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ABSTRACT

Large ramps and ramp rates in photovoltaic (PV) power output are of concern and sometimes even explicitly restricted by grid operators.
Battery energy storage systems can smooth the power output and maintain ramp rates within permissible limits. To enable PV plant and
energy storage system design and planning, a method to estimate the largest expected ramps for a given location is proposed. Because clouds
are the dominant source of PV power output variability, an analytical relationship between the worst expected ramp rate, cloud motion vector,
and the geometrical layout of the PV plant is developed. The ability of the proposed method to bracket actual ramp rates is assessed over
10months under different meteorological conditions, demonstrating an average compliance rate of 98.9% for a 2min evaluation time window.
The largest observed ramp of 29.7% s−1 is contained with the worst case estimate of 34.3% s−1. This method provides a convenient yet
economical approach to worst-case PV ramp rate modeling and is compatible with solar irradiance measured at coarse temporal resolution.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0021875

I. INTRODUCTION

The power output variability by large-scale grid-connected photo-
voltaic (PV) systems (https://www.sciencedirect.com/topics/materials-
science/photovoltaics) can negatively affect power quality and grid net-
work reliability. Regulations have been introduced to restrict the maxi-
mum power ramp rates for PV plants on 1min timescales (Gevorgian
and Booth, 2013). These restrictions typically invite one of two
approaches: (1) Compensate the power variability through energy stor-
age systems (ESSs). The storage requirements and strategies to comply
with the regulations, considering capacity losses and cycling degrada-
tions, have been comprehensively studied (Ru et al., 2014; de la Parra
et al., 2015; Marcos et al., 2014a). (2) Curtail the PV output to smooth
up-ramps reactively and provide a buffer for smoothing down-ramps
proactively (Tonkoski et al., 2011; Shivashankar et al., 2016). For exam-
ple, short-term forecasts for future cloud arrivals allow a system opera-
tor to meet ramp rate restrictions with less battery reserve or
curtailment (Nguyen et al., 2016; Kuhn et al., 2018a; Saleh et al., 2018).
If all ramp rates (except plant outages) were to be mitigated, approach
(1) would require knowledge of the worst-case ramp rate to determine
the power and energy rating of the ESS. Given perfect forecasts,
approach (2) could mitigate all power ramps without ESSs. In practice,

however, significant errors in the short-term ramp forecasts combined
with restrictive ramp rate compliance requirements typically still require
an ESS to mitigate worst-case ramp rates, but accurate forecasts can
reduce the number of charge/discharge cycles of the ESS.

Although the nature of PV power variability has been well-
studied (Perez et al., 2010; Hoff and Perez, 2010; Lave et al., 2012; Lave
et al., 2015; Perez et al., 2016), existing approaches to simulate power
fluctuations are expensive or cumbersome. For example, Kuszamaul
et al. (2010) created a network with synchronized sensors throughout
the plant and approximated power output fluctuations as the average
of the sensor readings. Marcos et al. (2011) studied the smoothing
effect of power fluctuations over the area of the power plant by low-
pass filtering irradiance measurements at a single point, but the model
needs to be empirically tweaked for each PV plant. Lave et al. (2013)
proposed a wavelet variability model to simulate the reduction in
power output fluctuations of a plant or a fleet of dispersed plants. The
correlation scaling coefficient introduced in the model is universal and
a function of cloud speed (Lave and Kleissl, 2013). Marcos et al. (2016)
simulated the power output by a fleet of plants, using only irradiance
measurements at a single location and the smoothing effect due to geo-
graphical dispersion and plant size.
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To the authors’ knowledge, all solar power high frequency vari-
ability models in the literature require high frequency [O(1s)] solar
irradiance measurements (Van Haaren et al., 2015; de la Parra et al.,
2018). The sensitivity of solar variability model performance influ-
enced by low frequency solar irradiance data is demonstrated in Lave
et al. (2015). One-minute resolution data were found to be barely
acceptable for ramp simulations with the induced errors being within
the margin of other modeling errors. While high frequency solar irra-
diance data are rarely available, some applications, such as PV plant
design and ESS sizing, require only the worst power fluctuations. For
example, the worst ramp rate determines the required power and
energy capacity rating for the ESS to buffer all down-ramps (Marcos
et al., 2014b). Motivated by this, we proposed a novel analytical
approach, where the maximum expected PV ramp rate is computed in
a process-based model using (1) low-resolution point irradiance or PV
power measurements, (2) the geometrical layout of the PV plant, and
(3) cloud velocity. During a cloud passage, the power ramp amplitude
depends on the cloud optical depth, and the ramp rate is a function of
both the optical depth and how fast a moving cloud passes over the
plant. We utilize cloud motion vectors (CMVs) at the ground level
measured by our unique and recently upgraded cloud speed sensor
(CSS) (Fung et al., 2014; Wang et al., 2016; Kuhn et al., 2018b).

In this paper, we advance our previous work (Wang et al., 2019;
Lappalainen et al. 2020) through a more thorough derivation and
demonstration of a simple analytical model that bounds the maximum
ramp rate with greater accuracy, and we evaluate the capability of the
model over 90 days, spanning all seasons and multiple cloud types. As
CMVs are a key input of the model, we also take this opportunity to
fully test and validate the performance of the improved version of the
CSS, which measures CMVs more accurately in real-time and at a
higher sampling rate.

The remainder of this paper is organized as follows. Sections IIA
and IIB present the ramp rate model as an analytical relation between
cloud velocity, PV plant dimension, recent PV power/cloud optical
depth measurements, and expected maximum ramp rate. Section IIC
introduces metrics to evaluate the model. Sections IIIA and IIIB clar-
ify the motivation for the specific validation approach adopted in this
paper and describe the experimental setup and data in detail. Section
IIIC introduces recent CSS advancements in hardware design and
real-time data processing, and Section IIID introduces the process to
derive the data input for the model. Sections IVA and IVB examine
the model performance through detailed analysis for an example day
and validations over a 10-month period. Sections IVC–IVG discuss
the performance, application, and benefits of the model in detail.
Finally, Section V provides the conclusions.

II. MATHEMATICAL DERIVATION AND PROBLEM
FORMULATION
A. A Geometric ramp rate model

The geometric ramp rate model is based on the following three
assumptions: (1) Advection of a large frozen cloud: A known irradi-
ance field moving at a constant cloud motion vector impacts a PV
plant. The irradiance field is larger than the size of the PV plant. The
irradiance field contains a homogenous cloud layer with a stationary
optical thickness over the time period when the ramp occurs. (2) No
mismatch losses in the PV plant. Thus, the PV plant power is propor-
tional to spatially averaged irradiance. In reality, PV system efficiency

in partly cloudy conditions would be expected to be reduced due to
partial shading and mismatch between the output of different cells on
a string. (3) Constant PV efficiency, i.e., no cell temperature or inverter
effects. Assumptions (2) and (3) simplify the irradiance-to-power
model.

