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Abstract

We propose an axiomatization of aversion to incomplete preferences. Some prevailing

models of incomplete preferences rely on the hypothesis that incompleteness is tempo-

rary and that by keeping their opportunity set open individuals reveal a preference for

flexibility. We consider that the maintenance of incomplete preference is also aversive.

Our model allows us to show how incompleteness induces an aversive attitude in two

different ways: intrinsic and instrumental. Intrinsic aversion holds when one instance

of incomplete preference in the set suffices to decrease its utility. Instrumental aver-

sion holds only insofar dominating options are affected by incompleteness. Given two

partially overlapping sets of axioms on the binary relation over sets we formalize their

consistency with the two types of aversion to incompleteness. Finally, we relate our

model to the classical Sen’s distinction between tentative and assertive incompleteness.

The spelling out of this distinction in the terms of our approach uncovers to what extent

aversion to incompleteness may be compatible with preference for flexibility.
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1 Introduction

Incompleteness of preferences may relate to different sources: objective or subjective, i.e. ei-

ther pointing to incomparable features among the alternatives themselves, or to an epistemic

state of decision uncertainty of the individual (for example, due to lack of information). In

the former case incompleteness is, in principle, unsolvable. In the latter case, elucidating

what the expectations of the individual about the solvability of incompleteness are turns to

be crucial in order to evaluate its welfare implications.

The interpretation and resolution of incompleteness in terms of preference for flexibility

(Kreps (1979), Arlegi and Nieto (2001a), Danan and Ziegelmeyer (2006)) and some choice-

deferral models (Gerasimou (2017)) indicate that the individual is temporally uncertain

about her best choice but expects for preferences to be resolved at a later point in time

when the final choice has to be made. In this case postponing the decision generates an

instrumental value. It may be the case, on the contrary, that incomparability is not expected

to be solved when the final choice is due. This may be because alternatives are objectively

incomparable or because, being subjectively incomparable, the individual does not expect

to elucidate incomparabilities at time. In this case, a lucid individual will not presume that

deferred choice will be useful. Even more, the individual might be psychologically averse to

such indecisiveness and to the presence in the opportunity set of incomparable alternatives.

In that case we are led to model a phenomenon that is the opposite of preference for

flexibility, and which we label as “aversion to incomplete preferences”.

In this article, we axiomatically characterize how incompleteness induces, in different

ways, an aversive attitude. The focus of our model is the potential psychological discomfort

incurred by an individual if an option creating some preference incompleteness is added to

a set. Following Sen’s terminology (Sen (1988, 1997), Pattanaik and Xu (1990)), and unlike

him, our model does not admit any intrinsic value of freedom of choice but we accept that it

has instrumental value when an option added to a set increases its indirect utility (the utility

of the best alternative in the set) and does not generate any aversion due to incompleteness.

This is therefore a different point than granting a positive value to a preference for flexibility.

The latter can be the case when the individual knows that her uncertain preference can be

solved later, but not when her preference relation is definitely incomplete. There is then no

added value by choice deferral and no preference for flexibility.

We envision two types of situations, each captured by a same basic model and supported

by partially overlapping sets of axioms. We first model an intrinsic aversion to incomplete-
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ness, corresponding to a situation in which an alternative is added to the option set and

potentially creates some incomplete preference that we assume is psychologically costly.

The presence of that alternative in the option set intrinsically worsens its value. It is a dif-

ferent point than the one discussed in Sonsino and Mandelbaum (2001) according to which

increasing a set cardinality creates a trade-off between added value due to greater flexibility

of choice and decreased value due to complexity aversion. We do not grant positive value to

flexibility of choice and complexity is aversive only with respect to incomplete preferences,

that is, when the higher cardinality of a set increases the extent of incompleteness in the

set.

In that first situation, we assume that the individual compares all the alternatives present

in her option set. Facing a pair that cannot be compared generates some psychological cost

which is not solved by choice-deferral. With respect to a second type of situation we model

an instrumental aversion to incompleteness. In that situation an incomplete preference

induced by the addition of an alternative in the option set has a psychological cost only if it

involves some undominated options. It means that induced incompleteness by enlargement

of the option set does not affect the welfare of the individual when it involves irrelevant

options.

Let us imagine a vegetarian individual presented with the menu {vegetarian meal;

chicken} and in another occasion with the menu {vegetarian meal; chicken; turkey}. We

can presume that the preference of this individual is incomplete between chicken and turkey

and that she is not interested anyway, in standard circumstances, in making comparisons

between the two fowl dishes. The incomplete preference between them does not induce

any kind of aversion as no choice will have to be borne onto them. But if the individual

is facing the addition of another vegetarian meal that she cannot compare with the one

already present, she experiences incompleteness only for the dominating part of the menu,

i.e. the options among which she is inclined to choose.1

From a methodological point of view, our approach connects with a tradition of works

where the preference for flexibility and the value of freedom of choice are studied by means

of the axiomatic characterization of set ranking rules that are “extensions” of an under-

lying binary relation of preferences over the single options (see for example Bossert et al.

(1994), Puppe (1996) or Arlegi and Nieto (2001a)). In those models agents always display

a preference for enlarged menus whereas we study the opposite phenomenon, namely, the

1In section 3 we develop a more detailed discussion about decisional contexts where either the intrinsic

or the instrumental approach are more suitable.
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possibility for the decision maker to prefer smaller sets as a consequence of the aversion to

incompleteness in preferences.

The preference for restricting one’s own opportunity set has been checked both exper-

imentally and empirically in different works (see Iyengar and Lepper (2000) and Sonsino

and Mandelbaum (2001)). Also, different theoretical models exist to explain it as a result

of different hypotheses.

Gul and Pesendorfer (2001), Dekel et al. (2007) and Sarver (2008) interpret preference

for smaller sets as a preference for commitment in the presence of regret and temptation

aversion. In these and related models, alternatives are fully specified as lotteries so that

they are perfectly comparable in expected utility terms. Then, the preference for smaller

sets comes from the fear of having chosen a wrong alternative. This is usually modeled by

making the utility of the lotteries state contingent. That is, the value of the lottery depends

on an exogenous state of nature.

As already explained, two crucial distinctive aspects of our model are, on the one hand,

that some alternatives are incomparable, and on the other hand, that incomparabilities are

not solved at the moment of the final choice. Thus, we assume that the decision maker

is endowed with a unique, well-defined but incomplete binary relation P , defined over the

single alternatives. Alternatives are abstract objects which do not need to be bestowed

with any additional structure; some alternatives are incomparable, and the individual is

averse to the presence of incomparable alternatives. This sort of aversion can itself have

different psychological sources. It could be a matter of simple “noise aversion”, or it could

be associated to the psychological connotations of the very act of choice, such as the sense

of responsibility: Very likely, in “Sophie’s choice” novel, Sophie would have preferred not

to be forced to choose which of her children deserved living, a preference that is hardly

interpretable in terms of regret or noise aversion.2 Another conceptual difference of our

approach is that, given that in our model incomparabilities prevail when the final choice

has to be made, there is no way to know whether the final choice is “right” or “wrong”.

These conceptual differences lead also to basic formal divergences with respect to regret

and temptation models. For example, in our model there is no room for a preference chain

such as {x} � {x, y} � {y} or {x} � {x, y} ∼ {y},3 which is especially plausible in regret

2In “Sophie’s choice” Styron (1979), Sophie is an Auschwitz prisoner who is obliged to choose which one

of her two children would be gassed.
3� denotes the strict preference over sets and ∼ the indifference. We define these binary relations formally

in Section 2.
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and temptation theories.4 In temptation models (e.g. Gul and Pesendorfer (2001)) a com-

mitment ranking and a temptation ranking over the alternatives coexist. The commitment

ranking represents the ranking of the alternatives when no other choice is available. The

temptation ranking represents the agent‘s desires when the final choice has to be made.

When y is tempting and the agent anticipates a self-control effort in order to choose x when

y is available, then, at the first stage of the decision process, {x} � {x, y} (the agent prefers

to avoid facing the temptation of choosing y, which is dominated by the commitment rank-

ing) and {x, y} � {y} (the individual anticipates the choice of x over y). In regret models

(e.g. Sarver (2008)) x is preferred to y in terms of expected utility, and the individual

prefers {x} to {x, y} in order to avoid the feeling of regret if x results to be ex post inferior

to y. At the same time, the individual prefers having the opportunity to choose x (set

{x, y}) rather than being forced to choose the ex ante inferior alternative y. Instead, in our

model, the incompleteness of preferences during the considered span of time does not allow

to establish any kind of (ex ante or ex post) preference between x and y. Thus, {x} � {x, y}
reveals an incomparability between x and y to which the individual is averse and, by the

symmetry of this incomparability, {y} � {x, y} as well.

Ortoleva (2013) explains the preference for smaller sets in terms of “thinking aversion”.

His proposal is also constructed on the basis of the final choice at the second stage of

the process and an anticipation of the necessary cost of thinking to discern which is the

best alternative for such final choice. As already noted, in our model incomparabilities

are unsolvable and remain unsolved at the time when the final choice has to be made.

This could be because incomparabilities are not solvable by “thinking” under any cost of

computation (for example, if the alternatives are intrinsically incomparable) or because the

agent is aware that she has not the computational capacities to solve them satisfactorily

when the final choice has to be made (for example because she knows that at the final stage

the necessary information to do so will not be available).

Similarly to Guerdjikova and Zimper (2008) and Danan et al. (2012), we consider a

model where the individual may be uncertain about her preference even at the moment

of the final choice and she is averse to indecisiveness. This idea is very close to our idea

of aversion to incomplete preferences. Danan et al. (2012) propose a rule to rank sets of

state-dependent utility lotteries which, in fact, and under the appropriate reformulation, is a

particular member of a more general family of binary relations over sets that we characterize

4This preference chain would is a possibility under the Set Betweenness axiom (Gul and Pesendorfer

(2001)): A % B implies A % A ∪B % B, which is distinctive of these models.
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in Section 4 and call “P -instrumental consistent”.

In section 2 we present our general model of aversion to incomplete preferences. An

incomplete preference relation is defined relatively to a strict indubitable relation, P . In

section 3 we define formally and discuss the two types of aversion to incompleteness which

we model, intrinsic vs. instrumental, in relation with P . In section 4.1 we present the set of

axioms that can give sense to an aversion induced by a set-enlargement potentially generat-

ing incompleteness, and characterize axiomatically the two types of aversion to incomplete

preferences. Section 4.2 discusses the results, noticing that the binary relation over sets

needs not to be transitive in order to display an aversion to incomplete preferences.

All the related works mentioned above propose alternative utility representations for

the preferences over sets and therefore specify complete rankings over them. The rules

that we characterize are, in general, incomplete and may be intransitive. In fact, we take

as natural that the trade-off between incomparabilities in the set and the quality of its

alternatives leads to intransitivities when comparing different sets. Then, it is important

to know whether we can infer transitive and/or complete rankings that are consistent with

our basic relation P on the basis of our alternative definitions. In section 4.3 we study the

formal consequences of assuming transitivity of the binary relation over sets, showing some

corollaries and examples.

