑏16 9.450 

𝑏7 = 𝑏15 3.104 

𝑏8 = 𝑏14 8.142 

𝑏9 = 𝑏13 2.655 

𝑏10 = 𝑏12 7.397 

𝑏11 2.508 

Table 6.5. Values of the Unit Elements for the 21-st order Zolotarev commensurate-line prototype.  

In this case, the target 𝑆11,𝑐(𝛽) for the smooth-profiled filter has been obtained following 

the direct 𝛽-domain approach of section 5.2.2.2. Firstly, the transmission matrix of the starting 

UE prototype is calculated by cascading the corresponding 𝑁 matrices of each commensurate-

line section. Then, the 𝑆11,𝑈𝐸(𝛽)-parameter of the starting UE prototype is calculated from its 

transmission matrix through (5.94) and (5.95). The obtained 𝑆11,𝑈𝐸(𝛽), and its associated 

𝑆21,𝑈𝐸(𝛽), for the case under study are depicted in Fig. 6.20a and Fig. 6.20b, respectively. 

Finally, the target 𝑆11,𝑐(𝛽) that is also shown in Fig. 6.20a is achieved by applying (5.100) for 

the low-pass filter case of 𝑚 = 2. The magnitude of 𝑆21,𝑐(𝛽) is also provided in Fig. 6.20b. 

The target 𝑆11,𝑐(𝛽) was numerically defined up to 𝛽𝐷,𝑚𝑎𝑥 = 50 · 𝛽0 with a sample every 

Δ𝛽𝐷 =
𝛽0

1000
. The 𝑆11,𝑐(𝑓) is provided, with the specification masks, in Fig. 6.21a for the sake of 

clarity. 



254 Jon Mikel Percaz Ciriza 

 

 

(a) 

 

(b) 

Fig. 6.20. Frequency response of the Zolotarev UE prototype (grey solid lines) and subsequent target response for the 

ILP synthesis (black dotted lines) with their most relevant parameters in 𝛽 domain: (a) |𝑆11| and (b) |𝑆21|-parameters. 

 
(a) 

 
(b) 

Fig. 6.21. (a) |𝑆11,𝑐| (black dotted line) and |𝑆21,𝑐| (black solid line) of the target frequency response for the ILP 

synthesis, obtained from the bandlimited response of the starting Zolotarev UE prototype, |𝑆11,𝑈𝐸|. The specification 

masks for the frequency response in terms of return loss (grey diamond pattern) and rejection level (grey rectangle 

pattern) are also provided. (b) Target continuous response in reflection in 𝜏, 𝐹𝑐(𝜏), obtained as the inverse Fourier 

transform of |𝑆11,𝑐|. 

Once the target 𝑆11,𝑐(𝛽) has been determined, its corresponding 𝐹𝑐(𝜏) (shown in Fig. 

6.21b) is directly obtained by means of the inverse Fourier transform of (4.11), i.e. 𝐹𝑐(𝜏) =

𝐹𝑇−1{𝑆11,𝑐(𝛽)}. As a consequence of the numerical sampling parameters used for 𝑆11,𝑐(𝛽), the 

resulting 𝐹𝑐(𝜏) is defined from 𝜏𝐷,𝑛=0 = 0 to 𝜏𝐷,𝑚𝑎𝑥 = 2000 · 𝑇𝜏 with a discretization period of 

𝑇𝐷,𝜏 = 𝑇𝜏 25⁄  (see section 6.1.1). Regarding the synthesis process with ILP, a layer thickness 

equal to the discretization period of the 𝑧 axis has been chosen, i.e. Δ𝑧 = 𝑇𝐷,𝑧. The 𝐾(𝑧) obtained 

with the ILP synthesis is depicted in Fig. 6.22a. The corresponding waveguide height profile, 

𝑏(𝑧), shown in Fig. 6.22b, was obtained by identifying 𝐾𝑏(𝑧) with the synthetized 𝐾(𝑧) and 

selecting the height of the WR75 standard for the input port, 𝑏(0) = 9.525 mm, in (2.130). 
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(a) 

 
(b) 

Fig. 6.22. (a) Coupling coefficient, 𝐾, along the propagation axis, 𝑧, calculated by means of the Integral Layer Peeling 

method for the target impulse response in reflection, 𝐹𝑐(𝜏). (b) Waveguide height profile, 𝑏(𝑧), along the propagation 

axis, 𝑧, calculated from 𝐾(𝑧) with 𝑏(0) = 9.525 mm. 

 
(a) 

 
(b) 

Fig. 6.23. Magnitude of the (a) 𝑆11 and (b) 𝑆21-parameter that correspond to the target frequency response (grey solid 

lines) and result of the single-mode analysis of 𝐾(𝑧) (black dotted lines). The specification masks for the frequency 

response in terms of return loss (grey diamond pattern) and the rejection level (grey rectangle pattern) are also 

provided. 

In order to verify the accuracy of the 𝐾(𝑧) calculated by means of the ILP synthesis 

method, the single-mode simulation based on solving the single-mode coupled-mode equation 

system of (2.91), (2.92) was performed. The results depicted in Fig. 6.23 confirm the accuracy 

of the solution attained for 𝐾(𝑧). 

However, when higher-order modes are taken into account in the solution of the coupled-

mode theory, the behavior of the passband gets critically degraded as it can be seen in the results 

provided by the full-wave CST Microwave simulation of Fig. 6.25 (black dash-dotted lines). 

The first approach for the compensation of the reactive effects of cut-off modes will be 

the use of the uniform scaling method, see section 2.2.3.1. For doing so, the first task is to ensure 

that all the relevant higher-order modes (see section 2.1.2.1) are in cut-off regime along the 
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whole structure. Since the maximum height of the 𝑏(𝑧) profile shown in Fig. 6.22b is 

max{𝑏(𝑧)} = 12.22 mm, the corresponding cut-off frequency for the closest relevant parasitic 

modes (TE12 and TM12) will be 25.75 GHz by (2.50). Thus, the cut-off regime is automatically 

ensured for all the relevant higher-order modes. Next, the effective phase constant, 𝛽𝑒𝑓𝑓(𝑧), is 

calculated from the solution of the coupled-mode equation system of (2.44) for a frequency 𝑓𝑡 =

𝑓𝑐 = 11.95 GHz by taking into account, in addition to the fundamental TE10, all the modes (TEpq 

or TMpq) that satisfy 𝑝 = 1 and 𝑞 =  2, 4, 6,…, see section 2.1.2.1. Due to computational 

limitations, a maximum 𝑞 = 128 was chosen in both TE and TM cases for solving (2.44). The  

 

 

 

Fig. 6.24. Phase constant of the fundamental TE10 mode for a frequency 𝑓𝑡 = 11.95 GHz  (black dashed line), effective 

phase constant caused by cut-off modes, 𝛽𝑒𝑓𝑓, along the propagation direction, 𝑧, (grey line), and its average value, 

𝛽�̅�𝑓𝑓 (black dotted line). 

 

 

(a) 

 

(b) 

 

Fig. 6.25. Magnitude of the (a) 𝑆11 and (b) 𝑆21-parameter that correspond to the single-mode analysis performed to 

𝐾(𝑧) (light grey solid traces), the result of the CST simulation of the same structure (black dashed-dotted line) and the 

CST simulation of the structure obtained after applying the cut-off modes uniform scaling compensation (dark grey 

dashed line). The specification masks for the frequency response in terms of return losses (grey diamond pattern) and 

the rejection level (grey rectangle pattern) are also provided. 
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coupling coefficients necessary for the calculations can be determined by (2.74), (2.75), and 

(2.76). Then 𝛽𝑒𝑓𝑓(𝑧) is calculated from (2.222) and the result is shown in Fig. 6.24, where the 

phase constant of the fundamental TE10 mode and the average value of 𝛽𝑒𝑓𝑓(𝑧), �̅�𝑒𝑓𝑓 = 190.91 

rad/m, obtained by (2.227), are also provided. Since the phase constant of the fundamental TE10 

mode is 𝛽1(𝑓𝑡) = 𝛽(𝑓𝑡 = 𝑓𝑐) = 188.496 rad/m, as it was given in Table 6.4, the necessary 

scaling factor to achieve the compensated propagation axis 
𝑧

𝜓(𝑓𝑡)
 will be 𝜓(𝑓𝑡) = 1.04, as it is 

deduced from (2.230). If the scaling is properly applied to the propagation axis of the structure 

of Fig. 6.22b (with the amplitude of the coupling coefficient automatically scaled as 𝜓 · 𝐾(𝑧), 

as required) and the resulting structure is simulated with CST Studio Suite, the frequency 

response shown in Fig. 6.25, in grey dotted lines, is obtained. 

As it can be observed in the CST simulation results of Fig. 6.25a, the uniform scaling 

method (grey dashed line) has corrected the frequency shift featured by the original synthetized 

structure (black dash-dotted line). However, the parasitic effects of cut-off modes also increased 

the level of the 𝑆11 lobe centered approximately at 11.5 GHz (black dash-dotted line) with 

respect to the lobe level obtained with the single-mode analysis (grey solid line). In view of the 

CST simulation results of the structure obtained with the application of the uniform scaling 

method (dashed grey line), the troublesome lobe was just shifted to 11.75 GHz. As a 

consequence, the obtained 𝑆11 does not satisfy the 𝑅𝐿 specification mask. 

Once the uniform scaling method for the compensation of the effects of cut-off modes 

has shown to be not completely efficient for this case, the iterative distributed scaling procedure 

that was fully described in section 2.2.3.2 will be employed. For doing so, the original 

propagation axis, 𝑧, will be now denoted by 𝑧1 for the sake of clarity. Thus, the first iteration 

step of the procedure, 𝑙 = 1, will need the corresponding effective phase constant 𝛽𝑒𝑓𝑓,1(𝑓𝑡 , 𝑧1) 

that has been previously calculated as 𝛽𝑒𝑓𝑓(𝑓𝑡 , 𝑧) when applying the uniform scaling method, i.e. 