With these assumptions, we start with a simple 1D example
where a power ramp results solely from an irradiance field moving
eastward over a PV plant of size S, as conceptualized in Fig. 1(a). For
simplicity, but without loss of generality, the irradiance field repre-
sented in Fig. 1 consists of a cloud (bordered by the gray rectangle)
and clear sky elsewhere (white space). The ramp rate is modeled based
on the interaction between this irradiance field advected by the CMV
and the PV plant geometry, which, in our model, is aligned with
North–South directions. At the initial time t0, the cloud (solid border)

FIG. 1. Conceptual illustration of modeling the geometric relation between the ramp
rate and the movement of the irradiance field in 1D (a) and 2D (b) scenarios. The irra-
diance field is defined by a cloud (gray rectangle labeled “Cloud”) embedded in clear
sky (surrounding white spaces labeled “Clear Sky”). The PV plant measures S ¼ L by
W and, for convenience, aligns with North–South directions. The cloud intersecting the
PV plant at t0 (solid border) is being advected at speed v and in direction a to a new
position (dashed border). The incoming area DSi (red) defines the area of the plant
that is covered by the region of the irradiance field previously outside of the plant.
Conversely, the outgoing area DSo (green) defines the portion of the irradiance field
that previously covered the plant, but moves outside the plant during time interval Dt,
with DSi ¼ DSo ¼ DS in (a) and DSi ¼ DSo � DS in (b) per Appendix B. While
the two complementary areas result in a power ramp event in a complex mathematical
relation [Eq. (5)], the plant area that is effectively impacted by the cloud advection DS
is painted in blue for illustration clarity.
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covers a part of the PV plant and then is advected during a small time
interval Dt into a new position (dashed border). During the advection,
part of the irradiance field moves off the plant (i.e., the green outgoing
area is denoted as DSo), while the complementary upwind part moves
in (i.e., the red incoming area is denoted as DSi). DSo and DSi are of
the same size. Note that it is the difference in the averaged cloud opti-
cal thickness between DSo and DSi that induces a power ramp event.
An alternate, more intuitive presentation of the effectively affected
area DS as a result of the movement of solar radiance field within Dt is
highlighted in blue. In this 1D example, DS ¼ DSi ¼ DSo ¼ WvDt.

A more general 2D example is conceptualized in Fig. 1(b). The
cloud motion vector is not aligned with the orientation of the plant
(i.e., cloud direction a 6¼ 90�), yielding a composite shape DSi com-
posed of a vertical rectangle and a horizontal rectangle (both in orange
border), and their respective complementary areas DSo as well. The
total area of the composite shape DSi and DSo can be formularized as
follows:

DSo ¼ DSi ¼ Lvjcos aj þWvjsin ajð ÞDt � vDtð Þ2jsin a cos aj: (1)

For illustration clarity, the effectively affected area DS is again
highlighted in blue, which is responsible for the power change and can
be calculated as DS ¼ WvDt=jsin aj, as per the trigonometric diagram
in Appendix B. Nevertheless, we use the full impacted area DSi and
DSo as indicated in Eq. (1) to derive the analytical relation between the
system geometry and the power ramp rate.

For reference, the area-normalized clear sky power production
P̂cs is calculated by Eq. (2), given the power production under clear
sky condition Pcs,

P̂cs ¼ Pcs
LW

: (2)

The solar power that would be produced by DSi under a clear sky con-
dition can be expressed as

P� ¼ P̂csDSi: (3)

The solar power change DP caused by a change in the cloud optical
thickness between DSi and DSo is described using the clear sky index
kcs (Ineichen and Perez, 2002) as

DP ¼ kcsi � kcsoð ÞP�; (4)

where kcsi and kcso represent the average cloud optical thickness for
DSi and DSo of the irradiance field, respectively. Since the irradiance
field is a mix of cloudy and clear sky conditions, kcsi � kcso can be pos-
itive or negative. Finally, the ramp rate RR becomes

RR¼DP
Dt

¼ jkcsi �kcso jPcs
DtLW

LvjcosajþWvjsinajð ÞDt� vDtð Þ2jsinacosaj
� �

:

(5)

B. The worst-case scenario ramp rate (WCS-RR)

Equation (5) is not intended for operational ramp rate forecasts
since—without a sky imager—the upwind irradiance field that would
be needed to quantify kcsi is generally not available. Instead, we

consider the worst-case scenario, where a clear sky gives way to an
overcast sky. We estimate the largest ramp rate by picking the largest
and smallest kcs from recent history (e.g., 30min) kcsmax and kcsmin . The
WCS-RR can be expressed as

WCS� RR ¼ 6
kcsmax � kcsminj jPcs

DtLW

� Lvjcos aj þWvjsin ajð ÞDt � vDtð Þ2jsin a cos aj
� �

:

(6)

Note that kcsmax is not necessarily kcs in the clear sky condition.
For example, due to additional diffuse irradiance, cloud edge enhance-
ment can cause irradiance to exceed the clear sky irradiance (Lave
et al., 2012). Furthermore, we consider a specific time period of the
cloud passage that warrants the worst-case scenario, which is not
reflected in Eq. (5), but the reader is referred to Appendix C for
detailed discussions. Finally, Eq. (6) presents an analytical estimate of
the expected maximum ramp rate given cloud velocity, largest and
smallest kcs, and PV plant dimension.

C. Performance evaluation

The WCS-RR estimate is evaluated by the following performance
metrics. First, we define the compliance indicator r by dividing the
actual ramp rate by the correspondingWCS-RR estimate, as in the fol-
lowing equation:

r tð Þ ¼ RRactual tð Þ
RRestimate tð Þ : (7)

When r � 1, the actual ramp rate complies with the WCS-RR esti-
mate. The maximum r in each non-overlapping evaluation window of
lengthmminutes is

lj ¼ maxfr ið Þ; i 2 ½nj; n jþ 1ð Þ � 1�g; j 2 1; N½ �: (8)

n ¼ ðm� 60Þ s=R represents the number of r in the jth evaluation
window with a temporal resolution of R s, and N is the total number
of evaluation windows computed by rounding up the expression
T=m; in which T is the overall daily time window of the WCS-RR in
minutes. The selection of m is somewhat arbitrary: a shorter window
length results in more windows with exclusively clear or overcast
conditions—which are not of concern for ramp rates—while longer
window lengths tend to evaluate r too infrequently. Since transmission
system operators are typically required to counteract power fluctua-
tions with the load following at a time scale of less than 30min, we
apply window lengths ofm=2, 10, and 30min.

The compliance rate / is defined as

/ ¼ Ncpl

N
: (9)

The number of compliance eventsNcpl indicates the number of windows
that satisfy lj � 1. Subsequently, the noncompliance rate becomes

� ¼ 1� /ð Þ � 100%: (10)

Note that � characterizes the occurrence in percentage that the maxi-
mum actual ramp in the evaluation window does not comply with the
corresponding WCS-RR estimate. To further clarify this concept, we
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present the way we compute it in Appendix E using one example day
in our analysis.

