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This paper presents the development of the first Management Flight Simulator of an Intensive Care
Unit (ICU). It allows analyzing the physician decision-making related to the admission and discharge of
patients and it can be used as a learning–training tool. The discrete event simulation model developed
mimics real admission and discharge processes in ICUs, and it recreates the health status of the patients
by using real clinical data (instead of using a single value for the length of stay). This flexible tool,
which allows recreating ICUs with different characteristics (number of beds, type of patients that arrive,
congestion level...), has been used and validated by ICU physicians and nurses of four hospitals. We
show through preliminary results the variability among physicians in the decision-making concerning
the dilemma of the last bed, which is dealt in a broad sense: it is not only about how the last
available ICU bed is assigned but also about how the physician makes decisions about the admission
and discharge of patients as the ICU is getting full. The simulator is freely available on the internet to
be used by any interested user (https://emi-sstcdapp.unavarra.es/ICU-simulator).

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

An Intensive Care Unit (ICU) is a special ward within the
ospital area that provides intensive medicine. These wards are
undamental for patients who present a clinical situation of high
everity or require complex monitoring and are likely to recover.
he origin of these units is due to the development of techniques
apable of supporting different physiological systems of patients.
However, although the purpose of ICUs is well defined, it

s not so clear which patients should benefit from this highly
pecialized care, especially in contexts of scarce resources. In
n attempt to clarify this issue, the Working Group on Quality
mprovement (WGQI) of the European Society of Intensive Care
edicine (ESICM) established in 2011 [1] the characteristics of
atients who could benefit from admission to an ICU:

• Patients requiring monitoring and treatment because one or
more vital functions are threatened by an acute (or an acute
on chronic) disease (e.g., sepsis, myocardial infarction, gas-
trointestinal hemorrhage) or by the sequelae of surgical or
other intensive treatment (e.g., percutaneous interventions)
leading to life-threatening conditions.

∗ Corresponding author.
E-mail address: mallor@unavarra.es (F. Mallor).
ttps://doi.org/10.1016/j.orhc.2020.100274
211-6923/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access a

nc-nd/4.0/).
• Patients already having failure of one of the vital functions
such as cardiovascular, respiratory, renal, metabolic, or cere-
bral function but with a reasonable chance of a meaningful
functional recovery. In principle patients in known end-
stages of untreatable terminal diseases are not admitted.
Sometimes the need for palliative care requiring intensive
care measures may be considered.

• Patients with brain death or in whom brain death is ex-
pected to occur and in whom organ donation is considered
may be admitted.

Despite these efforts to define the characteristics of patients that
are susceptible to be admitted to an ICU (high severity, complex
monitoring, and reasonable expectations of recovery), in practice,
few hospitals use admission criteria [2]. On the one hand, ICU
admission criteria are usually very general and susceptible to
interpretation by physicians. On the other hand, issues such as
the reasonable chance of recovery, the prognosis, the quality of
life at hospital discharge are not well-established concepts for all
the pathologies that motivate ICU admission, and therefore they
are subjected to variability among physicians.

The lack of a strict admission protocol and the subjective com-
ponent in the decision process motivate the research on patient
admission and discharge policies in the medical literature. Several
studies show that when there is a shortage of beds in the ICU,

the admissions and discharges of patients are subject to triage
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rocesses [3–5]. Costa et al. [6] observe changes in the manage-
ent policy of an ICU when it is getting full, and physicians try to

imit admissions or early discharge patients in better condition. In
eneral, an ICU with high occupancy of beds increases the number
f rejected admission requests and the severity threshold for the
dmission of a patient to the ICU; and shortens the length of
tay (LoS) of patients [7,8]. The main objective is often to free
CU beds [9–13]. Other consequences of an excessive occupancy
ate of beds are cancellations of scheduled surgeries and transfers
f patients to another hospital. Therefore the patient discharge
s a process not only influenced by factors related to the pa-
ient’s health but also by environment and certain organizational
roblems [14].
Another factor influencing the ICU bed management is the

igh cost of each ICU bed. The average cost per ICU patient
as determined around e1200 per day in Germany, Italy, the
etherlands, and the United Kingdom [15]. Lefrant et al. [16]
stimated the daily cost of ICU stays analyzing 23 ICUs from
rench National Hospitals in e1425 (95% CI = e1323 to e1526).
ost ICU costs are fixed (independent of the level of occupancy);

hus, from an economic point of view, it is preferable high bed
ccupancy of the ICU to avoid the underuse of an extremely
ostly service [17]. However, situations of lack of beds trigger the
ndesirable consequences listed before: suspensions of scheduled
urgeries, delayed or refused admissions to the ICU, and early or
nadequate discharges of patients to free up their beds, which
re associated with poorer prognosis [18,19] and a higher risk
f mortality [20–22]. Thus, from a clinical point of view, high
ccupancies will be avoided.
Performing a comparative analysis of the physician decisions

n the admission and discharge of ICU patients helps to in-
estigate all this. Retrospective statistical analysis of the ICU
dministrative records can be very difficult to carry out. The
ecisions are made in unique scenarios and, besides, not all
ircumstances affecting the decision making are recorded nor the
hysician responsible for the decision making. However, simula-
ion techniques allow for the reproduction of scenarios and the
ontrol of all factors influencing the dynamics and the decision
aking in complex systems.
This paper presents a computational tool useful for the analy-

is of the decisions made by physicians related to the admission
nd discharge of patients in an ICU. The analysis of patient-
dmission and inpatient-discharge decisions can be done safely in
irtual environments that reproduce with high fidelity the char-
cteristics and dynamics of an ICU. In this paper, a Management
light Simulator (MFS) that mimics a real ICU is presented. The
ain features that distinguish this simulator from others are the
imulation of the patients’ stay by evolving their health status
instead of using a single value for the LoS) and the recreation
f real discharge and admission processes. Both elements are
eterminant for creating credible virtual scenarios allowing the
sers the management of the ICU as they would do in a real ICU,
hat is, with the same information and environment. The simula-
or records all the admission/discharge decisions made by users.
he analysis of the recorded data about canceled surgeries, early
ischarged inpatients, admissions delayed, diverted patients, etc.
an be used to characterize bed management policies imple-
ented by users. Furthermore, differences among users can be
etected and quantified as well as the identification of scenarios
n which decisions differ the most. These controversial scenarios
re of special interest for physicians because they support the
iscussion to elaborate consensus protocols for triage decisions
n the hospital that can help to reduce variability in medical
ractice. Therefore, the purpose of the developed flight simulator
s double: firstly, to characterize how physicians made decisions

nd to assess the variability among physicians in making such

2

decisions; secondly, providing a training tool for the management
of ICUs.

The main contributions of this paper are summarized in the
following points:

• The development of the first MFS of an ICU, which allows
analyzing the decision-making process and its management,
as well as being a useful learning–training tool.

• The development of a discrete event simulation model (DES)
that mimics real admission and discharge processes in ICUs.

• The recreation of the health status of the patients by us-
ing real clinical data recorded by the Metavision R⃝ soft-
ware (iMD Sof, Tel Aviv, Israel), instead of using a single
value for the LoS. Using 275 health indicators, the status of
real patients is monitored, giving an extended and realistic
description of their evolution, which can improve or get
worse.

• The design of a flexible tool that allows recreating ICUs with
different characteristics (number of beds, type of patients
that arrive, congestion level ) that presents at the beginning
of the simulation a scenario that is representative of the
stationary state of an ICU.

• Showing through preliminary results the variability among
physicians in the decision-making concerning the dilemma
of the last bed.

The rest of the paper is organized as follows: in Section 2, the
dilemma of the last bed is presented, including an illustrative
example with real patients. In Section 3 related literature is re-
viewed about the use of simulation models in ICUs, as well as the
use of MFS. The mathematical modeling of the ICU dynamics and
its implementation in a DES is presented in Section 4. Section 5
focuses on the simulator itself, detailing different features of
this tool such as the definition of virtual ICUs, the initialization
process, the interface, and the recorded data. Section 6 exposes
preliminary results of the simulator. Finally, the paper closes with
a discussion and the conclusions in Section 7.

