
Learning Channel-wise Ordered Aggregations in
Deep Neural Networks ?

Iris Dominguez-Catena[0000−0002−6099−8701], Daniel
Paternain[0000−0002−5845−887X], and Mikel Galar[0000−0003−2865−6549]

Institute of Smart Cities, Public University of Navarre, Pamplona, Spain
{iris.dominguez, mikel.galar, daniel.paternain}@unavarra.es

Abstract. One of the most common techniques for approaching im-
age classification problems are Deep Neural Networks. These systems
are capable of classifying images with different levels of detail at differ-
ent levels of detail, with an accuracy that sometimes can surpass even
manual classification by humans. Most common architectures for Deep
Neural Networks are based on convolutional layers, which perform at the
same time a convolution on each input channel and a linear aggregation
on the convoluted channels. In this work, we develop a new method for
augmenting the information of a layer inside a Deep Neural Network us-
ing channel-wise ordered aggregations. We develop a new layer that can
be placed at different points inside a Deep Neural Network. This layer
takes the feature maps of the previous layer and adds new feature maps
by applying several channel-wise ordered aggregations based on learned
weighting vectors. We perform several experiments introducing this layer
in a VGG neural network and study the impact of the new layer, obtain-
ing better accuracy scores over a sample dataset based on ImageNet. We
also study the convergence and evolution of the weighting vectors of the
new layers over the learning process, which gives a better understanding
of the way the system is exploiting the additional information to gain
new knowledge.

Keywords: Neural Nets · RNN · Deep Learning · Ordered Aggregations.

1 Introduction

Image Classification can be considered one of the most common problems to be
solved with Deep Learning and Convolutional Neural Networks (CNNs). CNNs
are neural networks that allow us to work on data with spatial structures, such as
images, where the meaning of a pixel depends strongly on its neighborhood. This
is achieved in CNNs by applying convolutional operations that impose local con-
nectivity constraints on the network weights. Most CNN architectures alternate
these layers that exploit local information with pooling layers that down-sample

? This work was partially supported by the Public University of Navarre under the
projects PJUPNA13 and PJUPNA1926.

Dominguez-Catena I., Paternain D., Galar M. (2021) Learning Channel-Wise Ordered Aggregations in Deep
Neural Networks. In: Kahraman C., Cevik Onar S., Oztaysi B., Sari I., Cebi S., Tolga A. (eds) Intelligent and Fuzzy
Techniques: Smart and Innovative Solutions. INFUS 2020. Advances in Intelligent Systems and Computing, vol
1197. Springer, Cham. https://doi.org/10.1007/978-3-030-51156-2_119

2 I. Dominguez-Catena et al.

the feature maps, making the network resistant to local translations. This ar-
chitecture means that, for most CNNs, only local information is exploited in
early layers of the network, and only by down-sampling will we combine this
information into a more global perspective in later layers.

Our main hypothesis is that some of this global information could be recov-
ered via ordered weighted aggregations using global metrics, and used on the
convolutional layers of the network to gain new knowledge. Thus, our main ob-
jective is to implement a new layer that augments the feature maps of a CNN
network, generating information with channel-wise ordered weighted aggrega-
tions, and study the impact on the system. We are interested in both the impact
on the final performance of the network and the convergence of the weighting
vectors of the new aggregations.

The rest of this work is as follows. In Section 2 we will overview the literature
related to our work. Then, in Section 3 we will develop our proposed methodol-
ogy. In Section 4 we will present a case of study, with a specific implementation of
the method and the results we have found. Finally, in Section 5 we will conclude
this work and propose some future work lines.

2 Related work

In the literature we can find several approaches for applying ordered weighted
aggregations, usually Ordered Weighting Averaging operators (OWA for short)
and other fuzzy measures to CNNs [1,3–5,7, 9, 10,13].

The most common approach is to use fuzzy measures to aggregate the result
of an ensemble of classifiers, in the image classification case usually CNNs [1,5,9,
10]. In these systems, we have several independent classifiers, and the aggregation
only operates on the results of the classifiers.

Another approach is to use Fuzzy Measure-based operators in the pooling
layers of CNN classifiers [3,4], replacing the common aggregations used for pool-
ing, maximum and average.

