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Abstract

Background and aims Plant and bacteria are able to
synthesise proline, which acts as a compound to counteract
the negative effects of osmotic stresses. Most methodolo-
gies rely on the extraction of compounds using destructive
methods. This work describes a new proline biosensor that
allows the monitoring of proline levels in a non-invasive
manner in root exudates and nodules of legume plants.
Methods The proline biosensor was constructed by clon-
ing the promoter region of pRL120553, a gene with high
levels of induction in the presence of proline, in front of the
lux cassette in Rhizobium leguminosarum bv. viciae.
Results Free-living assays show that the proline biosensor
is sensitive and specific for proline. Proline was detected in
both root exudates and nodules of pea plants. The
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luminescence detected in bacteroids did not show varia-
tions during osmotic stress treatments, but significantly
increased during recovery.

Conclusions This biosensor is a useful tool for the
in vivo monitoring of proline levels in root exudates
and bacteroids of symbiotic root nodules, and it contrib-
utes to our understanding of the metabolic exchange
occurring in nodules under abiotic stress conditions.

Keywords Rhizosphere - Proline dehydrogenase -
Water deficit - Salt stress - Rhizobium - Symbiosis

Abbreviations

ANA apparent nitrogenase activity
CFU colony-forming units

cps counts per second

dpi days post inoculation

P5C pyrroline-5-carboxylate

P5CDH delta-1-pyrroline-5-carboxylate
dehydrogenase

ProDH  proline dehydrogenase

RLU relative luminescence units

ODg00 optical density at 600 nm

UMA universal minimal agar

UMS universal minimal salts

Introduction

Drought and salinity stress are some of the environmen-
tal factors most affecting plant growth and crop yield
worldwide. In order to counteract the negative effects of
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osmotic stresses, plant and bacteria are able to synthe-
sise osmoprotectant compounds to maintain cell viabil-
ity. The amino acid proline, being highly soluble in
water and a scavenger of reactive oxygen species, has
been thought to provide protection under salt and water-
deficit stresses (Aspinall and Paleg 1981; Hasegawa
et al. 2000; Szabados and Savouré 2010; Verdoy et al.
2006). In plants, proline catabolism is mediated by two
enzymes; proline dehydrogenase (ProDH) producing
pyrroline-5-carboxylate (P5C) from proline, and delta-
1-pyrroline-5-carboxylate dehydrogenase (PSCDH),
which converts P5C to glutamate (Szabados and
Savouré 2010). In bacteria, however, both steps are
catalysed by a single polypeptide encoded by the gene
putA, whose expression is regulated by putR and is
induced in response to proline (Jimenez-Zurdo et al.
1997; Keuntje et al. 1995; Kohl et al. 1988). Besides
its role as an osmoprotectant, proline catabolism has
been also suggested to serve as an energy, carbon and
nitrogen source under environmental stress conditions
(Lee et al. 2009; Tanner 2008; van Overbeek and van
Elsas 1995; Vives-Peris et al. 2018). Additionally, pro-
line exudation has been shown to have a chemotactic
effect in alfalfa roots (Bais et al. 2006; Webb et al.
2014). Monitoring proline utilisation in both plant and
bacterial systems is a first key step towards understanding
the multiple roles of this molecule under osmotic stress
situations.

The rhizosphere is the nutrient-rich zone of soil
in close proximity with the plant root system where
microbial communities depend on the release of
root exudates (Turner et al. 2013). Plant root exu-
dates are composed of a great variety of primary
and secondary metabolites, including low-molecular
weight compounds such as sugars, amino acids and
organic acids, as well as high-molecular weight
molecules such as mucilage and proteins (Bais
et al. 2006; Oburger and Jones 2018). The different
molecules present in root exudates can mediate
both positive and negative interactions in the rhizo-
sphere (Huang et al. 2014; Olanrewaju et al. 2019).
Focusing on the former, the symbiosis established
between plants of the Leguminosae family and a
group of alpha-proteobacteria named rhizobium has
been widely studied. During this interaction,
rhizobia are able to infect root cells through a
complex signal exchange process, which requires
the transcriptional reprogramming of roots cells to
develop an organ specialized in nitrogen fixation
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named the nodule. The symbiosis between pea
(Pisum sativum) plants and Rhizobium
leguminosarum bv. viciae bacteria is a well-
established model system to understand this plant-
microbe interaction (Oldroyd et al. 2011; Udvardi
and Poole 2013) and has been effectively used to
analyse the effect of root exudates in bacterial gene
expression (Ramachandran et al. 2011). This
transcriptomic analysis led to the identification of
a number of bacterial genes specifically induced in
response to certain solutes. Cloning the promoter
regions of such genes upstream of the /ux operon,
Pini et al. (2017) generated a suite of luminescence-
based bacterial bioreporters for the specific detec-
tion of metabolites in the rhizosphere. These bio-
sensors allow real time monitoring of the release of
a number of compounds including sugars, polyols,
organic acids and amino acids in a non-destructive
semi-quantitative manner, avoiding possible arte-
facts associated with other methodologies
(Oburger and Jones 2018; Rilling et al. 2019, and
references therein). Plants are grown on plates and,
upon inoculation of the specific biosensor, the pres-
ence and the abundance of a specific compound can
be monitored over time using a photon counting
CCD camera.