2. The dilemma of the last bed

Teres [23] posed as one of the great ethical dilemmas a situa-
tion that he described as the ritual of the last bed. This situation
occurs when the occupancy of the ICU is at the limit, and the
physicians must decide on the admission of a new patient. The
increase in the ICU occupancy rate and access block rates are lead-
ing to complete or even overwhelmed ICUs [24,25]. The average
occupancy rate of ICUs in the US is 90% [26], where it is reported
that 90% of ICUs cannot provide beds when required [27]. In this
paper we consider a broad definition of the dilemma of the last
bed, as it is discussed in [28]; it is not only how to assign the last
available bed but how is the physician decision making respect
to the admission and discharge of patients as the ICU is getting
full. Physicians have to assess the benefits that receive patients
already at the ICU and confront them with the benefits that
could receive future patients coming from scheduled surgeries
and other potential emergency patients. Clearly, no physician
wants neither to divert an emergency patient nor cancel a surgery
nor to discharge in advance a patient, but these decisions may be
inevitable in high bed-occupancy situations.

There is a broad medical literature in which patient discharge
decisions and their consequences are implicit. Some mathemat-
ical literature also mentions the importance of such decisions,
but then they are not modeled [5,6]. Only a few mathematical
models include this decision-making process, which is usually
called ‘‘bumping’’ [4], ‘‘demand-driven discharge’’ [29], ‘‘prema-

ture discharge’’ [30], or ‘‘early discharge’’ [31].
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Table 1
Patients to manage in the example of the dilemma of the last bed.
Location Patient Age Principal diagnostic Icon

Bed 1 Peter 56 Herpex Simplex Virus-1 meningoencephalitis

Bed 2 Cate 63 Severe community-acquired pneumonia due to
Streptococcus pneumoniae

Bed 3 Phil 78 Postoperative control of aortic valve
replacement cardiac surgery

Bed 4 – – –

Ambulance Harvey 28 Polytrauma with severe traumatic brain injury
secondary to motor vehicle accident

Waiting for operating room 1 Paul 52 Acute coronary syndrome with ST-segment
elevation

Waiting for operating room 2 Anne 37 Right occipital glioblastoma multiforme
The discharge decision problem has been addressed by de-
eloping optimization models trying to minimize the number of
ejected admissions and the LoS shortened for patients in the
CU [32,33]. They formulate a stochastic optimization problem
hat is solved by using a simulation-based optimization method-
logy. The solutions determine the service rates at which the
ueue model representing the ICU should work to achieve the
oals and they are interpreted as probabilities of discharging
atients in advance, which are dependent on the bed-occupancy
evel. These models provide normative policies that can be clas-
ified into three types [32]: aggressive, equitable, and cautious.
Mathematical models usually propose ‘‘aggressive’’ discharge

olicies, that is, no actions are taken until there are no free beds
nd one of them must be released to admit a new incoming pa-
ient. Nevertheless, physicians consider another more ‘‘cautious’’
olicy, which is more representative of the decision-making that
ccurs in practice. They claim that early discharge of patients is
ore frequent as more beds are occupied, but these decisions are
ade before the ICU is complete. In situations of high occupancy,

hey advance the discharge of a patient in time in order to antic-
pate future emergency and scheduled patients’ arrivals. In this
ay, physicians avoid extreme occupancies in which patients are
ischarged at unconventional hours, which increases mortality if
he discharge occurs at night [34]. Mallor et al. [33] propose a
ueuing model with LoS dependent on occupancy level. However,
n this model, the exchange between a patient who is discharged
nd another who enters is considered instantaneous.

n illustrative example of the dilemma of the last bed. The
roblem of the last bed is not just a theoretical concept, but it
ccurs many times at hospitals: whenever several patients need
reatment at the ICU at the same time, but there are no avail-
ble beds for everyone. A specific situation is presented below,
ith real patients, to illustrate better this problem. The chosen
cenario is a real situation that ICU physicians usually face.
An ICU with only 4 beds is assumed, and 3 of them are

ccupied by three patients who have different diseases and ages,
hich are not totally recovered. In the first bed, there is a 56-
ears old patient (Peter) who has a brain infection due to a virus.
n the second bed, a 63-years old patient (Cate) with a lung
nfection due to a bacterium is allocated. In the third bed, there
s a 73-years old cardiac surgery patient (Phil).
3

ICU physicians, during the clinical morning session, must dis-
cuss whether these patients continue to be treated in the ICU or
are early discharged. At that moment, physicians are informed
about an ambulance that is coming to the ICU with another
patient (Harvey, 28), who has suffered a traffic accident and
he has head trauma. Besides this, two scheduled surgeries need
admission for the ICU that day. The first one is for a patient (Paul,
52) who has suffered a heart attack, and the second one is to
treat a patient (Anne, 37) with a brain tumor. So, in this situation,
not only discharge decisions have to be made, but physicians also
must decide whether the incoming patient is accepted or diverted
to another hospital, and which surgery is confirmed or canceled.

In summary, what physicians have to decide is which patients
must be treated in these four beds. Table 1 shows all the relevant
information of patients that must be managed at that moment
(detailed clinical information of these patients is provided in
Appendix A).

Over this situation, an ICU physician can differentiate 16 rea-
sonable decisions based on clinic, as it is sown in Fig. 1 (if all
combinations were considered, the possibilities would rise to 57,
which are provided in Appendix B, but many of them are unlikely
in a real context, as discharging all inpatients and admitting no
new patient). For example, decision number 2 consists of admit-
ting only the emergency patient that is coming in the ambulance,
and both surgeries are canceled. In addition, no inpatient is early
discharged with this election. However, decision number 15 is
based on confirming both surgeries. Now, the incoming patient is
diverted to another hospital, despite the fact that two inpatients
have been early discharged (bed 2 and 3). With this election,
physicians would reserve a free bed for future emergency patients
considered in more severe conditions. Therefore, it is clear that in
order to manage these situations, physicians can (1) refer patients
to other hospitals, (2) cancel scheduled surgeries, and (3) shorten
the inpatients’ LoS.

When this situation was presented to different physicians and
nurses of an ICU, they made different decisions, as it is exposed
in Fig. 1. The majority (18 out of 35) decided to admit the
three incoming patients and assign two early discharges (decision
number 12). So, the ICU would be with the four beds occupied. 4
physicians also admitted the three incoming patients but decided
to discharge all inpatients in an early way, in order to reserve
a bed for a future patient (decision number 16). A group of 11
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Fig. 1. Selected decisions based on clinics in the example of the dilemma of the last bed. The last column includes the number of physicians and nurses out of 35
that would make each decision in a real ICU.
physicians decided to divert the emergency patient, with the dif-
ference that 6 of them only assigned an early discharge (decision
number 7) and the other 5 assigned two (decision number 15).
By last, one person decided to cancel both surgeries, assigning
an early discharge (decision number 8), while another canceled
one of the surgeries and diverted the emergency patient without
discharging patients (decision number 3).

Therefore, the responses to this simple realistic example show
he variability in the decision making related to the admission
nd discharge of patients and motivate the need to create a tool
hat facilitates the analysis of such decisions. The tool presented
n this paper not only generates scenarios like the previous one,
ut it evolves the ICU over time by implementing the decisions of
he users. In this way, the user can see the consequences of their
ecisions and learn by doing. The success of the MSF depends on
ts ability to recreate this dynamic environment mimicking the
eal dynamic of the ICU and to include all necessary information
o support the decision making.

. Related literature

In this section, we review relevant literature related to the
se of simulation models in ICUs, as well as the use of MFS
flight/virtual/serious game simulators) in general and in health
are services in particular.