Finally, we feel the need to clarify how our proposal stands with respect to the more

usual approach to incomplete preferences in terms of preference for flexibility. We substan-

tially depart from the usual notion of preference for flexibility. In most models of preference

for flexibility, either axiomatic (Kreps (1979), Puppe (1996), Nehring (1999), Pejsachowicz

and Toussaert (2017)) or in view to provide a choice-theoretical basis to elicit incomplete

preferences (Danan and Ziegelmeyer (2006)), the individual may be temporally uncertain

about her preferences and expect them to be solved at a later point. Due to this mental

state, the preservation of a larger set that contains an incomplete preference holds instru-

mental value. In our approach the introduction of incompleteness is always costly. But,

essentially, the individual is not uncertain about her, albeit incomplete, preferences and the

definite incomparability of the concerned alternatives. The notion of aversion to incom-

pleteness and of preference for flexibility being thus orthogonalized, we can think of ways

the two phenomena can be combined. We develop in section 5 a model in which the two

phenomena can coexist, in contrast with an impossibility result shown in Pejsachowicz and

Toussaert (2017). Guerdjikova and Zimper (2008) also combine the aversion to indecisive-

ness phenomenon of preferring smaller sets with the preference for flexibility effect. Their
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conception of aversion to indecisiveness is very close to our notion of intrinsic aversion to

incompleteness, but their conception of preference for flexibility is not related with the un-

certainty about the future preferences (like we assume, following Kreps (1979)), but on the

fact that at the second stage nature restricts the availability of opportunities in the sets.

At this point our model and results depart from theirs.

To conclude, Section 6 (Appendix) provides the proofs of the theorems and Corollaries

3 and 4. The proofs of Propositions 1 to 4 (independence of the axioms) are provided in

the Online Appendix.

2 Basic notation

X denotes a finite set of opportunities. π(X) denotes the set of all nonempty subsets of X.

P denotes an asymmetric binary relation defined on X interpreted as an indubitable strict

preference. Sometimes, when for a pair of alternatives x, y ∈ X, xPy we will say that x

dominates y. ⊗ is defined by: ∀x, y ∈ X, x ⊗ y if ¬(xPy) and ¬(yPx). x ⊗ y is therefore

interpreted as incomparability or absence of preference between x and y. Note that ⊗ is,

by definition, a symmetric binary relation.

We assume that the presence of incomparability in an opportunity set involves a psy-

chological cost to which the individual is averse. We investigate elicitation-like results, in

particular, we are interested in the axiomatic characterization of preference over sets that

are interpretable as if there were an underlying preference P over the alternatives with which

such preference over sets is consistent under the assumption that the individual is averse

to P -incomparability. With that purpose, % denotes a binary relation defined on π(X),

whose interpretation is that of a weak preference over sets. � and ∼ denote, respectively,

the asymmetric and symmetric factors of %. It is important to remark that the usage of the

term “preference” to refer to either P or % does not preclude that they are transitive and/or

complete binary relations. In fact, as it will be seen, they are not assumed, in general, to

satisfy transitivity or completeness.
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3 P-consistency in terms of the cost of incomplete prefer-

ences

3.1 Definitions

We present two alternative definitions of P -consistency with aversion to incomplete pref-

erences. We later discuss the conceptual differences and characterize the two notions ax-

iomatically.

Definition 1. Let P be an asymmetric binary relation defined on X. A reflexive binary re-

lation %⊆ π(X)×π(X) is P -consistent with the intrinsic aversion to incomplete preferences

(henceforth “P -intrinsic consistent”) if it satisfies the following condition:

∀A ∈ π(X),∀x ∈ X \A


A ∪ {x} � A if xPa for all a ∈ A

A � A ∪ {x} if ∃a ∈ A such that x⊗ a
A ∪ {x} ∼ A otherwise

(1)

For the next definition let us consider, for any A ∈ π(X), maxP (A) = {a ∈ A : @a′ ∈ A
such that a′Pa}:

Definition 2. Let P be an asymmetric and transitive binary relation defined on X. A

reflexive binary relation %⊆ π(X)×π(X) is P -consistent with the instrumental aversion to

incomplete preferences (henceforth “P -instrumental consistent”) if it satisfies the following

condition:

∀A ∈ π(X),∀x ∈ X \A


A ∪ {x} ∼ A if ∃a ∈ A such that aPx

A ∪ {x} � A if ∃a ∈ maxP (A) such that xPa

A � A ∪ {x} otherwise

(2)

In both cases P -consistency is defined on the basis of requirements on the elementary

question about how the addition a new opportunity, x, affects the value of a given set.

P -intrinsic consistency (Definition 1) states that x improves a set if it P -dominates all

the alternatives in the set, x worsens the set if it is incomparable with some alternative in
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the set (thus inducing some aversion to incompleteness), and finally x does not affect the

value of the set otherwise, that is, if it is related by means of P with all the alternative in

the set, but in such a way that at least one of the alternatives P -dominates x.

According to P -instrumental consistency (Definition 2), for a new alternative, x, not to

affect the set it is sufficient that there exists some alternative in the set that dominates it.

For x to worsen the set it is necessary that it is incomparable with all the alternatives in

the P -maximal subset, and not with just one alternative in the set, as it is the case of the

intrinsic approach. Finally, for x to improve the set it should dominate some alternative in

the P -maximal subset.

According to Definition 1 the individual is averse to the mere presence of incompleteness

among the alternatives in the set. According to Definition 2 incompleteness is only harmful

when affecting non dominated alternatives. To better illustrate the difference, imagine three

alternatives a,b,c such that aPb; aPc and c⊗b. Under Definition 1 we have {a, b} � {a, b, c}
even though c is dominated. Under Definition 2 we have {a, b} ∼ {a, b, c}.

There are decisional contexts where P -intrinsic consistency fits better and others where

the “instrumental” approach seems to be more appropriate. The following four factors may

be relevant as to the suitability of one or other of the approaches:

(i) Whether the final output of the choice process consists of selecting a single alternative

or ranking the elements in the sets (or a subset of them). In the former case, the instru-

mental approach makes more sense: dominated alternatives will never be chosen so that

incomparabilities among those alternatives are innocuous. In the later case (for example,

selecting and ranking a group of candidates to cover a set of positions), the outcome of the

choice process may contain dominated alternatives and therefore aversion to incompleteness

may interfere even if incomparabilities hold among dominated alternatives.

(ii) The “strength” of the value judgment attached to P . In some contexts P can be

interpreted as an absolutely indubitable preference, so that it is evident that dominated

alternatives are totally irrelevant and so are the incomparabilities among them. In other

situations P could be associated to a milder value judgment. Recall our legendary vege-

tarian. The addition of the turkey meal to the {Vegetarian meal, chicken} menu did not

involve any aversion. Imagine now that the person is not vegetarian, but is simply in the

mood of eating vegetables that day. Again she is proposed first the menu {Vegetarian meal,

chicken} and later the menu {Vegetarian meal, chicken, pork} and again she is not sure of

whether she prefers pork or chicken. She is just in the mood of a vegetarian meal but the

addition of the pork option may involve an undesired “noise” in her decision problem.
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(iii) The overall size of the decision problem and the nature of P . Under the intrinsic

approach an alternative x worsens A if, for example, xPa for all a ∈ A \ a′ and x ⊗ a′.
This might be a counterintuitive result, especially when A contains a large number of

alternatives.5 However, in situations where a few alternatives are involved in the decision

problem and the decision maker is aware that her preferences are “messy” (notice that in

the intrinsic approach P may even contain cycles) it might make sense that, in the example,

the additional load of incomparability of x is not able to overcome the confidence that may

provide the fact that x is better than a few existing alternatives.

(iv) The kind of computational abilities predicated on the agent. Under the intrinsic

approach, in order to determine the effect of adding a new alternative to a set whose

cardinality is n, the agent should be able to make the n pairwise comparisons. Under the

instrumental approach, in order to make a definite judgement about the effect of adding

any possible alternative, she should be able to identify the maximal P -subset as a previous

step. This could be considered a more sophisticated task so that, as long as it is assumed

that performing it is an issue, the intrinsic approach could be considered more suitable.

Our choice of the terms “intrinsic” and “instrumental” is not gratuitous. There are some

analogies with Sen (1988) distinction between the intrinsic and the instrumental values of

freedom of choice. His distinction, like ours, is determinant for the evaluation of opportunity

sets. According to Sen, the availability of more opportunities (freedom of choice) may have

an instrumental value, as a means to other ends. The most evident example is the indirect

utility criterion of the standard consumer’s theory, where the addition of a new opportunity

is only valuable as long as it is not dominated by another one in the set. But freedom

of choice may also have intrinsic importance, so that the mere possibility to choose is

valuable as an end of its own right. Analogously, in our case, aversion to incompleteness

may have an intrinsic nature (the mere presence of incompleteness in the opportunity set is

psychologically costly) or an instrumental one (incompleteness is irrelevant when affecting

dominated opportunities).

5We thank an anonymous referee for proposing this example to address the limits in the scope of the

intrinsic approach.
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4 Characterization results

4.1 Axiomatic characterizations

Next we present and discuss several axioms in order to explore the axiomatic structure of

the intrinsic and instrumental aversions to incompleteness.

• Revealed Indifference (RI)

∀x, y ∈ X, {x, y} � {y} ⇔ {x, y} ∼ {x}

RI states that the fact that adding x to y involves an improvement reveals that adding

y to x would make the set remain indifferent, and vice versa. RI is a simple axiom, but

crucial in our model. It is in line with the classical indirect utility criterion in the “if”

direction ({x, y} � {y} implies {x, y} ∼ {x}) but not in the reverse one. In this sense, the

axiom is implicitly assuming that there are no absolute certain indifferences: Under such

type of indifferences, if x is undoubtedly indifferent to y, it makes sense to assume that both

{x, y} ∼ {x} and {x, y} ∼ {y} hold . This is to say that our model applies to decisional

contexts where the absence of preference involves some component of dilemma. The decision

is sufficiently important, so that the individual feels pressed to make the best choice rather

than leave it random.6 Recalling Sen (1997) and his two possible interpretations of Buridan’s

ass problem, “the less interesting, but more common interpretation is that the ass was

indifferent between the two haystacks (...). The second -more interesting- interpretation is

that the ass could not rank the two haystacks and had an incomplete preference over this

pair”.7

• Simple comparability (SC)

∀x, y ∈ X, ¬({x, y} % {x}) implies {x} � {x, y}.

SC states that any twofold set is comparable with any of its nonempty subsets, that is,

the decision maker is always capable to tell whether adding an alternative to a singleton

involves an improvement, worsening, or leaves the situation indifferent.

6Schwartz et al. (2002) also distinguish between contexts where decisions are or not meaningful in order

to claim that individuals would act as either satisficers or maximizers.
7In Section 5, under the perspective of the different axiomatic characterization results, we include a

discussion about the possibility of including both interpretations of the absence of preference under a unique

model.
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• Monotonicity Consistency (MC)

∀A ∈ π(X), ∀x ∈ X \A, {x, a} � {a} ∀a ∈ A⇒ A ∪ {x} � A

MC requires that if x improves all the singletons compounding a set, then it should have

the same effect on the set itself. Therefore, it expresses some kind of separability in the

corresponding effect.

• Indifference Absorption (IA)

∀A ∈ π(X), ∀x ∈ X \ A, {x, a} % {a} ∀a ∈ A and ∃a∗ ∈ A s.t {x, a∗} ∼ {a∗}
⇒ A ∪ {x} ∼ A

IA states that, if x does not worsen any of the singletons of the set and there exists at

least one singleton {a∗} such that x does not either improve or worsen the situation when

added to it, then the addition of x to the whole set should not affect it. he intuition behind

this axiom is that the presence of a∗ absorbs the irrelevance of x even though x might be

better than other alternatives in the set.

• Cost Expansion (CE)

∀A,B ∈ π(X) such that A ⊆ B, ∀x ∈ X \B, A � A ∪ {x} implies B � B ∪ {x}

CE is coherent with the intuition that incomparability entails some kind of psychological

cost which, naturally, perdures when the set is enlarged.

The previous axioms characterize the set of binary relations over sets that are P -intrinsic

consistent for some P defined over the basic alternatives:

Theorem 4.1. Let % be a reflexive binary relation defined on π(X). There exists an

asymmetric binary relation P defined on X such that % is P -intrinsic consistent if and only

if % satisfies RI, SC, MC, IA and CE. Moreover, P is unique.