In the current work, we extend this elite set of
biosensors by describing a new /ux biosensor for
the detection of the amino acid proline. The construct
relies on the expression of the /ux reporter driven by
the promoter of the pRL120553, a gene located in the
proximity to the gene putA, responsible for proline
catabolism in gram-negative bacteria (Jiménez-Zurdo
et al. 1995; Liu et al. 2017). We monitored the levels
of luminescence of the biosensor in pea roots and
during nodulation both under optimal growth condi-
tions and upon the application of water-deficit or salt
stress. Our results show that, in bacteroids, proline
accumulation does not occur during the stress phase,
but during recovery, once optimal plant growth con-
ditions are re-established.

Materials and methods

Bacterial strains and growth conditions

The bacterial strains and plasmids used in this study
are listed in Table 1. R. leguminosarum bv. viciae
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Table 1 Bacterial strains and plasmids used in this work. Tc, tetracycline

R. leguminosarum Description of the strain
bv. viciae 3841

strain (plasmid)

Description of the plasmid

Resistance Source

LMB542 (plJ11268)  Strain with no /ux expression used

as a negative control.
D5250 (plJ11282)
used as a positive control.

OPS0650 (pOPS0238) Proline biosensor strain

Plasmid derived from pJP2, containing the /ux Tc
operon with no promoter

Strain with constitutive /ux expression plJ11268 with the promoter region of nptll Tc
cloned upstream of the /uxCDABE operon

plJ11268 with the promoter region of the gene Tc

Frederix et al. 2014

Frederix et al. 2014

This work

pRL120553 and the divergent gene
pRL120552 (putR) cloned upstream
of the luxCDABE operon

3841 strains were grown at 28 °C in tryptone yeast
agar or broth (Beringer 1974) or universal minimal
agar supplemented with 30 mM pyruvate and 10 mM
ammonium chloride as the carbon and nitrogen
sources, respectively. Universal minimal salt medium
(UMS) is based on the acid minimal salts (AMS;
Poole et al. 1994) medium with the addition of
EDTA-Na, (1 pM), CoCl,0:6H,0 (4.2 pM),
FeS040-7H,0 (0.04 mM), and CaCl,0-2H,0 (0.51
mM). 16 g L' agar was used for solid medium.
Antibiotics were added to the cultures at the follow-
ing concentrations (ug mL™'): streptomycin, 500;
tetracycline, 2.

For the construction of the proline biosensor, the
promoter region of pRL120553 (605 bp, including
the complete upstream regulator pRL120552, putR;
see gene map in Fig. Sla) was amplified using the
primers listed in supporting Table 1 with Phusion
High-Fidelity DNA Polymerase (Thermo Fisher).
Fragments were purified and double digested with
Kpnl (at the 5° end) and BamHI (at the 3’ end).
Restriction fragments were cloned in front of the
luxCDABE operon in the lux biosensor vector
plJ11268 (Frederix et al. 2014) to generate the pro-
line biosensor plasmid pOPS0238 (Fig. S1b). As a
positive control, the neomycin promoter producing
constitutive luminescence was cloned upstream of
lux genes into the same plasmid, generating
plJ11282. The promoterless lux vector plJ11268
was used as a negative control. Plasmids were trans-
ferred into wild-type R. leguminosarum bv. viciae
3841 by triparental mating as previously described
(Pini et al. 2017). All plasmids are available from
Addgene (https://www.addgene.org).