While risk-adverse actors would prefer that the WCS-RR always
envelopes the observed ramps, excessive WCS-RR may result in an
over-sized energy storage system. To quantify the extent to which the
WCS-RR overpredicts the actual ramp, all compliance events are fur-
ther evaluated by the degree of overestimation d,

d ¼ 1
Ncpl

X
j2Ncpl

1� lj

 !
� 100%: (11)

Note that the summation term in Eq. (11) is not a continuous series,
but rather it includes only the compliance events where lj � 1.

III. VALIDATION SETUP AND DATA
A. Motivation for the chosen validation approach

To validate the proposed method, we setup an experiment at the
University of California San Diego (UCSD) campus test bed. The valida-
tion is going to be inconsistent with the stated objective of the method,
and this paragraph clarifies and resolves these inconsistencies. The
objective of the WCS-RR method is to size ESSs that can mitigate the
worst-case situations to ensure a 100% compliance rate with ramp rate
restrictions. To satisfy this objective, only the single worst ramp rate is
needed, and time-resolved ramp rates are unnecessary. While the WCS-
RR method would only be validated with a single data point per site, we
instead validate a time-series implementation of the method where the
WCS-RR is compared within evaluation windows against observed
worst ramp rates. While that is not necessary for the objective of the
WCS-RR method, our time-resolved validation approach provides a
larger validation sample size and allows relational analysis between the
time-resolved physics variables, such as cloud speed and cloud optical
depth, and the modeled and measured ramp rates.

A note on the time resolution of the input data is also in order.
As advertised, the advantage of the method is that it can be applied to
coarse resolution (e.g., hourly) input data. Such data are commonly
available: for example, hourly output of the cloud optical thickness (or
GHI) and CMV from numerical weather prediction (NWP) or reanal-
ysis could be input to Eq. (6) to create a time-series of the WCS-RR.
Alternatively, hourly GHI from ground stations and CSS data or CMV
from ground sensors (Bosch and Kleissl 2013; Bosch et al., 2013) could
be used. However, higher resolution data will benefit the accuracy of
the method as some short-lived cloud phenomena, such as irradiance
enhancement or deep convection, may yield unreasonable ramp rates
(larger cloud optical depth and/or larger cloud speed) with the hourly
data resolution. Safety factors could be considered if hourly or coarser
data are used. Finally, if very high resolution [O(1s)] data are available,
then power variability models, such as those presented in the introduc-
tion, are recommended as they provide more accurate information on
the worst-case ramp rates and their time-series ramp rate estimates
can be directly applied to energy storage simulation models.

B. PV Data

Figure 2 illustrates the layout of two existing PV systems located
on the EBU2 building (32�52053.100N, 117�13059.200W) at UCSD with
a tilt angle of 20� and an azimuth angle of 225� east of north. The sys-
tem under study is arranged in three arrays, consisting of a total of 181
PV panels (marked in red in Fig. 2) with overall dimensions of 33.5 m

� 16 m. The total nominal power is 37.1 kW DC. The PV power was
measured at a sampling rate of 2 s from September 29, 2017 to
October 1, 2018 by 5 inverters, including two SMA Sunny Boy 5000US
and three SMA Sunny Boy 7000US, with a total rated power of 31 kW
AC. The PV database consists of 10months of power output measure-
ments. Excluding server shutdowns, rainy and overcast days, and clear
days (defined as less than 30min of cloud cover), 90 partially cloudy
days remain. Only partial cloud cover is of interest to the experiment
because it causes the largest power ramps. Note that the production
field includes the ground area in-between the rows, which mathemati-
cally enters Eq. (2) through the power plant dimensions. To avoid
errors from clear sky and PV performance models, the power pro-
duced on the most recent clear day is used as the clear sky power.

C. Cloud speed sensor (CSS) and recent improvements

The cloud speed and direction are required to relate the cloud
field to ramp rates. While the proposed model is compatible with any
type of cloud speed measurement, we obtain cloud speed measure-
ments from our in-house CSS, which provides an accurate yet afford-
able means to measure local CMVs. Refer to Wang et al. (2016) for
detailed design specifications and features. The instrument is installed
on the same rooftop as the PV system andmarked in Fig. 2.

The CSS consists of a set of nine phototransistors arranged about a
semi-circle. In the original CSS design, 666Hz raw data were measured
in 18 s segments. For processing, data had to be sent to a remote server
via an Ethernet card. In the upgraded CSS, the existing microcontroller
chipKIT Max32 still collects raw data, but now transmits the data to an
attached Raspberry Pi through a much faster serial connection. This
Raspberry Pi directly computes the CMV based on the Linear Cloud
Edge (LCE) assumption, using a 9 s set of 6000 samples from the photo-
transistors. The updated hardware design processes each 9 s batch of
sampled data in only 2 s, outputting the CMVs at 11 s resolution. This
resolution is sufficient for cloud motion estimation in power variability
modeling. Continuous sampling would be feasible with additional soft-
ware upgrades. The final processed CMV measurements are stored on-
board along with the raw sensor data and timestamps. To support the
external real-time use of the data, CMV data are also published to the
local network via the MODBUS TCP protocol. The upgraded CSS has
been fully operational since October 8, 2017.

1. Enhanced CSS software to extract real cloud velocity

An enhanced CMV calculation algorithm addressing limitations
of the LCE assumption is introduced in this subsection. The CSS algo-
rithm in Wang et al. (2016) assumes a linear cloud edge passing over
the array of sensors given the fact that clouds are typically much larger
than the spacing between sensors (0.078 m) and, therefore, only
detects the component of the velocity that is perpendicular to the
cloud edge, which systematically underestimates the speed (vector
magnitude) slightly. Figure 3 illustrates that under the LCE assump-
tion, the CSS would report different CMVs from a single cloud. To
resolve this ambiguity that was left for future work in Wang et al.
(2016), we compute actual cloud velocity jvj using the reported per-
pendicular cloud speeds vi? and directions /i

?, following Eqs. (6) and
(7) in Wang et al. (2016) through a weighted non-linear regression of
jvj and a to the N collected CMVs in a recent period (Sec. IIID) using
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wijvi?j ¼ jvj cos /i
? � a

� �
;

wherewi ¼ 1
to � ti

; 8i 2 N:
(12)

jvj represents the magnitude of the vector of actual cloud velocity v. wi

represents the weighting factor computed as the inverse of the time
difference between the end point of the time window (i.e., present time
to) and the timestamp of the ith CMV (ti). As a result, the most recent
CMV has the highest weight.

While v becomes unreliable when /? exhibits only small varia-
tions, small /? variation suggests only minor changes in the LCE ori-
entation of the cloud field. Hence, if the collected N raw CMVs differ
by less than 20�, the reported CMV is reasonably considered as the
true CMV and the regression in Eq. (12) is not conducted. Instead,
the CMVs are decomposed into horizontal and vertical directions,
and the median value of each is then used to reconstruct one median
filtered CMV.