Proposition 1. Axioms RI, SC, MC, IA and CE are independent

In order to characterize the set of binary relations over sets that are P -instrumental

consistent for some P defined over the basic alternatives we now present four additional

axioms.
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• Cost Consistency (CC)

∀A ∈ π(X), ∀x ∈ X \A, {a} � {a, x} ∀a ∈ A⇒ A � A ∪ {x}

CC is the counterpart of MC in relation of the negative effect of the addition of a new

alternative. It requires that if x worsens all the singletons compounding a set, then it should

have the same effect on the set itself. Notice that CC is a weaker version of CE.

• Indifference Chain (IC)

∀x, y ∈ X, ∀A ∈ π(X) such that y /∈ A, {x, y} ∼ {x} and A ∪ {x} ∼ A imply

A ∪ {y} ∼ A

According to IC, the irrelevance of an alternative is chained in the sense that, if the

decision maker does not take into account neither y when it is added to x, nor x when it is

added to A, then it should not take into account y when it is added to A.

• Monotonicity Robustness (MR)

∀A ∈ π(X), ∀x, y ∈ X \ A, A ∪ {x} � A , A % A ∪ {y} and ¬({y} ∼ {x, y}) implies

A ∪ {x, y} � A ∪ {y}

MR imposes some kind of robustness to the fact that an alternative, x, improves a set A

in the sense that, if another alternative, y, does not improve A, and does not “absorb” the

improvement of x, then adding both alternatives is preferred to adding just the alternative

that does not improve the set.

• Cost Robustness (CR)

∀A ∈ π(X), ∀x, y ∈ X \A, A � A∪{x} and A ∼ A∪{y} implies A∪{y} � A∪{x, y}

CR states that if an alternative worsens a set and another alternative does not affect

it, then adding just the alternative that does not affect the set is preferred to adding both

alternatives.

The new axioms, together with some of the axioms used in Theorem 4.1 allow to char-

acterize P -instrumental consistency.

Theorem 4.2. Let % be a reflexive binary relation defined on π(X). There exists an

asymmetric and transitive binary relation P defined on X such that % is P -instrumental

consistent if and only if % satisfies RI, SC, CC, IC, MR and CR. Moreover, P is unique.

Proposition 2. Axioms RI, SC, CC, IC, MR and CR are independent
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4.2 Discussion

Notice that in theorems 4.1 and 4.2 nothing but reflexivity is imposed on %. That is, % might

be incomplete and/or intransitive. Completeness and transitivity are sound principles of a

significant normative and practical import in economics. There is, however, starting with

May (1954) and Tversky (1969), ample experimental and empirical evidence of the violation

of both paradigms. Menus are even more complex objects than single alternatives, which

suggests that such violations become even more plausible. Besides this general remark, in

our approach % constitutes the primitive, observable element of the model. This model tries

to explain such observed behavior (the comparison of menus) “as if” it were consistent with

a possibly incomplete underlying binary relation, P , defined over the alternatives in terms

of aversion to incompleteness. This means that it is not necessary that % is either complete

or transitive for eliciting an underlying incomplete binary relation over the alternatives

whose incompleteness provokes aversion. Nonetheless, in Subsection 4.3 we explore the

consequences of imposing transitivity on %.

Notice too that the axioms impose conditions only over pairs of sets (A,B) where B =

A ∪ {x}. By this we try to focus on elementary comparisons that allow to isolate the

phenomenon to be studied (i.e. the aversion to incompleteness of preferences) from other

factors than can introduce trade-off or cross effects.

As for the axiomatic characterizations, axioms SC and RI are common to both Theorem

4.1 and Theorem 4.2. They are core elements of the model and they are related directly to

the existence or the non-existence of a relationship between the alternatives by means of P .

In particular, in the proofs of the theorems, RI and SC allow to recover the unique binary

relation P with which % is P -intrinsic consistent (P -instrumental consistent in the case of

Theorem 4.2) by defining it as P = {(x, y) such that {x, y} � {y}}, which by RI implies

{x, y} ∼ {x}. Therefore, SC implies that the absence of this binary relation P is aversive

({x} � {x, y} and {y} � {x, y}).

Definitions 4.1 and 4.2 diverge, however, on how the addition of an alternative affects a

set which is not a singleton. This is reflected in the corresponding axioms. As the proofs

show, both characterizations are the result of the combined effect of all the axioms, but in

the next paragraphs we try to provide an intuition about how the different axioms enter

the results.

When modeling how an alternative can improve a set, Theorem 4.1 assumes axiom

MC, while Theorem 4.2 assumes MR. MC states that an alternative has to improve all the

14



singletons to improve a set and it is logically stronger than MR. MC is linked with the

definition of intrinsic consistency, which says that an alternative has to dominate all the

alternatives of a set in order to improve it. MR is linked with instrumental consistency

because Definition 4.2 states that the improvement provided by x must not be absorbed by

y, and this happens when y dominates x, which is explicitly excluded by axiom MR.

The two theorems also differ as to the axioms used to model a worsening. Theorem

4.1 uses CE, which is consistent with the idea in Definition 4.1 that it is sufficient that

x is incomparable with one alternative to worsen the set. However, CC and CR (used in

Theorem 4.2) are more demanding with respect to the conditions on x to worsen a set A, in

concordance with the conditions that Definition 4.2 imposes to worsen a set (no alternative

in A dominates x and x does not dominate any alternative in the P -maximal set of A).

Finally, there are two different axioms that refer to situations where the addition of

an alternative does not affect a set: IC and IA. IC (used in Theorem 4.2) states that

if an alternative x does not affect a set and dominates some other alternative y, then

neither y should affect the set. Notice that, in the particular case where x belongs to the

set, this axiom means that y does not affect the set whenever there is some dominating

alternative inside. IC is logically weaker than its counterpart axiom in Theorem 4.1, IA,

which considers more situations in which the addition of an alternative should not affect a

set. This is in concordance with Definitions 4.1 and 4.2. The conditions in Definition 4.1

for a new alternative to be inocuous (i.e. being comparable with every alternative in the

set but dominated by some existing alternative) are more demanding than in Definition 4.2

(i.e. the existence of some dominating alternative in the set).

Summing up, Definition 4.1 imposes more demanding conditions than Definition 4.2 to

determine that an alternative improves or does not affect a set. This is reflected by the

assumption of stronger axioms modeling these situations. However Definition 4.1 imposes

weaker conditions to determine that an alternative worsens a set, which is again reflected

in the characterization by the weaker axioms used to model this.

Another remarkable difference between the two characterizations is that, if % satisfies

the axioms in Theorem 4.2, then the underlying binary relation P has to be transitive while

this is not the case in Theorem 4.1, where P can even be cyclic.8 This fact is a reflection

of our interpretation about the cognitive abilities assumed by each definition (see point

8Notice that it is the absence of P and not P -cycles that is linked with the aversion to incomparability:

If X = {x, y, z}, xPy, yPz and zPx we have that A ∪ {x} % A for all A ∈ π(X) and for all x ∈ X \A, that

is, there is no aversion to incomparability.

15



(iv) above). Being able to identify the P -maximal subset of every set in the instrumental

approach indirectly leads to the need of P to be transitive. For the statements in Definition

1 to be possible, it is not necessary (but it is not precluded) that P be transitive. There the

agent is just supposed to perform pairwise comparisons between the additional alternative

and the existing ones, which is a less elaborated task than identifying previously the P -

maximal set. Thus, even agents whose preference over the alternatives is intransitive can

behave consistently with Definition 1, while the statements in Definition 2 are only possible

if P is transitive. In the next subsection we provide a result where the assumptions in

Theorem 4.1 are plausibly strengthened in such a way that the resulting P turns out to be

transitive.

4.3 Transitive rules

Definitions 1 and 2 only establish comparisons between pairs of sets (A,B) where B =

A ∪ {x} for some x /∈ A. As previously pointed out, such a reduced approach aims to

isolate, as accurately as possible, the content and meaning of the idea of aversion to incom-

pleteness from other “noisy” factors that arise when more dissimilar sets are compared. As

a consequence, wide classes of rules are axiomatically characterized as being P -consistent,

but at the cost of a reduced insight about how those rules should look like in general.

In this subsection we impose more structure on % in order to provide more insightful

criteria to compare sets. In particular, we analyze the consequences of assuming transitivity

of % and a minimal requirement of consistency, called Extension, which is widespread in

the ranking sets literature (see, for example, the survey by Barberà et al. (2004)). This

condition allows to compare singletons in such a way that the relative ranking between

singletons should coincide with their ranking in terms of P .

• Extension (E): ∀x, y ∈ X, xPy if and only if {x} � {y}

Assuming transitivity of %, even though it is not necessary for inferring aversion to

incompleteness, leads to the fact that the binary relation, P , with which % is P -intrinsic

consistent, is acyclic:

Corollary 1. Let % be a binary relation defined on π(X). Let P be a binary relation defined

on X such that % is P -intrinsic consistent. If % is transitive then P is acyclic.
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Proof : Assume that % is P -intrinsic consistent and transitive but P is not acyclic. This

implies that there exist x1, x2, . . . .xn such that x1Px2P . . . xnPx1. Given that % is P -

intrinsic consistent, we have by definition: {x1} % {x1, x2} % . . . % {x1, x2, . . . , xn} and

{x1, x2, . . . , xn} % {x1, . . . , xn−2, xn} % . . . % {x1, xn}. Then, by transitivity of %, {x1} %
{x1, xn}. Also by being % P -intrinsic consistent we have {x1, xn} � {x1}, reaching a

contradiction.

If, in addition to transitivity of %, E is also assumed, then P turns out to be transitive:

Corollary 2. Let % be a binary relation defined on π(X). Let P be a binary relation

defined on X such that % is P -intrinsic consistent. If % is transitive and satisfies E then

P is transitive.

Proof: By theorem 4.1 we know that if % is P -intrinsic consistent then it satisfies RI.

Assume xPy and yPz. Then, by the definition of P and RI, we have {x} ∼ {x, y} � {y} ∼
{y, z} � {z}. By transitivity we have {x} � {z}, which by E implies xPz.

Notice that, as proved in Theorem 4.2, when % is P -instrumental consistent, it is not

necessary to assume its transitivity for the arising P to be also transitive.

Assuming that % is transitive also provides more insights about its general structure.

This is shown in the next corollaries, for which an additional piece of notation is needed.

For all A ∈ π(X) let ⊗(A) = #{(x, y) : x 6= y, x, y ∈ A and x ⊗ y} (that is, ⊗(A) counts

the number of pairwise incomparabilities in A).

Corollary 3. Let % be a transitive, P -intrinsic consistent binary relation defined on π(X).

Then, ∀A,B ∈ π(X) such that A ⊂ B the following conditions hold:

(i) [⊗(A) = ⊗(B) and ∃b ∈ B \A such that bPa for all a ∈ A] implies B � A

(ii) [∀b ∈ B \A there exists a ∈ A such that a⊗ b)] implies A � B

(iii) [maxP (A) = maxP (B) and ⊗(A) = ⊗(B)] implies A ∼ B.

Moreover, P is acyclic and if % satisfies E then P is transitive.

Corollary 4. Let % be a transitive, P -instrumental consistent binary relation defined on

π(X). Then, ∀A,B ∈ π(X) such that A ⊂ B the following conditions hold:

(i) [# maxP (B \A) = 1 and maxP (B \A)Pa for some a ∈ maxP (A)] implies B � A

(ii) [a⊗ b ∀b ∈ maxP (B \A) ∀a ∈ maxP (A)] implies A � B

(iii) [maxP (A) = maxP (B)] implies A ∼ B.