Free-living assays

Bacterial strains were grown for 3 days on an UMA
(30 mM sodium pyruvate and 10 mM ammonium chlo-
ride) slope, resuspended in UMS without carbon or
nitrogen and washed three times. Then cells were grown
in UMS with 30 mM sodium pyruvate and 10 mM
ammonium chloride with antibiotics for 16 h. These
cultures were then used as inocula for subsequent in-
duction experiments during 3 h. In these experiments,
cells were grown in 10 mL UMS with different supple-
ments (as specified in the corresponding figure). Lumi-
nescence (expressed as relative luminescence units,
RLU) and ODgoy were measured using the GloMax-
Multi + Detection System (Promega). Specific lumines-
cence was calculated as RLU per ODygy.

Plant growth conditions

Pea (Pisum sativum var. Avola) seeds were surface steril-
ized and germinated on distilled water agar (0.8%, w/v)
plates for 5 days in the dark at room temperature. Seedlings
were then transferred to 13-cm square Petri plates contain-
ing Fahrdeus agar (Somasegaran et al. 1994) covered with
sterile filter paper (one seedling per plate), as previ-
ously described (Pini et al. 2017). Seedlings were
then inoculated with the corresponding bacterial
strains by pouring liquid inoculum to the roots,
adjusted to an ODgo equivalent to 2 x 107 CFU/
per root. Plates were closed with the lid and cov-
ered with aluminium foil to prevent exposure of
roots to light. Plants were grown in a growth
chamber under controlled environmental conditions
(23 °C temperature, 16-h/8-h day/night cycle).
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Application and physiological characterisation of water
deficit and salt stress

Seven days after inoculation, plants were transferred to
fresh Fahrédeus agar plates. For control plants, plates were
replaced every three days to keep adequate moisture and
nutrient levels. To generate water-deficit conditions, plants
were maintained in the same plates for seven days so that
water was progressively depleted. For the salt stress treat-
ment, plants were transferred to Fahréeus plates containing
150 mM NaCl at 15 dpi for 24 h. In both cases, plants were
transferred to fresh Fahrdeus plates at 16 dpi and further
grown for 5 days (recovery). Plates were analysed at 4, 7,
10, 13, 15, and then daily until 21 dpi.

To establish the effect of water-deficit and salt stress on
plants, stomatal conductance, leaf water potential (V}e,¢) and
net photosynthesis were measured 2 h after the beginning of
photoperiod in the youngest fully expanded leaf. Stomatal
conductance and net photosynthesis were measured with a
portable open system mode (model LCpro+; ADC BioSci-
entific Ltd.) using an ADC PLC-7504 leaf chamber. Wi,z
was measured using a pressure chamber (Scholander et al.
1965). Symbiotic nitrogen fixation was measured as appar-
ent nitrogenase activity (ANA) according to the method
described by Witty and Minchin (1998). H, evolution of
intact plants was measured in an open flow-through system
under N,/O, (79%/21%) using an electrochemical H, sen-
sor (Qubit Systems). The H, sensor was calibrated with high
purity gases using a gas mixer flowing at the same rate as the
sampling system (500 mL min ).

Image acquisition

Plates were photographed using a NightOWL camera
(Berthold Technologies) as previously described (Pini
et al. 2017). Briefly, CCD images (1,024 by 1,024 pixels)
of light output were exposed for 120 s and analysed with
the imaging software IndiGO (Berthold Technologies).
Data are expressed as counts per second (cps) or as the
ratio of luminescence to surface (cps mm 2,

Results

The proline biosensor OPS0650 is able to detect
concentrations of proline in the nanomolar range

The gene pRL120553 (hypothetical protein) and
pRL120554 (putA) was shown to be induced 16-fold
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and 2-fold respectively in R. leguminosarum bv. viciae
3841 when grown in the presence of proline
(Ramachandran et al. 2011). The gene putA encodes
the putative multifunctional proline utilisation enzyme
A (PutA), which combines ProDH and PSCDH activi-
ties, responsible for proline catabolisation in gram-
negative bacteria (Liu et al. 2017). pRL120553 codes
for a protein of unknown function and protein-BLAST
of the predicted protein analysis do not show significant
homology with previously described proteins. The gene
putR, a putative AsnC family transcriptional regulator
(pRL120552) is located upstream of pRL120553. These
genes are located very close to one another, with
intergenic regions around 50 nt each (Fig. Sla).
Thus, to generate a proline biosensor strain, a 605-
bp region upstream of pRLI120553 from
R. leguminosarum bv. viciae 3841 was cloned into
the lux vector plJ11268 in front of the /ux operon
(Fig. S1b). The fragment cloned included the pu-
tative transcriptional regulator putR, since, from
our experience, including the divergent regulator
has been shown to improve the sensitivity of the
promoter fusions (Pini et al. 2017). Transformation
of R. leguminosarum bv. viciae 3841 with this
plasmid generated the proline biosensor strain
OPS0650 (Table 1).