𝛽𝑒𝑓𝑓,1(𝑓𝑡 , 𝑧1) = 𝛽𝑒𝑓𝑓(𝑓𝑡 , 𝑧). Moreover, as it was explained in section 2.2.3.2, the expected phase 

constant for the structure, 𝛽𝑒𝑓𝑓,0(𝑓𝑡 , 𝑧1(𝑧0)), is also needed for the calculation. It is obvious that 

in this initial step, 𝛽𝑒𝑓𝑓,0(𝑓𝑡 , 𝑧1(𝑧0)) corresponds to the phase constant of the fundamental TE10 

mode, 𝛽1(𝑓𝑡), which is fixed along 𝑧1. Actually, the position parameter of this initial step, 𝑧1(𝑧0), 

simply implies that the initially expected 𝛽𝑒𝑓𝑓,0 will be constant along the 𝑧1 axis. Both, 

𝛽𝑒𝑓𝑓,1(𝑓𝑡 , 𝑧1) and 𝛽𝑒𝑓𝑓,0(𝑓𝑡 , 𝑧1(𝑧0)) = 𝛽1(𝑓𝑡) are shown in Fig. 6.26a. Therefore, the new 

propagation axis 𝑧2 that is a distributed version of 𝑧1 can be obtained as a function of 

𝛽𝑒𝑓𝑓,1(𝑓𝑡 , 𝑧1) = 𝛽𝑒𝑓𝑓(𝑓𝑡 , 𝑧) and 𝛽𝑒𝑓𝑓,0(𝑓𝑡 , 𝑧1(𝑧0)) = 𝛽1(𝑓𝑡) using the expression (2.233) 

evaluated for 𝑙 = 1, i.e.: 
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(a) 

 

(b) 

Fig. 6.26. First iteration (𝑙 = 1) of the distributed scaling method: (a) Phase constant of the fundamental TE10 mode, 

𝛽𝑒𝑓𝑓,0(𝑓𝑡 , 𝑧1(𝑧0)) = 𝛽1(𝑓𝑡) (black dotted line) and effective phase constant, 𝛽𝑒𝑓𝑓,1(𝑓𝑡 , 𝑧1) (grey solid line) and (b) 

original height profile, 𝑏(𝑧1) (black dotted line) and redistributed height profile, 𝑏(𝑧2) (grey solid line). 

𝑧2(𝑓𝑡 , 𝑧1) = ∫
𝛽𝑒𝑓𝑓,0(𝑓𝑡 , 𝑟(𝑧0))

𝛽𝑒𝑓𝑓,1(𝑓𝑡 , 𝑟)
· 𝑑𝑟

𝑧1

0

= ∫
𝛽1(𝑓𝑡)

𝛽𝑒𝑓𝑓(𝑓𝑡 , 𝑟)
· 𝑑𝑟

𝑧1

0

  (6.25) 

The waveguide height profile, 𝑏(𝑧1) = 𝑏(𝑧), was redistributed to 𝑏(𝑧2) as it is depicted in Fig. 

6.26b, and it was subsequently simulated with CST Microwave Studio. The resulting 𝑆11-

parameter in the filter passband is shown in Fig. 6.29, in grey dotted line. It is clear that the new 

structure with height profile 𝑏(𝑧2) has improved the 𝑆11-parameter featured by the original 

device with 𝑏(𝑧1) = 𝑏(𝑧), which is also shown in Fig. 6.29 in black dash-dotted line. 

Nevertheless, the 𝑆11(𝑓) achieved by 𝑏(𝑧2) in the passband does not satisfy the specification 

mask for the 𝑅𝐿 level. Accordingly, a new iteration step of the recursive distributed scaling 

method will be required. 

For the new compensation step with 𝑙 = 2, the expected effective phase constant in 𝑧2 

will be 𝛽𝑒𝑓𝑓,1(𝑓𝑡 , 𝑧2(𝑧1)), i.e. the effective phase constant calculated for 𝑏(𝑧1) but redistributed 

in 𝑧2 with the function 𝑧2(𝑓𝑡 , 𝑧1) that was calculated with (6.25). However, in order to calculate 

the actual effective phase constant featured by 𝑏(𝑧2), 𝛽𝑒𝑓𝑓,2(𝑓𝑡 , 𝑧2), it will be necessary to solve 

the coupled-mode equation system (2.44) again for 𝑓𝑡 = 11.95 GHz by calculating the 

corresponding coupling coefficients of 𝑏(𝑧2) with (2.74), (2.75) and (2.76), for all the modes 

(TEpq or TMpq) that satisfy 𝑝 = 1 and 𝑞 =  0 (not for the TMpq case), 2, 4,…, employing a 

maximum modal index 𝑞, 𝑞 =  128, for both TEpq and TMpq. modes, so as to perform numerical 

calculations using a finite number of modes. The actual 𝛽𝑒𝑓𝑓,2(𝑓𝑡 , 𝑧2) is calculated by (2.222) 

and compared with the expected 𝛽𝑒𝑓𝑓,1(𝑓𝑡 , 𝑧2(𝑧1)) in Fig. 6.27a. It is worth noting that in this  
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case the expected and the actual effective phase constants are much closer to each other than in 

the first compensation step of Fig. 6.26a and thus, the new redistributed propagation axis, 𝑧3, 

should be quite similar to 𝑧2. The propagation axis 𝑧3 will be attained by setting 𝑙 = 2 in (2.233), 

yielding to: 

𝑧3(𝑓𝑡 , 𝑧2) = ∫
𝛽𝑒𝑓𝑓,1(𝑓𝑡 , 𝑟(𝑧1))

𝛽𝑒𝑓𝑓,2(𝑓𝑡 , 𝑟)
· 𝑑𝑟

𝑧2

0

  (6.26) 

As it was expected, the height profile 𝑏(𝑧3) is very similar to 𝑏(𝑧2), but the CST 

simulation performed for the former (grey dashed line of Fig. 6.29) improves the 𝑆11(𝑓) of the 

later (grey dotted line of Fig. 6.29) and almost satisfies the Return Loss level required. 

If a third step is considered, i.e. 𝑙 = 3, the expected effective phase constant for 𝑧3 will 

be the 𝛽𝑒𝑓𝑓,2(𝑓𝑡 , 𝑧3(𝑧2)), while the actual 𝛽𝑒𝑓𝑓,3(𝑓𝑡 , 𝑧3) must be obtained from (2.222) after 

solving (2.44) for the coupling coefficients of 𝑏(𝑧3), that will be calculated for the same modes 

of the previous steps. The obtained 𝛽𝑒𝑓𝑓,3(𝑓𝑡 , 𝑧3) is compared with the expected 

𝛽𝑒𝑓𝑓,2(𝑓𝑡 , 𝑧3(𝑧2)) in Fig. 6.28a, showing a slight difference between them. If 𝑙 = 3 is selected in 

(2.233), the redistributed propagation axis 𝑧4 arises as: 

𝑧4(𝑓𝑡 , 𝑧3) = ∫
𝛽𝑒𝑓𝑓,2(𝑓𝑡 , 𝑟(𝑧2))

𝛽𝑒𝑓𝑓,3(𝑓𝑡 , 𝑟)
· 𝑑𝑟

𝑧3

0

  (6.27) 

 

(a) 

 

(b) 

Fig. 6.27. Second iteration (𝑙 = 2) of the distributed scaling method: (a) expected effective phase constant, 

𝛽𝑒𝑓𝑓,1(𝑓𝑡 , 𝑧2(𝑧1)) (black dotted line) and actual value obtained from the simulation of 𝑏(𝑧2) for the effective phase 

constant, 𝛽𝑒𝑓𝑓,2(𝑓𝑡 , 𝑧2) (grey solid line) and (b) height profile of the original 𝑏(𝑧2) (black dotted line) and of the 

redistributed 𝑏(𝑧3) (grey solid line). 
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The waveguide structure with height profile defined by 𝑏(𝑧4) is simulated with CST 

Microwave Studio and the resulting 𝑆11(𝑓) finally fulfills the Return Loss specification required 

for the filter, as it can be seen in the black solid line of Fig. 6.29. 

 

(a) 

 

(b) 

Fig. 6.28. Last iteration (𝑙 = 3) of the distributed scaling method: (a) expected effective phase constant, 

𝛽𝑒𝑓𝑓,2(𝑓𝑡 , 𝑧3(𝑧2)) (black dotted line) and actual value obtained from the simulation of 𝑏(𝑧3) for the effective phase 

constant, 𝛽𝑒𝑓𝑓,3(𝑓𝑡 , 𝑧3) (grey solid line) and (b) height profile of the original 𝑏(𝑧3) (black dotted line) and of the final 

redistributed 𝑏(𝑧4) (grey solid line). 

 

Fig. 6.29. Evolution of the simulated |𝑆11|-parameter in the filter passband, during the three performed steps of the 

iterative distributed scaling technique for the compensation of the reactive effects of cut-off modes: (a) original 

structure obtained from the ILP synthesis in the initial 𝑧1 axis, 𝑏(𝑧1) (black dash-dotted line), structure redistributed 

according to the 𝑧2 achieved in the first step (𝑙 = 1), 𝑏(𝑧2) (grey dotted line), 𝑏(𝑧3) achieved in the second step 
(𝑙 = 2) (grey dashed line), and the last 𝑏(𝑧4) achieved in the third step (𝑙 = 3) (black solid line). The specification 

mask for the 𝑅𝐿 ≥ 25 dB is also included (diamond-based pattern). 
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Fig. 6.30. Frequency responses, |𝑆11| (dotted lines) and |𝑆21| (solid lines), calculated from the single-mode analysis of 

the 𝐾(𝑧) obtained form the ILP synthesis (grey lines) and from the full-wave CST simulation of the structure achieved 

at the final step (𝑙 = 3) of the iterative distributed scaling method for the compensation of the cut-off mode effects, 

𝑏(𝑧4) (black lines). 

The full-wave CST simulation results of the final structure with height profile 𝑏(𝑧4) 

(𝑆11(𝑓) and 𝑆21(𝑓)-parameters) are compared with the single-mode analysis performed to the 

𝐾(𝑧) originally synthesized with ILP, see Fig. 6.30. 

A very good agreement can be observed between the simulation results provided in Fig. 

6.30 and thus, it can be concluded that the parasitic effects of cut-off modes have been fully 

compensated by means of a third-order iterative distributed scaling procedure. As a consequence, 

the degradation exhibited by the multimode frequency response with respect to the response 

expected from the single-mode simulation, has been successfully overcome. 

In order to conclude this section, it must be highlighted that a practical example of strong 

degradation of the frequency response caused by higher-order modes has been shown. Although 

the application of the uniform scaling compensation method has not provided an appropriate 

correction for this case, a very satisfactory compensation has been achieved with the use of the 

iterative distributed scaling method. This distributed scaling technique has exhibited a very 

powerful performance by achieving a frequency response very close to that predicted by the 

single-mode operation model that is employed for the ILP synthesis procedure. 
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6.3. ASSESSMENT OF CRITICAL PARAMETERS 

FOR THE QUALITY OF THE SYNTHESIS 

Due to the inherent limitations that arise in the practical numerical implementation of the 

ILP synthesis method, it is necessary to perform an appropriate definition of the target frequency 

response as well as of the degrees of freedom that can be arbitrarily selected for a synthesis 

process. Thorough and interesting studies regarding the importance of the choices of these 

parameters were previously performed for the GLM and CLP synthesis techniques in [10], [11]. 

In this section, an assessment of the influence of the discretization features selected for 

the definition of the target response, as well as the own parameters of ILP will be carried out. 