.1. Simulation in ICU

Simulation is a very suitable tool to study stochastic and
omplex systems such as hospitals and, in particular, ICUs. Bai
t al. [35] review operations research methods used in ICU man-
gement, which include simulation. Mathematical studies include
imulation models for analyzing ICU capacity problems [36–38]
nd ICU admission and discharge processes [39]. Furthermore,
im et al. [40] compare bed allocation rules using bi-objective
ptimization and Griffiths et al. [41] propose a bed manage-
ent optimization making a distinction between emergency and
cheduled surgery patients. Other studies analyze changes in the
atient-flow circuit with the use of intermediate care wards [10,
2]. Griffiths et al. [43], given a current bed occupancy, present a

imulation model to adjust staffing; and Steins et al. [44] assess

4

bed occupancy and patient transfers to other ICU facilities in view
of a shortage of resources. All these models have the ultimate goal
of minimizing the rejection of patients arriving at the ICU while
maintaining a manageable occupancy level.

There are also some studies [38] in which early discharge is
suggested as a bed management tool, but they are not explic-
itly modeled. In order to obtain valid simulation models, it is
necessary to include the process of physicians’ patient-discharge
decision-making [45,46]. Azcárate et al. [47] perform a sensitivity
analysis of the effects of such discharge decisions on ICU rejection
rates and LoS of patients. Mallor et al. [32] assess by simulation
modeling the optimal discharge strategies obtained in [33].

The literature reviewed shows that some researches can pro-
pose mathematical solutions to problems associated with ICU
capacity and bed management. However, as far as we know,
there are no articles that provide an analysis of how physicians’
decisions are really made in ICUs.

3.2. The use of management flight simulators

MFS, also known in the literature as virtual simulations, can
be used both as a learning–training tool and for research [48]. For
research, this kind of simulators enables to analyze key processes,
detect biases, and recreate decision-making processes, testing
theories about them. As a learning–training tool, these MFS have a
close connection with serious games, which are not only intended
to entertain but are also used for pedagogical purposes [49].
According to Zyda [50], a serious game is ‘‘a mental contest,
played with a computer in accordance with specific rules, that
uses entertainment to further government or corporate training,
education, health, public policy, and strategic communication
objectives.’’ Long before the term ‘‘serious game’’ began to be
used, some games were already developed with a purpose other
than entertainment.

An example of this is The Beer Game (or the Beer Distribution
Game), which was developed in the 1960s at the Massachusetts
Institute of Technology’s (MIT) Sloan School of Management.
Since Sterman [51,52] popularized this simulation game, one
of the most popular games used in logistics management and
production management class, many applications have appeared

in which The Beer Game has been utilized in order to research
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he behavior of participants [53–55]. In other cases, the original
ame has been modified to investigate new approaches [56–58].
In addition to The Beer Game, there are more management

ames in the economic context in which researchers analyze the
ehavior of a group of people, as well as the participants learn
rom the experience [59–65]. Besides, the use of this type of
imulations as a learning tool is usual in other contexts such
s politics [49,66] and environmental care [67–70]. All these
pplications focus on management learning for general situations,
nd new concepts acquired by participants can be applied at
ny time in the real processes. Furthermore, there are other
ypes of simulators, designed for specific situations as defense,
viation, and construction, where decision-making processes are
rucial for specific situations. Virtual Reality (VR) simulators are
eveloped here to include a real description of the environment.
n the defense area, simulators to better respond bombs and
earning–training tools for marine officers or firefighters can be
ound in [71–75]. In aviation, new types of simulators are arising
o capture flight skills, which provides stronger sensations than
raditional ones [76–78]. In terms of construction applications,
oth computer-aided-learning tool [79] and VR training systems
or industrial training [80,81] have been found.

Although no articles have been found in which these methods
re used in healthcare to learn about the complexity of the ICU
anagement, many healthcare applications have been developed

n which virtual simulation has a relevant role in order to teach
tudents at universities and especially to learn from the experi-
nce of using [82]. Most of these are traditional simulations, and
hey use patient care manikins or play-role patients. Sherwood
nd Francis [83] made a systematic review of the effect of this
ind of mannequins in terms of learning for nursing, midwifery,
nd allied healthcare practitioners. Other types of works, not as
opular as previous ones, are those which develop VR simulators
r implement a decision-making process in management games.
auré and Puterman [84] developed an easy to use teaching
ame to learn how to manage patients appointment scheduling,
hereas Vliegen and Zonderland [85] designed a classroom game
o introduce Operations Management (OM) in healthcare.

VR simulators developed in the healthcare context intend to
ransfer skills, as they do in other contexts Brown et al. [86]
esigned and developed a virtual world for teaching and train-
ng Intensive Care nurses in the approach and method for shift
andover. VR simulators are also used in urological training,
eplacing traditional training approaches [87]. But, where this
ool is commonly used in healthcare is at operating rooms, with
he objective not only for the learning of beginning surgeons but
lso as a training to reduce the operating time. Jain et al. [88]
eveloped a VR surgical simulator that facilitates trainees for
unctional endoscopic sinus surgery. The positive effect of these
inds of simulators is also demonstrated in [89–91].
Management games in healthcare, mainly known as hospital

anagement games, gained importance because of the incre-
ent of health care costs due to expensive technology, aging
f the population, and the increasing number of demanding pa-
ients. This type of games first appeared during the 1970s and
raus et al. [92] made an extensive review of different hospi-
al management games. These games simulate situations of the
eal world modeling complex decision-making processes, which
re influenced by the external hospital environment. In the re-
iew, the authors distinguish functional games that are applied
o specific hospital departments and general games, which fo-
us on the main function of the hospital. As a functional game,
ans and Nieberg [93] developed the ‘‘Operating Room Manager
ame’’ illustrating operating room management, whereas Rauner
t al. [94] designed an internet-based management game (‘‘CORE-
AIN’’) to illustrate the economic and organizational decision-
aking process in a hospital.
5

We also found other examples of game-based simulators in
the healthcare area not related to hospital management. Brown
et al. [95] designed an educational video game to improve self-
care among young people with diabetes. Grunewald et al. [96]
developed an interactive Web-based training program for radi-
ology, which offers radiographic anatomy cases and exercises,
with the possibility of selecting different levels of difficulty. The
‘‘HealthBound’’ model and game was developed to help peo-
ple think widely about health reform options and discover for
themselves a promising solution [97–100]. Katsialiaki et al. [101]
developed a game that simulates the supply chain of donor blood
units to patients based on a real case study.

Finally, some studies have been revised that focus on the
decision-making processes in resource management. Rodriguez
et al. [102] present a decision support system to help humani-
tarian NGOs better manage resources during a natural disaster
response. Rauner et al. [103] developed a policy management
game to provide a learning–training tool for mass casualty inci-
dents. Bean et al. [104] programmed a patient flow simulator with
which professionals and students can learn important concepts of
patient flow and healthcare management.

Reviewing the literature about MFS we realized that those
works that focus on management issues, then they are driven
by theoretical concepts and models fail to reproduce with high
fidelity characteristics of real situations. In these models, many
assumptions are made in order to simplify them for the user and
to avoid misunderstandings. By contrast, VR simulators, which
transfer skills to the user, are very realistic, but then they do not
present management-related features in broad contexts. Just as
flight simulators in the aviation sector generate in pilots exactly
the same autonomic responses when faced up with an emer-
gency, whether this is real or simulated, medical simulations
must generate autonomic, cognitive and behavioral responses in
participants equal to those observed around medical tasks in
the real world [105]. Fidelity is very important if we want to
recreate participant’s experience with total realism. In this paper,
we present an ICU simulator that combines, for the first time,
these two different approaches (management decision processes
are implemented in a real simulation environment.

4. Modeling an ICU

In this section, the mathematical modeling of the ICU dy-
namics is presented. In the first subsection, the modeling of the
patient flow is exposed, explaining the discharge and admission
process, discharge decision times, and the patient’s health status.
The second subsection focuses on the implementation of these
features in a DES model, and the third subsection describes how
to sample initial scenarios from the steady state.

4.1. Modeling the patient flow and admission/discharge decisions

An ICU can be mathematically modeled into the framework
of queuing models. The queue model representation of the ICU
considers that the servers are ICU beds, the clients are the pa-
tients that arrive randomly for emergency patients or according
to a known schedule for those coming from elective surgeries,
there is no waiting room and the queue discipline is ‘‘first come,
first served’’. The service is individually provided with duration
modeled by a probability distribution. This description leads to a
queuing model G/G/c/c, where c is the number of the beds in the
ICU.