D. Search time window and data processing

Since CMVs are only available in irregular time intervals, a search
window length needs to be defined to average the CMV data and select
the largest and smallest kcs. Longer windows challenge the assumption
of cloud field homogeneity, causing older cloud fields that are likely
different from the ones at present to be counted. Shorter windows
may not contain sufficient cloud cover events and falsely suggest that
clear conditions will persist. Based on our experience, the cloud field

FIG. 2. Aerial view of the PV systems installed on EBU2 at UCSD. Plane view of the PV system (red rectangle) considered in the ramp estimate model is the inset at bottom right.
The yellow star indicates the cloud speed sensor (see Sec. III C) located 30 m east of the lower right corner of the PV system. Copyright Drone Photo by Guang Chao Wang.

FIG. 3. Schematic depiction of actual cloud velocity (centered arrow) vs perpendic-
ular components (other arrows) derived from different cloud edge orientations in the
prior CSS algorithm in Wang et al. (2016).
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in coastal Southern California is typically steady over a couple of
hours, and so we consider a 30min window centered at the time of
interest as a conservative upper bound. For areas with a faster chang-
ing cloud pattern and more short-lived cloud phenomena, a smaller
time window would be preferred.

The search window is also needed to determine appropriate kcs
values in Eq. (6). kcs is obtained by normalizing measured power out-
put from the past 30min using clear sky power output. The largest
and smallest kcs are selected for kcsmax and kcsmin , respectively. If CMVs
are not available in the 30min search window, typically sugges-
ting (near) clear or overcast conditions, then the WCS-RR is not
computed. Fortunately, in uniform sky cover conditions, the PV
output variation is small and the associated ramp events are not
important for PV planning applications. Finally, since PV data
are sampled every 2 s, the WCS-RR is also computed in 2 s inter-
vals for consistency, but the analysis could be conducted with
15min or hourly data.

IV. RESULTS AND DISCUSSION
A. Performance on an example day

In this section, one detailed example is analyzed to illustrate and
explain the performance of the proposed model. The WCS-RR esti-
mate on June 21, 2018, one of the best days (100% compliance across
all evaluation windows, refer to Table II in the Appendix D), is vali-
dated against the actual ramp rates in Fig. 4. The top plot shows real
PV power from 10:30 to 15:15 PDT and clear sky power output from
2days earlier. The clouds are observed to move from eastward to
southward over the day with speeds ranging from 2 to 5 m s−1, as

illustrated in the middle plot. The bottom plot illustrates the observed
ramp rate and the WCS-RR estimates.

Due to increasing clear sky power and cloud speed, the WCS-RR
generally increases with time, completely enveloping the actual ramp

FIG. 4. Example validation of the proposed method on June 21, 2018. Top: actual PV power on June 21, 2018 (blue) and on the most recent clear day (June 19, 2018, red).
Middle: the true velocity and directions (lines) are derived from non-linear regression [Eq. (12)] on the raw CSS CMV measurements (their availabilities are indicated by dots)
collected in the centered 30min time window. Bottom: comparison between the actual ramp rate and the WCS-RR estimates.

FIG. 5. Sky image of a cloud shading event at 14:28 PDT on June 21, 2018 with
the largest ramp of the PV plant. Figure 4 demonstrates that this largest ramp is
accurately bracketed by the WCS-RR.
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rate magnitude and timing. Since the cloud optical thickness is steady
over the 5-h period, kcs variation does not have a strong impact on the
WCS-RR. There is a 30min exception around 11:45 PDT when the
sky was briefly clear, lowering the WCS-RR estimates and the differ-
ence between kcsmax and kcsmin , but the ramp events in that period are
still enveloped successfully. The largest observed ramp rate of the day
occurred at 14:28 PDT, during partial cumulus cloud cover (Fig. 5).
Because this cloud condition change (clear to worst-case thick clouds)
is the exact circumstance modeled in Eq. (6), the WCS-RR estimate
accurately captures the rampmagnitude with only a 7% overestimate.

The daily noncompliance rate of 0% across all evaluation win-
dows on this day confirms that the observed ramp rates are perfectly
enveloped by the WCS-RR, at a cost of averaged ramp rate overesti-
mates over the designated time window from 45% (30min window) to
62% (2min window). The ideal metrics would be 0% noncompliance
and 0% overestimate. In reality, there is a trade-off between the non-
compliance and the overestimate metrics: to bracket all large power
ramps, the model conservatively assumes a cloud condition change
from clear sky to thick clouds at all times, including periods with clear
or overcast skies, which inevitably over-predicts the ramp rates. The
only hypothetical scenario with 0% noncompliance and 0% overesti-
mate would be for a series of thick clouds of the same size as the PV
plant to pass the plant along L (or analogously W); in those conditions,
the plant would continually ramp up or down with a ramp rate equal
to the WCS-RR. For June 21, 2018, the minimal overprediction of the
largest ramp event (on 14:28 PDT) proves that the over-prediction is
not excessive. The trade-off between the overestimate and noncompli-
ance rate will be further discussed in Section IVE.

B. Aggregate ramp rate statistics

The evaluation of the proposed method over an extensive set of
90 days is summarized in Table I, and the performance metrics are
illustrated by the box plot in Fig. 6. A more detailed day-by-day per-
formance comparison is tabulated in Appendix D. Overall, the method
shows promise: for the shortest 2min window, the average noncom-
pliance rate is only 1.1% at a cost of a 64.3% overestimate. The non-
compliance rate slightly worsens with wider evaluation windows,
which is expected as the chance that a noncompliance event (r > 1) is
included in the evaluation window increases with wider windows.
Nevertheless, even under the longest 30min evaluation window, the
average noncompliance rate is only 6%. The largest-ever observed
ramp rate of 9.2 kW (or 29.7% PV capacity) per second on February
27, 2018 is successfully captured, and on this day, the noncompliance
rate of 0% is achieved across all evaluation windows, further demon-
strating that the proposed WCS-RR model functions as designed. It is
important to note that the noncompliance rate indicates the occur-
rence in the percentage of time intervals where the maximum actual

ramp in the evaluation time windows exceeds the corresponding
WCS-RR. The degree of overestimation worsens with the shorter eval-
uation window length (greater number of windows). Because WCS-
RR estimates are generally conservative at all times except the time of
the daily largest ramp events (e.g., 14:28 PDT in Fig. 4), the degree of
overestimate would be minimal when only a single time window (i.e.,
the daily largest ramp event) is considered over the day but tends to be
larger when more evaluation windows are considered.

As the primary goal of theWCS-RRmodel is to estimate the larg-
est possible ramp rate, the observed maximum ramp rates and associ-
ated binary daily success/failure flags are also tabulated for each day in
Table II. The WCS-RR successfully envelopes the maximum daily
observed ramp events on 83 out of 90 days. For one of the remaining
7 days, the WCS-RR was not computed because CMV measurements
were not available at the moment of the largest ramp rate. While ramp
rate violations are observed on the other 6 days, the actual ramp rate
exceedances are relatively small at (0.7, 0.2, 0.1, 0.8, 0.2, 0.3) kW s−1

(refer to the value in the parentheses after the “F” flag in Table II). The
causes for these violations are discussed in the Sec. IVC.