Moreover P is transitive.
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The proofs of Corollaries 3 and 4 are presented in the Appendix. In words, Corollary 3

states that any transitive P -instrinsic rule should satisfy that, when adding new alternatives

to a set (i) if at least one of them dominates all the existing ones and none of them involves

additional incomparabilities, then the enlarged set is better; (ii) if all the additional ones are

incomparable with at least one existing alternative, then the enlarged set is worse; and (iii) if

the new alternatives do not contribute to the maximal set and do not incorporate additional

incomparabilities, then the enlarged set is indifferent. Analogously, Corollary 4 states that

any transitive P -instrumental rule should satisfy that, when adding new alternatives to a

set (i) if the set of new alternatives are not pairwise incomparable and at least one is better

than an existing maximal one, then the enlarged set is better; (ii) if the maximal set of the

new alternatives are all incomparable with all the alternatives in the existing maximal set,

then the enlarged set is worse; and (iii) if all the new alternatives are dominated by some

existing one, then the enlarged set is indifferent.

Next we show, for illustrative purposes, some examples of P -consistent rules that are in

the domain of Corollaries 3 and 4 respectively.

Let <1 be defined by:

∀A,B ∈ π(X)


A � B if ⊗ (A) < ⊗(B) or

⊗(A) = ⊗(B) and ∃a ∈ maxP (A), s.t aPb ∀b ∈ maxP (B)

A ∼ B if maxP (A) = maxP (B) and ⊗ (A) = ⊗(B)

(3)

Let <2 be defined by:

∀A,B ∈ π(X)


A � B if ⊗maxP (A) < ⊗maxP (B) or

⊗(maxP (A)) = ⊗(maxP (B)) and ∃a ∈ maxP (A), s.t aPb for some b ∈ maxP (B) and

@b ∈ B s.t bPa for some a ∈ maxP (A)

A ∼ B if maxP (A) = maxP (B)

(4)

<1 and <2 are both lexicographic rules. They first minimize the number of incom-

parabilities either in the P -maximal set (<2) or in the whole set (<1). If the number of

incomparabilities is equal, then they look at the alternatives contained in the P -maximal
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subset. According to %1 a set A is preferred to another B if maxP (A) contains an alter-

native that is preferred to all the alternatives in maxP (B). According to %2 there must be

an alternative in maxP (A) that is preferred to some other alternative in maxP (B) and the

reverse is not true. If both P -maximal subsets are equal, the two sets are indifferent under

the two rules. Otherwise they are not comparable.

The next examples, besides being transitive rules, are also complete:

Let the anti-cardinalist ranking <#⊆ π(X) × π(X) be defined by: ∀A,B ∈ π(X),

A <# B if and only if #A ≤ #B.

Let R be a complete preorder defined on X and let the indirect utility criterion <IU⊆
π(X) × π(X) be defined by: ∀A,B ∈ π(X), A <IU B if and only if, for all a ∈ maxR(A),

b ∈ maxR(B), aRb.

The anticardinalist ranking considers that a set is better than another when it contains

less alternatives and two sets are indifferent when they have the same number of alternatives.

<IU is the classical criterion of the consumer theory, which evaluates sets exclusively by

means of their best alternatives.

It can be easily checked that <# is both P -intrinsic and P -instrumental consitent under

P = ∅ and that <IU is both, P -intrinsic and P -instrumental consitent when P is a linear

order.

5 Aversion to incompleteness and compatibility with prefer-

ence for flexibility

The preference for flexibility and the economic value of freedom of choice are important

concepts that have also been discussed by means of the axiomatic analysis of rankings over

opportunity sets. The ideas of intrinsic and instrumental value of freedom of choice have

already been roughly explained in Section 4.1. At an elementary formal level, the difference

between them is that, according to the intrinsic value of freedom of choice, even if ¬(xPy),

{x, y} � {x} and {x, y} � {y}, while according to the instrumental value of freedom of

choice, ¬(xPy) implies ¬({x, y} � {x}).

Preference for flexibility arises in two-stage decision processes where the individual has,

at the first stage, uncertainty about her future preferences and therefore displays a prefer-

ence for preserving more options (choosing larger opportunity sets) as a means to be able
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to choose a better final alternative in the second stage when uncertainty is expected to be

dissipated (see Kreps (1979), Nehring (1999) or Arlegi and Nieto (2001a)).

From a conceptual point of view, preference for flexibility can be understood as a par-

ticular form of the instrumental value of freedom of choice in an uncertainty scenario:

preserving an option x in the opportunity set at stage 1 is only valuable as long as there

is some future state of nature where x is the best alternative. A formal consequence of

preference for flexibility is that, if P is interpreted as an indubitable preference, even if

¬(xPy), it could be the case that {x, y} � {y}, as it was the case in the intrinsic approach

to the value of freedom of choice.9

In this section we discuss the relationship of our approach with the freedom of choice

and preference for flexibility ideas.

Our two definitions (instrumental and intrinsic) of aversion to incompleteness absolutely

disregard the hypothesis of an intrinsic value of freedom of choice. In our model, the mere

availability of more alternatives has never an intrinsic value. In Definitions 1 and 2, having

more options can only have an instrumental value: Having more alternatives when a better

option has been added to a set involves an improvement only because the new alternative

allows for the set to provide a higher indirect utility. In terms of the elementary comparisons

noted above, under Definitions 1 and 2, ¬(xPy) implies ¬({x, y} � {y}), in opposition to

the models of intrinsic value of freedom of choice.

As to the compatibility of our approach with the preference for flexibility assumption,

from a formal point of view, aversion to incompleteness and preference for flexibility pro-

duce opposite results: if ¬(xPy) and ¬(yPx), under the preference for flexibility approach,

{x, y} � {x} and {x, y} � {y}, while in our aversion to incompleteness approach what

happens is just the opposite, that is, {x} � {x, y} and {y} � {x, y}.

Does this mean that aversion to incompleteness and preference for flexibility are in-

compatible phenomena? Our view is that they are compatible. The key idea is that the

absence of a preference has a different meaning in the preference for flexibility approach and

in the aversion to incompleteness one. We show that it is possible to subsume in a unique

model both ideas by an appropriate formalization of the absence of preference by means of

two distinct binary relations of incomparability, following the distinction between tentative

incompleteness and assertive incompleteness posed by (Sen, 1997, pp. 763-764) :

9In fact, Arlegi and Nieto (2001a,b) show that rankings of opportunity sets that are proposed in the

literature as displaying the intrinsic value of freedom of choice can plausibly be re-interpreted as the result

of preference for flexibility.
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“It is useful to consider the distinction between: tentative incompleteness, when some

pairs of alternatives are not yet ranked (though they may all get ranked with more delib-

eration or information), and assertive incompleteness, when some pair of alternatives is

asserted to be ”non-rankable.” Assertive incompleteness is the claim that the failure of com-

pleteness is not provisional - waiting to be resolved with, say, more information, or more

penetrating examination. The partial ranking, or the inexhaustive partitioning, may simply

not be “completable”, and affirming that some x may not be rankable vis-a-vis some y may

be the right answer in these cases.”

We formally describe Sen’s difference between tentative and assertive incompleteness

by means of two different binary relations, ⊗1,⊗2 ∈ X2 such that, ∀x, y ∈ X, x ⊗1 y is

interpreted as an incomparability between x and y with the expectation that at a later stage

incomparability will be solved (tentative incompleteness), and x ⊗2 y is interpreted as an

incomparability between x and y without such an expectation (assertive incompleteness).

The binary relation P ∈ X2 maintains the interpretation of an indubitable preference used

throughout the previous sections.

Given the meaning attached to P , ⊗1 and ⊗2, we assume that P is asymmetric, ⊗1 and

⊗2 are symmetric, ⊗1 ∩ ⊗2 = ∅ and P = X2 \ {⊗1 ∪ ⊗2}. When P , ⊗1 and ⊗2 satisfy

such conditions we say that “(P,⊗1,⊗2) is a preference with a structured incompleteness”.

By this we mean that the absence of preference has the particular structure given by the

properties that we have assumed on P , ⊗1 and ⊗2. In some cases we will assume that P is,

in addition, transitive. In that case we will say that “(P,⊗1,⊗2) is a transitive preference

with a structured incompleteness”.

What we explore next is, like in the preference for flexibility models, how the preference

for sets should be at stage 1 considering that: the individual (i) has a preference to preserve

alternatives that might be optimal at stage 2, when the final single choice has to be made

(preference for flexibility) and (ii) is able to anticipate the aversion to incomparability that

she would face at stage 2 if alternatives are assertively incomplete.

According to the interpretation of P , ⊗1 and ⊗2, the following are the different possi-

bilities regarding elementary comparisons of {x, y} with {x} and with {y}:

If xPy then {x, y} ∼ {x}, {x, y} � {y} and {x} � {y}: y does not add any value to x

but x adds value to y.

If x ⊗1 y then {x, y} � {x} and {x, y} � {y}: the decision maker does not expect to

experience a psychological cost when the final choice has to be made and the availability of

both options provides flexibility.
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If x⊗2y then {x} � {x, y} and {y} � {x, y}: the decision maker anticipates the aversion

to have both alternatives. Flexibility has not any value in this case. Flexibility is valuable

as long as it is a means to choose a better option at the second stage of the decision process

once uncertainty is dissipated, but in this case there is no expectation of having a best

option at that stage.

When more general comparisons of the type A ∪ {x} versus A are in order (like in the

previous sections), then the addition of x to A may involve conflicting effects, for example, if

there are alternatives in A with which x is related by means of ⊗1 but also other alternatives

with which x is related by means of ⊗2.

Basically, the distinction between the two types of incomparabilities is what allows us

to depart from the impossibility result in Pejsachowicz and Toussaert (2017), where inde-

cisiveness in the preferences is shown to be incompatible with the preference for smaller

menus.10 Leaving aside some nonessential formal differences between the two approaches, a

key reason for the impossibility to hold is the assumption that incomparability will eventu-

ally dissipate if more options are preserved. What we show is that when broader scenarios

for incompleteness are considered, then both preference for flexibility and preference for

smaller menus, are compatible.

Thus, the aim of the following results is to show formally this compatibility, either under

the intrinsic or instrumental interpretation of the aversion to incompleteness. We provide

axiomatic characterizations on the basis of the axioms presented in Section 3. Given that the

absence of P may hold in two ways (either by means of ⊗1 or by means of ⊗2), the notion

of P -consistency in this, more complex, framework needs to be re-stated as (P,⊗1,⊗2)-

consistency.