This study will be performed by imposing different initial configurations for the synthesis of the 

25-th order Chebyshev low-pass filter response of section 6.2.1. This synthesis example was 

chosen since the difference in the quality of the synthesis should become more apparent by 

requiring challenging responses with high maximum rejection levels. The resulting coupling 

coefficient, 𝐾(𝑧), for each configuration will be shown. The quality of the synthesis will be 

evaluated by considering the level of agreement between the target and the analyzed frequency 

responses, where the latter is obtained from the numerical solution of the single-mode coupled-

mode equation system of (2.91), (2.92), for each 𝐾(𝑧) attained. 

𝑑𝑎+

𝑑𝑧
= −𝑗 · 𝛽 · 𝑎+ +𝐾 · 𝑎− (2.91) 

𝑑𝑎−

𝑑𝑧
= 𝑗 · 𝛽 · 𝑎− +𝐾 · 𝑎+ (2.92) 

It is worth noting that the solution of (2.91), (2.92) is the most suitable method in order 

to determine if the 𝐾(𝑧) obtained has been accurately calculated. All the synthesis techniques 

that have been presented within this thesis (including ILP) are devoted to solve the inverse 

scattering problem of determining 𝐾(𝑧) from a target response (given by the Fourier transform 

pair 𝑆11(𝛽) = 𝐹𝑇{𝐹(𝜏)}) under the single-mode operation assumption, which is mathematically 

formulated by means of (2.91), (2.92). Thus, by solving (2.91) and (2.92) with a given 𝐾(𝑧), the 

complex amplitudes of the forward, 𝑎+, and backward, 𝑎−, traveling waves are obtained and 

then, the corresponding 𝑆-parameters can be deduced from (2.105)-(2.110). Accordingly, if the 

𝑆-parameters that result from this analysis fit the target ones, the 𝐾(𝑧) achieved from the 

synthesis process can be rated as accurate and vice-versa. 
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The characteristics of the discretized data of the target transform pair, 𝑆11,𝑐(𝛽) =

𝐹𝑇{𝐹𝑐(𝜏)}, that are provided for the numerical implementation of the ILP method should 

constitute an important influence for the final quality of the synthesized 𝐾(𝑧), as they actually 

are for the GLM and CLP methods [10], [11]. Thus, different values of the maximum phase 

constant, 𝛽𝐷,𝑚𝑎𝑥, and of the sampling ratio between two samples of the 𝑆11,𝑐(𝛽), Δ𝛽𝐷 , will be 

selected for the definition of the target response. As it was stated in section 6.1.1, 𝛽𝐷,𝑚𝑎𝑥 is 

related to the sampling period of the 𝜏 and 𝑧 axes, 𝑇𝐷,𝜏  and 𝑇𝐷,𝑧 , respectively by (6.15). 

Furthermore, Δ𝛽𝐷  is linked with the maximum duration of 𝜏𝑛,𝐷 , 𝜏𝐷,𝑚𝑎𝑥, due to (5.22). Apart from 

the pure discretization parameters of the target response, several values of linear delay, 𝜏𝑑𝑒𝑙, will 

be imposed to the target 𝑆11,𝑐(𝛽) in order to clarify its effect in the obtained 𝐾(𝑧). Finally, 

different layer thicknesses, Δ𝑧, will be employed to synthetize the same frequency response, and 

the impact of this choice in the final result will be evaluated. 

6.3.1. Variation of the 𝛽𝐷,𝑚𝑎𝑥, 𝑇𝐷,𝜏 Pair in 

the Target Response Definition 

In order to determine the effect of the modification of the pair conformed by the maximum 

phase constant, 𝛽𝐷,𝑚𝑎𝑥, and the sampling period in 𝜏, 𝑇𝐷,𝜏, (that are related to each other by 

(6.15)), four different synthesis processes of the filter of section 6.2.1 have been carried out. For 

each of them, different values of the 𝛽𝐷,𝑚𝑎𝑥, 𝑇𝐷,𝜏 pair have been employed, also adapting the 

layer thickness, Δ𝑧, so as to keep it constant. As it was stated in section 6.1.1, when dealing with 

discretized data, the thickness of the layer, Δ𝑧, must be chosen so as to be an entire number, 𝑀, 

of sampling periods in 𝑧, 𝑇𝐷,𝑧, see (6.16). Since 𝑇𝐷,𝑧  is going to be modified due to the 𝛽𝐷,𝑚𝑎𝑥 

variation (see (6.15)), the value of 𝑀 must be reconsidered for each synthesis. 

The different values that have been determined to carry out this study of the choice of 

𝛽𝐷,𝑚𝑎𝑥, 𝑇𝐷,𝜏, are provided in Table 6.6 as a function of the phase constant 𝛽0 that features the 

maximum rejection level of the filter response, see section 6.2.1. Moreover, the layer thicknesses 

that must be selected for each case so as to maintain it constant are given in Table 6.6 in terms 

of 𝑇𝐷,𝑧 =
𝑇𝐷,𝜏

2
. Finally, the rest of the relevant parameters for the synthesis that are kept unaltered 

are also provided in Table 6.6 for the sake of completeness. 
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𝛽𝐷,𝑚𝑎𝑥 ↔𝑇𝐷,𝜏 Δ𝛽𝐷 ↔ 𝜏𝐷,𝑚𝑎𝑥 𝜏𝑑𝑒𝑙 Δ𝑧 

5 · 𝛽0 ↔
𝜋

5 · 𝛽0
 

𝛽0
2000

↔
4000 · 𝜋

𝛽0
 

𝜏𝐷,𝑚𝑎𝑥
2

 𝑇𝐷,𝑧 =
𝑇𝐷,𝜏
2

 

10 · 𝛽0↔
𝜋

10 · 𝛽0
 

𝛽0
2000

↔
4000 · 𝜋

𝛽0
 

𝜏𝐷,𝑚𝑎𝑥
2

 2 · 𝑇𝐷,𝑧 = 𝑇𝐷,𝜏 

20 · 𝛽0↔
𝜋

20 · 𝛽0
 

𝛽0
2000

↔
4000 · 𝜋

𝛽0
 

𝜏𝐷,𝑚𝑎𝑥
2

 4 · 𝑇𝐷,𝑧 = 2 · 𝑇𝐷,𝜏 

40 · 𝛽0 ↔
𝜋

40 · 𝛽0
 

𝛽0
2000

↔
4000 · 𝜋

𝛽0
 

𝜏𝐷,𝑚𝑎𝑥
2

 8 · 𝑇𝐷,𝑧 = 4 · 𝑇𝐷,𝜏 

Table 6.6. Frequency response and ILP parameters for the four synthesis procedures performed to determine the impact 

of the variation of the 𝛽𝐷,𝑚𝑎𝑥, 𝑇𝐷,𝜏 pair on the synthesis result. The thickness of the layer Δ𝑧 has been adapted in each 

case so as to remain constant in the four synthesis procedures. 

The coupling coefficients that result from the choice of 𝛽𝐷,𝑚𝑎𝑥 = 5 · 𝛽0, 10 · 𝛽0 , 20 · 𝛽0 , 

and 40 · 𝛽0  (with their associated 𝑇𝐷,𝜏 and Δ𝑧, see Table 6.6) are depicted in Fig. 6.31a, Fig. 

6.32a, Fig. 6.33a, and Fig. 6.34a, respectively. The resulting 𝑆11 and 𝑆21 from the single-mode 

analyses performed to each 𝐾(𝑧) are also shown in Fig. 6.31b-Fig. 6.31c, Fig. 6.32b-Fig. 6.32c, 

Fig. 6.33b-Fig. 6.33c, and Fig. 6.34b-Fig. 6.34c, respectively. 

 

(a) 

 

(b) 

 

(c) 

Fig. 6.31. (a) Coupling coefficient synthetized with a target response defined with 𝛽𝐷,𝑚𝑎𝑥 = 5 · 𝛽0 and Δ𝑧 = 𝑇𝐷,𝑧. The 

comparisons between the target (black lines) and the resulting (purple lines) (b) 𝑆11(𝛽)- and (c) 𝑆21(𝛽)-parameters 

from the single-mode analysis of 𝐾(𝑧) are provided. 
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(a) 

 

(b) 

 

(c) 

Fig. 6.32. (a) Coupling coefficient synthetized with a target response defined with 𝛽𝐷,𝑚𝑎𝑥 = 10 · 𝛽0 and Δ𝑧 = 2 · 𝑇𝐷,𝑧. 

The comparisons between the target (black lines) and the resulting (green lines) (b) 𝑆11(𝛽)- and (c) 𝑆21(𝛽)-parameters 

from the single-mode analysis of 𝐾(𝑧) are provided. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 6.33. (a) Coupling coefficient synthetized with a target response defined with 𝛽𝐷,𝑚𝑎𝑥 = 20 · 𝛽0 and Δ𝑧 = 4 · 𝑇𝐷,𝑧. 

The comparisons between the target (black lines) and the resulting (blue lines) (b) 𝑆11(𝛽)- and (c) 𝑆21(𝛽)-parameters 

from the single-mode analysis of 𝐾(𝑧) are provided. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 6.34. (a) Coupling coefficient synthetized with a target response defined with 𝛽𝐷,𝑚𝑎𝑥 = 40 · 𝛽0 and Δ𝑧 = 8 · 𝑇𝐷,𝑧. 

The comparisons between the target (black lines) and the resulting (red lines) (b) 𝑆11(𝛽)- and (c) 𝑆21(𝛽)-parameters 

from the single-mode analysis of 𝐾(𝑧) are provided. 

As it can be observed in the results of Fig. 6.31-Fig. 6.34, the modification of the pair 

𝛽𝐷,𝑚𝑎𝑥, 𝑇𝐷,𝜏 does not seem to notably affect the quality of the synthesis, even in the case where 

𝛽𝐷,𝑚𝑎𝑥 = 5 · 𝛽0, which represents just a slight increase in the definition of the frequency 
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response (as well as in 𝑇𝐷,𝜏) with respect to the initial commensurate-line UE prototype, see 

section 5.2. However, if the comparison between the different 𝐾(𝑧) of Fig. 6.35a is carefully 

examined, it will be clear that the synthesis that employs the lowest value of 𝛽𝐷,𝑚𝑎𝑥 drives to a 

𝐾(𝑧) that is clearly undersampled in the 𝑧 axis. A good example of this aspect can be observed 

in the purple trace of Fig. 6.35a, which corresponds to the synthesis of a frequency response 

defined up to 𝛽𝐷,𝑚𝑎𝑥 = 5 · 𝛽0. Since the sampling period in the 𝑧 axis, 𝑇𝐷,𝑧, is related to 𝑇𝐷,𝜏 as 

𝑇𝐷,𝑧 =
𝑇𝐷,𝜏

2
, a low value of 𝛽𝐷,𝑚𝑎𝑥 leads to an excessively large 𝑇𝐷,𝑧, due to (6.15). This deficiency 

in the resolution of the 𝑧 axis leads to a coupling coefficient that does not sample the highest 

peaks of 𝐾(𝑧), which are actually trapped with a synthesis using 𝛽𝐷,𝑚𝑎𝑥 = 40 · 𝛽0 (red line in 

Fig. 6.35a). As a consequence of this effect, the undersampled structure shows a slight loss of 

rejection level when compared to the analyses performed to the coupling coefficients that have 

been obtained from responses calculated with higher values of 𝛽𝐷,𝑚𝑎𝑥, as it can be seen in Fig. 