Nevertheless, this model fails in modeling the dependence
between patient LoS and the congestion level, allows for admis-
sions and discharges at any time, the diversion of patients can
occur only at full occupancy and the servers (beds) can switch
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nstantaneously from one patient to the next one. In addition,
he queueing model does not represent the real admission and
ischarge processes. These drawbacks preclude the use of this
asic queue model to build the simulation model. Therefore,
e extend the mathematical modeling of the ICU to represent
ore accurately both discharge and admission processes and

o reproduce the patient’s health status while their stay in the
CU. The purpose of the mathematical modeling is to be imple-
ented in an interactive simulator allowing the users to make

nformed decisions in a virtual environment as physicians do in
eal practice.

.1.1. Discharge and admission process
Both the discharge and the admission of a patient are complex

nd not automatic processes. The discharge process needs the
oordination of the ICU medical staff with their counterpart in
he destination ward. Moreover, the necessary time to free up
he bed depends on its necessity. In cases of imminent patient
dmission, the process speeds up and the discharging process
ould take around one hour, for example. However, when there
s no urgency, the entire discharge process with peace could last
rom three to four hours.

The admission of the patient is virtually instantaneous when
patient arrives at the ICU and there is a totally cleaned and dis-

nfected bed. When an admitted patient arrives at a full ICU and
o recently freed up bed is ready yet, the patient is temporarily
ocated in a special room where he or she can temporarily be
reated.

The flow diagram in Fig. 2 shows the admission and the
ischarge processes as they are considered in the simulation
odel. On the left side, the emergency and scheduled patients’
rrivals are represented. Medical staff must decide whether to
eject or admit them to the ICU. Scheduled patients first occupy
bed in the operating theater area (dark blue icon). Admitted
atients occupy a free bed (white icon) in the ICU, when they
re available, when not, the patient is placed in a bed in the
bove-mentioned special room (light blue icon). The right side
epresents the ICU where the beds can be in 7 different occupancy
tates: an occupied bed by a patient that is in the process of
eing discharged (dark gray icon); a bed occupied by a deceased
atient (brown icon); bed under cleaning process (light gray
con); available bed (white icon); and occupied beds by patients
n severe, stabilized and recovered health status (red, orange and
reen icons, respectively).

.1.2. Discharge decision times
Patient discharge decisions normally occur only at a few

cheduled times of the day. These moments are denominated
linical sessions and depending on the ICU they can take place
nce, twice, or even three times a day (morning, afternoon,
nd evening). During clinical sessions, physicians analyze the
npatients’ clinical conditions and decide which ones are going
o be discharged. They also propose possible patients who would
e discharged if an emergency patient had to be admitted and
here were no beds available. At the same time, in the morning
linical session, physicians manage the surgeries of that day, by
ither confirming or canceling them.
Therefore, the patient cannot be discharged at any time, as it is

mplemented in classic queuing models. Essentially, the discharge
ecision process is periodic and throughout the day no more
atients are discharged, except in the following case. When an
mergency patient arrives at ICU, physicians decide on his/her
dmission, which in the case of admission in a situation of full
CU implies the discharge decision of an inpatient (the arriving
atient is temporarily located in the special room).
The simulator reproduces the dynamics of the ICU and stops

t such decision times waiting for the discharge and/or admission
ecisions of the user. The simulator continues simulating the ICU
ssuming the decisions made.
6

4.1.3. Patient’s health status
Queuing models represent the LoS of a patient as a certain

random variable with a probability distribution fitted usually
by using historical data. Therefore, a sampled time from this
probability distribution determines the event in which the patient
is automatically discharged. However, the implementation of this
approach in the simulator would not allow the users to make the
discharge/admission decisions clinically grounded and informed.
They should rely on probability properties of the probability
distribution as for example the expected remaining time, as it is
the case of many simulation models (see discussion in [28]).

To overcome this strong drawback, we model the health status
of a patient by using 275 health indicators (medical and nurs-
ing reports included), all recorded by the software Metavision R⃝,
which is a dedicated software to monitor the health of admitted
patients of ICU. These variables (described in Appendix C) give
an extended and realistic description of the evolution of the
patient health status. They provide enough information to assess
the health condition of a patient in order to decide whether the
patient is stable enough to be transferred to a lower level of
care. These health indicators include neurological, hemodynamic,
respiratory parameters among others such as provenance and
principal diagnosis. All of them are presented to the user of the
simulator mimicking the way in which their information systems
do.

4.2. The discrete event simulation model

The proposed DES model is designed to incorporate the char-
acteristics of a real ICU described in Section 4.1. A DES model
is defined by the set of state variables, which provide at any
time a complete description of the simulated system, and the set
of events, which modify through time the value of these state
variables. We propose three different kinds of state variables to
describe the ICU at any time, and a set of events grouped into four
different categories.

4.2.1. State variables
The first set of variables is composed of three variables, X =

(X1, X2, X3), which describe the number of patients in the ICU
(X1), the number of patients that are waiting in the special room
to be admitted (X2), and the number of patients coming from
surgery already accepted but not admitted to the ICU yet (X3).
Observe that the number of total patients admitted (N) in the
ICU at time t is the sum of these three state variables (N =

X1 + X2 + X3).
The second category describes the health status of patients and

it is composed of 275 state variables per each inpatient, Yhih =

1, . . . , 275; i = 1, . . . , X1. These variables can be continuous
as the temperature (oC) or the systolic blood pressure (mmHg),
discrete as the heart rate (rpm), binary as being intubated (yes
or no), or qualitative as those describing prognosis of physicians
and nurses. During the simulation, these variables change in order
to recreate the health status evolution of each patient. Therefore,
they are considered important indicators to differentiate which
patients can be discharged.

Finally, the third group of state variables describes the bed
occupancy state. Each one is associated with an ICU bed, Zjj =

1, . . . , c. They are qualitative variables that can take the following
values:

• Free: the bed is completely available for the admission of a
patient.

• With a deceased patient: there is a patient who has just died
and is waiting for discharge.

• With a severe patient: there is a very serious patient who
cannot be discharged under no circumstances.
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Fig. 2. Representation of the dynamics of an ICU through the change of the bed’s state. The two types of patients are distinguished (scheduled and emergency ones)
nd also the direct entry to the ICU from a delayed one.. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)
• With a stabilized patient: there is a stabilized patient who
could be considered eligible to be discharged under circum-
stances of high occupancy pressure.

• With a recovered patient: there is a patient who has recov-
ered and is ready to be discharged.

• With a discharged patient: there is a patient who is waiting
for transfer to a lower level of care. A discharge decision has
already been made.

• Cleaning: the bed is undergoing cleaning tasks to condition
it for the admission of a new patient.

Therefore, the vector (X, Y , Z) describes at any time t the situa-
ion of the ICU (the number of patients admitted in the ICU, the
umber of patients waiting for an imminent admission, the health
escription of each one of these patients, and each bed occupancy
tate).