For PV system planning applications, statistics about the magni-
tude and frequency of noncompliance events are of interest. The distri-
butions of the ramp size and exceedance of all 129 noncompliance
events (r > 1) over the 90 days are displayed in Fig. 7. The left histo-
gram indicates that 92% of the missed ramps are less than 6% s−1. The
right histogram indicates that most ramp rate exceedances normalized
by the rated AC power are less than 2% s−1. Thus, Fig. 7 illustrates that
even when the real ramps exceed the WCS-RR estimate, the difference
is small and most of the noncompliance events only involve small
ramps compared to the largest observed ramp of 29.7% s−1 (February
27, 2018). While the ramps may seem large for utility-scale plant oper-
ators, relative ramp rates decrease with the size of the PV plant. Since
Eqs. (5) and (6) have the solar power plant area in the denominator—
for the same irradiance field—for example, ramps for a 371MW plant
would be 1/10 000 those of our 37.1 kW plant. Therefore, for example,
the 2% s−1 ramps should not be judged as an absolute number, but
rather relative to the 29.7% maximum ramp rate for our particular PV
plant.

TABLE I. Noncompliance rate � and the degree of overestimation d for 2 min,
10 min, and 30min evaluation time windows averaged over all data points in
90 days. For all metrics, small values indicate better performance. Refer to Fig. 6 for
the statistical distribution of � and d. Refer to Table II for a daily tabulation.

�2min(%)d2min (%) �10min (%)d10min (%) �30min (%)d30min (%)

Average 1.1 64.3 2.9 56.8 5.9 50.4

FIG. 6. Box plot of noncompliance rate � and associated overestimate d for 2 min,
10 min, and 30min evaluation time windows over 90 days with the WCS-RR model.
This figure is a visual representation of the performance metrics in Table II.
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FIG. 7. Distribution of noncompliance events by the ramp size (left) and exceedance (right) over 90 days.

FIG. 8. Example day when the observed ramp does not comply with the computed WCS-RR at 16:25 and 16:28 PDT. Top: real PV power on June 27, 2018 and the most
recent clear day. Middle: cloud speed and direction from the CSS. Bottom: comparison between the actual ramp rate and the WCS-RR estimate.
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C. Example noncompliance events

In this section, the causes of noncompliance events are further
investigated, and the limitations of the model and experimental setup
are discussed. June 27, 2018 is analyzed as a representative day with
noncompliance events detailed in Fig. 8. Three ramps exceeded the
WCS-RR from 16:00 to 16:30 PDT. The WCS-RR did not produce an
estimate for the first ramp event and did not bracket the other two.
Visual inspection of sky images reveals that the three power ramps
were induced by small, dissipating stratocumulus clouds (e.g., red cir-
cle in Fig. 9). The cloud cover fraction is likely too small to induce fre-
quent illuminance fluctuations in the CSS, resulting in only two CMV
measurements (dots in the middle plot, Fig. 8) in the 30min window
and no measurement at all within615min of the first ramp event at
16:00 PDT. Furthermore, the cloud is dissipating as it crosses the mea-
surement site, and as a result, the cloud edge is not sharp enough to
satisfy the assumption of LCE, which degrades the goodness of the
curve fit (Wang et al., 2016). Subsequently, the CMV measurement is
likely inaccurate, which, in turn, degrades the accuracy of the WCS-
RR. Since these shortcomings in the CSS are specific to thin and spo-
radic clouds, they are not of concern for the main application of the
WCS-RR model, which is to estimate the possible maximum ramp
events for PV planning. In fact, the maximum ramp event of the day
at 14:15 PDT was still successfully bracketed. This example day dem-
onstrates that the accuracy of the proposed method primarily relies on
the quality and availability of CMVs.

By examining the sky images for all noncompliance events, we
conclude that the primary reasons for noncompliance events are few
and/or inaccurate CSS measurements. For example, for many non-
compliance events, only one single CMV measurement appeared in
the 30min search window, which is an insufficient sample size. Sparse
CSS measurements are typically caused by sparse cloud fields and are
associated with significant uncertainty, which affects the performance

of the WCS-RR method because CMV is the key input to the WCS-
RR [as per Eq. (1)]. Sparse and/or small clouds may even go unde-
tected by the CSS, and thus, a WCS-RR estimate would not be pro-
duced. However, these clouds may not be large enough to cause
meaningful ramps. Figure 10 shows the distribution of ramp rates for
times with one or less CMV measurements in the 30min search win-
dow over the 90 days. All ramp sizes are smaller than 10% PV capacity
per second even for this small PV system, which confirms our expecta-
tion. For large PV systems, we expect sparse or small clouds to be even
less relevant as they cover only a fraction of the PV plant.

D. Comparison to other simple ramp rate estimates

The method provides the reasonable maximum RRs through a
simple process model framework, which characterizes the maximum
RRs better than other simpler methods (e.g., a constant ratio). For

FIG. 9. Sky image of a small and dissipating stratocumulus cloud (red circle) that
caused the noncompliance events on 16:25 PDT, June 27, 2018 (Fig. 8).

FIG. 10. Distribution of ramp rates over 90 days when none or only one CMV mea-
surement is available in the 30min search window. Most of these ramp events do
not comply with the respective WCS-RR estimates.

FIG. 11. Distribution of daily maximum 1 s ramp rates in percentage of nominal
power per second over 90 days.
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example, Fig. 11 shows the distribution of the observed daily maximum
power ramp rate over 90days normalized by PV system’s nominal
power. Based on this histogram, a constant ratio of 30% s−1 ramp would
be a good assumption for this specific PV system and climate. However,
because the maximum ramp rate depends on the system size, orienta-
tion, prevailing wind direction and speed, and optical depth of the atmo-
sphere, a universal RR assumption for a PV system is a crude
assumption and not likely close to the ground truth unless it is prior
known. For example, the PV system dimensions are directly accounted
for in our model and they can vary by a factor of 100 more between a
commercial rooftop PV system and a utility-scale PV system, resulting
in ramps on the order of 10% s−1 and 10%min−1, respectively.

To point out the value of our proposed method, we also add a
simpler assumption of a constant ratio of 70% s−1 ramp to the analyses
to compare with our method. The box plot of noncompliance rate �
and associated overestimate d with the simpler model is presented in
Fig. 12. The flat ramp rate of 70% s−1 is able to bracket all power ramps
of this small PV system at a cost of >90% overestimation, while our
method yields <6% noncompliance rate at a cost of <60% overestima-
tion (Fig. 6). Thus, a conservative constant maximum ramp assump-
tion (to avoid any noncompliance) would result in a significantly
larger degree of overestimation than the WCS-RR. Conversely, a small
constant maximum ramp assumption may result in a large noncom-
pliance rate. The advantage of our method is that as long as basic his-
torical data for a given site are available, the maximum ramp rate can
be estimated. The trade-off between noncompliance and the degree of
overestimation is expected and further discussed in Section IVE.