6.35b. Indeed, this tendency is completely monotonic as it can be seen in the results of Fig. 6.35, 

i.e. the smaller the sampling period 𝑇𝐷,𝑧 chosen (the higher 𝛽𝐷,𝑚𝑎𝑥 employed), the higher the 

amplitudes of 𝐾(𝑧) reached and hence, the closer the maximum rejection level approaches to the 

target. 

However, despite of this slight difference in the obtained 𝑆21-parameter, the incidence of 

the choice of 𝛽𝑚𝑎𝑥  in the obtained 𝐾(𝑧) is quite weak, since the coupling coefficient as well as 

the obtained responses are rather similar to each other, according to the results provided between 

Fig. 6.32-Fig. 6.35. 

 

(a) (b) 

Fig. 6.35. (a) Detail of the coupling coefficients synthetized with a target response defined with 𝛽𝐷,𝑚𝑎𝑥 = 5 · 𝛽0 

(purple line), 𝛽𝐷,𝑚𝑎𝑥 = 10 · 𝛽0 (green line), 𝛽𝐷,𝑚𝑎𝑥 = 20 · 𝛽0 (blue line), and 𝛽𝐷,𝑚𝑎𝑥 = 40 · 𝛽0 (red line) while 

maintaining the layer thickness fixed. (b) Comparison between the target (black line) and the resulting 𝑆21(𝛽)-
parameters from the single-mode analysis of the different coupling coefficients synthetized, following the same color 

code as in (a). 
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Therefore, it can be concluded that the choice of the pair 𝛽𝐷,𝑚𝑎𝑥, 𝑇𝐷,𝜏 does not have a 

critical impact on the quality of the synthesis. However, it is advisable to employ a high enough 

value of 𝛽𝐷,𝑚𝑎𝑥 (or short enough 𝑇𝐷,𝜏) so as to consider a suitable spatial resolution, 𝑇𝐷,𝑧 =
𝑇𝐷,𝜏

2
, 

for reaching the extreme values of 𝐾(𝑧). By doing so, the frequency response associated to 𝐾(𝑧) 

will be better fitted to the target. 

6.3.2. Variation of the Δ𝛽𝐷, 𝜏𝐷,𝑚𝑎𝑥 Pair in 

the Target Response Definition 

As in the case of the pair 𝛽𝐷,𝑚𝑎𝑥, 𝑇𝐷,𝜏, the impact of the selection of the pair Δ𝛽𝐷 , 𝜏𝐷,𝑚𝑎𝑥 

in the result of the synthesis has been studied by imposing four different values of that pair in 

the discretized versions of the target responses for the realization of their corresponding 

syntheses, while leaving the rest of the parameters constant. The specific values of Δ𝛽𝐷 , 𝜏𝐷,𝑚𝑎𝑥  

as well as the other necessary definition parameters for the synthesis are provided in Table 6.7. 

The different 𝐾(𝑧) attained as a result of the syntheses with Δ𝛽𝐷 =
𝛽0

125
, 
𝛽0

250
, 
𝛽0

500
, and 

𝛽0

1000
, 

or equivalently with 𝜏𝐷,𝑚𝑎𝑥 = 𝜏𝐷,𝑚𝑎𝑥1 =
250·𝜋

𝛽0
, 𝜏𝐷,𝑚𝑎𝑥2 =

500·𝜋

𝛽0
, 𝜏𝐷,𝑚𝑎𝑥3 =

1000·𝜋

𝛽0
, and 

𝜏𝐷,𝑚𝑎𝑥4 =
2000·𝜋

𝛽0
, are depicted in Fig. 6.36a, Fig. 6.37a, Fig. 6.38a, and Fig. 6.39a, respectively.  

𝛽𝐷,𝑚𝑎𝑥 ↔𝑇𝐷,𝜏 Δ𝛽𝐷 ↔ 𝜏𝐷,𝑚𝑎𝑥 𝜏𝑑𝑒𝑙 Δ𝑧 

40 · 𝛽0 ↔
𝜋

40 · 𝛽0
 

𝛽0
125

↔
250 · 𝜋

𝛽0
 

𝜏𝐷,𝑚𝑎𝑥
2

 2 · 𝑇𝐷,𝑧 = 𝑇𝐷,𝜏 

40 · 𝛽0 ↔
𝜋

40 · 𝛽0
 

𝛽0
250

↔
500 · 𝜋

𝛽0
 

𝜏𝐷,𝑚𝑎𝑥
2

 2 · 𝑇𝐷,𝑧 = 𝑇𝐷,𝜏 

40 · 𝛽0 ↔
𝜋

40 · 𝛽0
 

𝛽0
500

↔
1000 · 𝜋

𝛽0
 

𝜏𝐷,𝑚𝑎𝑥
2

 2 · 𝑇𝐷,𝑧 = 𝑇𝐷,𝜏 

40 · 𝛽0 ↔
𝜋

40 · 𝛽0
 

𝛽0
1000

↔
2000 · 𝜋

𝛽0
 

𝜏𝐷,𝑚𝑎𝑥
2

 2 · 𝑇𝐷,𝑧 = 𝑇𝐷,𝜏 

Table 6.7. Frequency response and ILP parameters for the four synthesis procedures performed to determine the impact 

of the variation of the Δ𝛽𝐷, 𝜏𝐷,𝑚𝑎𝑥 pair on the synthesis result. 
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The 𝑆11- and 𝑆21-parameters that are obtained from the solution of the single-mode 

coupled-mode equation system of (2.91) and (2.92) for each 𝐾(𝑧) are provided in Fig. 6.36b-

Fig. 6.36c, Fig. 6.37b-Fig. 6.37c, Fig. 6.38b-Fig. 6.38c, and Fig. 6.39b-Fig. 6.39c.  

 

(a) 

 

(b) 

 

(c) 

Fig. 6.36. a) Coupling coefficient synthetized with a target response defined with Δ𝛽𝐷 =
𝛽0

125
. The comparisons between 

the target (black lines) and the resulting (purple lines) (b) 𝑆11(𝛽)- and (c) 𝑆21(𝛽)-parameters from the single-mode 

analysis of 𝐾(𝑧) are provided. 

 

(a) 

 

(b) 

 

(c) 

Fig. 6.37. (a) Coupling coefficient synthetized with a target response defined with Δ𝛽𝐷 =
𝛽0

250
. The comparisons 

between the target (black lines) and the resulting (green lines) (b) 𝑆11(𝛽)- and (c) 𝑆21(𝛽)-parameters from the single-

mode analysis of 𝐾(𝑧) are provided. 

 

(a) 

 

(b) 

 

(c) 

Fig. 6.38. (a) Coupling coefficient synthetized with a target response defined with Δ𝛽𝐷 =
𝛽0

500
. The comparisons 

between the target (black lines) and the resulting (blue lines) (b) 𝑆11(𝛽)- and (c) 𝑆21(𝛽)-parameters from the single-

mode analysis of 𝐾(𝑧) are provided. 
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(a) 

 
(b) 

 

(c) 

Fig. 6.39. (a) Coupling coefficient synthetized with a target response defined with Δ𝛽𝐷 =
𝛽0

1000
. The comparisons 

between the target (black lines) and the resulting (red lines) (b) 𝑆11(𝛽)- and (c) 𝑆21(𝛽)-parameters from the single-

mode analysis of 𝐾(𝑧) are provided. 

 

(a) 

 

(b) 

 

(c) 

Fig. 6.40. (a) Comparison between the coupling coefficients synthetized with a target response defined with Δ𝛽𝐷 =
𝛽0

125
 

(purple line), Δ𝛽𝐷 =
𝛽0

250
 (green line), Δ𝛽𝐷 =

𝛽0

500
 (blue line), and Δ𝛽𝐷 =

𝛽0

1000
 (red line). Comparisons between the target 

(black lines) and the resulting (b) 𝑆11(𝛽)- and (c) 𝑆21(𝛽)-parameters from the single-mode analyses of the different 

coupling coefficients synthetized are provided following the same color code as in (a). 
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In view of the results provided in Fig. 6.36-Fig. 6.39, the selection of the Δ𝛽𝐷  parameter 

for the frequency response has a direct impact in the coupling coefficient obtained as well as in 

the achieved frequency response. As it can be seen in the comparative graph of Fig. 6.40a, a low 

frequency resolution (large Δ𝛽𝐷), results in a synthesis process that accumulates numerical error 

too fast, leading to an inaccurate determination of 𝐾(𝑧). In fact, the larger the Δ𝛽𝐷  employed 

(i.e. the lower the frequency resolution), the faster the numerical error is added to 𝐾(𝑧). As a 

consequence, the corresponding 𝑆-parameters get more degraded with the largest values of Δ𝛽𝐷  

when compared to the target responses (see 𝑆-parameter comparative graphs of Fig. 6.40b and 

Fig. 6.40c). The only synthesis that has obtained accurate results is the one that employed the 

most refined resolution, Δ𝛽𝐷 =
𝛽0

1000
 (red traces in Fig. 6.40). 

The maximum Δ𝛽𝐷  that can be employed for an accurate calculation of 𝐾(𝑧) may be 

understood as the minimum sampled information of the 𝑆11(𝛽) that must be supplied to the ILP 

method in order to avoid an excessive accumulation of error due to numerical uncertainty. 

However, a dual explanation from the point of view of the 𝜏 domain can be provided. As 

it has been stated before, the duration of the impulse response 𝐹𝑐(𝜏), 𝜏𝐷,𝑚𝑎𝑥, depends on Δ𝛽𝐷  by 

(5.22). Thus, each target 𝐹𝑐(𝜏) that was employed for the syntheses features a different duration 

𝜏𝐷,𝑚𝑎𝑥1 =
250·𝜋

𝛽0
, 𝜏𝐷,𝑚𝑎𝑥2 =

500·𝜋

𝛽0
, 𝜏𝐷,𝑚𝑎𝑥3 =

1000·𝜋

𝛽0
, and 𝜏𝐷,𝑚𝑎𝑥4 =

2000·𝜋

𝛽0
, as it can be seen in Fig. 

6.41. 