.2.2. Events
There are four different types of events modifying through

ime the value of state variables. The first set of events EA are
ssociated with the patient’s arrival times classified in emer-
ency and scheduled patients. The probability that a patient
s of the emergency type is pE , and of the scheduled type is
S (pE + pS = 1). On the one hand, emergency patients’ arrivals
ccur 24/7, which are modeled by using a Poisson Process (PP)
ith arrival rate λE . These patients are classified into illness
roups whose percentages define the type of ICU that is being
odeled. In our model we consider 6 different groups (E1: ur-
ent surgery, E2: polytrauma, E3: patient hospitalized in Medical
ervice, E4: patient hospitalized in Surgical Service, E5: emer-
ency/observation patient, and E6: patient admitted for organ
onation/others) and probabilities pEi i = 1, . . . , 6 of belonging
o each illness group, which determine the mix of emergency
atients

(∑6
i=1 pEi = pE

)
. When an emergency patient arrives at

ime ti, the next arrival occurs at time ti+1 obtained from Eq. (1).
side from assigning the arrival time, the type of emergency
atient who arrives is selected. The patient will belong to the type
i with a probability of pEi/pE .

i+1 = ti −
1
λE

ln ui; with ui ⇝ U (0, 1) (1)

On the other hand, once per week, the number of scheduled
surgeries for each day of next week is simulated. It is assumed an
average number of scheduled surgeries of λS per week. We dis-
tinguish patients that recover from standard surgery procedure,
S1, with probability pS1 , which can be in the ICU for an expected
short stay, and patients that can be for an expected long stay due
to a complicated surgery or critical condition of them, S2, with
probability pS2

(
pS1 + pS2 = pS

)
. During the first clinical session

in the morning scheduled patients are presented to physicians.
Those patients who are admitted arrive at ICU when the surgery
is finished (this time is previously defined for each scheduled
7

patient). Under the assumption of the number of scheduled surg-
eries each working day is uniformly distributed throughout the
week, and no surgeries are scheduled on weekends, the expected
number of surgeries in each labor day is λS∗ = λS/5, and the
expected number of arrivals for each type of scheduled patients
is λS∗i = λS∗pSi/pS . From these expected values, we simulate the
number of arrivals of each type of patient Si as

⌊
λS∗i

⌋
patients

with probability
⌊
λS∗i

⌋
+1−λS∗i , and

⌊
λS∗i

⌋
+1 with probability

λS∗i −
⌊
λS∗i

⌋
(where ⌊.⌋ denotes the integer part of the number).

These simulated arrivals represent the number of surgeries that
the decision-maker must confirm or cancel. When the surgeries
are confirmed, those patients are the ones who finally enter the
ICU. The diagram of the two types of patients’ arrivals is shown
in Fig. 3.

The second set of events EB produces changes in the value
of the patient’s clinical variables. The sequence of these events
describes the health status of each patient described by 275
clinical variables recorded by the Metavision R⃝ software. Some of
these variables, such as health indicators (the temperature, the
heart rate, etc.), change their status every hour. Others related to
Analytics, Gasometry, or physicians’ reports, change their status
every day.

The third category of events EC is associated with
discharge/admission decision-making. These events stop the sim-
ulation when there is a clinical session programmed, and dis-
charge and admission decisions must be made by the user in
order to continue. Observe that these decisions also appear when
an emergency patient arrives at the ICU.

Finally, the last events ED modify the beds’ condition. Some
of the previous events can trigger the change of an ICU bed’s
state. Changes in patient clinical variables can generate that the
patient transits to a stabilized health or a recovery condition
and then his/her bed does too. The bed’s status also changes
after the user’s admission or discharge decisions. In the first case,
when a patient is admitted, the bed’s status change from free to
with a severe patient (see Fig. 2). In the second case, if a patient
is discharged, his/her bed associated changes to with discharged
patient. However, two transitions are independent of the other
events and must be simulated. On the one hand, once a patient
has been discharged, the departure time of the ICU is simulated
depending on whether the bed is urgently required or not. Also,
in deceased patients, the transfer time may depend on whether
the organs are to be previously removed for donation. On the
other hand, when a patient leaves the ICU, a bed cleaning time is
simulated until the bed is free again. Fig. 4 outlines the simulation
model of the ICU.

4.3. Sampling initial scenarios from the steady state

The simulation starts at time zero by creating an initial sce-
nario representative of the ICU stationary state, which means
to assign value to all state variables and simulate the time for
the first event of each type. The ICU is defined by the user
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Fig. 3. Diagram of both emergency and scheduled patients’ arrivals.
Fig. 4. ICU simulation model.
m
L

hrough a set of parameters, as we expose in Section 5.2. The

arameters necessary to generate the ICU scenario at time zero

re the number c of ICU beds, the probabilities pi that define the

ix of patients, and the traffic intensity ρ.

The traffic intensity is the ratio of the arrival rate λ to the

eparture rate µ, where λ is the number of arrivals per day and

the number of departures per day. The traffic intensity is a

easure of the congestion of the system. It is used to determine
8

the patient arrival processes (for both emergency and scheduled
patients) and the number of occupied beds at time zero.

Determining patient arrival rates. The total arrival rate is cal-
culated as λ = ρµ. The departure rate µb of one bed is esti-
ated from the expected days in ICU of each category of patient,
oS (Ei) i = 1, . . . , 6, and LoS (Si) i = 1, 2:

1
µ

=

6∑
pEiE (LoS(Ei)) +

2∑
pSiE (LoS(Si)) (2)
b i=1 i=1
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here E (LoS(Ei)) is estimated from historical data and the prob-
bilities of each patient group are set by the simulator user to
efine the mix of patients.
Therefore, the total ICU departure rate is µ = cµb, and

λ = ρµ. Then, the arrival rate is calculated for each category
of patients as λE = pEλ and λS = 7pSλ and the first arrival
of patients can be simulated as it is explained in Section 4.2.2
(observe that λS refers to arrivals per week).

Number of occupied beds at time zero. It is determined from
the expected value ρc in the stationary state (assuming no early
discharge is assigned, and no patient is diverted). To get an
integer value for the number of occupied beds the lower or the
upper integer is selected at random: ⌊ρc⌋ occupied beds with
probability ⌊ρc⌋+1−ρc , and ⌊ρc⌋+1 with probability ρc−⌊ρc⌋.
When the congestion rate ρ is greater or equal to 1, then the
number of occupied beds at the beginning is c .

Simulating the type of patient that occupies each bed at time
zero. The probability θi that a patient of a certain group of patients
Piϵ {E1, . . . , E6, S1, S2} occupies a bed is calculated as the expected
time that a bed is occupied for that group of patients; that is,
θi = λiLoS(Pi)/

∑
j λjLoS(Pj), where λi = λEi =

pEi
pE

λE is the arrival
ate for emergency patients of type Ei, and λi = λSi =

pSi
pS

λS/7 is
he arrival rate for scheduled patients of type Si.

ampling the patient that occupies a bed at time zero. Once the
ype of patients Pi is assigned to occupy a bed, a specific patient
is selected at random from the set of patients (see Section 5.2)
ccording to a probability ϕij which is proportional to the LoS,
hat is, ϕij = tij/

∑
k tik, where tik is the LoS of the kth patient of

ype Pi.

ssigning values to the health status state variables Y hj , h =

,. . . ,275. Once the patient jth of type Pi is selected to occupy
bed, the LoS already consumed at time zero is considered
niformly distributed in his/her total LoS tij. Therefore, the health
tatus of the patient is described by the state variables recorded
t time utij of the LOS of that patient, where u ⇝ U (0, 1).

. The ICU management flight simulator

This section focuses on describing the simulator developed,
etailing its main features, such as the definition of virtual ICUs,
he interface, and the information recorded.

.1. Main features of the simulator

The main purpose of this simulator is to mimic a real ICU,
roviding an extended and realistic description of the evolu-
ion of each patient and recreating real discharge and admission
rocesses. To fulfill these characteristics, the simulator has to
enerate a familiar environment that is almost indistinguishable
rom that of the ICU physicians when consulting the monitor-
ng screens of admitted patients’ data. To achieve this level of
imilarity, the simulator presents the following features:

• The simulator generates emergency and elective patients’
arrivals according to real arrivals patterns to the ICU.

• For each patient, the simulator shows enough clinical in-
formation to make decisions about discharge. Specifically,
information about the patient’s antecedents, principal diag-
nostic, and system monitoring values are displayed (as we
mentioned in Section 4.1.3 and described in Appendix C). In-
formation about scheduled surgeries for the following days
is also shown in a calendar. The information displayed for
each simulated patient corresponds to real patients, which
have been completely anonymized.
9

• The visualization of each patient’s data mimics the screen of
Metavision R⃝ software presented in Fig. 5, which is used in
a real ICU.

• The simulator moves the time forward generating the events
described in Section 4.2.2 and evolving the health of status
of each admitted patient (vital signs, analytical parameters,
life support measures, medications, etc.). When a decision-
making type of event occurs, the simulation stops and waits
for the user’s instructions about possible patient discharges
or admissions. The simulator updates the status of the ICU
according to these decisions and it moves the time forward
until the next decision-making event.