To determine the specificity of the induction of /ux
expression in the biosensor, bacterial cells were grown
in UMS supplemented with different compounds and
luminescence was measured after 3 h of incubation (Fig.
1). Specific luminescence data are represented as rela-
tive luminescence units per optical density at 600 nm
(RLU/ODgyq) to account for the differences in bacterial
growth. In all tests, strain LMB542 containing the emp-
ty vector plJ11268 and the strain D5250 with constitu-
tive /ux expression were included as negative and pos-
itive controls, respectively. The proline biosensor
showed luminescence values 86-fold higher in the pres-
ence of 500 uM of proline than those to cells
grown in control medium. Cells grown in media
supplemented with 10 mM of L-4-hydroxyproline,
a closely related non-proteinogenic amino acid,
presented luminescence values comparable to those
of a culture grown in the absence of proline,
suggesting that the luminescence recorded is spe-
cific for proline. When pyruvate was eliminated
from the media, the luminescence showed a de-
cline, yet was still 17-fold higher than that of cells
grown in the absence of the amino acid (Fig. 1).
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To define the limit of detection of the biosensor, the
strain was incubated in UMS media supplemented with
different proline concentrations ranging from 1 nM to
500 uM (Fig. 1). The biosensor was able to detect
concentrations of proline as low as 300 nM, showing a
significant specific luminescence of around 4.42 x 10° +
0.82 x 10° RLU/ODyg. Increases in the concentration
of proline over 50 uM did not produce significant in-
crements in luminescence emission, maintaining lumi-
nescence values of approximately 5.63 x 10° + 8.22 x
10° RLU/ODy0p.

In vivo monitorisation of proline in root exudates
and nodules

We then analysed the spatial and temporal expression
ofthe lux reporter in plants inoculated with the biosen-
sor strain during root growth and nodule development.
Pea plants were inoculated with either the biosensor
strain OPS0650 or the negative and positive control
strains LMB542 and D5250, respectively. Lumines-
cence was measured at different time points from 4 to
20 dpi (Fig. 2). We noted that the hypocotyl showed
background luminescence most likely due to the pres-
ence of chlorophyll in the upper part of the root in

proximity to the light. Thus, to measure luminescence
in roots we selected the area of the root corresponding
toalength of2—3 cm perroot width, located aprox. 2 cm
from the hypocotyl to prevent the above-mentioned
background luminescence. To calculate luminescence
in nodules we used the area corresponding to single
nodules. No proline was added to the agar plates and the
light output measured in plant roots inoculated with the
negative control strain showed average values of 2.90
+0.18 cps mm 2 across the experiment (Fig. S2; Fig.
S3). Therefore, the differences in luminescence detect-
ed can be attributed to either the proline present in root
exudates or the proline detected by the differentiated
nitrogen-fixing form of rhizobium, the bacteroids,
within the infected nodule cells. Four days after inoc-
ulation, luminescence was induced mainly on primary
roots, particularly in the upper half section of the main
root (Fig.2a). Aslateral roots developed, luminescence
could also be observed in the oldest lateral roots, al-
though at relatively lower levels (Fig. 2b-f). These
discrepancies may be related to the inoculation proce-
dure, which was carried out when plants presented only
a main root. At 10 dpi luminescence was detected in
nodules (Fig. 2¢), reaching maximum intensity values
at 15 dpi (Fig. 2d).