If the Fourier Transform [6] and the theory of signals and systems are considered [12], it 

will be clear that the inverse Fourier Transform of a bandlimited 𝑆11(𝛽) leads to an infinite 𝐹(𝜏). 

Moreover, if the properties of the FFT are also taken into account, it will be clear that the inverse  

 

 

Fig. 6.41. Comparison between the different target impulse responses in reflection, 𝐹𝑐(𝜏), defined with 𝜏𝐷,𝑚𝑎𝑥1 =
250·𝜋

𝛽0
 

(purple line), 𝜏𝐷,𝑚𝑎𝑥2 =
500·𝜋

𝛽0
 (green line), 𝜏𝐷,𝑚𝑎𝑥3 =

1000·𝜋

𝛽0
 (blue line), and 𝜏𝐷,𝑚𝑎𝑥4 =

2000·𝜋

𝛽0
 (red line).  
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FFT of a bandlimited 𝑆11(𝛽) leads to a 𝐹(𝜏) that is affected by the aliasing phenomenon [5]. 

This parasitic effect cannot be avoided in practical implementations, being more obvious with 

lower values of 𝜏𝑚𝑎𝑥 since the overlapping of the underlying periodic replicas of 𝐹(𝜏) associated 

with the FFT gets increased [5] and hence, the resulting discretized version of 𝐹(𝜏) gets 

degraded. Since the conversion between the 𝜏 and 𝛽 domain is performed at each layer in the 

ILP technique due to the propagation of the reflection coefficient of (6.10)-(6.12), it will be 

advisable to extend the 𝜏 axis to the longest possible 𝜏𝐷,𝑚𝑎𝑥 so as to reduce the effect of aliasing 

and the numerical error that it carries. 

6.3.3. Definition of the Target Response by 

Imposing Different Linear Delays 

Regarding the determination of the impact of the linear delay of the target response on the 

calculation of 𝐾(𝑧) by means of ILP, four different syntheses were executed by imposing 

different linear delays, 𝜏𝑑𝑒𝑙, to the target responses by following the criterion summarized in 

Table 6.8, where the values of the rest of the relevant parameters for the synthesis are also 

provided. 

𝛽𝐷,𝑚𝑎𝑥 ↔𝑇𝐷,𝜏 Δ𝛽𝐷 ↔ 𝜏𝐷,𝑚𝑎𝑥 𝜏𝑑𝑒𝑙 Δ𝑧 

40 · 𝛽0 ↔
𝜋

40 · 𝛽0
 

𝛽0
2000

↔
4000 · 𝜋

𝛽0
 0.1 · 𝜏𝐷,𝑚𝑎𝑥  𝑇𝐷,𝑧 =

𝑇𝐷,𝜏
2

 

40 · 𝛽0 ↔
𝜋

40 · 𝛽0
 

𝛽0
2000

↔
4000 · 𝜋

𝛽0
 0.2 · 𝜏𝐷,𝑚𝑎𝑥  𝑇𝐷,𝑧 =

𝑇𝐷,𝜏
2

 

40 · 𝛽0 ↔
𝜋

40 · 𝛽0
 

𝛽0
2000

↔
4000 · 𝜋

𝛽0
 0.3 · 𝜏𝐷,𝑚𝑎𝑥  𝑇𝐷,𝑧 =

𝑇𝐷,𝜏
2

 

40 · 𝛽0 ↔
𝜋

40 · 𝛽0
 

𝛽0
2000

↔
4000 · 𝜋

𝛽0
 0.4 · 𝜏𝐷,𝑚𝑎𝑥  𝑇𝐷,𝑧 =

𝑇𝐷,𝜏
2

 

Table 6.8. Frequency response and ILP parameters for the four synthesis procedures performed to determine the impact 

of the variation of 𝜏𝑑𝑒𝑙  on the synthesis result. 
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(a) 

 

(b) 

Fig. 6.42. (a) Comparison between the different target impulse responses in reflection, 𝐹𝑐(𝜏), defined with 𝜏𝑑𝑒𝑙 = 0.1 ·
𝜏𝐷,𝑚𝑎𝑥 (purple line), 𝜏𝑑𝑒𝑙 = 0.2 · 𝜏𝐷,𝑚𝑎𝑥 (green line), 𝜏𝑑𝑒𝑙 = 0.3 · 𝜏𝐷,𝑚𝑎𝑥 (blue line), and 𝜏𝑑𝑒𝑙 = 0.4 · 𝜏𝐷,𝑚𝑎𝑥 (red line). 

(b) Detail of the comparison for the first 20 · 𝑇𝐷,𝜏 of these impulse responses where the effect of aliasing can be 

observed. 

Since the four target responses were defined with the same Δ𝛽𝐷 , their 𝜏𝐷,𝑚𝑎𝑥 are also 

identical. However, by modifying the 𝜏𝑑𝑒𝑙, the most relevant part (the one that features the 

maximum amplitude) is not placed at the same point of the 𝜏 axis, as it can be seen in Fig. 6.42a, 

where the different 𝐹𝑐(𝜏) are depicted. Indeed, the relevant part of each 𝐹𝑐(𝜏) is placed 

approximately at 0.1 · 𝜏𝐷,𝑚𝑎𝑥  (purple line), 0.2 · 𝜏𝐷,𝑚𝑎𝑥  (green line), 0.3 · 𝜏𝐷,𝑚𝑎𝑥 (blue line), and 

0.4 · 𝜏𝐷,𝑚𝑎𝑥 (red line), something that becomes noticeable by taking into account the properties 

of the Fourier transform [6], since the target responses will be described by the Fourier pair: 

𝑆11(𝛽) · 𝑒
−𝑗·𝛽·𝜏𝑑𝑒𝑙 = 𝐹𝑇{𝐹(𝜏) ∗ 𝛿(𝜏 − 𝜏𝑑𝑒𝑙)}  (6.28) 

It is worth noting that the amplitude of 𝐹𝑐(𝜏) at the early instants of 𝜏 depends on the 

delay 𝜏𝑑𝑒𝑙 introduced, as it is clear in view of Fig. 6.42b. Thus, as it was partially introduced in 

section 6.3.2, the effect of the aliasing [5] at 𝜏 = 0 will depend on the amplitude of 𝐹𝑐(𝜏) at the 

early instants of 𝜏, due to the fact that the overlapping between the adjacent underlying replicas 

of 𝐹𝑐(𝜏) gets increased when high amplitudes of the original 𝐹𝑐(𝜏) are found at these first values 

of the 𝜏 axis [5]. Since the coupling coefficient calculation of (6.14) and the propagation of the 

reflection spectrum that depends on (6.11) rely on the FFT for their efficient numerical 

implementation, it will be necessary to ensure the minimum amplitude of the initial 𝐹𝑐(𝜏 = 0) 

so as to minimize the error contribution added by aliasing. Since the high values of 𝜏𝑑𝑒𝑙 reduce 

the initial amplitudes of 𝐹𝑐(𝜏) (see Fig. 6.42b), the error caused by the aliasing should be reduced 

in the accumulative layer-by-layer procedure when high values of 𝜏𝑑𝑒𝑙 are employed.  
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Moreover, if a high value of 𝜏𝑑𝑒𝑙 is imposed, the impulse response in reflection, 𝐹𝑐(𝜏), 

tends to be more strictly causal, because its amplitude at the negative instants of 𝜏 decreases (it 

is important to recall that the negative instants of 𝜏 appear at the end of 𝐹𝑐(𝜏) due to the time 

domain aliasing). Thus, the causality principle assumed in the ILP and CLP methods for the 

target response in reflection gets closer to be fulfilled, even though it will never be strictly 

achieved if the duration of 𝐹𝑐(𝜏) is infinite. 

The resulting 𝐾(𝑧) for the four synthesis processes with 𝜏𝑑𝑒𝑙 = 0.1 · 𝜏𝐷,𝑚𝑎𝑥 ,  𝜏𝑑𝑒𝑙 = 0.2 ·

𝜏𝐷,𝑚𝑎𝑥,  𝜏𝑑𝑒𝑙 = 0.3 · 𝜏𝐷,𝑚𝑎𝑥 , and 𝜏𝑑𝑒𝑙 = 0.4 · 𝜏𝐷,𝑚𝑎𝑥, are provided in Fig. 6.43a, Fig. 6.44a, Fig. 

6.45a, and Fig. 6.46a, respectively. The results of their corresponding single-mode analyses are 

given in Fig. 6.43b-Fig. 6.43c, Fig. 6.44b-Fig. 6.44c, Fig. 6.45b-Fig. 6.45c, and Fig. 6.46b-Fig. 

6.46c. 

 

(a) 

 

(b) 

 

(c) 

Fig. 6.43. (a) Coupling coefficient synthetized with a target response defined with 𝜏𝑑𝑒𝑙 = 0.1 · 𝜏𝐷,𝑚𝑎𝑥. The 

comparisons between the target (black lines) and the resulting (purple lines) (b) 𝑆11(𝛽)- and (c) 𝑆21(𝛽)-parameters 

from the single-mode analysis of 𝐾(𝑧) are provided. 

 

(a) 

 

(b) 

 

(c) 

Fig. 6.44. (a) Coupling coefficient synthetized with a target response defined with 𝜏𝑑𝑒𝑙 = 0.2 · 𝜏𝐷,𝑚𝑎𝑥. The 

comparisons between the target (black lines) and the resulting (green lines) (b) 𝑆11(𝛽)- and (c) 𝑆21(𝛽)-parameters from 

the single-mode analysis of 𝐾(𝑧) are provided. 



274 Jon Mikel Percaz Ciriza 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 6.45. (a) Coupling coefficient synthetized with a target response defined with 𝜏𝑑𝑒𝑙 = 0.3 · 𝜏𝐷,𝑚𝑎𝑥. The 

comparisons between the target (black lines) and the resulting (blue lines) (b) 𝑆11(𝛽)- and (c) 𝑆21(𝛽)-parameters from 

the single-mode analysis of 𝐾(𝑧) are provided. 

 

(a) 

 

(b) 

 

(c) 

Fig. 6.46. (a) Coupling coefficient synthetized with a target response defined with 𝜏𝑑𝑒𝑙 = 0.4 · 𝜏𝐷,𝑚𝑎𝑥. The 

comparisons between the target (black lines) and the resulting (red lines) (b) 𝑆11(𝛽)- and (c) 𝑆21(𝛽)-parameters from 

the single-mode analysis of 𝐾(𝑧) are provided. 