A third interesting approach are Linear Order Statistic Neurons [13], where
the neuron at the core of neural networks is redesigned based on OWA operators.

Finally, the work presented here is mainly inspired by previous attempts
to employ OWA operators to summarize the information on a CNN [7]. The
authors proposed the creation a “Fuzzy Layer”, designed to get the information
in a certain point of the network and replace it with the result of applying six
predefined OWA operators (max, min, soft-max, soft-min, average and a random
operator) channel-wise, sorting the channels by entropy. Our proposal works in a
similar fashion, but with several key differences. The first one is that we will try
to augment the information of the network, instead of replacing it. The second
one is that we will not use predefined operators, but we will allow the network to
learn the weights of the aggregations. Finally, we will not use OWA operators, as
the common constraints make the learning progress more difficult, and instead,
we will use a generalized version that does not constraint the weights.

Learning Channel-wise Ordered Aggregations in Deep Neural Networks 3

3 Proposal

To develop our proposal, we will first present the general layer structure in
Section 3.1. The, in Section 3.2 we will present the metric used for sorting image
channels. Finally, we will consider the way of aggregating channels in Section
3.3.

3.1 Layer structure

Our proposed augmented layer structure will be a combination of ordering and
aggregation, used to augment the information in the network. We should note
that by combining ordering and aggregation, we are creating an approximation
of a channel-wise OWA operator [14], with some of the restrictions that make
them averaging operators lifted. For these aggregations to be real OWA, we
would require that wi ∈ [0, 1] for every i = 1, . . . , n and

∑n
i=1 = 1. In our

experience these constraints impair learning, so we avoid this constraint for the
practical implementation of OWAs.

The layer will be placed in a CNN between two layers, and will take as input
the image of resolution I × J with Cin channels, each channel being a feature
map corresponding to a convolutional filter of the previous layer. As output, the
layer will generate a new image of I×J resolution, but with additional channels
making a total of Cout number of channels, with Cout = Cin+Cfeat. To generate
the new output, we will take the input channels of an image, sort them according
to a channel-wise metric (explained in Section 3.2), and aggregate them with
Cfeat channel-wise weighted aggregations (explained in Section 3.3). Finally, we
will concatenate the new Cfeat generated channels with the original Cin channels
to preserve the original information of the network.

3.2 Channel-wise ordering metrics

To sort the channels we define an ordering metric, a function that will take as
input a single channel image X of size I×J , and output a single m(X) measure
value corresponding to that value.

For this work, we have to chosen to use as the ordering metric the Total
Variation [8]. This metric can be defined as:

TVv(X) =

I∑
i=2

J∑
j=1

|xi,j − xi−1,j | (1)

TVh(X) =

I∑
i=1

J∑
j=2

|xi,j − xi,j−1| (2)

TV (X) = TVv(X) + TVh(X) (3)

This metric measures the absolute differences between each pixel and its
horizontal and vertical neighbors. This will result in a higher TV for images
with a lot of crisp borders or peak values, and lower TV for flatter images with
constant pixel values.

4 I. Dominguez-Catena et al.

3.3 Channel-wise weighted aggregation

For the aggregation, we use a simple weighted aggregation, with a single weight
per channel. We will perform several of these aggregations, thus taking an input
image X of Cin channels and a resolution of I rows J , and producing a new image
of Cfeat channels with the same resolution of I×J , generating each channel with
an independent weighted aggregation of the input image.

For these aggregations, we impose the restriction that all the weights Wi > 0
for i ∈ (1, Cin). This restriction is implemented by using a ReLU over the raw
weights, where:

ReLU(X) = max(x, 0) (4)

The matrix of weights (Cfeat × Cin) corresponding to these aggregations
(where one row corresponds to one aggregation) are initialized consisting of
random numbers following a normal distribution N (0, 1). Since we work with
positive weights, we obtain the absolute values of the generated random numbers.

After that, these weights are considered in the same as the rest of the param-
eters in the network, in such a way that they are learned by back-propagation.