On the other hand, if a simpler threshold was chosen, the energy
storage system would be linearly over/undersized according to the ratio of
the chosen maximum ramp rate to the optimal maximum ramp rate.
Using our method, the energy storage system can be sized appropriately.

E. Tradeoff between noncompliance and the degree
of overestimation

The trade-off between the noncompliance rate and the degree of
overestimation deserves further discussion. For example, an energy

storage system that can mitigate larger ramp rates is more costly, but a
smaller energy storage system may not mitigate all ramps and result in
noncompliance penalties and/or curtailed solar energy. Ultimately,
economic modeling specific to a project is needed to answer these
questions. In such conditions, a safety factor could be introduced in
Eq. (5) to determine appropriate kcsi and kcso and accordingly adjust
the WCS-RR to fit the risk profile of the investor. Finally, the possible
ways to reduce the amount of prediction overhead include the follow-
ing: (1) PV performance models will be needed for more accurate kcs
measurements. (2) The power mismatch needs to be considered. For
example, the wiring diagram of the PV system can be integrated in the
model to count for the extra power loss depending on in which direc-
tion the cloud shadow is intercepting the solar arrays.

F. Applications with low-frequency solar irradiance
data

The proposed method is universally applicable even in the
absence of local cloud speed or kcs measurements since the cloud
velocity can be derived from NWP data, such as the North American
Mesoscale Forecast System (NAM), which contains surface solar irra-
diance, cloud cover (or at least relative humidity), and wind vectors at
different pressure levels, among other variables (see, e.g., Lave and
Kleissl, 2013; Pelland et al., 2013). The Solar Integration National
Dataset (SIND) (https://www.nrel.gov/grid/sind-toolkit.html, accessi-
ble as of August, 2020) from the NREL is also an alternative source for
solar irradiance data (Lave and Weekley, 2016). Finally, as discussed
earlier, for higher model accuracy, kcs can be obtained from PV perfor-
mance models vs the simpler heuristic method used in this paper.

G. Benefits for PV plant sizing and energy storage
sizing and scheduling

The proposed WCS-RR model reveals that, in addition to the
meteorology (cloud motion and optical depth), the PV plant shape and
orientation with respect to the prevailing winds at the cloud level can
significantly impact the maximum power ramp rate. Our results may
inspire PV plant designers to preferentially select plant orientations that
result in smaller ramp rates depending on the dimension of the PV sys-
tem relative to the typical cloud scale at a given location. For example, if
consistent prevailing winds at the cloud level are observed as westward
or eastward, then extending the PV plant in the east-west direction
reduces the relative ramp rates. With an optimal PV plant orientation,
the PV system operator can smooth the power output variability by
using a smaller ESS. Note that prevailing winds may change seasonally,
resulting in potential trade-offs between peak and off-peak production.
Furthermore, if cloud sizes are very small relative to the PV plant size,
then the PV plant orientation relative to the wind direction becomes
less important, as shown in Arias-Castro et al. (2014).

During operation, the WCS-RR would be useful to hour ahead or
day ahead strategic bidding in energy markets because generator reve-
nues are related to both the price-energy curve and the expected ramp
rates. If solar forecasts suggested thin clouds, slow clouds, or a favor-
able cloud movement direction, less of the ESS power and energy
would have to be reserved for ramp rate control and more could be
utilized to monetize other value streams. The WCS-RR would also be
useful to ESS operation for benefit stacking (e.g., frequency regulation
and ramp rate mitigation), as less energy and power capacity of the

FIG. 12. Box plot of noncompliance rate � and associated overestimate d for 2
min, 10 min, and 30 min evaluation time windows over 90 days with a simpler model
of constant ramp rate of 70% s−1.
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ESS would have to be reserved for ramp rate compliance. Similarly,
during ESS planning, if the WCS-RR is smaller at a site given historical
weather data, the ESS size could be reduced without risking a ramp
rate violation.

V. CONCLUSIONS

Knowing the maximum expected photovoltaic (PV) produc-
tion ramp rate proves to be useful for the design of PV and energy
storage systems (ESSs) by determining the ESS energy reserve
required to offset power fluctuations. The main goal of this paper is
to provide a method to inform optimal design of a solar power
plant with ESSs by estimating the worst-case scenario ramp rate
(WCS-RR) in the design phase, prior to the PV installation and in
the absence of local high-frequency irradiance data. A method to
estimate the WCS-RR for a PV plant, based on the cloud speed and
direction, solar irradiance (or power), and geometric PV plant lay-
out is developed and validated. The principal assumption is that the
cloud field properties are stationary during the cloud passage over
the plant. The WCS-RR is validated against a PV system during a
10-month period, using cloud motion vectors (CMVs) measured by
a cloud speed sensor (CSS). The largest observed ramp of 29.7% s−1

is contained with the worst case estimate of 34.3% s−1. The actual
ramp rates comply with the calculated maximum ramp rates 98.9%
of the time with a 2min evaluation time window. The remaining
1.1% of times can be primarily ascribed to inaccurate cloud velocity
measurements in conditions with sparse and/or thin clouds. The
high compliance rate also indirectly demonstrates the accuracy of
our recently remodeled CSS. Our WCS-RR method will be helpful
for both PV plant planning and operation.
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APPENDIX A: OUTPUT SAMPLING RATE
REQUIREMENT

A physical limit for the validation of the WCS-RR method is
that its sampling time needs to be such that the cloud velocity times
the sampling time step does not exceed the dimension of the PV
system in the direction of cloud motion (note: the application of the
WCS-RR does not require high sampling frequency data).
Geometrically, Eq. (1) in this paper is only valid if the following
constraint is met:

Dt � min
W

jcos ajv ;
L

jsin ajv
� �

:

For any given sampling rate and dimension of the PV system,
there is a cloud velocity for which that sampling rate starts to
become too slow, and the WCS-RR then incorrectly predicts the

ramp rate over the sampling time step. Since the cloud velocity has
a physical limit, a conservative sampling rate can be derived given
the dimension of the PV system. Large PV systems can tolerate
larger sampling rates. For example, assume that a typical PV panel
with a power rating of 208 watts measures 1.6 m � 1 m for 1.6 m2

of area. A 5MW PV system with 24 000 PV panels and a typical
ground coverage ratio of 0.6 would then cover a square measuring
320 m on each side (including 200 m spacing). With a ranging
from 0 to 90�, v ¼ 25 m/s, and W ¼ L ¼ 320m, a sampling time
step of 13 s–18 s (or shorter) will be needed depending on the spe-
cific cloud direction. In summary, a sampling time step of 13 s will
guarantee that our model is geometrically valid for a 5MW PV
system.

APPENDIX B: TRIGONOMETRIC DIAGRAM
OF EFFECTIVELY AFFECTED AREA �S

The derivation of the effectively impacted area can be formu-
lated as DS ¼ WvDt=jsin aj per Fig. 13.