 

In view of the results shown in Fig. 6.43-Fig. 6.46, the synthesis procedures that employ 

the lowest linear delays achieve a poorer quality for the 𝐾(𝑧) obtained, and their corresponding 

analyses do not fit the target response as perfectly as the syntheses realized with the response 

that features the highest delay, see Fig. 6.46. Therefore, as it was expected, the numerical error 

introduced by the aliasing effect becomes more important when lower delays are introduced in 

the target responses and hence, it will be highly recommended to perform an additional linear 

delay of at least 𝜏𝑑𝑒𝑙 = 0.4 · 𝜏𝐷,𝑚𝑎𝑥 for the ILP syntheses. Nonetheless, higher values of 𝜏𝑑𝑒𝑙 

may be employed for the synthesis of the most challenging responses. 

6.3.4. Definition of Different Layer 

Thicknesses, Δz 

In order to finalize the assessment of the critical parameters that affect an ILP synthesis 

process, the choice of the thickness of the layer, Δ𝑧, will be studied. It is worth noting that the 
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selection of this parameter is independent from the definition of the target frequency response 

and it conforms an exclusive degree of freedom of the ILP technique. 

In this case, the definition of the layer thickness will be done in terms of an integer number 

of samples of the 𝑧 axis, 𝑇𝐷,𝑧, according to (6.16). Thus, the initial synthesis will be performed 

by employing the longest layer. For the rest of the synthesis procedures, Δ𝑧 will be progressively 

thinner. The specific values selected for Δ𝑧, as well as for the rest of the frequency response 

parameters, are given in Table 6.9. The coupling coefficients, 𝐾(𝑧), obtained and their 

corresponding single-mode analysis results are provided in Fig. 6.47, Fig. 6.48, Fig. 6.49, and 

Fig. 6.50. 

𝛽𝐷,𝑚𝑎𝑥 ↔𝑇𝐷,𝜏 Δ𝛽𝐷 ↔ 𝜏𝐷,𝑚𝑎𝑥 𝜏𝑑𝑒𝑙 Δ𝑧 

10 · 𝛽0 ↔
𝜋

10 · 𝛽0
 

𝛽0
1000

↔
2000 · 𝜋

𝛽0
 

𝜏𝐷,𝑚𝑎𝑥
2

 18 · 𝑇𝐷,𝑧 = 9 · 𝑇𝐷,𝜏  

10 · 𝛽0 ↔
𝜋

10 · 𝛽0
 

𝛽0
1000

↔
2000 · 𝜋

𝛽0
 

𝜏𝐷,𝑚𝑎𝑥
2

 12 · 𝑇𝐷,𝑧 = 6 · 𝑇𝐷,𝜏  

10 · 𝛽0 ↔
𝜋

10 · 𝛽0
 

𝛽0
1000

↔
2000 · 𝜋

𝛽0
 

𝜏𝐷,𝑚𝑎𝑥
2

 6 · 𝑇𝐷,𝑧 = 3 · 𝑇𝐷,𝜏 

10 · 𝛽0 ↔
𝜋

10 · 𝛽0
 

𝛽0
1000

↔
2000 · 𝜋

𝛽0
 

𝜏𝐷,𝑚𝑎𝑥
2

 𝑇𝐷,𝑧 =
𝑇𝐷,𝜏
2

 

Table 6.9. Frequency response and ILP parameters for the four synthesis procedures performed to determine the impact 

of the variation of Δ𝑧 on the synthesis result. 

 

(a) 

 

(b) 

 

(c) 

Fig. 6.47. (a) Coupling coefficient synthetized with a target response defined with Δ𝑧 = 18 · 𝑇𝐷,𝑧. The comparisons 

between the target (black lines) and the resulting (purple lines) (b) 𝑆11(𝛽)- and (c) 𝑆21(𝛽)-parameters from the single-

mode analysis of 𝐾(𝑧) are provided. 
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(a) 

 

(b) 

 

(c) 

Fig. 6.48. (a) Coupling coefficient synthetized with a target response defined with Δ𝑧 = 12 · 𝑇𝐷,𝑧. The comparisons 

between the target (black lines) and the resulting (green lines) (b) 𝑆11(𝛽)- and (c) 𝑆21(𝛽)-parameters from the single-

mode analysis of 𝐾(𝑧) are provided. 

 

(a) 

 

(b) 

 

(c) 

Fig. 6.49. (a) Coupling coefficient synthetized with a target response defined with Δ𝑧 = 6 · 𝑇𝐷,𝑧 . The comparisons 

between the target (black lines) and the resulting (blue lines) (b) 𝑆11(𝛽)- and (c) 𝑆21(𝛽)-parameters from the single-

mode analysis of 𝐾(𝑧) are provided. 

 

(a) 

 

(b) 

 

(c) 

Fig. 6.50. (a) Coupling coefficient synthetized with a target response defined with Δ𝑧 = 𝑇𝐷,𝑧. The comparisons 

between the target (black lines) and the resulting (red lines) (b) 𝑆11(𝛽)- and (c) 𝑆21(𝛽)-parameters from the single-

mode analysis of 𝐾(𝑧) are provided. 

As it can be seen, the most accurate result is obtained by selecting the thinnest layer 

possible, Δ𝑧 = 𝑇𝐷,𝑧 =
𝑇𝐷,𝜏

2
 (see Fig. 6.50). This conclusion is in full agreement with the 

philosophy of the ILP method, since the calculation of the coupling coefficient at each 𝑚-th 

layer, 𝐾(𝑚 ⋅ ∆𝑧 + 𝑧′), see (6.14), is based on the accuracy of the zero-order approximation of 

the GLM solution for that layer. As it has been previously commented in the theoretical  
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Fig. 6.51. Detail of the coupling coefficients synthetized with a target response defined with Δ𝑧 = 18 · 𝑇𝐷,𝑧 (purple 

line), Δ𝑧 = 12 · 𝑇𝐷,𝑧 (green line), Δ𝑧 = 6 · 𝑇𝐷,𝑧 (blue line), and Δ𝑧 = 𝑇𝐷,𝑧 (red line). 

development of the ILP method, this approximation is suitable for low reflectivity cases. If the 

layer under study does not feature a large thickness, the response of that layer and the coupling 

coefficient can be reasonably characterized by considering a single reflection, i.e. the zero-order 

approximation of the GLM equations of (6.3) and (6.4). However, when a thicker layer is 

considered, like in the cases of the synthesis of Fig. 6.47-Fig. 6.49, the response of that layer 

cannot be correctly characterized using a single scattering event (zero-order GLM 

approximation) as it is actually a function of multiple events and hence, the calculation of 𝐾(𝑧) 

becomes inaccurate. In order to illustrate this reasoning, a comparative detail of the different 

coupling coefficients that have been synthetized is provided in Fig. 6.51. As it can be observed, 

when the thickness of the layer is short enough (red trace), the coupling coefficient is calculated  

with higher accuracy. However, when an excessive thickness is employed for the layer as in the 

case of the purple trace, 𝐾(𝑧) gets underestimated with the zero-order GLM solution and hence, 

the performance of its associated frequency response is very poor. 

It must be highlighted that Δ𝑧 is not only important for the 𝐾(𝑧) calculation, but also for 

the propagation of the reflection coefficient. Since the reflection coefficient of the next layer, 

𝑆11,𝑚+1(𝛽), is determined from Δ𝑧 and from the previous 𝐹𝑚(𝜏) by means of (6.10) and (6.11) 

that in turn rely on the zero-order approximation of the solution of the GLM equations, the use 

of a thin layer will result in a better propagation of the reflection coefficient.  

Nevertheless, it is worth noting that in some practical cases where an excessive number 

of propagations is needed, the numerical error accumulated at each propagation overcomes the 

accuracy provided by taking a thin Δ𝑧, leading to a degraded final result. In those situations, a 

thicker layer (with 𝑀 > 1, see (6.16)) could help to obtain more accurate results, since the zero-
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order GLM approximation may still be suitable, and the number of propagations as well as their 

associated numerical error will be reduced. 

Therefore, it can be concluded that in a general situation the length of each layer must be 

selected as short as possible. However, in those cases where the numerical error caused by an 

excessive number of propagations of the reflection coefficient becomes troublesome, a trade-off 

must be found between the selection of Δ𝑧 and the number of propagations, so as to obtain an 

accurate result for the coupling coefficient. 
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 CONCLUSIONS 

The main objectives proposed for this thesis have been successfully achieved. The 

electromagnetic behavior of general nonuniform waveguide structures has been modelled using 

the Coupled-Mode Theory and taking advantage on this formulation, a thorough study of some 

of the most widely employed waveguide technologies in the microwave and millimeter wave 

range was performed. The single-mode operation assumption allowed to satisfy the necessary 

conditions for dealing with the synthesis problem by using different theoretical models devoted 

to allow the synthesis in technologies where the phase constant can vary along the propagation 

axis, and the compensation of the parasitic effects of higher-order modes. As a result, different 

synthesis methods that were proposed in the past have been investigated and a novel synthesis 

technique has been fully developed and demonstrated, showing a great improvement in the 

rejection levels of the frequency responses that can be properly synthetized. The synthesis 

techniques allowed us to propose novel design methods for some of the most frequently 

employed passive devices in microwave engineering, such as multiplexers, tapers and filters. 

The feasibility of these methods was confirmed through several practical design examples where 

realistic target specifications were required. In all cases, a good agreement was achieved between 

the target, simulated and measured results. 

The analysis of the electromagnetic behavior of general nonuniform waveguide structures 

has been carried out using the Coupled-Mode Theory that in turn rests on the cross-section 

method. The set of coupled-mode equations shows that the coupling coefficient is a key 

parameter, since it is related with the physical dimensions of the waveguide and at the same time 

it determines the frequency response. 
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One of the most widely employed technologies for the implementation of microwave 

devices, the rectangular waveguide, was studied with the formulation of the Coupled-Mode 

Theory. By doing so, closed-form expressions were obtained for the coupling coefficients 

between all TE and TM modes of the rectangular waveguide. Moreover, the relevant couplings 

that must be studied in order to characterize the behavior of a rectangular waveguide device 

when it is excited with the fundamental mode were determined as a function of the geometrical 

variations featured by the cross-section of the structure along the propagation direction. 

In order to address the synthesis problem, i.e. to deduce the required coupling coefficient 

from the target response in reflection, the single-mode assumption was introduced. The 

reformulation of the Coupled-Mode Theory by considering this approximation yields to a 

univocal relationship between the coupling coefficient and the physical dimensions of the 

rectangular waveguide. This link is also obtained for the case of TEM and QTEM transmission 

lines through the characteristic impedance. The relationship between the physical dimensions 

and the characteristic impedance was given explicitly for the cases of single microstrip line and 

symmetrical edge coupled microstrip lines. 

In addition, a model for waveguides that can exhibit a phase constant variable along the 

propagation direction has been provided for the first time. This approximation is exact for a 

single frequency and it rests on the definition of a reference phase constant that is assumed to 

remain fixed along a normalized propagation axis. The synthesis can be performed according to 

both variables and the final device is obtained by applying a denormalization procedure that 

redistributes the normalized propagation axis as a function of the reference phase constant 

selected for the synthesis, as well as of the actual phase constant featured at each point of that 

axis. 