4 Case of study

As a test for the proposed architecture, we implement the layer inside a VGG13
network [11]. This is a well known CNN architecture with 10 convolutional
blocks, each one composed of a convolutional layer, a batch normalization layer
and a ReLU activation layer. We test our new proposed layer by inserting it on
the points marked as P1 and P2, one in the early layers of the network and one
in the later layers. The layer structure is presented in the Table 1.

For evaluating our proposal, we consider the Imagenette dataset, a subset of
ImageNet [2]. This dataset includes 10 classes from the original ImageNet, each
one with around 1,300 training images and 50 test images, for a total of 12,894
training images and 500 test images. These images are in color, with 3 RGB
channels, and a variable image size. We will resize all of them to a 256 × 256
resolution upon loading. The implementation of this experiment is done using
PyTorch 1.3.1 and Fastai 1.0.58.

We use as a reference an unmodified version of the network. For both the
reference and the test configurations, we run 10 repetitions, each one training
the network from scratch for 10 epochs, following the 1cycle policy [12], with
a maximum learning rate of 6 × 10−5. We then get the last accuracy score
of each run, and compute both the average, and the non-parametric Mann-
Whitney U test [6] comparing each configuration with the reference network.
For the statistical test, the null hypothesis is that the configuration has the
same performance as the reference, and we will consider the threshold of 0.05
for the resulting p-value.

The accuracy results of the reference and our two test configurations, one
with insertion point in P1 and 64 learned feature maps, and the other with
insertion point in P2 and 16 feature maps, are shown in the Table 2. We choose

Learning Channel-wise Ordered Aggregations in Deep Neural Networks 5

Table 1. Network architecture.

Name Kernel Size Stride Output Size
input data - - 256 × 256 × 3

conv1 1 3 × 3 1 256 × 256 × 64
conv1 2 3 × 3 1 256 × 256 × 64
maxpool 2 × 2 2 128 × 128 × 64

conv2 1 3 × 3 1 128 × 128 × 128
P1 - - 128 × 128 × (128 + Cfeat)
conv2 2 3 × 3 1 128 × 128 × 128
maxpool 2 × 2 2 64 × 64 × 128

conv3 1 3 × 3 1 64 × 64 × 256
conv3 2 3 × 3 1 64 × 64 × 256
maxpool 2 × 2 2 32 × 32 × 256

conv4 1 3 × 3 1 32 × 32 × 512
conv4 2 3 × 3 1 32 × 32 × 512
maxpool 2 × 2 2 16 × 16 × 512

conv5 1 3 × 3 1 16 × 16 × 512
P2 - - 16 × 16 × (512 + Cfeat)
conv5 2 3 × 3 1 16 × 16 × 512
maxpool 2 × 2 2 8 × 8 × 512

linear - - 256
linear - - 256
linear - - 10

this learned feature map numbers to keep a proportion of one generated feature
map for every 8 original layers at that point. We can observe an improvement
of 1% with both configurations, with a more marked improvement in the second
configuration (on a higher insertion point and using more learned features). Both
configurations have statistically significant results, with a p− value ≤ 0.05.

Table 2. Accuracy scores.

Insertion point Cfeat Accuracy p− value

reference - 89.45± 0.52 -
P1 16 90.48± 0.55 0.0079
P2 64 90.7890.7890.78± 0.510.510.51 0.0016

We present some of the weighting matrices in the Figure 1. The first column
corresponds to a run of the first configuration (with insertion point in the new
layer in P1 and 64 learned feature maps), while the second column to a run of
the second configuration (with insertion point in P2 and 16 feature maps). On
both columns, from top to bottom, the weighting matrices are plotted on each
epoch of the training.

6 I. Dominguez-Catena et al.

We can observe a clear and fast convergence in both cases, where after the
third epoch the matrices remain stable. On both configurations we can observe
very clear patterns, similar to soft-max and soft-min operators. These patterns
seem to repeat for each aggregation, converging to just two main models, one for
the min and one for the max. Both configurations evolve with similar speed and
to similar patterns, although with a bit more noise on the configuration with
insertion point in P1. This supports the theory that the network is extracting
knowledge from these aggregations, and the fact that the models are smooth
proves that the channel metric that we are using is not generating a fixed order
(which would defeat the purpose of using ordered aggregations).