Definition 3. Let (P,⊗1,⊗2) be a preference with a structured incompleteness. A reflexive

binary relation %⊆ π(X) × π(X) is (P,⊗1,⊗2)-consistent with the intrinsic aversion to

incomplete preferences and the preference for flexibility, henceforth (P,⊗1,⊗2)-intrinsic

consistent, if it satisfies the following condition:

10Indecisiveness in Pejsachowicz and Toussaert (2017) is understood as incompleteness of the preferences

over sets, but this can be naturally translated to our context in the particular case where those sets are

singletons.
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∀A ∈ π(X),∀x ∈ X \A


A ∪ {x} � A if for all a ∈ A, either a⊗1 x or xPa

A � A ∪ {x} if ∃a ∈ A such that a⊗2 x

A ∪ {x} ∼ A if @a ∈ A such that a⊗2 x and ∃a ∈ A such that aPx

(5)

Definition 4. Let (P,⊗1,⊗2) a transitive preference with a structured incompleteness. A

reflexive binary relation %⊆ π(X) × π(X) is (P,⊗1,⊗2)-consistent with the instrumental

aversion to incomplete preferences and the preference for flexibility, henceforth, (P,⊗1,⊗2)-

instrumental consistent, if it satisfies the following condition:

∀A ∈ π(X),∀x ∈ X \A


A ∪ {x} � A if [∃a ∈ maxP (A) s.t xPa or x⊗1 a]; [@a ∈ maxp(A) s.t aPx]

and [∀a∗ ∈ maxP (A) s.t a∗ ⊗2 x@a ∈ maxP (A) s.t a⊗1 a
∗]

A � A ∪ {x} if x⊗2 a for all a ∈ maxP (A)

A ∪ {x} ∼ A if ∃a ∈ A such that aPx

(6)

It is easy to check that, when ⊗1 is empty, Definition 3 coincides with Definition 1

(P -intrinsic consistency) and Definition 4 coincides with Definition 2 (P -instrumental con-

sistency). Also, when ⊗2 is empty, both Definitions 3 and 4, coincide with the definition of

P -consistency with the preference for flexibility in Arlegi and Nieto (2001a).11

As already pointed, any rule that tries to make compatible the preference for flexibility

and the aversion to incompleteness ideas should necessarily solve, in some way, a trade-off

between them. Obviously this issue might be solved in different ways, but given that there

could be cross effects between ⊗1 and ⊗2, it is not immediate that every solution is able to

solve the trade-offs in a consistent way. The two rules above do it as follows:

The rule defined in Definition 3 treats asymmetrically the two phenomena. For a new

alternative, x, to improve a given set it is necessary that, for every alternative a in A, either

x dominates a or provides flexibility to a. But for x to worsen A it is sufficient that there

11However, form a formal point of view, preference for flexibility in our model involves less structure than

in Kreps (1979), since it just applies to particular comparisons of pairs (A,B) such that B = A ∪ {x} for

some x /∈ A.
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exists at least at least one alternative in A with which it is assertively incomparable (it

involves a pairwise aversion to incomparability).

The rule defined in Definition 4 is different in several aspects. First, it focusses on the

effect of the addition of x on the set of P -maximal alternatives. Also, in order to declare that

x worsens A it is necessary that it is assertively incomparable with all the alternatives in

maxP (A). Finally, in order to declare that x improves A, three conditions should hold: first,

either x is preferred to some alternative in maxP (A), or adds flexibility to some alternative

in maxP (A); secondly, no other alternative in A should be better than x, and thirdly, if x

involves some incomparability aversion with respect to some alternative in a∗ ∈ maxP (A),

a∗ should not add pairwise flexibility to any other alternative in a∗ ∈ maxP (A), that is, the

addition of x should not “cancel” the flexibility that a∗ provides with respect to some other

alternative in maxP (A).

For the axiomatic characterization of the two rules of Definitions 3 and 4 we will use

the following weaker version of axiom RI:

• Weak Revealed Indifference (WRI)

∀x, y ∈ X, {x, y} ∼ {y} ⇒ {x, y} � {x} and {x, y} � {y} ⇒ {x, y} % {x}

Theorem 5.1. Let % be a binary relation defined on π(X). There exists a preference with

a structured incompleteness (P,⊗1,⊗2) such that % is (P,⊗1,⊗2)-intrinsic consistent if and

only if % satisfies WRI, SC, IA, MC and CE.

Theorem 5.2. Let % be a reflexive binary relation defined on π(X). If % satisfies WRI,

SC, CC, IC, MR, MC and CR then there exists a transitive preference with a structured

incompleteness (P,⊗1,⊗2) such that % is (P,⊗1,⊗2)-instrumental consistent.

Theorem 5.3. Let % be a reflexive binary relation defined on π(X). If there exists a

transitive preference with a structured incompleteness (P,⊗1,⊗2) such that % is (P,⊗1,⊗2)-

instrumental consistent then % satisfies WRI, SC, CC, IC, and MC.

Proposition 3. Axioms WRI, SC, IA, MC and CE are independent.

Proposition 4. Axioms WRI, SC, CC, IC, MR, MC and CR are independent.

Like Definitions 1 and 2, Definition 3 is exhaustive in the sense that, for all A ∈ π(X),

for all x /∈ A, it determines how to rank A and A∪{x}. However, according to Definition 4

there are situations where there are cross effects, so that the rule does not compare A and
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A ∪ {x}. In particular, this is the case exactly when: (i) there does not exist z ∈ A such

that zPx and (ii) there exist a, a∗ ∈ maxP (A) such that either xPa or x⊗1 a; x⊗2 a
∗; and

a ⊗1 a
∗. This is the reason for not obtaining a characterization theorem for Definition 4:

the ambiguity in some situations does not allow to guarantee that MR and CR are fulfilled.

When comparing the axiomatic characterization of Theorem 4.1 (P -intrinsic consis-

tency) with that of Theorem 5.1 (incorporating the preference for flexibility idea), the only

difference is the weakening of RI into WRI. Similarly, when comparing Theorem 4.2 and

5.2 we find that RI is weakened into WRI both as a necessary and a sufficient axiom (The-

orems 5.2 and 5.3). That is, in both cases, the (apparently) slight weakening of RI into

WRI is what gives rise to the possibility of flexibility to be valuable. Particularly, RI was

inferring xPy from either {x, y} � {y}, {x, y} ∼ {x} or both. However, WRI only infers

xPy if {x, y} ∼ {x}. The reason is that, under the preference for flexibility assumption, the

absence of preference may lead to {x, y} � {x}.

This gives an idea of the relevance of RI-like axioms. They look simple and are el-

ementary but encapsulate the admissibility of different interpretations for the absence of

preference. RI leads to the unique interpretation of the absence of preference as costly

incomparability. WRI gives rise to the interpretation of the absence of preference as “valu-

able” incomparability (in terms of flexibility). There is a third interpretation for the absence

of preference that has not appeared in the precedent sections: that of an indubitable (or

absolutely certain) indifference. In fact it is possible to design an alternative weakening of

RI that gives rise to such interpretation. Let us consider the following axiom:

• Weak Revealed Indifference 2 (WRI2)

∀x, y ∈ X, {x, y} ∼ {y} ⇒ {x, y} % {x} and {x, y} � {y} ⇒ {x, y} ∼ {x}

Note that WRI2 is satisfied by the standard indirect utility criterion. In particular, when

{x, y} ∼ {y}WRI2 admits that {x, y} ∼ {x}, which would correspond to the situation where

both x and y are indifferent with absolute certainty.12

Given that RI is the intersection of WRI and WRI2, for a model to comprehend the

three interpretations of the absence of preference we would need an axiom consisting of the

union of WRI and WRI2, that is:

12The details go beyond the reasonable length of this work but, in principle, it would be possible to obtain

characterization results analogous to Theorems 5.1 and 5.2 making compatible costly incomparabilities with

the possibility of absolutely certain indifferences.
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• ∀x, y ∈ X, {x, y} % {y} ⇒ {x, y} % {x}

In sum, the part of RI stating that {x, y} � {y} implies {x, y} ∼ {x} rules out the

possibility of interpreting the absence of preference as a “valuable” incomparability. The

inverse part of RI stating that {x, y} ∼ {x} implies {x, y} � {y} rules out the possibility of

interpreting the absence of preference as an absolutely certain indifference. A question nat-

urally arises: What would ruling out the possibility of interpreting the absence of preference

as a costly incomparability amount to? The answer is not in any RI-like axiom. Models of

preference of flexibility, or freedom of choice, as well as the indirect utility criterion respects

a basic monotonicity condition which is not satisfied by our model of incompleteness:

• {x, y} % {x} ∀x, y ∈ X13

This condition, in the case of the models of the intrinsic value of freedom of choice takes

the stronger form {x, y} � {x} ∀x, y ∈ X (Pattanaik and Xu (1990) “simple monotonicity’s”

axiom).14

6 Conclusions

We developed an analysis of aversion to incomplete preferences by means of the axiomatic

characterization of two different rules that encapsulate two different ways of conceiving

incompleteness (Theorems 4.1 and 4.2). The very general idea is that the addition of a

better alternative to a set improves it, the addition of a worse alternative does not affect

the set, and the addition of an alternative that involves some incomparability worsens the

set. However we distinguish two types of consistency: P -intrinsic consistency arises when

incomparability affects any alternative of the set and P -instrumental consistent arises when

incomparability affects alternatives in the P -maximal subset.

The two proposed rules determine comparisons among a reduced class of pairs of sets

and allow for any extension of them to be intransitive and/or incomplete. The additional

13In Kreps (1979) model of preference for flexibility this condition takes the more general form A ⊆ B

implies B % A.
14Eliaz and Ok (2006) also distinguish between an indifference and an indecisiveness binary relation,

proposing a rationalizability of both by means of a weaker version of the weak axiom of revealed preference.

Our approach is related to theirs as long as we distinguish different ways in which the absence of preference

may hold and claim the relevance of the distinction, but we do not obtain it as an induction from a choice

function but as an elicitation from preferences over elementary sets of the type {x, y} versus {x}.
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assumption of transitivity on the binary relation over the sets allows to gain some insight

about the general structure of the rule and guarantees that the binary relation P with

which it is consistent is also transitive. Moreover we show that that complete and transitive

rankings of opportunity sets can also be P -consistent in any of the two senses.

Finally, we discuss the compatibility of the aversion to incompleteness and the preference

for flexibility phenomena. In principle they act in opposite directions, but we show that

they are compatible if we adequately distinguish between different types of incomparability,

recalling Sen (1997) distinction between assertive and tentative incompleteness. We propose

a model that integrates both types of incomparability and we characterize axiomatically two

rules that are P -consistent with both the aversion to incompleteness and compatible with

the preference for flexibility idea (Theorems 5.1 and 5.2). The axiomatic characterizations

reveal that axiom RI, though being rather elementary, is playing an important role in

relation with the admissibility of different interpretations of the absence of preference. In

particular, we show how alternative weakenings of RI may give rise to the admissibility

of the interpretation of the absence of preference as valuable incomparability (in terms of

preference for flexibility) and/or as a standard indifference relation.

7 Appendix

7.1 Proof of Theorem 4.1

In order to prove the sufficient part of the Theorem we have to prove that if % is P -intrinsic

consistent with some asymmetric binary relation P then % satisfies RI, SC, MC, IA and

CE.

• RI: {x, y} � {y} implies, by the definition of P -intrinsic consistency, that xPy, which

again by the definition of P -intrinsic consistency implies {x, y} ∼ {y}, and vice versa.

• SC: By the definitions of P and ⊗, given any pair x, y ∈ X either xPy, yPx or x⊗ y.

By Definition 1, if xPy then {x, y} ∼ {x}; if yPx then {x, y} � {x}; and if x⊗ y then

{x} � {x, y}.

• MC: Let A ∈ π(X) and let x ∈ X \ A. Assume that {x, a} � {a} for all a ∈ A. This

implies, by Definition 1, that xPa for all a ∈ A, which by the same definition implies

A ∪ {x} � A.
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• IA: Let A ∈ π(X) and let x ∈ X \A. Assume that {a, x} % {a} ∀a ∈ A. Thus, @a ∈ A
such that {a} � {a, x}, which by Definition 1 implies (i): @a ∈ A s.t a ⊗ x. Assume

that, in addition, ∃a∗ ∈ A such that {a∗, x} ∼ {a∗}. This, by Definition 1, implies

(ii): a∗Px. Given that (i) and (ii) hold, by Definition 1, A ∪ {x} ∼ A.

• CE: Assume that A � A ∪ {x}. By Definition 1 this implies that there exists a ∈ A
such that x⊗ a. Therefore, if A ⊆ B then there exists b ∈ B,(b = a) such that x⊗ b,
which by Definition 1 implies B � B ∪ {x}.

In order to prove the necessary part of the theorem, assume that a binary relation %

satisfies all the axioms of Theorem 4.1. Then there exists an asymmetric binary relation P

defined on X with which % is P -intrinsic consistent.