On the other hand, novel compensation procedures for the possible degradation in the 

frequency response that can be caused by parasitic couplings to higher-order modes in closed-

boundary waveguides, have been proposed. These effects can be assimilated as a continuous 

variation of the phase constant of the fundamental mode along the propagation axis, and the 

uniform and distributed scaling compensation methods were developed as a result. Both 

techniques have been tested in practical design examples where a remarkable performance has 

been attained, especially for the case of the recursive distributed scaling method. 

Using the equation system attained for the single-mode approximation of the Coupled-

Mode Theory, the most straightforward synthesis approach for electromagnetic bandgap (EBG) 

structures was presented. The analytical spurious-free EBG solution that does not feature 

parasitic stopbands was described in detail, and different solutions to control its length and 

extreme dimensions were achieved. 
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A method for the design of multiplexers by exploiting the EBG concept, as well as the 

simultaneous backward and forward coupling of the microstrip coupled-line technology, was 

described and a practical example was successfully developed. This technique allows us to select 

the backward coupling band with the period of the EBG, while the length of the structure controls 

the forward-coupled band. Since the input port is matched for all the frequencies, the remaining 

frequency components that have not been backward or forwardly coupled are driven to the direct 

port. 

Next, the exact series solution of the one-dimensional Inverse Scattering synthesis 

problem was thoroughly developed by means of the Gel’fand, Levitan, Marchenko (GLM) 

equations. It allows us to directly synthetize the coupling coefficient that is needed to achieve 

any stable, passive and causal target response in reflection. Since the terms of the series of the 

GLM solution must be truncated in practical implementations, the associated restrictions in the 

rejection levels that can be achieved make it attractive to synthetize low reflectivity responses. 

Linked to the GLM synthesis technique and to several solutions of the single-mode 

approximation of the Coupled-Mode Theory, a new design procedure arose for tapered matching 

sections in general waveguide technology for single-mode operation, that was described in detail. 

This method allows the generalization of the Klopfenstein and Hecken taper solutions for general 

waveguide technology. Moreover, the use of novel taper solutions that are obtained from a 

modified version of the frequency response of the multisection Chebyshev transformers, leads 

to final synthetized devices that are shorter than the Klopfenstein taper, which was considered 

as the shortest solution up to the date. Many practical design examples were successfully 

synthesized and fabricated in rectangular waveguide technology, where the matching of 

waveguides with different height, width, as well as different simultaneous height and width, was 

required. The excellent performance of the ideal modelling of technologies where the phase 

constant can vary along the propagation direction was demonstrated in some of these examples. 

The Continuous Layer Peeling (CLP) synthesis technique was the second Inverse 

Scattering method that was covered in depth in the thesis. It was initially intended for the 

synthesis of highly reflective responses. The method is based on the principle of causality and 

allows us to determine the coupling coefficient by assuming that it is divided into infinitesimal 

layers. Several relevant aspects for the numerical implementation of the method were also 

addressed. 

In order to exploit the high-rejection capabilities of the CLP technique, a method for the 

design of novel low-pass and band-pass filters without spurious rejection bands was fully 

described. The method starts from the determination of the Unit Elements of a commensurate-

line prototype that complies with the frequency response requirements. Then, the response in 
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reflection of the prototype can be extracted and properly modified in either phase constant or 

reflection distance domains, giving rise to the target response for the synthesis. The resulting 

synthesized structure retains similar dimensions to the starting commensurate-line prototype but 

featuring a profile that varies in a smooth fashion. Following this procedure, a spurious-free 

microstrip low-pass filter was designed, which showed a great level of agreement between the 

target response and the simulation and measurement results, where the absence of spurious 

rejection bands was ensured at least up to the 15th harmonic of the maximum rejection frequency 

in measurement. The method was also employed to synthetize a rectangular waveguide low-pass 

filter intended to be fabricated with metal Additive Manufacturing (AM) techniques. However, 

it was not possible to achieve an accurate enough solution for the coupling coefficient due to the 

extreme challenging rejection requirements of the target response. 

The so-called Integral Layer Peeling (ILP) synthesis technique constitutes the last 

synthesis method described in the thesis. Like CLP, ILP is based on the layer peeling approach, 

but in contrast to the former, the later incorporates important differences in its implementation, 

such as the finite layer thickness and a different propagation method for the reflection spectrum, 

that drives to a great improvement in the accuracy that can be achieved for the coupling 

coefficient, even when the target response features very high rejection levels. Several aspects of 

the numerical implementation were addressed and some of them were compared with the 

corresponding from CLP, showing a better behavior of ILP in terms of accuracy and 

computational efficiency. 

The accuracy of the ILP method was successfully tested, surpassing the accuracy issues 

that were found during the initial synthesis attempt of rectangular waveguide filters with CLP. 

The length of this initial filter was improved in a subsequent design example by requiring a more 

suitable response for the starting prototype. In both cases, the uniform scaling method for the 

compensation of the parasitic effects of cut-off modes was successfully applied and a very good 

agreement was obtained between the target response and the final simulation results. 

These two filter designs were fabricated in a single piece using a metal AM procedure: 

the Direct Metal Laser Sintering (DMLS) technique. The structures were printed following the 

propagation direction, without needing auxiliary supports, something that represents a clear 

advantage with respect to other approaches that are followed in the literature to fabricate 

rectangular waveguide filters with these AM techniques. The good quality of the measurement 

results confirmed the suitability of the smooth profiled filters for a fabrication with metal AM 

techniques. 

The last design example of a rectangular waveguide low-pass filter exposed the dramatic 

degradation in the frequency response that can be caused by the cut-off modes in certain cases. 
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In order to overcome these effects, the recursive distributed scaling method was employed. The 

result of this technique exhibited a remarkable fitting with the frequency response that was 

expected from the single-mode assumption. Accordingly, the recursive distributed scaling 

method can be considered as a powerful technique to compensate for the spurious effects of cut-

off modes. 

Finally, a complete assessment was performed in order to identify the critical parameters 

of the numerical definition of the target response,  as well as the layer thickness, that may affect 

the quality of the results that are obtained with the ILP synthesis method. The insight gathered 

in this study will be very useful for future synthesis processes that will be carried out by means 

of the ILP technique. 

 

CONCLUSIONES 

Los objetivos principales que se propusieron al comienzo de esta tesis han sido logrados 

de forma satisfactoria. El comportamiento electromagnético de las estructuras generales de guía 

de onda no uniformes ha sido modelado utilizando la Teoría de Acoplo de Modos, y 

aprovechando su formulación, se ha realizado un estudio exhaustivo de algunas de las 

tecnologías de guía de onda más ampliamente utilizadas en el rango de microondas y 

milimétricas. La suposición de operación de modo único permitió cumplir con los principios 

necesarios para abordar el problema de síntesis al usar también diferentes aproximaciones 

teóricas dedicadas a tratar con tecnologías en las que los cambios de dimensiones conllevan una 

modificación de la constante de fase y con los efectos parásitos de los modos de orden superior 

en guías de contorno cerrado. Como resultado, se han investigado diferentes métodos de síntesis 

que se propusieron en el pasado y se ha descrito y probado una nueva técnica, que muestra una 

gran mejora con respecto a la precisión que se podía lograr. Las técnicas de síntesis presentadas 

permitieron proponer diferentes métodos de diseño para algunos de los dispositivos más 

frecuentemente utilizados en ingeniería de microondas, como multiplexores, tapers y filtros. La 

viabilidad de los métodos de diseño se confirmó a través de varios ejemplos prácticos de diseño 

en los que se requerían especificaciones realistas, logrando un alto grado de similitud entre los 

resultados esperados y medidos en todos los casos. 

El análisis del comportamiento electromagnético de una estructura de guía de onda 

general se ha llevado a cabo de forma exacta y sin tomar una aproximación mediante la Teoría 

de Acoplo de Modos, que a su vez se basa en el método de la sección transversal. El conjunto de 

ecuaciones de acoplo de modos que se han obtenido ha demostrado que el coeficiente de 
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acoplamiento es un parámetro clave, ya que está relacionado con las dimensiones físicas de la 

estructura de guía de onda, y a su vez, determina su respuesta de frecuencia. 

El estudio de una de las tecnologías más utilizadas en microondas, la guía de onda 

rectangular, se realizó aplicando la formulación de la Teoría de Acoplo de Modos. Como 

resultado, se obtuvieron expresiones analíticas para los coeficientes de acoplo que pueden darse 

entre los diferentes tipos de modos que pueden propagarse en una guía de onda rectangular. Estos 

coeficientes de acoplo únicamente dependen de las dimensiones físicas de la guía de onda. 

Además, se determinaron los acoplamientos relevantes que deben estudiarse para caracterizar el 

comportamiento de la estructura cuando esta se excita con el modo fundamental, considerando 

para ello las variaciones geométricas que presenta la sección transversal de la estructura de guía 

de onda rectangular a lo largo de la dirección de propagación. 

Con el objetivo de abordar el problema de la síntesis, es decir, para deducir el coeficiente 

de acoplamiento a partir de una respuesta en reflexión, se introdujo el supuesto de operación 

monomodo. La reformulación de la Teoría de Acoplo de Modos al considerar esta aproximación 

produce una relación unívoca entre el coeficiente de acoplamiento y las dimensiones físicas de 

la guía de onda rectangular. Esta relación es extensiva para el caso de líneas de transmisión TEM 

y QTEM, pero con la impedancia característica como variable intermedia y, en consecuencia, se 

estudió detalladamente la relación entre las dimensiones físicas y la impedancia característica 

para los casos de línea de microstrip exclusiva y de líneas de microstrip acopladas. 

Además, se ha proporcionado un modelo para guías de onda que exhiben una constante 

de fase que puede variar a lo largo de la dirección de propagación. Esta aproximación es exacta 

para una frecuencia única y se basa en la definición de una constante de fase de referencia que 

se asume que permanece constante a lo largo de un eje de propagación normalizado. La síntesis 

se puede realizar de acuerdo con ambas variables y el dispositivo final se obtiene aplicando un 

proceso de desnormalización que redistribuye el eje de propagación normalizado en función de 

la constante de fase de referencia seleccionada, así como de la constante de fase real presentada 

en cada punto de ese eje. 

Por otro lado, se ha propuesto un procedimiento de compensación de los posibles efectos 

espurios que pueden ser causados por los acoplamientos parásitos a modos de orden superior en 

guías de onda de contorno cerrado. Estos efectos pueden asimilarse como una variación continua 

de la constante de fase, y como resultado se desarrollaron los métodos de compensación de 

escalado uniforme y distribuido. Ambas técnicas han sido probadas en ejemplos prácticos de 

diseño, en los que se ha logrado un rendimiento notable, especialmente para el caso del método 

de escalado distribuido recursivo. 
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Por medio del sistema de ecuaciones de la aproximación monomodo de la Teoría de 

Acoplo de Modos, se ha presentado el enfoque de síntesis más directo, que consiste en la síntesis 

de estructuras periódicas y cuasi periódicas unidimensionales, también conocidas como EBGs. 