7x10°

6x10° |-

5x10° |

4x10°
2x108

RLU/ODgqg

100

10 |

1 50 100 200 300 500 50 500
nrMm nMm M nM nM nM pM M i mM i uM
C C+Pro C+H N+Pro

Fig. 1 Specificity and sensitivity of the proline biosensor strain
OPS0650. Luminescence values are expressed as relative lumi-
nescence units (RLU) per optical density at 600 nm (ODggg). Cells
were grown using different combinations of universal minimal
salts (UMS) media. C stands for control growth media containing
UMS + 30 mM pyruvate + 10 mM ammonium chloride (NH4Cl);
C + Pro, control medium supplemented with various

concentrations of proline as stated; C+ H, control medium +
10 mM L-4-hydroxyproline; N+ Pro, UMS medium + 10 mM
NH4C1+ 500 uM Pro. Values represent mean + SE from two
independent experiments in the case of nM proline concentrations
and three independent experiments in the other measurements. An
asterisk (*) indicates significant differences from C (Student’s #-
test at p <.05)

@ Springer



418

Plant Soil (2020) 452:413-422

Induction of the proline biosensor occurs
after a water-deficit and osmotic stress period

We then employed the luminescence-based proline bio-
sensor strain to analyse the effect of gradual water loss
and short-term salt stress on nodulated plants. Water-
deficit conditions were created by growing the plants on
the same plates for seven days. Doing so, the water
content of the agar medium, and therefore, the water
available for the plant, was progressively depleted. To
monitor the level of the water-deficit stress imposed, we
checked the following physiological parameters: leaf
water potential (W), stomatal conductance, net pho-
tosynthesis and symbiotic nitrogen fixation (Table 2).
At this stage (16 dpi), ¥\..rshowed a significant decline,
with values around —0.49+0.1 MPa, while control
plants maintained at optimal water conditions showed
W ear values of -0.24 + 0.05 MPa. Similarly, water deficit
caused a 66% decline in stomatal conductance and a
36% reduction in photosynthetic rates compared to con-
trol plants. Regarding nitrogen fixation, water deficit
and salt stress caused a 52 and 67% reduction in the

rates of nitrogen fixation, respectively, compared to
plants under optimal conditions (Table 2).

In regard to the effects of the different stress treatments
on plants inoculated with the proline biosensor, initial
experiments showed that the main changes in lumines-
cence were observed in nodules, not in the root exudates.
Therefore, analyses of the effect of the stresses are mostly
focused on the luminescence of nodules alone. Neverthe-
less, we also analyzed the variations in luminescence in
roots, selecting a region of the main root to facilitate
comparisons across treatments. Plants inoculated with the
proline biosensor OPS0650 showed significant changes in
luminescence when compared with the negative control
strain LMB542 (Fig. S3). However, as earlier observed,
with the exception of samples at day 16 (24 h after the
stress treatments), roots inoculated with biosensor strain
did not show significant changes across the experiment.

Regarding the effect of the stresses on nodules, during
the period of gradual water loss, the luminescence of
nodules was maintained at relatively constant values, sug-
gesting that proline levels did not show significant changes
in bacteroids (Fig. 3a, Fig. S4). At 16 dpi, plants were

Fig. 2 In vivo temporal and spatial expression of the proline
biosensor strain in pea roots and nodules. Images are representa-
tive of plates corresponding to 5 biological replicates and were
acquired at 4 (a), 7 (b), 10 (c), 15 (d), 18 (e), and 20 (f) dpi.
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Nodules were visible to the naked eye at around 10 dpi. Arrow-
heads were added in image (d) to show nodule position. Note that
the same scale has been used in all images to facilitate compari-
sons. Scale bar, 1 cm
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Table 2 Effect of water deficit and osmotic stress on leaf water
potential, stomatal conductance, photosynthesis and ANA of pea
plants. Values represent the mean+SE (7<n<10 biological

replicates, except in ANA with n=4). An asterisk (*) indicates
significant differences compared to control plants. (Student’s #-test
at p<.05). NDW, nodule dry weight

Parameter (Units) Control Water deficit Salinity

Stomatal conductance (mol m?Zs b 0.09+0.01 0.03+0.01* 0.04+0.01*
Leaf water potential (MPa) —0.24+0.05 —049+0.1* —0.39+0.03*
Photosynthesis (umol CO, m > s™ ) 7.07+0.38 4.52+047* 4.73+0.26%*
ANA (umol H, g NDW ! min™ ') 0.54+0.06 0.26+0.01* 0.23+£0.07*

transferred to fresh plates (i.e., optimal water availability)
as a recovery treatment. Recovery provoked a rapid in-
crease in the luminescence observed in nodules within the
first 24 h, showing a gradual reduction in the following
days (Fig. 3a and c, Fig. S4), almost reaching the levels of
lux expression in nodules of control plants (Fig. 3a and b).