• The randomness of the simulation is controlled by the initial
seed of the random generator and the use of the common
random numbers technique. Therefore, the simulator can
run the same scenario (identical sequence of patient arrivals
and with the same typology) so that it can be evaluated by
different users.

• This simulator allows the definition of different ICUs by
setting a set of parameters (see Section 5.2). Therefore, the
simulator has enough flexibility to define numerous ICUs
with different characteristics.

• The simulator collects all decisions made by the users.

o facilitate the medical staff using the simulator, it must be
asily accessible, and also from different locations. Therefore, the
imulator is freely available on the internet to be used by any in-
erested user (https://emi-sstcdapp.unavarra.es/ICU-simulator);
nly the username (ICU-simulator) and the password
ICU_S1mulat0r*) are required in order to access it.

.2. Setting up the ICU characteristics

The simulator is adaptable enough to create different ICUs
ccording to its number of beds, the percentage of different types
f patients, the congestion level, and the discharge/admission
ecision process. We can modify all these parameters as it is
hown in Fig. 6. Furthermore, it is possible to save all created
cenarios and open them later. Thus, everyone faces the same
ituations and at the same moments during the simulation.
The size of the ICU is defined by the number of beds. The mix

f patients is established by assigning a percentage for emergency
nd scheduled patients as we mentioned in Section 4.2.2. It would
e necessary to select the appropriate percentages for each type
f patient and fill in the ones that are not included with zeros.
atients’ health status is simulated using 200 clinical reports of
00 real patients treated in the ICU of Hospital Compound of
avarre, who have been completely anonymized. 112 out of the
otal are emergency patients, and they are distributed among the
categories mentioned in Section 4.2.2. The rest, 82 scheduled
atients, are distinguished by their expected stay (short or long).
Three congestions levels are considered (high, very high, and

xtreme), which refers to the value of the traffic intensity
ρ = λ/µ). The high congestion determines a traffic intensity

= 0.85 and the very high congestion a value of ρ = 0.95.
he extreme level (ρ > 1) causes many situations in which the

dilemma of the last bed occurs. This level has been selected to
evaluate which decisions users make in each of those situations.
Other complementary parameters that can be modified are the
day of the week on which the simulation begins and the number
of days that the simulation lasts.

Finally, on the lower-left side of Fig. 6, the discharge/admission
decision process is defined. It is possible to configure different
timetables of clinical sessions, as well as those moments in which
physicians can assign a discharge. For example, the schedules in
Fig. 6, indicate that every day there is a clinical session at 8 a.m.,
in which it is assessed which patients are discharged and which

https://emi-sstcdapp.unavarra.es/ICU-simulator
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Fig. 5. Real ICU data screen of Metavision R⃝ software.
Fig. 6. Configuration screen of the simulation scenario.
urgeries are confirmed. Also, between 10 a.m. and 6 p.m., it is
ossible to discharge patients in situations of high occupation,
o free up beds for future patients. The last defined schedule
ndicates that at any time it is possible to admit an incoming
atient, even if there are no free beds in the ICU, as long as there
s the possibility of assigning a discharge.

.3. Interface

The user must interact with the simulator in order to manage
he ICU. At decision times, those patients who are occupying the
CU are presented to the user and he or she must make discharge
ecisions by using all data provided by the ICU information tech-
ologies. This information is based on the health status of the
npatients, the occupancy level, and the forecasted scheduled
atients.
The simulator’s main screen is shown in Fig. 7. In the lower

art, there is a history of the number of emergency patient
10
arrivals for the last days (left) and a panel with the scheduled
surgeries of the following days (right). In the upper-right part,
events related to the change of health of patients appear, as
well as information about admissions and discharges. On the top
left side, the occupancy of the ICU is shown in a panel that
represents the beds with a color code. Clicking on a patient,
all the clinical history to date is shown (the evolution of the
275 variables describing the health status as well as the medical
and nursery reports). In fact, the health status is reported on a
different screen of the simulator that mimics and provides the
same information that is displayed and recorded by the dedicated
software Metavision R⃝ (see Fig. 8). Thus, the simulator creates
a totally realistic and credible ICU environment. Users will be
able to access the values of these variables in the case of all
stabilized and recovered patients. The volume of information
provided is simplified by preventing the consultation of the data
of those patients who finally die and those who remain in serious
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onditions since the data of the patients that clearly cannot be
ischarged is meaningless.
As we said previously, we have collected variables of 200

eal patients of an ICU. The objective of the simulator is to
ollect information on how each user manages an ICU in which
he congestion level is extreme. It is not intended to assess the
user’s medical knowledge. Consequently, some ICU physicians
collaborating in the development of the simulator, to shorten the
time to assess the clinical status of all inpatients, analyzed the
medical records of all patients to define three states along their
stay, which help the user to make decisions. On the one hand,
we consider in severe conditions to be discharge a patient who
has just been admitted in the ICU (red color in Fig. 2). On the
other hand, patients who has finished their LoS are considered
totally recovered and they should be discharged (green color
in Fig. 2). Finally, an intermediate state is established for each
patient (orange color in Fig. 2), which indicates the moment
from which the patient is sufficiently stabilized to be discharged,
although risks to his/her health are assumed.

5.4. Information recorded

When simulation finishes, all decisions and general results
(number of patients admitted, number of surgeries canceled,
number of early discharges. . . ) are recorded. Given that a well-
done simulation run could last many minutes, this simulator
allows the user to save the simulation and finishing it later.

Two documents are automatically sent to each user after a
simulation is completed. The first one records general infor-
mation regarding the number of emergency patients diverted,
the number of surgeries that have been canceled, the number
of discharges assigned in an early way as well as the average
time of shortened LoS in hours. The second document shows the
evolution of the number of occupied beds along the simulation.
It also has information about those specific moments in which
emergency patients are admitted or diverted, and the same for
scheduled patients.

The simulator, in addition to sending those two types of doc-
uments, also generates files that record all the information asso-
ciated with the individual decisions of the users. The decisions
consist of determining at what moment the user has decided
to discharge each patient and if patients who need care in the
ICU are admitted or diverted, both emergency and scheduled.
These files, which can also be opened by the simulator, allow
reproducing step by step one simulation that is already finished.
As we already mentioned the simulator controls the, so we can
reproduce two different simulations in order to compare bed
management with each other.

6. Preliminary results

In this section, preliminary results of the simulator are intro-
duced. The objective is not to provide a full analysis of man-
agement typologies, but to present their potential to carry out
extended research in this direction. Two types of measures are
proposed for the analysis of the user decision-making: global
indicators and dynamic indicators. The first category accounts
for the global results of the management while the second one
takes into account the dynamics of the decision-making. Last, a
qualitative assessment of the ICU Simulator by users is exposed.
11
Table 2
Comparison of simulation global results recorded by 18 ICU physicians. Users
faced a 24-bed ICU, which was initialized with 23 patients in different health
statuses. Over three weeks, 34 emergency patients and 23 scheduled patients
arrived at the ICU.
Physician Diverted

emergency
patients

Canceled
surgeries

Shortened
stays (Total
discharges)

Average time
of shortened
LoS (h)

Phy_1 13 2 4 (34) 47.21
Phy_2 9 6 14 (33) 23.78
Phy_3 9 8 14 (30) 31,25
Phy_4 6 7 18 (34) 38,61
Phy_5 7 6 11 (33) 42,62
Phy_6 6 4 21 (38) 43.81
Phy_7 16 0 0 (34) 0.00
Phy_8 11 3 7 (35) 22.16
Phy_9 7 5 16 (34) 29.51
Phy_10 7 3 27 (39) 43.61
Phy_11 9 0 23 (39) 39.32
Phy_12 13 3 5 (32) 30.69
Phy_13 12 5 8 (33) 32.72
Phy_14 10 1 10 (35) 28.92
Phy_15 10 1 21 (35) 37.71
Phy_16 4 4 21 (37) 39.04
Phy_17 10 1 24 (38) 41.14
Phy_18 11 2 13 (35) 35.93

6.1. Global performance measures

Not every physician nor nurse have the same vision when it
comes to managing patients at the ICU. With the recorded infor-
mation it is possible to compare users’ results in order to analyze
their management style. Table 2 summarizes results recorded by
18 ICU physicians. They performed the simulation under exactly
the same ICU scenario. These physicians managed a 24-bed ICU
with an extreme congestion level (ρ > 1), which was initialized
on Monday with 23 patients in different health statuses. The
emergency patients’ arrival rate per day was λE = 1.38, and the
scheduled patients’ arrival rate per operation day was λS∗ = 1.51.
Over three weeks, 34 emergency patients and 23 scheduled pa-
tients arrived at the ICU. The ICU blocking discharge from wards
was not included and during the simulation, there were regular
programming sessions of discharges only in the morning at 8 AM.
Every user has the same stochastic environment, with the same
arrivals and the same patients (note that the total number of
discharges by each user is different because it is influenced by
the number of patients admitted to the ICU).