Note that DS is always less than or equal to DSi. Moreover,
this formula is derived assuming that the cloud boundary initially
covers the W side. If the cloud boundary initially covers the L
side (per Fig. 1), then DS ¼ LvDt=jcos aj. Nevertheless, we use the
full impacted areas DSi and DSo for the calculation of the power
changes under all cloud passage circumstances, as indicated in
Eq. (6).

APPENDIX C: PHASES OF CLOUD PASSAGE VS
EFFECTIVELY AFFECTED AREA �S

The WCS-RR model only considers the maximum expected
ramp rate in two ways: (i) a clear sky is giving way to an overcast
sky; (ii) considering the time when the effectively affected area
reaches the maximum during the passage of cloud. For

FIG. 13. Trigonometric diagram of the effectively impacted area DS discussed in
Fig. 1(b). Note for illustration purposes, a in this diagram does not align with Fig. 1.
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clarification, the phases of cloud passage vs DS are characterized in
this section.

For example, assume a PV system measures 200m � 60m. A
cloud boundary with a ¼ 45� and v ¼ 0.5 m/s starts to shade the
PV system at t0 from the south-west left corner. In phase I (between
t0 and t1), DS starts from 0 and increases with time because subse-
quently more incremental areas are covered by the moving cloud,
resulting in an increasing power ramp rate. In phase II (between t1
and t2), since the cloud boundary passes the north-west corner at
t1, DS reaches its maximum and becomes constant with time, and
as a result, the ramp rate reaches a steady state. The worst case sce-
nario occurs during this phase. In phase III (between t2 and t3), the
cloud boundary passes the south-east corner of the system. Then,
the ramp rate decreases as less subsequently incremental area is
covered by the moving cloud until it fully covers the plant at t3,

after which DS as well as the power variability becomes zero. The
three-phase cloud passage and power ramp rates are conceptualized
in Fig. 14 and simulated in Fig. 15, respectively. In this paper, we
consider phase II in our WCS-RR model to warrant the worst case
ramp rate.

FIG. 14. Schematic of the three phases of power changes during the course of
cloud passage with cloud speed of 0.5 m/s and cloud direction of 45�. The PV sys-
tem measures 200 m � 60 m.

FIG. 15. The nominal power (upper) and ramp rate (lower) in the three phases cor-
responding to the scenarios and phases of a cloud shading event conceptualized in
Fig. 14. The nominal power is calculated as a linear function of the effectively
affected area DS, while the ramp rate is computed by taking the first order differ-
ence of the nominal power. The observed variations in the two subplots illustrate
how different phases of cloud passage translate to ramp rates.

TABLE II. Daily ramping duration (when more than 1% s−1 power variation is present), absolute value of daily observed maximum ramp rate in kW s−1, success of bracketing
the maximum ramp rate, noncompliance rate �, and associated degree of overestimation d for 2 min, 10 min, and 30 min evaluation time windows for 90 days. The average in
the last row is computed over all data points. Small values of � and d indicate better performance.

Date

Daily
ramping
duration
(min)

Absolute
maximum
ramp rate
(kW s−1)

Success (S) or failure (F)
of bracketing daily

maximum ramp rate,
(ramp rate exceedance in DkW s−1) �2min(%) d2min(%) �10min(%) d10min(%) �30min(%) d30min (%)

10/8/17 275 3.7 S 0.0 64.4 0.0 57.4 0.0 52.2
10/10/17 140 4.2 S 11.3 37.5 29.4 19.1 62.5 9.4
10/11/17 455 4.4 S 0.5 58.8 2.1 46.2 5.9 35.8
10/13/17 115 1.4 S 4.5 47.7 13.3 39.0 28.6 40.3
11/26/17 125 2.4 S 3.7 56.9 13.3 48.6 28.6 44.3
12/3/17 230 2.1 S 0.0 61.3 0.0 52.4 0.0 42.4
12/16/17 180 3.1 S 0.0 66.2 0.0 61.4 0.0 54.3
1/9/18 170 9.0 S 1.4 68.8 5.0 60.8 14.3 49.6
1/10/18 55 1.8 F(0.7) 11.1 68.9 22.2 67.6 20.0 62.7
1/12/18 35 2.2 S 0.0 49.8 0.0 43.0 0.0 37.1
1/16/18 230 2.3 S 1.2 74.7 3.7 67.9 9.1 56.9
1/18/18 20 2.8 S 11.1 55.1 25.0 46.3 33.3 50.7
1/20/18 155 4.3 S 0.0 69.9 0.0 64.8 0.0 59.9
2/5/18 90 2.8 S 0.0 65.3 0.0 56.8 0.0 47.7
2/10/18 145 3.3 S 0.0 68.4 0.0 64.7 0.0 53.8

APPENDIX D: DAY-BY-DAY PERFORMANCE COMPARISON TABLE
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TABLE II. (Continued.)

Date

Daily
ramping
duration
(min)

Absolute
maximum
ramp rate
(kW s−1)

Success (S) or failure (F)
of bracketing daily

maximum ramp rate,
(ramp rate exceedance in DkW s−1) �2min(%) d2min(%) �10min(%) d10min(%) �30min(%) d30min (%)