5 Conclusion

We have presented and studied the augmentation of a CNN with information de-
rived from the application of ordered weighted aggregations to its feature maps.
The study shows that the systems is able to extract knowledge from the new
layer, obtaining an improvement in accuracy and showing a clear convergence of
the weighting matrices corresponding to the new layer.

Further research is needed to stabilize these results, studying the impact of
the layer on different points of the network, different network architectures, and
under different circumstances.

We also believe that the general architecture proposed for feature map aug-
mentation could be extended with different techniques, using different fuzzy
measures and other methods of generating the new channels.

Learning Channel-wise Ordered Aggregations in Deep Neural Networks 7

(a) Insertion point P1, Cfeat = 16 (b) Insertion point P2, Cfeat = 64

Fig. 1. Normalized weighting vector evolution.

8 I. Dominguez-Catena et al.

References

1. Anderson, D.T., Scott, G.J., Islam, M., Murray, B., Marcum, a.R.: Fuzzy choquet
integration of deep convolutional neural networks for remote sensing. In: Compu-
tational Intelligence for Pattern Recognition, pp. 1–28. Springer (2018)

2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-
Scale Hierarchical Image Database. In: CVPR09 (2009)

3. Dias, C.A., Bueno, J.C.S., Borges, E.N., Botelho, S.S.C., Dimuro, G.P., Lucca, G.,
Fernandéz, J., Bustince, H., Drews Junior, P.L.J.: Using the Choquet Integral in
the Pooling Layer in Deep Learning Networks. In: Barreto, G.A., Coelho, R. (eds.)
Fuzzy Information Processing. pp. 144–154. Springer (2018)

4. Dias, C.A., Bueno, J.C.S., Borges, E.N., Lucca, G., Santos, H., Dimuro, G.P.,
Bustince, H., Junior, P.L.J.D., Botelho, S.S.C., Palmeira, E.: Simulating the Be-
haviour of Choquet-Like (pre) Aggregation Functions for Image Resizing in the
Pooling Layer of Deep Learning Networks. In: International Fuzzy Systems Asso-
ciation World Congress. pp. 224–236. Springer (2019)

5. Du, X., Zare, A.: Multiple Instance Choquet Integral Classifier Fusion and Re-
gression for Remote Sensing Applications. IEEE Transactions on Geoscience and
Remote Sensing 57(5), 2741–2753 (2019)

6. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables
is stochastically larger than the other. The annals of mathematical statistics pp.
50–60 (1947)

7. Price, S.R., Price, S.R., Anderson, D.T.: Introducing Fuzzy Layers for Deep Learn-
ing. In: 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).
pp. 1–6 (2019)

8. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal
algorithms. Physica D: Nonlinear Phenomena 60(1), 259 – 268 (1992)

9. Scott, G.J., Hagan, K.C., Marcum, R.A., Hurt, J.A., Anderson, D.T., Davis, C.H.:
Enhanced Fusion of Deep Neural Networks for Classification of Benchmark High-
Resolution Image Data Sets. IEEE Geoscience and Remote Sensing Letters 15(9),
1451–1455 (2018)

10. Scott, G.J., Marcum, R.A., Davis, C.H., Nivin, T.W.: Fusion of Deep Convolutional
Neural Networks for Land Cover Classification of High-Resolution Imagery. IEEE
Geoscience and Remote Sensing Letters 14(9), 1638–1642 (2017)

11. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale
Image Recognition. arXiv 1409.1556 (2014)

12. Smith, L.N.: A disciplined approach to neural network hyper-parameters: Part 1 –
learning rate, batch size, momentum, and weight decay. arXiv 1803.09820 (2018)

13. Veal, C., Yang, A., Hurt, A., Islam, M.A., Anderson, D.T., Scott, G., Keller, J.M.,
Havens, T.C., Tang, B.: Linear Order Statistic Neuron. In: 2019 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE). pp. 1–6 (2019)

14. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria
decisionmaking. IEEE Transactions on Systems, Man, and Cybernetics 18(1), 183–
190 (1988)