We will show that, in particular, % is consistent with the relation P defined by: P =

{(x, y) such that {x, y} � {y}}.

First, we have to prove that P is asymmetric: Assume xPy, then by the definition of

P , {x, y} � {y}. Assume that P is not asymmetric and therefore yPx. Then {x, y} � {x},
but this is in contradiction with RI.

Now, take A ⊆ π(X) and x ∈ X \A:

(i) Assume that xPa for all a ∈ A. This, by the definition of P , implies {a, x} � {a}
∀a ∈ A, which by MC implies A ∪ {x} � A.

(ii) Assume, now, that there exists a in A such that x⊗a. Then, by the definition of⊗, we

know that ¬(aPx) and ¬(xPa). Given that ¬(aPx), by the definition of P , ¬({ax} � {x}),
which by RI implies ¬({ax} ∼ {a}). On the other hand, given that ¬(xPa), again by the

definition of P , ¬({ax} � {a}). By SC, given that ¬({ax} ∼ {a}) and ¬({ax} � {a}), we

have that {a} � {ax}. Since {a} ⊆ A, by CE, A � A ∪ {x}.

(iii) Assume that none of the two assumptions in (i) and (ii) hold. Therefore, for all

a ∈ A, either aPx or xPa and ∃a∗ ∈ A such that a∗Px. By the definition of P we have

that {a∗, x} � {x} and by RI {a∗, x} ∼ {a∗}. Also, for all a ∈ A either aPx, which as we

have shown implies {a, x} ∼ {a}, or xPa which by the definition of P implies {a, x} � {a}.
Therefore, ∀a ∈ A {a, x} % {a}. Given that {a∗, x} ∼ {a∗} and ∀a ∈ A {a, x} % {a}, by IA

we have A ∪ {x} ∼ A.

To prove that the binary relation P with which % is P -consistent is unique, assume that

there exists another binary relation P ′ 6= P with which % is P ′-consistent. P 6= P ′ implies

that there exist x, y ∈ X such that xP ′y and ¬({x, y} � {y}). In this case, by the definition

of P ′-intrinsic consistency we have that xP ′y implies {x, y} � {y} reaching a contradiction.

28



7.2 Proof of Theorem 4.2

In order to prove the sufficient part of the Theorem we have to prove that if a reflexive

binary relation % is consistent with some asymmetric and transitive binary relation P then

% satisfies RI, SC, CC, IC, MR and CR.

• RI: {x, y} � {y} implies, by Definition 2, that xPy, which again by the same definition

implies {x, y} ∼ {y}, and vice versa.

• SC: By the definition of binary relations P and ⊗, given any pair x, y ∈ X, either xPy,

yPx or x ⊗ y. By Definition 2, if xPy then {x, y} ∼ {x}; if yPx then {x, y} � {x};
and if x⊗ y, then {x} � {x, y}.

• CC: By Definition 2 {a} � {a, x} implies ¬(aPx) and ¬(xPa). Therefore, if {a} �
{a, x} ∀a ∈ A this means that @a ∈ A s.t aPx or xPa, which again by Definition 2

implies A � A ∪ {x}.

• IC: Let x, y ∈ X and A ∈ π(X) such that y /∈ A, {x, y} ∼ {x} and A ∪ {x} ∼ A. By

Definition 2, {x, y} ∼ {x} implies xPy. If x ∈ A, then, ∃a ∈ A (a = x) such that aPy,

and by Definition 2 A∪ {y} ∼ A. If x /∈ A then, by Definition 2, A∪ {x} ∼ A implies

∃a ∈ A such that aPx and, by transitivity of P , aPy. Therefore, by Definition 2,

A ∪ {y} ∼ A.

• MR: Let A ∈ π(X) and x, y ∈ X \ A such that ¬({y} ∼ {x, y}). By Definition 2

A ∪ {x} � A implies xPa for some a ∈ maxP (A). Also by Definition 2 A % A ∪ {y}
implies that, for all a ∈ maxP (A), ¬(yPa). Therefore maxP (A) ⊆ maxP (A ∪ {y}).
This implies that xPa for some a ∈ maxP (A ∪ {y}), which by Definition 2 implies

A ∪ {x, y} � A ∪ {y}.

• CR: Let A ∈ π(X) and x, y ∈ X \ A. By Definition 2 A � A ∪ {x} implies x ⊗ a for

all a ∈ maxP (A). On the other hand, also by Definition 2, A ∪ {y} ∼ A implies aPy

for some a ∈ A. Therefore, given that P is transitive, maxP (A ∪ {y}) = maxP (A),

which implies x ⊗ a for all a ∈ maxP (A ∪ {y}), and by Definition 2 this implies

A ∪ {y} � A ∪ {x, y}.

In order to prove the necessary part of the theorem we have to prove that, if a reflexive

binary relation % satisfies all the axioms in Theorem 4.2, then there exists an asymmetric

and transitive binary relation P defined on X with which % is P -instrumental consistent.
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We will show that, in particular, % is P -consistent with the relation P defined by:

P = {(x, y) such that {x, y} � {y}}. For that purpose:

First, we have to show that P is asymmetric and transitive. Assume xPy, then, by the

definition of P , {x, y} � {y}. Assume that P is not asymmetric and therefore yPx. Then

{x, y} � {x}, but this is in contradiction with RI.

Now we prove the transitivity of P : Take a, b, c ∈ X such that aPb and bPc. By the

definition of P this implies {a, b} ∼ {a} and {b, c} ∼ {b}. By applying IC (with a in the

role of A; b in the role of x and c in the role of y), we have {a, c} ∼ {a}, this by RI implies

{a, c} � {c}, which by the definition of P implies aPc.

Now, take A ⊆ π(X) and x ∈ X \A:

(i) Let us assume that xPa for some a ∈ maxP (A):

Step 1. We claim that ∀Â ⊂ maxP (A), ∀a∗ ∈ maxP (A) \ Â, Â � Â ∪ {a∗}. Let a∗ ∈ Â.

Given that â, a∗ ∈ maxP (A) we know that â ⊗ a∗. This, by the definition of P , implies

¬({â, a∗} � {â}) and also ¬({â, a∗} � {a∗}), which by RI implies ¬({â, a∗} ∼ {â}). Thus

we have that ¬({â, a∗} % {â}), which by SC implies {â} � {â, a∗}. Therefore, by CC,

Â � Â ∪ {a∗}.

Step 2. Let maxP (A) = {a∗1, . . . , a∗n}. Given that xPa for some a ∈ maxP (A) there

exists a∗i ∈ maxP (A) such that xPa∗i . Assume, without loss of generality, that a∗i = a∗1. By

the definition of P {x, a∗1} � {a∗1}.

Step 3. We claim that @a ∈ A s.t {a} ∼ {x, a}. Given that xPa∗ for some a∗ ∈ maxP (A)

and given that P is transitive, if there exists some a ∈ A s.t aPx, then aPa∗ and therefore

a∗ /∈ maxP (A), reaching a contradiction. Therefore, @a ∈ A s.t aPx, which by the definition

of P and RI implies that @a ∈ A s.t {a} ∼ {x, a}.

Step 4. Now we claim that maxP (A) ∪ {x} � maxP (A). If # maxP (A) = 1, then the

claim is proved. If maxP (A) = {a∗1, a∗2} then, given that a∗1 ⊗ a∗2, as we have shown in

Step 1, {a∗1} � {a∗1, a∗2}. By Step 2 {a∗1, x} � {a∗1} and by Step 3 ¬{a∗2} ∼ {a∗2, x}. Thus

we can apply MR to obtain {a∗1, a∗2, x} � {a∗1, a∗2}. If ]maxP (A) = 2 Step 4 is proved, if

not, By Step 1 {a∗1, a∗2} � {a∗1, a∗2, a∗3} and by Step 3, ¬{a∗3} ∼ {a∗3, x}, therefore, by MR,

{a∗1, a∗2, a∗3, x} � {a∗1, a∗2, a∗3}. By repeating the same reasoning until exhausting maxP (A)

we reach maxP (A) ∪ {x} � maxP (A).

Step 5. We claim that, ∀A′ ⊆ A s.t maxP (A) ⊆ (A′) ∀ai ∈ A\maxP (A), A′ ∼ A′∪{ai}.
If ai ∈ A′ then, by reflexivity, A′ ∼ A′ ∪ {ai}. If ai /∈ A′ we know that, for all ai ∈
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A \maxP (A) there exists a∗j ∈ maxP (A) such that a∗jPai. Thus, by the definition of P and

RI, {a∗j , ai} ∼ {a∗j}. Since maxP (A) ⊆ (A′) we know by reflexivity that A′ ∼ A′ ∪ {a∗j}.
Therefore, by IC, A′ ∼ A′ ∪ {ai}.

Step 6. Now, let A \ maxP (A) = {a1, . . . , am}. We know by Step 5 that maxP (A) ∪
{a1} ∼ maxP (A). By Step 4 we have that maxP (A) ∪ {x} � maxP (A) and by Step 3

¬{a∗1} ∼ {a∗1, x}. MR can be applied to obtain maxP (A) ∪ {a1, x} � maxP (A) ∪ {a1}. If

#(A \ maxP (A)) = 1 the proof is completed. If #(A \ maxP (A)) = 2 take a2. We have

maxP (A) ∪ {a1, x} � maxP (A) ∪ {a1}. By Step 3 we have ¬{a∗2} ∼ {a∗2, x} and, given that

maxP (A)∪{a1} ⊂ maxP (A), we also have that maxP (A)∪{a1, a2} ∼ maxP (A)∪{a1}. Again

by MR we obtain maxP (A) ∪ {a1, a2} ∪ {x} � maxP (A) ∪ {a1, a2}, completing the proof.

If #(A \maxP (A)) > 2, by repeating the same reasoning until exhausting A \maxP (A) we

reach A ∪ {x} � A as desired.

(ii) Now, assume that aPx for some a ∈ A. By the definition of P {a, x} � {x}. By RI

{a, x} ∼ {a}. By reflexivity of % we have A ∪ {a} ∼ A and, given that {a, x} ∼ {a}, by IC

A ∪ {x} ∼ A.

(iii) Now, assume that assumptions (i) and (ii) do not hold, that is, x ⊗ a∗ for all

a∗ ∈ maxP (A). Then, for all a∗ ∈ maxP (A), by the definition of P we have that ¬({x, a∗} �
{a∗}). We also have that ¬({x, a∗} � {x}), which by RI implies ¬({x, a∗} ∼ {a∗}). Thus,

by SC, {a∗} � {x, a∗} for all a∗ ∈ maxP (A). Therefore, by CC, maxP (A) � maxP (A)∪{x}.

Now, we know that, for all a ∈ A \ maxP (A), there exists a∗ ∈ maxP (A) such that

a∗Pa and, by the definition of P and RI, {a∗, a} ∼ {a∗}. We can apply the claim of Step

5 in part (i) of the proof to obtain maxP (A) ∪ {a} ∼ maxP (A) and ∀A′ ∈ π(X) such that

maxP (A) ⊆ A′ ⊂ A, ∀ai ∈ A \A′, A′ ∪ {ai} ∼ A′.

Thus, let A \ maxP (A) = {a1, . . . , am}. We have already proved that maxP (A) �
maxP (A) ∪ {x} and we also have that maxP (A) ∼ maxP (A) ∪ {a1}. By CR this implies

maxP (A) ∪ {a1} � maxP (A) ∪ {a1} ∪ {x}. If #(A \maxP (A)) = 1 then the proof is done.