Here it is confirmed that physicians make decisions quite
differently. Some of them canceled few surgeries but following
two different strategies: there are those who decide not to assign
early discharges and not admit emergency patients (e.g., physi-
cian 7) and others decide to admit more patients assigning early
discharges (e.g., physician 11). By contrast, several physicians de-
cided to cancel more surgeries in order to admit more emergency
patients (e.g., physician 4). Finally, some physicians try to maxi-
mize the number of patients admitted to the ICU (e.g., physician
16).

For each physician, the ratio of diverted patients to total
arrivals (34), the ratio of canceled surgeries to total scheduled
surgeries (23), and the ratio of shortened stays to total discharged
patients (different for each physician) are calculated (data are
included in Table 2). A chi-square test of homogeneity has been
conducted to compare these ratios among users. Results indicate
that there are significant differences in the ratio of canceling surg-
eries and shortening stays (p-value < 0.01), but no significant
differences are found (p-value > 0.1) in the ratio of emergency
patients diverted. Table 3 presents the aggregated results for each

type of user.
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Fig. 7. Simulator’s main screen.. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. Information of patient’s clinical data, mimicking real screens of Metavision R⃝ .
Table 3
Global mean results of all users of the simulator. They are divided by different groups (OM/OR stands for Operation Management
and/or Operational Research).
Group
(Number of users)

Diverted emergency
patients

Canceled surgeries Shortened stays
(Total discharges)

Average time of
shortened LoS (h)

Physician (18) 9.44 3.39 14.28 (35.00) 33.78
Nurse (13) 10.77 3.38 10.54 (34.31) 29.61
Nurse tech (4) 13.75 1.25 10.75 (36.00) 34.40
Resident (5) 5.00 5.20 19.20 (36.00) 37.74
Medical student (4) 5.00 5.75 11.00 (35.75) 36.52
OM/OR researcher (4) 7.60 2.80 17.80 (35.60) 35.85
6.2. Dynamic assessment of the ICU management

The performance measures presented in the previous section
verview the user decision making and can show that users differ
n their ICU management. However, they can show differences
ven if their global performance measures result to be similar. To
escribe the dynamic management of the ICU beds we propose
o track through time the number of beds that the user keeps
vailable to be assigned to a new patient in a short time if
12
necessary. We name such bed a manageable bed. The number of
manageable beds at time t in the ICU is considered the number of
those beds in any state but occupied with a severe patient, minus
the number of patients already accepted but not admitted to the
ICU yet (state variables X2 and X3).

When a user keeps a low number of manageable beds, then he
or she is assuming risks of having to divert emergency patients or
canceling surgeries. And the opposite management, having a large
number of manageable beds in the ICU can avoid the diversion
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f emergency patients and cancellation of some surgeries but
ould require the discharge in advance of some patients or the
ancelation of some surgeries not considered as very urgent.
Fig. 9 shows the evolution of two different physicians. The

hysician number 7 prefers more control over the ICU and re-
erves at least 3 manageable beds most of the time in order not
o cancel any surgeries. However, physician number 10, works
n a lower level of manageability, which means that more new
atients are admitted, with the risk of running out of manageable
eds at certain times. This representation is consistent with the
esults shown in Table 2. By contrast, Fig. 10 shows the evolution
f two physicians who were not so different according to Table 2
physicians 1 and 12). It is observed that the evolution they have
ollowed is quite different. Accordingly, global results do not fully
escribe how users manage the ICU, and it is necessary to analyze
heir evolution.

.3. Qualitative assessment of the ICU simulator

A questionnaire is provided at the end of the simulation.
he users have to respond to four questions using a five-point
gree/disagree scale (Likert scale survey). The following questions
ere used to gather this data:

• Q1: ‘‘Did you find that the interactive simulator reflects in
a real way how to manage the patients of an Intensive Care
Unit?’’

• Q2: ‘‘To what extent do you agree that the simulator allows
you to analyze the decision-making regarding the manage-
ment of beds in your Intensive Care Unit?’’

• Q3: ‘‘To what extent do you agree that the simulator can be
used as a better learning tool on the management of ICU
beds compared to traditional methods such as reports or
slide presentations?’’

• Q4: "Do you think that the simulator can help you better
understand the management of beds in your unit and apply
measures to improve it?

ig. 11 shows the main results of the evaluation, which includes
ll the participants mentioned in Table 3. The strongly agree and
gree scores together have shown a more than 85% satisfaction
rom the users of the simulator in all questions except from the
2, which scores a bit lower (82%). Almost all participants agree
ith the accuracy with which the simulator represents a real ICU
Q1, only 1.96% disagree), and the vast majority find useful this
imulator in order to learn on the management of ICU beds (Q3,
6.86% strongly agree).
In general, both physicians and nurses find it more feasible

hat the simulator allows them to understand the management of
CU beds rather than being able to use it to analyze the decisions
ade there. This difference may be due to the fact that at this
oment a framework has not been developed on the analysis of
ecision making from the simulator, and one of the purposes is
ot yet fully understood by medical users. Completing the anal-
sis, for each question (Q1–Q4) a chi-square test of homogeneity
as been conducted to determine whether frequency counts are
istributed identically across different groups. In all cases, the test
oes not reject the hypothesis that the distribution of responses
s the same in each type of participant (p-value > 0.05).

7. Discussion and conclusions

In ICU management and, by extension, in hospital manage-
ment in general, it is essential to use all resources efficiently.
Furthermore, the bed occupancy rate is very variable and not very
predictable, since it depends on both programmed factors, such as
surgery that requires that the postoperative period to be referred
13
to the ICU, as well as random factors such as urgent admission of
patients. This implies that in certain cases management policies
focused on high occupancy, in order to avoid wasting an expen-
sive resource, have to face the problem of lack of bed for a patient
who requires it.

The transfer of a patient to an area of less care should be
carried out when he or she is stable enough, and the assessment
should be fully based on clinical judgment. Clinicians are aware
of the risks involved in discharging a patient in advance to be
able to admit another when the ICU is full, however, these deci-
sions depend not only on the patient’s health status but also on
organizational and teamwork issues [14].

According to the SCCM guidelines for ICU admission, dis-
charge, and triage [106], more research is needed on all aspects
of critical care rationing to address current deficiencies. This
paper contributes to this research by developing, for the first
time, an MFS of an ICU that reproduces the necessary operational
processes to handle the patient flow and interacts with the user
by presenting the same patient clinical information and in the
same way as the ICU information technologies do in real ICUs.
Specifically, the simulator allows representing the information
related to the uncertain, complex, and dynamic features of the
ICU and their patients’ admission and discharge processes. The
purpose of this simulator is to design a decision tool that collects
informed decisions of the user to help in the analysis of the
decision-making variability to reduce it. The simulator is able
to present conflicting scenarios, that is, scenarios that generate
discrepancies among physicians.