2/11/18 85 3.1 S 0.0 68.5 0.0 61.3 0.0 56.7
2/13/18 210 5.6 S 5.7 65.9 12.5 58.8 27.3 54.7
2/14/18 100 2.9 S 0.0 76.7 0.0 69.2 0.0 64.2
2/22/18 60 8.8 S 0.0 67.1 0.0 60.9 0.0 50.6
2/23/18 200 6.9 S 0.0 67.1 0.0 61.1 0.0 51.2
2/27/18 185 9.2 S 0.0 71.7 0.0 64.8 0.0 60.7
3/3/18 200 3.2 S 0.0 81.0 0.0 76.1 0.0 71.7
3/4/18 130 2.6 S 2.6 61.0 5.0 56.6 9.1 52.7
3/8/18 275 3.2 S 0.0 75.8 0.0 72.6 0.0 65.1
3/9/18 200 2.6 S 0.0 75.0 0.0 70.7 0.0 63.0
3/11/18 295 6.4 S 0.0 69.6 0.0 61.2 0.0 57.3
3/12/18 190 1.4 S 0.0 77.4 0.0 75.2 0.0 72.1
3/13/18 60 1.1 S 0.0 74.1 0.0 71.9 0.0 72.3
3/14/18 315 3.4 S 0.0 76.3 0.0 70.0 0.0 65.4
3/17/18 295 6.3 S 0.0 73.3 0.0 65.4 0.0 56.7
3/18/18 295 2.2 S 0.0 76.2 0.0 71.2 0.0 65.2
3/20/18 340 5.3 S 0.0 78.4 0.0 72.7 0.0 65.6
3/23/18 210 3.2 S 0.0 70.0 0.0 65.7 0.0 59.1
3/24/18 265 6.6 S 0.0 67.1 0.0 59.7 0.0 51.0
3/25/18 120 3.2 S 2.3 65.8 6.7 63.6 14.3 49.8
3/30/18 180 2.9 F(0.2) 5.2 58.9 15.8 50.5 37.5 37.5
3/31/18 195 0.9 S 0.0 74.6 0.0 72.7 0.0 68.9
4/1/18 170 2.2 S 0.0 66.4 0.0 59.1 0.0 51.3
4/3/18 250 3.4 S 0.0 57.7 0.0 48.3 0.0 45.2
4/12/18 60 3.3 F(0.1) 5.6 74.4 11.1 67.2 16.7 59.0
4/19/18 345 8.5 S 5.2 64.2 7.0 56.2 11.1 49.6
4/24/18 125 2.8 S 2.6 55.3 5.3 51.5 7.1 49.3
5/8/18 105 1.7 N/A 0.0 67.8 0.0 61.9 0.0 58.6
5/9/18 150 2.5 S 5.3 53.0 15.8 41.8 28.6 28.9
5/10/18 100 2.4 S 0.0 70.7 0.0 63.7 0.0 58.8
5/15/18 130 2.7 S 2.6 51.0 5.3 42.1 8.3 40.8
5/17/18 395 5.3 S 0.0 60.2 0.0 47.9 0.0 40.5
5/22/18 225 2.8 S 0.0 71.5 0.0 66.7 0.0 59.7
5/23/18 200 4.0 S 0.0 56.8 0.0 42.4 0.0 33.1
5/25/18 320 3.6 S 0.0 63.6 0.0 53.1 0.0 46.7
5/26/18 335 5.8 S 0.8 65.4 2.2 57.2 5.0 49.5
5/27/18 160 2.2 S 0.0 66.0 0.0 58.8 0.0 54.6
5/28/18 165 4.6 S 0.0 59.8 0.0 48.5 0.0 34.2
5/30/18 215 4.4 S 1.3 62.8 3.7 55.5 7.7 44.4
5/31/18 225 3.9 S 3.5 56.8 10.7 48.0 25.0 47.9
6/2/18 95 1.4 S 0.0 52.4 0.0 43.6 0.0 35.0
6/3/18 260 3.3 S 2.9 58.2 6.5 48.8 14.3 41.9
6/5/18 245 4.0 S 0.0 58.9 0.0 48.1 0.0 42.7
6/10/18 95 3.0 S 0.0 57.9 0.0 44.5 0.0 30.4
6/21/18 245 3.0 S 0.0 62.0 0.0 53.0 0.0 45.2
6/27/18 85 2.8 S 5.4 60.0 10.0 48.9 20.0 44.1
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APPENDIX E: PROCEDURE OF DETERMINING
NONCOMPLIANCE RATE �

Figure 16 illustrates the evaluation process of noncompliance
rate � with a time window of 30min on October 10, 2017
(Table II). On this day, the overall time span of the power data is
divided into 8 windows (indicated by the dashed lines) with
30min time intervals each. In each window, the maximum actual
ramp rate is compared to the corresponding WCS-RR estimate. If
the maximum actual ramp rate complies with the WCS-RR esti-
mate, then the compliance requirement is met and the window is
marked in green; otherwise, the window is marked in red. As
introduced in Section II C, the noncompliance rate is defined by

the number of red labeled windows normalized by the total num-
ber of windows. In this case, 5 out of 8 windows are marked in
red, yielding a 62.5% noncompliance rate. However, Fig. 16 shows
that overall only 7 actual ramp rates in all intervals do not comply
with the WCS-RR estimates. Furthermore, the daily maximum
ramp rate at 14:15 PST was successfully enveloped by the corre-
sponding WCS-RR estimate. We proposed the non-compliance
metric as defined in Eq. (10) because it is most important in prac-
tice that the local or daily maximum ramp rates comply with the
corresponding WCS-RR estimates. If we considered all power
ramps in the evaluation, we would always achieve a very low non-
compliance rate, preventing us from assessing the true perfor-
mance of our proposed method.

TABLE II. (Continued.)

Date

Daily
ramping
duration
(min)

Absolute
maximum
ramp rate
(kW s−1)

Success (S) or failure (F)
of bracketing daily

maximum ramp rate,
(ramp rate exceedance in DkW s−1) �2min(%) d2min(%) �10min(%) d10min(%) �30min(%) d30min (%)

6/28/18 140 3.1 S 0.0 60.6 0.0 48.8 0.0 34.7
6/29/18 380 4.6 S 0.0 58.6 0.0 47.0 0.0 41.0
6/30/18 320 3.8 S 1.6 59.7 5.1 51.3 5.9 48.2
7/4/18 70 2.9 S 0.0 55.0 0.0 37.3 0.0 24.9
7/13/18 150 2.1 S 1.7 59.2 5.3 53.6 11.1 49.5
7/14/18 200 3.5 S 6.2 60.5 12.0 48.3 18.2 45.0
7/15/18 120 2.5 S 0.0 52.8 0.0 39.5 0.0 27.6
7/17/18 95 1.1 S 0.0 79.5 0.0 77.5 0.0 74.1
7/18/18 265 2.9 S 0.0 74.0 0.0 68.1 0.0 60.8
7/20/18 365 3.6 S 0.0 61.0 0.0 52.9 0.0 46.8
7/21/18 465 6.1 F(0.8) 0.5 61.1 1.9 54.2 5.0 46.4
7/22/18 115 3.5 S 0.0 60.8 0.0 52.9 0.0 41.1
7/26/18 165 2.4 S 1.7 55.5 5.0 42.0 10.0 33.1
7/27/18 75 2.0 S 0.0 67.4 0.0 63.5 0.0 61.8
7/28/18 130 2.7 S 0.0 56.9 0.0 44.5 0.0 38.7
7/29/18 65 1.2 S 5.6 55.7 9.1 53.6 12.5 52.0
7/31/18 40 1.6 F(0.2) 10.0 46.2 14.3 34.9 16.7 40.2
8/12/18 80 1.7 S 5.3 62.7 10.0 54.1 16.7 48.6
8/13/18 190 6.6 F(0.3) 2.5 53.5 10.0 41.1 28.6 31.6
8/14/18 390 5.8 S 1.9 60.6 7.1 47.9 13.3 36.2
8/20/18 145 3.1 S 0.0 74.9 0.0 69.6 0.0 64.5
8/21/18 35 1.0 S 0.0 62.1 0.0 59.4 0.0 59.1
8/23/18 290 4.1 S 0.0 58.7 0.0 45.6 0.0 36.5
8/24/18 185 2.2 S 0.0 70.9 0.0 63.1 0.0 53.3
8/25/18 140 2.6 S 7.3 50.8 16.7 39.6 27.3 40.8
8/26/18 105 2.6 S 0.0 52.7 0.0 46.5 0.0 40.0
8/27/18 245 1.5 S 0.0 75.0 0.0 65.1 0.0 54.8
8/28/18 145 2.2 S 0.0 56.6 0.0 56.0 0.0 48.5
8/29/18 185 3.1 S 0.0 69.0 0.0 63.0 0.0 58.0
Average N/A N/A 83S/90 1.1 64.3 2.9 56.8 5.9 50.4
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The data that support the findings of this study are available
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