Salt stress was generated by incubating plants on
plates containing 150 mM NaCl for one day. Similarly,
to the water-deficit experiment, recovery was carried out
by transferring the plants to fresh plates under optimal
growth conditions, corresponding to the time point 16
dpi. Salinity also had a negative impact on the physiol-
ogy of the plants, which showed W.,¢ values of -0.39 +
0.03 MPa, a 55% decline in stomatal conductance and a
35% reduction in net photosynthesis (Table 2). 24 h
after the application of the salt stress there were no
significant changes in the level of luminescence of the
proline biosensor compared to the luminescence record-
ed before the onset of the treatment (Fig. 3a, Fig. S5). At
17 dpi, however, luminescence started to increase,
reaching its maximum at 18 dpi (Fig. 3a and d, Fig.
S5). Subsequently, the levels of luminescence progres-
sively declined, yet were significantly higher than those
of control nodules at the end of the experiment (Fig. 3a).

Nodules of plants inoculated with the negative con-
trol strain LMB542 showed negligible luminescence
levels (Fig. 3e; Fig. S2), while nodules of plants inocu-
lated with D5250, the strain carrying the constitutive /ux
expression plasmid, showed the maximum levels of
luminescence (Fig. 3f; Fig. S6).

Discussion

This work describes a novel lux biosensor for the detection
of proline. The biosensor takes advantage of the proline-
specific promoter of the gene pRL120553, a gene in close
proximity to the gene pRL120554 (putA), of Rhizobium

leguminosarum bv. viciae 3841, which were highly
expressed during growth in proline. The induction assay
showed that this biosensor is very sensitive as it can sense
proline at concentrations as low as 300 nM. Also, testing
with L-4-hydroxyproline, a close relative of proline,
showed that this biosensor is very specific to proline.
Currently, this biosensor is housed in Rhizobium
leguminosarum bv. viciae 3841, although it should work
in other related rhizobia. This novel construct allows the
semi-quantitative estimation of the levels of proline both
secreted by roots in the rhizosphere as well as the proline
accessible for bacteroids inside nodules. The measurement
is carried out in a non-invasive manner, maintaining tissue
integrity, and thus, avoiding possible artefacts or degrada-
tion issues faced when collecting root exudates or isolating
symbiosomes. Additionally, it allows the monitoring of
proline levels across time using a simple plate growth
assay. Although /ux-based systems come with their own
limitations (i.e., dependence on oxygen, ATP or reducing
power; Brodl et al. 2018), this type of /ux-based biosensor
has been successfully used for the in vivo monitoring of a
number of metabolites including sugars, polyols and or-
ganic acids (Pini et al. 2017), as well as signalling com-
pounds such as rhizopines (Geddes et al. 2019).

In terms of root secretion, proline was detected mainly
on the primary root and, at later stages, with lateral roots
and nodules (Fig. 2, Fig. S2, Fig. S3). This luminescence
was shown to be specific of the presence of proline since
plants inoculated with the negative control strain showed
negligible light output (Fig. S2, Fig. S3). Interestingly,
these regions do not correspond to root zones that are
preferentially colonised by rhizobia (i.e., the elongation
zone), neither co-localise with the secretion of other me-
tabolites such as the amino acid phenylalanine or carbohy-
drates like sucrose (Pini et al. 2017). This suggests that the
composition of the root exudates varies depending on the
root zones, an observation that could not be made using
classical root exudate extraction approaches.

@ Springer



420 Plant Soil (2020) 452:413-422
35
at ¥ ¥ ¢ # ¥
= 20k * * * * * *
£
25+¢ il
g 2f
3 ¥ :
; "
2 % i Y
§ .
4 10}
—
3
s st
10 13 15 16 17 18 19 20 21
Time (days)

—e— Control — ¥~ Water deficit ---m-- Salinity

Fig. 3 a In vivo monitoring of proline in pea nodules of plants
inoculated with the biosensor R. leguminosarum bv. viciae strain
OPS650. Values represent mean luminescence [counts per second
(cps) mm™ %] from nodules of pea plants inoculated with the
proline biosensor. Stress was induced at 15 dpi for 24 h (grey
area). For recovery, plants were transferred to fresh plates (optimal
growth conditions). Values represent the mean+ SE calculated
from 5 biological replicates using the luminescence values of all
the nodules present in a plant. An asterisk or a hash sign (* or #)
indicate significant differences between salt-stressed or water-
deficit plants and control plants, respectively (ANOVA at p
<.05, Dunnett T3 post hoc test). (b) to (f) representative images
from nodules of pea plants under different conditions, and their