If #(A \ maxP (A)) = 2 we have that maxP (A) ∪ {a1} � maxP (A) ∪ {a1} ∪ {x} and that

maxP (A) ∪ {a1} ∼ maxP (A) ∪ {a1} ∪ {a2}. Again by CR we obtain maxP (A) ∪ {a1, a2} �
maxP (A) ∪ {a1, a2, x}, completing the proof. If #(A \maxP (A)) > 2, then we repeat the

same reasoning until exhausting set A \maxP (A) to obtain A � A ∪ {x}.

The proof of unicity of P is similar to the corresponding part of the proof for Theorem

4.1.
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7.3 Proof of Corollary 3

It is easy to check that % is P -instrumental consistent (i.e. it satisfies the conditions of

Definition 1). Next we prove that, if % is transitive and P -intrinsic consistent, then the

three conditions in the corollary hold:

Let B \A = {b1, b2, . . . , bk}.

(i) Assume, w.l.o.g. that b1Pa for all a ∈ A. Given that % is P -intrinsic consistent,

A ∪ {b1} � A. Given that ⊗(A) = ⊗(B) we know that all the elements in B \ A are

pairwise related by means of P and that all of them are also related by means of P with the

elements of A. That is, for any proper subset B′ of {b2, . . . , bk}, for any b̂ /∈ B′, we know

by P -intrinsic consistency of % that A ∪ {b1} ∪ B′ ∪ {b̂} % A ∪ {b1} ∪ B′. Therefore it is

possible to construct a chain B % B \ {bk} % B \ {bk, bk−1}} % . . . % A ∪ {b1} � A, and by

transitivity of % we obtain B � A.

(ii) By the repeated application of P -intrinsic consistency we have A � A∪{b1} � . . . �
B. By transitivity A � B.

(iii) ⊗(A) = ⊗(B) implies that all the elements in B \A are related by means of P with

those of A and also that all the elements in B \A are pairwise related by means of P . Given

that maxP (A) = maxP (B) and given that by Corollary 1 P is acyclic we know that there

exists b∗ ∈ B \ A such that aPb∗. Let, w.l.o.g. b∗ = b1. Then, by P -intrinsic consistency,

A ∼ A ∪ {b1}. The argument can be repeated as many times as elements are in B \ A to

obtain A ∼ A ∪ {b1} ∼ . . . ∼ B, and by transitivity of %, A ∼ B.

We also have to prove that the definition does not enter in contradiction with the

assumption of transitivity of <. That is, from the very conditions of Corollary 3, it is

not possible to conclude that, for some A,B,C ∈ π(X) that are pairwise related by set

inclusion, A < B, B < C and C � A.

Assume that from the conditions of Corollary 3 we state A < B and B < C. Note that,

if A < B, by either conditions (i), (ii) or (iii), ⊗(A) ≤ ⊗(B). Similarly B < C implies

⊗(B) ≤ ⊗(C). Therefore ⊗(A) ≤ ⊗(C). Thus, C � A is only possible with ⊗(A) = ⊗(C)

because none of the conditions of Corollary 3 lead to C � A and ⊗(A) > ⊗(C). There are

four possible situations under which A < B, B < C and ⊗(A) = ⊗(C).

1) [B ⊂ A,⊗(A) = ⊗(B) and ∃a ∈ A \ B such that aPb for all b ∈ B] and [C ⊂
B,⊗(B) = ⊗(C) and ∃b ∈ B \ C such that bPc for all c ∈ C]. In this case, given that

C ⊂ B we know by hypothesis that ∃a ∈ A \ C such that aPc for all c ∈ C] and by the

conditions of the corollary A � C.
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2) [B ⊂ A,⊗(A) = ⊗(B) and ∃a ∈ A \B such that aPb for all b ∈ B] and [maxP (B) =

maxP (C) and ⊗(B) = ⊗(C)]. We distinguish three cases:

- C ⊂ B. Then C ⊂ A and, by hypothesis, ∃a ∈ A \ C such that aPc for all c ∈ C].

This, by the conditions of the corollary, implies A � C.

- B ⊂ C and C ⊂ A. Then C � A can only be derived from the conditions in the

Corollary if for all a ∈ A \C there exists c ∈ C such that a⊗ c. This enters in contradiction

with ⊗(A) = ⊗(C).

- B ⊂ C and A ⊂ C. Then, for C � A to be derived from the conditions in the Corollary

it is necessary that there exists c ∈ C \A such that cPa for all a ∈ A. Note that any c ∈ C
such that cPa for some a ∈ A cannot belong to maxP (C) because maxP (B) = maxP (C) and

by hypothesis aPb for all a ∈ A \ B. Therefore any c∗ ∈ C such that c∗Pa should be such

that c∗ /∈ maxP (C). This, given that P is acyclic by Corollary 1, implies that it is possible

to find a chain c1Pc2P . . . P c
∗ such that c1 ∈ maxP (C). We know by hypothesis that aPc′

for all c′ ∈ maxP (C). Therefore we have aPc1P . . . P c
∗Pa, which is in contradiction with

the acyclicity of P .

3) [maxP (A) = maxP (B) and ⊗(A) = ⊗(B)] and [C ⊂ B,⊗(B) = ⊗(C) and ∃b ∈ B \C
such that bPc for all c ∈ C].

If C ⊂ A, C � A can only be derived from the conditions in the Corollary if, for all

a ∈ A\C, there exists c ∈ C such that a⊗c. This enters in contradiction with ⊗(A) = ⊗(C).

If A ⊂ C, we reach to a situation that is incompatible with the hypothesis. Note that,

given that maxP (A) = maxP (B), A ⊂ C implies maxP (B) ⊂ C. Therefore it is not possible

that, for some b ∈ B \ C, bPc for all c ∈ C]. 4) maxP (A) = maxP (B) = maxP (C) and

⊗(A) = ⊗(B) = ⊗(C). In this case A ∼ C.

7.4 Proof of Corollary 4

Firstly, notice that if % is P -instrumental consistent then, by Theorem 4.2, P is transititive.

Secondly, it is easy to check that % is P -instrumental consistent (i.e. it satisfies the condi-

tions of Definition 2). Next we prove that, if % is transitive and P -instrumental consistent,

then the three conditions in the corollary hold:

Let B \A = {b1, b2, . . . , bk}.

(i) Assume, w.l.o.g. that maxP (B \A) = {b1}. We know that there exists a ∈ maxP (A)

s.t b1Pa, which by Definition 2 implies A ∪ {b1} � A. Now, take b2. Given that b2 /∈
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maxP (A) and P is transitive we know that b1Pb2, which again by the same definition

implies A∪{b1, b2} ∼ A∪{b1}. Proceeding repeteadly we obtain A∪{b1, b2, . . . , bk} ∼ ... ∼
A ∪ {b1, b2} ∼ A ∪ {b1} � A, which by the transitivity of % implies B � A.

(ii) Take any b ∈ maxP (B \ A). Since b is incomparable with all the elements in

maxP (A), we have by Definition 2 that maxP (A) � maxP (A) ∪ {b}. By definition, all the

alternatives contained in maxP (B \ A) are pairwise incomparable, and by hypothesis all

of them are incomparable with the elements in maxP (A). Therefore we can apply repeat-

edly the definition of P -instrumental consistency to obtain maxP (A) � maxP (A) ∪ {b} �
... � maxP (A) ∪ maxP (B). Also, by applying repeteadly the definition of P -instrumental

consistency we know that maxP (A) ∼ A and maxP (B) ∼ B. Thus, by transitivity of %,

A � B.

(iii) Assume w.l.o.g. that A ⊂ B. Then, maxP (A) = maxP (B) implies that ∀b ∈ B \ A
there exists a ∈ A s.t aPb. Let B \ A = {b1, . . . , bk} and take b1. By P -instrumental

consistency we have that A ∼ A ∪ {b1} ∼ . . . ∼ B. By transitivity of % we obtain A ∼ B.

We also have to prove that the definition does not enter in contradiction with the

assumption of transitivity of <.

Assume that from the conditions of Corollary 4 we state A < B and B < C.

A % B implies either (1) B ⊂ A and maxP (A \ B) = {a∗} with a∗Pb for some b ∈
maxP (B); (2) A ⊂ B and a⊗ b ∀a ∈ maxP (A) and ∀b ∈ maxP (B \ A), or (3) maxP (A) =

maxP (B).

B % C implies either (4) C ⊂ B and maxP (B \ C) = {b∗} with b∗Pc for some c ∈
maxP (C); (5) B ⊂ C and b⊗ c ∀b ∈ maxP (B) and ∀c ∈ maxP (C \ B), or (6) maxP (B) =

maxP (C).

Suppose (1) and (4). Then we have that a∗Pb for some b ∈ maxP (B). If b = b∗, then,

by transitivity of P , a∗Pc for some c ∈ maxP (C) and the conditions of the corollary imply

A � C. If not, then either b∗ ∈ maxP (B) or b∗ /∈ maxP (B). If b∗ ∈ maxP (B), then

b∗, b ∈ maxP (B). By hypothesis this is only possible if b ∈ C. In this case a∗Pc for some

c ∈ maxP (C \A) (c = b) and the conditions of the corollary imply A � C. If b∗ /∈ maxP (B),

then, by transitivity of P , bPb∗, and again by transitivity of P , a∗PbPb∗Pc implies a∗Pc.

Then, again by the conditions of the corollary, A � C.

Suppose (1) and (5). Notice that (5) implies that maxP (C) = maxP (B)∪maxP (C). The

reason is that b⊗ c ∀b ∈ maxP (B) and ∀c ∈ maxP (C \B) implies that if c ∈ maxP (C \B)

then c ∈ maxP (C). Otherwise ∃b ∈ B such that bPc, which by hypothesis is only possible if
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b /∈ maxP (B). Therefore, by transitivity of P , ∃b∗ ∈ B such that b∗PbPc, which implies, by

transitivity of P , b∗Pc, which is in contradiction with the hypothesis (5). Thus, maxP (C) =

maxP (B)∪maxP (C). Therefore, by hypothesis, a∗Pb for some b ∈ maxP (C), which by the

conditions of the corollary implies A � C.

Suppose (1) and (6). Since maxP (B) = maxP (C) we have a∗Pb for some b ∈ maxP (C)

which by the conditions of the corollary implies A � C.

Suppose (2) and (4). We distinguish two possibilities. (I) C ⊂ A and (II) A ⊂ C

- (I) C ⊂ A implies C ⊂ A ⊂ B. In this case, for C � A to be derived from the

conditions in the corollary, it is necessary that [a⊗c ∀c ∈ maxP (A\C) and ∀a ∈ maxP (A)].

By hypothesis ∃b∗ ∈ maxP (B \ C) such that b∗Pc for some c ∈ maxP (C). Notice that

(A \C) ⊂ (B \C). If b∗ ∈ maxP (A \C) then C � A cannot be derived from the conditions

in the corollary. If b∗ /∈ maxP (A \C), then a∗Pb∗ for some a∗ ∈ maxP (A \C) and we have

a∗Pb∗Pc. Therefore, by transitivity, ∃a∗ ∈ maxP (A \C) such that a∗Pc and, again, C � A
cannot be derived from the conditions in the corollary.

- (II) A ⊂ C implies A ⊂ C ⊂ B. In this case, for C � A to be derived from the

conditions in the corollary, it is necessary that maxP (C \ A) = {c∗} and c∗Pa for some

a ∈ maxP (A). By hypothesis we know that ∃b∗ ∈ maxP (B \ C) such that b∗Pc for some

c ∈ maxP (C). Notice that if c ∈ A, given that A ⊂ C, c ∈ maxP (A) and then we

reach a contradiction with the hypothesis. Therefore c ∈ C \ A. c ∈ maxP (C) implies

c ∈ maxP (C \A), and given that # maxP (C \A) = 1, c = c∗. Therefore we have b∗Pc∗Pa,

which by transitivity implies b∗Pa, reaching again a contradiction. Therefore C � A cannot

be derived from the conditions in the corollary.