Se desarrolló el método para sintetizar estructuras EBG óptimas que no exhiben bandas espurias 

y se proporcionaron diferentes soluciones para controlar su longitud y dimensiones físicas 

extremas. 

Un método basado en el concepto de EBGs y que emplea el acoplamiento simultáneo 

backward y forward propio de la tecnología de líneas acopladas microstrip ha sido aplicado para 

el diseño de multiplexores, describiéndose así mismo un ejemplo de diseño práctico. Esta técnica 

permite seleccionar la banda de acoplamiento backward con el período de la EBG, mientras que 

la longitud de la estructura controla la banda de acoplamiento forward. Dado que el puerto de 

entrada está idealmente adaptado a todas las frecuencias, las componentes frecuenciales que no 

se han escogido para acoplarse backward o forward se dirigen al puerto directo. 

A continuación, se desarrolló la solución en serie exacta del problema de síntesis 

mediante las ecuaciones de Gel’fand, Levitan, Marchenko (GLM). Esta técnica permite sintetizar 

directamente el coeficiente de acoplamiento necesario para lograr cualquier respuesta objetivo 

estable, pasiva y causal en reflexión. Dado que los términos de la serie de la solución GLM deben 

truncarse en implementaciones prácticas, las restricciones asociadas en el nivel de rechazo que 

se puede lograr hacen que sea un método atractivo para sintetizar respuestas de baja reflectividad. 

Vinculado a la técnica de síntesis GLM y a varias soluciones de la aproximación de modo 

único de la Teoría de Acoplo de Modos, se ha propuesto y descrito en detalle un procedimiento 

de diseño para tapers en tecnología de guía de onda general para operación monomodo. Este 

método permite la síntesis de las soluciones clásicas de Klopfenstein y Hecken para tapers en 

línea de transmisión en tecnología de guía de onda general. Además, el uso de nuevas funciones 

que se obtienen de una versión modificada de la respuesta en frecuencia de los transformadores 

Chebyshev multisección conduce a la síntesis de tapers finales que son más cortos que el taper 

Klopfenstein, considerado hasta la fecha como la solución para taper más corta. Muchos 

ejemplos prácticos de diseño de tapers en guía rectangular han sido exitosamente realizados y 

fabricados, requiriendo la adaptación de guías de onda de diferente altura, anchura, y altura y 

anchura simultáneamente. En algunos de estos ejemplos de diseño, se demostró el excelente 

rendimiento del modelado de guías de onda no uniformes en las que cambia la constante de fase 

a lo largo del eje de propagación mediante una constante de fase fija de referencia que no varía 

en un eje de propagación normalizado. 

El tercer método de síntesis que se desarrolla en esta tesis es la técnica de CLP, que 

inicialmente estaba dirigida a la síntesis de respuestas con altos niveles de rechazo. El método 
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se basa en el principio de causalidad y permite determinar el coeficiente de acoplamiento del 

dispositivo que presenta una respuesta causal, estable y pasiva objetivo, al suponer que está 

dividido en capas infinitesimales. Varios aspectos numéricos que resultan esenciales para la 

implementación práctica de este método también fueron tratados. 

Con objeto de explotar las capacidades de rechazo de la técnica CLP, se ha descrito de 

forma precisa un método de diseño de filtros paso bajo y paso banda que no presentan bandas de 

rechazo espurias. Este método parte de la determinación de los Unit Elements de un prototipo de 

línea comensurada que cumpla con los requisitos necesarios en frecuencia. Luego, la respuesta 

en la reflexión del prototipo puede ser deducida y adecuadamente modificada tanto en el dominio 

de fase constante como de distancia de reflexión, dando lugar a la respuesta objetivo para la 

síntesis. La estructura resultante conserva dimensiones similares al filtro de línea comensurada 

inicial, pero con la diferencia de que presenta un perfil que varía de manera suave. Siguiendo 

este procedimiento, se diseñó un filtro de paso bajo de microstrip libre de bandas espurias, en el 

que se logró un gran nivel de ajuste entre la respuesta objetivo y los resultados de simulación y 

medida, en los que la ausencia de bandas de rechazo espurias quedó patente al menos hasta el 

decimoquinto armónico de la frecuencia de máximo rechazo. Este método también se empleó 

para sintetizar un filtro de guía de onda rectangular de paso bajo destinado a ser fabricado con 

técnicas de fabricación aditiva en metal. Sin embargo, los requisitos de rechazo extremadamente 

exigentes de la respuesta objetivo causaron una acumulación excesiva de error numérico durante 

el proceso de síntesis que condujo a un coeficiente de acoplamiento poco preciso. 

La llamada técnica de síntesis de ILP es el último método de síntesis incluido en la tesis. 

Como CLP, ILP se basa en el enfoque de layer-peeling, pero en contraste con CLP, ILP incorpora 

diferencias importantes en su implementación, como el grosor de capa finita y un método de 

propagación diferente para el coeficiente de reflexión, que conducen a una gran mejora en la 

precisión que se puede lograr para el coeficiente de acoplo, incluso cuando la respuesta objetivo 

presenta niveles de rechazo muy elevados. Varios aspectos de la implementación numérica de 

ILP fueron tratados, y algunos de ellos se compararon con los propios de CLP, mostrando un 

mejor comportamiento de ILP en términos de precisión y eficiencia computacional. 

La precisión del método ILP se probó con éxito al finalizar la síntesis del filtro en guía 

rectangular que no fue posible sintetizar con la técnica CLP. De hecho, la longitud final excesiva 

de este filtro inicial se mejoró en un ejemplo de diseño posterior al requerir una respuesta más 

adecuada para el prototipo inicial. En ambos casos, se aplicó el método de escalado uniforme 

para la compensación de los efectos parásitos de los modos de corte obteniendo un muy buen 

ajuste entre la respuesta objetivo y las simulaciones finales. 
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Los dos filtros diseñados fueron fabricaron en una sola pieza utilizando un procedimiento 

AM en metales: la técnica DMLS. Las estructuras se imprimieron siguiendo la dirección de 

propagación sin necesidad de soportes auxiliares, algo que representa una clara ventaja con 

respecto a otros enfoques que se han seguido en la literatura para fabricar filtros de guía de ondas 

rectangulares con estas mismas técnicas. La buena calidad de los resultados de medición 

confirmó la idoneidad de los filtros de perfil suave para ser fabricados mediante estas técnicas 

de AM en metales. 

El último ejemplo de diseño de un filtro de paso bajo de guía de onda rectangular puso 

de manifiesto la importante degradación que en ciertos casos sufre la respuesta en frecuencia a 

causa de los modos en corte. Para superar estos efectos, se empleó el método de escala distribuida 

recursiva. El resultado de la aplicación de esta técnica mostró un ajuste de gran calidad respecto 

a la respuesta de frecuencia esperada bajo el supuesto de operación monomodo. En consecuencia, 

el método de escalado distribuido recursivo puede considerarse como una técnica poderosa para 

compensar los efectos espurios de los modos de corte. 

Finalmente, se realizó un estudio completo para identificar los parámetros críticos de la 

respuesta objetivo y el grosor de la capa que pueden afectar la calidad de los resultados que se 

obtienen con ILP. La información obtenida será muy útil para futuros procedimientos de síntesis 

que se llevarán a cabo mediante dicha técnica. 





 FUTURE RESEARCH

LINES 

During the research process of this thesis, several interesting ideas have been proposed 

for the future improvement and further development of the benefits that can be currently 

achieved with the synthesis techniques and their resulting nonuniform waveguide structures. 

Some of these promising research lines belong to the purely theoretical realm with potential 

applications, while others are related to attractive designs of microwave and millimeter wave 

components. A summary of the most remarkable topics that would be worth addressing in the 

future is listed below: 

- Overcoming the limitations imposed by the all-pole responses in transmission that can

be currently targeted for the synthesis. It would be very interesting to develop a method to 

calculate general passive, stable and causal responses for satisfying arbitrarily required 

specifications with a device length controlled “a priori” by the designer, without featuring the 

constraint of belonging to the all-pole category in transmission. The potential applications that 

would be covered by the synthesis methods would benefit from this expansion of the responses. 

- Linked with the previous point, one of the most promising improvements would come

from a hypothetic technique to determine the target response that would lead to the most 

optimum structure in terms of its extreme dimensions (profile excursion and length). This 

advance would provide a complete control over the most important characteristics of the final 

device prior to starting the synthesis process. By doing so, the frequency response specifications 
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and the requirements for the physical dimensions of the final structure would be jointly 

considered in the determination of the target response. 

- The performance of the ILP synthesis method could be improved by taking thicker

layers and a solution of the GLM equations of an order higher than zero. The accuracy of the 

ILP method could be increased as a result, leading to filters that could achieve higher steepness 

in the transition between the passband and the stopband. 

- It is necessary to perform an assessment of the capabilities of the cut-off mode

compensation methods developed in this thesis, but for the case where simultaneous width and 

height variations are performed in the rectangular waveguide. As a result, the variety of the 

geometries that can be applied to satisfy a certain coupling coefficient would be expanded. 

- Moreover, the method proposed for the synthesis of rectangular waveguide band-pass

filters may benefit from the introduction of variations in the width of the waveguide so as to 

achieve higher rejection levels for the lower stopband. The improvement of these filters will 

require a previous study of the cut-off mode compensation methods for simultaneous height and 

width variations, which has been proposed in the previous point. 

- The power handling capabilities of the proposed low-pass and band-pass filters should

be studied since their smooth profiles probably feature higher power thresholds than their starting 

commensurate-line prototypes. 

- It would be interesting to explore the development of couplers and power splitters with

different frequency-selective features in their outputs based on some of the filtering structures 

presented in this thesis. 

- The selectivity of the proposed smooth-profiled filters could be even improved with the

use of multipath structures with transversal interference characteristics that may allow the 

introduction of transmission zeros in the frequency response. 

- The synthesis techniques could be immediately applied and exploited for higher

frequency bands or ranges, such as the THz. Indeed, the length limitations that are typically 

found at low frequencies vanish at those ranges, due to the inherent reduction in wavelength that 

those much higher frequencies involve. 

- Finally, the novel possibilities offered by the Additive Manufacturing (AM) techniques

can be applied to expand the performance of the nonuniform waveguide devices. Indeed, the 

dimensional limitations proper from planar transmission line technologies could be also 

improved with the use of the latest advances carried out in the AM field. 
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