Symbiotic root nodules represent a strong sink tissue
for the plant, requiring the transport of high levels of
sucrose to fuel nitrogenase activity and the biosynthesis
of a large number of proteins and other biomolecules to
maintain the high rates of metabolic activities. Once
inside nodules, the major energy source provided by
the plant to the bacteroids is in the form of malate
(Udvardi et al. 1988; Ronson et al. 1981; Driscoll and
Finan 1993). However, the peribacteroid membrane also
allows the transport of amino acids, including proline
(Udvardi et al. 1990; Zhu et al. 1992). This fact, along
with the observation of increased proline degradation
activity under drought and salt stress conditions (Kohl
et al. 1988), has led to suggest that besides its
osmoprotectant role, proline can also be used as a car-
bon, nitrogen and energy source for bacteroids (Curtis
et al. 2004; Kohl et al. 1994). Indeed, exogenous appli-
cation of proline or inoculation with a strain overex-
pressing putA has been shown to improve nitrogen
fixation under drought stress conditions (Kohl et al.
1994; Zhu et al. 1992; van Dillewijn et al. 2001).

The current work shows that proline levels increased
within bacteroids during nodule development, reaching a
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corresponding luminescence image. b nodules of plants inoculated
with the proline biosensor strain OPS0650 under control condi-
tions (17 dpi, scale 0-400 cps); ¢ nodules from water-deficit plants
at the maximum level of luminescence of the proline biosensor
during recovery (17 dpi, scale 0-1100 cps); d nodules from salt-
stressed plants at the maximum luminescence of the proline bio-
sensor during recovery (18 dpi, scale 0-3000 cps); e nodules from
plants inoculated with the negative control strain LMB542 (no /ux
expression, 17 dpi, scale 0-400 cps); f nodules from plants inoc-
ulated with the positive control strain D5250 (constitutive /ux
expression,17 dpi, scale 1200-25200 cps). Arrowheads were
added in images (b) to (f) to show nodule position

maximum level at 15 dpi. It is also interesting to note that,
based on the luminescence detected, proline levels in
nodules are significantly higher than those detected in root
exudates. However, in contrast to the classical stress-
induced accumulation of proline in nodules (Fougere
et al. 1991; Gil-Quintana et al. 2013; Larrainzar et al.
2009), proline levels in pea bacteroids did not show sig-
nificant variations during the stress period, but during the
recovery phase. Although there are several factors that
could account for these discrepancies such as the duration
or the intensity of the stress treatment, it is noteworthy that
this is the first time that proline levels are measured in
bacteroids within intact nodules (i.e., without disrupting
the tissue). Thus, the increase in proline previously report-
ed may account, at least partially, to the proline accumu-
lation in the plant fraction of nodules. In this scenario,
recuperation of optimal growth conditions during recovery
may lead to a reactivation of bacteroid proline catabolism
and/or increased import of proline from the cytosol to the
symbiosomes. This activation of proline catabolism upon
recovery has, to our knowledge, been so far only described
in plants, where the expression of proline dehydrogenase is
suppressed during osmotic stress but induced again upon
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the relief of the stress (Mani et al. 2002; Satoh et al. 2002).
Proline uptake has been shown to occur through a diffusive
process in bacteroids from alfalfa and soybean nodules
(Trinchant et al. 1998; Pedersen et al. 1996; Udvardi
et al. 1990). Thus, one possibility is that at least a fraction
of the proline accumulated during the stress in the plant
fraction catabolised by the bacteroid with a two-fold ben-
efit: to facilitate restoring pre-stress proline levels in the
cytosol of infected cells, and to provide an additional
source of energy, carbon or nitrogen for bacteroid metab-
olism. In this regard, in experiments with bacteroids iso-
lated from Vicia faba nodules, salt stress produced an
accumulation of proline in the peribacteroid space, sug-
gesting that symbiosomes may behave as osmometers to
accommodate the osmotic changes occurring in infected
cells (Trinchant et al. 1998). Based on results presented
here, this could also be the situation in nodules subjected to
water deficit. It would be of great interest to combine
multiple biosensors driving the expression of, for instance,
different fluorescent proteins so that the levels of key
metabolites can be simultaneously monitored in vivo.
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