The MFS is flexible to recreating any type of ICU, defined by
its size, mix of patients, congestion level, etc. It is also possi-
ble to introduce bed-blocking from wards, although it has not
been considered so far in the simulations performed by physi-
cians. In situations of blockage, the patient cannot be discharged
whether the user wants it or not. Therefore, we avoid these
forced situations to collect the decisions that the user freely make.
The simulator has been used and validated by ICU physicians
and nurses of the three hospitals of the public network of the
Spanish Autonomous Community of Navarre (Pamplona, Tudela,
and Estella) and of a private one of concerted management of
Guipúzcoa.

The study conducted by de Freitas [107] demonstrated that
these types of simulators have a learning function. Other more
recent researches also show that the use of MFS has a positive
effect on the learning of participants [108,109]. Based on this,
we also propose this ICU simulator as a learning tool from two
different points of view.

On the one hand, both medical and nursing students could
use this simulator at universities in order to learn how ICUs are
managed. When students run the simulation, they will take part
in the decision-making process of the ICU for the first time, but
in a safe environment, in which their decision will not have bad
consequences for patients. Apart from this, students can compare
their own results with those that are supposed to be the best,
that is, decisions about patients of simulations performed by
experienced ICU physicians. They can also watch step by step how
the simulation has been performed. The success of using this type
of tools can be seen in [96].

On the other hand, physicians who work in the ICU not only
could use the simulator in order to improve their knowledge
of bed management individually, but they could also learn in
a collective way. Comparing all results of the decision-making
process generated by simulations performed by many physicians
of the same ICU, it would be possible to identify which situa-
tions cause the greatest disparity among them. These scenarios
could be labeled as conflicting scenarios because the decisions
that physicians make when managing these situations differ.
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Fig. 9. Graph with the evolution of the number of manageable beds of two different physicians (physicians 7 and 10).

Fig. 10. Graph with the evolution of the number of manageable beds of two similar physicians according to their global results (physicians 1 and 12).

Fig. 11. Main results of the questionnaire.

14
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n addition, it would be possible to detect which patients are
omplicated to treat, because there are no unified decisions about
hem (decision about admission, time to discharge...).

Our future research includes to develop a methodology that fa-
ilitates the analysis of the data recorded by the simulator. At this
oment, evaluation criteria are the number of diverted emer-
ency patients, canceled surgeries, shortened stays, and average
ime of shortened LoS (h); and we focus on these parameters to
dentify differences among users. These comparisons are made
ith the overall results of the entire simulation. The tool also
aves all the decisions of each user and in which situations,
nd this will allow a dynamic comparison of the management
f the ICU. It is necessary to define metrics to measure the
ynamics of the management, as it is presented in Figs. 9 and 10.
allor et al. [33] obtain different management policies (aggres-
ive, equitable, and cautious) as result of a normative analysis of
he decision-making by solving stochastic optimization problems.
hysicians’ behavior could be classified following this type of
olicies or other similar ones. In summary, our purpose is to
se the simulator to collect data about the management of ICUs
hat enable us to test theories about physicians’ decision-making,
nalyze triage processes, and detect biases and patterns.
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Appendix A. A real patients’ description

Peter, 56 years old.
Admitted for Herpex Simplex Virus-1 meningoencephalitis.

• Intubated and connected to mechanical ventilation.
• Neuromonitoring of intracranial pressure.
• Intracranial pressure control by first level measures.
• In treatment with acyclovir.
• Precise norepinephrine in continuous infusion.

Cate, 63 years old.
Admitted for severe community-acquired pneumonia due to
Streptococcus pneumoniae.

• Intubated and connected to mechanical ventilation.
• Supported with veno-venous extracorporeal membrane

oxygenation.
• In treatment with meropenem and linezolid.
15
Phil, 78 years old.
Admitted for postoperative control of aortic valve replacement
cardiac surgery.

• Hemodynamically stable without requiring vasopressors or
inotropes.

• Chest tube with a rate of drainage less than 100 mL/d.
• Acute kidney injury without oliguric and creatinine and urea

levels of 1.8 mg/dL and 80 mg/dL, respectively.

Harvey, 28 years old.
Polytrauma with severe traumatic brain injury secondary to a
motor vehicle accident.

• Intubated and connected to mechanical ventilation
• Fitted with a rigid cervical collar and pelvic stabilization

device
• Dilated unreactive right pupil
• Hemodynamic instability, with worsened hypotension

(blood pressure, 80/50 mmHg) and persistent bradycardia
(heart rate, 40 beats/min). An inadequate response to fluid
resuscitation.

Paul, 52 years old.
Admitted for acute coronary syndrome with ST-segment ele-
vation.

• Cardiac catheterization with left main coronary artery and
three-vessels disease.

• Echocardiography with moderate ventricular dysfunction
(EF 40%) and segmental alterations, with extensive anterior
hypokinesia and apical akinesis.

• Support with dobutamine in perfusion due to low cardiac
output with renal dysfunction.

Anne, 37 years old.
Admitted for right occipital glioblastoma multiforme.

• She has nausea and vomiting, headache, that is difficult to
control with common analgesics, and visual disturbances.

Appendix B. All combinations of the example of the dilemma
of the last bed

See Fig. B.1.

Appendix C. Set of patient variables

• Informative patient’s data: age, gender, weight, LoS, prove-
nance, principal diagnostic, personal history, and type of pa-
tient (Fixed values for each patient and considered outside
the 275 variables).

• Neurological parameters (10): both pupil size in millime-
ters and reactivity, Glasgow Coma Scale (Glasgow-Motor
response, Glasgow-Eye response, and Glasgow-Verbal re-
sponse), external ventricular drain, and RASS scale.

• Hemodynamic parameters (17): oxygen saturation (%), the
temperature in degrees Celsius (oC), type of heart rhythm,
heart rate (rpm), systolic blood pressure (mmHg), diastolic
blood pressure (mmHg) (invasive are non-invasive), mean
arterial blood pressure (mmHg), pacemaker rhythm (y/n),
type of pacemaker, pacemaker operating modes, pacing rate
(rpm), pacing capture threshold (mA), etc.

• Respiratory parameters (14): spontaneous breathing trials,
tracheotomy (y/n), fenestrated cannula/speaking valve (y/n),
tracheostomy cap (y/n), conventional mechanical ventila-
tion (y/n), noninvasive positive pressure ventilation (y/n),
reservoir mask (y/n), Venturi mask (y/n), nasal cannula
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Fig. B.1. All 57 possible combinations of the example of the dilemma of the last bed.
(L/minute), inspired gas flow with high-flow nasal cannula

oxygen therapy (L/minute), fraction of inspired oxygen with
16
high-flow nasal cannula oxygen therapy (%), fraction of in-

spired oxygen (%), extrinsic positive end-expiratory pressure

(cmH2O), and respiratory rate (rpm).



D. Garcia-Vicuña, L. Esparza and F. Mallor Operations Research for Health Care 27 (2020) 100274

R

• Kidney parameters (2): continuous renal replacement ther-
apies (y/n) and intermittent hemodialysis (y/n).

• Balances (2): diuresis (mL) and chest drainage (mL).
• Medication (123): plasmalyte (mL/h), propofol 2%

(mg/Kg/h), midazolam 50 mg (µg/Kg/h), remifentanil/ultiva
(µg/Kg/min), morphic chloride (mg/h), intravenous fentanyl
(µg/Kg/h), etc.

• Events and care (54): percutaneous tracheostomy,
cardiopulmonary resuscitation, defibrillation, electrical car-
dioversion, pharmacologic cardioversion, transcutaneous
pacing, pericardiocentesis, pulmonary embolectomy, etc.

• Infections (5): type of infection, origin, inflammatory re-
sponse, germs, and antibiotics.

• Analytics (37): hemoglobin (g/dL), hematocrit (%), leuko-
cytes (X109/L), neutrophils (%), Lymphocytes (%), monocytes
(%), eosinophils (%), basophils (%), etc.

• Gasometry (7): pH, pCO2 (mmHg), pO2 (mmHg), lactate
(mmol/L), saturation (%), HCO3 (mmol/L), and base excess
(mmol/L).

• Reports (4): admission, medical, nursing, and clinical re-
ports.
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