Suppose (2) and (5). By (2) we know that maxP (B) = maxP (A)∪maxP (B). Therefore,

b⊗c ∀b ∈ maxP (B) and ∀c ∈ maxP (C\B) implies a⊗c ∀a ∈ maxP (A) and ∀c ∈ maxP (C\A),

which by the conditions of the corollary implies A � C.

Suppose (2) and (6). The conditions of the corollary lead to C � A under two situations:

(I) A ⊂ C and maxP (C \ A)Pa for some a ∈ maxP (A) and (II) C ⊂ A and [a ⊗ c ∀a ∈
maxP (A \ C) ∀c ∈ maxP (C)]. We prove that both cases lead to a contradiction.

- (I) Let c∗ = maxP (C \A). Notice that if A ⊂ C and c∗Pa for some a ∈ maxP (A) then

c∗ ∈ max(C). Otherwise either ∃c′ ∈ C \A such that c′Pc∗, in which case c∗ /∈ maxP (C \A)

or ∃c′ ∈ A such that c′Pc∗, in which case c′Pc∗Pa and, by transitivity of P , c′Pa, which is

in contradiction with a ∈ maxP (A). Given that maxP (B) = maxP (C) we have that ∃c∗ ∈

35



maxP (B) such that c∗Pa, which is only possible if c∗ ∈ B \ A, but this is in contradiction

with the hypothesis (2) that a⊗ b ∀a ∈ maxP (A) and ∀b ∈ maxP (B \A).

- (II) In this case C ⊂ A ⊂ B. Given that maxP (B) = maxP (C) we have that ∀b ∈ B\C
there exists c such that cPb. Therefore, given that C ⊂ A, ∀b ∈ B\A there exists a such that

aPb. Notice that a /∈ maxP (A), otherwise we reach a contradiction with the hypothesis (2)

[a⊗b ∀a ∈ maxP (B \A) ∀a ∈ maxP (A)]. This implies that ∃a∗ ∈ maxP (A) such that a∗Pa.

By transitivity of P , a∗PaPb impies a∗Pb, in which case we reach again a contradiction

with the hypothesis [a⊗ b ∀a ∈ maxP (B \A) ∀a ∈ maxP (A)].

Suppose (3) and( 4). Let b∗ = maxP (B \ C). If b∗ ∈ maxP (B) then, given that

maxP (A) = maxP (B), ∃b∗ ∈ maxP (A \C) such that b∗Pc∗ for some c∗ ∈ maxP (C) and, by

the conditions of the corollary, A � C. If b∗ /∈ maxP (B), then ∃ĉ ∈ C such that ĉP b∗. By

transitivity of P ĉPb∗Pc∗ implies that c∗ /∈ maxP (C), reaching a contradiction.

Suppose (3) and (5). Then C � A can only be derived from the conditions in the

corollary if either [A ⊂ C, maxP (C \ A) = c∗ and c∗Pa for some a ∈ maxP (A)], or [C ⊂ A
and a⊗ c ∀a ∈ maxP (A \ C) and ∀c ∈ maxP (C)].

In the first case, given that maxP (A) = maxP (B), we know that c∗Pb for some b ∈
maxP (B). This, by hypothesis, is only possible if c∗ /∈ maxP (C \B). Therefore ∃ĉ ∈ C \B
such that ĉP c∗. By transitivity this implies ĉPa for some ĉ ∈ C\B, reaching a contradiction

with the hypothesis.

In the second case, we have that B ⊂ C ⊂ A. Given that maxP (A) = maxP (B), we

know that ∀a ∈ A \ B there exists b ∈ maxP (B) such that bPa. Therefore C � A in this

second case is only possible if b /∈ maxP (C), which implies that ∃c ∈ C \ B such that cPb.

This is again in contradiction with the hypothesis.

Suppose (3) and (6). Then maxP (A) = maxP (B) = maxP (C) which by the conditions

in the corollary implies A ∼ B ∼ C.

7.5 Proof of Theorem 5.1

First, we prove that if % is consistent with a preference with a structured incompleteness

(P,⊗1,⊗2) then % satisfies WRI, SC, IA, MC and CE.

• WRI: Take any x, y ∈ X such that {x, y} ∼ {y}. This, by Definition 3, implies yPx,

which again by the same definition implies {x, y} � {x}. Now, take any x, y ∈ X such
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that {x, y} � {y}. By Definition 3 this implies either y ⊗1 x or xPy. By the same

definition, if y ⊗1 x then {x, y} � {x} and if xPy then {x, y} ∼ {x}.

• SC: Take any x, y ∈ X such that ¬({x, y} % {x}). ¬({x, y} � {x}) implies by

Definition 3 ¬(x⊗1 y) and ¬(yPx). Moreover, ¬({x, y} ∼ {x}) implies by Definition

3 either x⊗2 y or ¬(xPy). In sum, ¬({x, y} % {x}) implies necessarily x⊗2 y, which

by Definition 3 implies {x} � {x, y}.

• IA: Let A ∈ π(X) and let x ∈ X \A. Assume {a, x} % {a} ∀a ∈ A. Thus, @a ∈ A such

that {a} � {a, x}, which by Definition 3 implies (i) @a ∈ A s.t a ⊗2 x. Assume that

there exists at least one element a∗ ∈ A such that {a∗, x} ∼ {a∗}. This by Definition

3 implies (ii) a∗Px. Given (i) and (ii), by Definition 3, A ∪ {x} ∼ A

• MC: Let A ∈ π(X) and let x ∈ X\A. Assume that {x, a} � {a} ∀a ∈ A. This implies,

by Definition 3, that, for all a ∈ A, either x⊗1 a or xPa. Therefore, by Definition 3,

A ∪ {x} � A.

• CE: Let A,B ∈ π(X) such that A ⊆ B and let x ∈ X \B. Assume that A � A∪ {x}.
by Definition 3 this implies that ∃a ∈ A such that x ⊗2 a. Given that A ⊆ B,

∃b ∈ B,(b = a) such that x⊗2 b, which by the Definition 3 implies B � B ∪ {x}.

In order to prove the necessary part of the theorem, assume that a binary relation %

satisfies all the axioms of Theorem 5.1. We have to prove that in this case there exists

a preference with a structured incompleteness (P,⊗1,⊗2) defined on X with which % is

(P,⊗1,⊗2)-intrinsic consistent.

We will show that, in particular, % is consistent with the preference with a structured

incompleteness (P,⊗1,⊗2) where P , ⊗1 and ⊗2 are defined by: P = {(x, y) such that

{x, y} ∼ {x}}; ⊗1 = {(x, y) such that {x, y} � {x} and {x, y} � {y}} and ⊗2 = {(x, y)

such that {x} � {x, y}}.

First, we prove that (P,⊗1,⊗2) is a preference with a structured incompleteness:

- P is asymmetric by WRI.

- ⊗1 is symmetric by definition.

- ⊗2 is symmetric: Assume that {x} � {x, y} but ¬({y} � {x, y}). By SC ¬({y} �
{x, y}) implies {x, y} % {y}. By WRI this implies {x, y} % {x}, reaching a contradiction.

- ⊗1 ∩ ⊗2 = ∅ holds by definition.
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- Now we prove that X2 \ P = ⊗1 ∪ ⊗2: X
2 \ P = {(x, y) ∈ X such that ¬(xPy) and

¬(yPx)}. ¬(xPy) and ¬(yPx) implies by definition ¬({x, y} ∼ {x}) and ¬({x, y} ∼ {y}).
By SC ¬({x, y} ∼ {x}) implies either {x, y} � {x} or {x} � {x, y}. By SC, if {x, y} � {x}
there are three possibilities: (i) {x, y} � {y}, in which case x ⊗1 y by definition; (ii)

{x, y} ∼ {y}, which is a contradiction with the assumption that ¬(yPx), and (iii) {y} �
{x, y}, which is in contradiction with WRI. If {x} � {x, y} we have again three possibilities:

(i) {x, y} � {y}, which is in contradiction with WRI; (ii) {x, y} ∼ {y}, which also leads to a

contradiction with the assumption that ¬(xPy) and (iii) {y} � {x, y}, which by definition

implies x⊗2 y.

Next we show that, if % satisfies all the axioms in Theorem 5.1, then it is (P,⊗1,⊗2)-

consistent with (P,⊗1,⊗2) defined as above:

(i) Assume that for all a ∈ A either xPa or x⊗1 a. Then, either by the definition of ⊗1

or by the definition of P and WRI we know that {x, a} � {a}, therefore, by MC we have

A ∪ {x} � A.

(ii) Now, assume that there exists a in A such that x ⊗2 a. Then, by the definition of

⊗2, {a} � {a, x}. Since {a} ⊆ A, by CE, A � A ∪ {x}.

(iii) Finally, assume that there exists a∗ ∈ A such that a∗Px and @a ∈ A s.t a⊗2 x. By

the definition of P we have that {a∗, x} ∼ {a∗}. Since @a ∈ A s.t a⊗2 x, we have that, for

all a ∈ A, either aPx, which by P definition implies {a, x} ∼ {a}, or xPa, or x ⊗1 a. In

these two last cases, as we have shown at (i), we have {a, x} � {a}. Therefore {a, x} % {a}
∀a ∈ A and {a∗, x} ∼ {a∗}, which by IA implies A ∪ {x} ∼ A.

7.6 Proof of Theorem 5.2

Assume that a reflexive binary relation % satisfies all the axioms of Theorem 5.2. Then there

exists a transitive preference with a structured incompleteness (P,⊗1,⊗2) defined on X with

which % is (P,⊗1,⊗2)-instrumental consistent. In particular, consider P , ⊗1 and ⊗2 defined

as in the proof of Theorem 5.1. That is, P = {(x, y) such that {x, y} ∼ {x}}; ⊗1 = {(x, y)

such that {x, y} � {x} and {x, y} � {y}} and ⊗2 = {(x, y) such that {x} � {x, y}}
. In the proof of Theorem 5.1 it is proved, by using axioms WRI and SC, that (P , ⊗1,

⊗2) is a preference with a structured incompleteness. Given that WRI and SC are also

characterization axioms in Theorem 5.2 that part of the proof is identical. It only remains

then to prove that P is, in addition, transitive: Take a, b, c ∈ X such that aPb and bPc.

By the definition of P this implies {a, b} ∼ {a} and {b, c} ∼ {b}. By applying IC (with a
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in the role of A; b in the role of x and c in the role of y), we have {a, c} ∼ {a}, which by

the definition of P implies aPc.

Next we have to prove that, if a reflexive binary relation % satisfies all the axioms in

Theorem 5.2, then it is (P,⊗1,⊗2)-instrumental consistent:

(i) Assume that ∃a ∈ (A) s.t aPx. Then by the definition of P we know that {a, x} ∼
{a}. By reflexivity of % we have A ∪ {a} ∼ A. Therefore, by IC, A ∪ {x} ∼ A.

(ii) Assume now that ∃ai ∈ maxP (A) s.t xPai or x ⊗1 ai; @a ∈ maxP (A) s.t aPx, and

∀a∗ ∈ maxP (A) s.t a∗ ⊗2 x @a ∈ maxP (A) s.t a⊗1 a
∗.

Step 1. Let Â = {a ∈ maxP (A) : xPa or x ⊗1 a}. For all a ∈ Â, if xPa, by the

definition of P , {x, a} ∼ {x}, and by WRI {x, a} � {a}. If x⊗1 a, by the definition of ⊗1,

{x, a} � {a}. Thus, for all a ∈ Â, {x, a} � {a}. Then, by MC, we have that Â ∪ {x} � Â.

Step 2. In this step we prove that {x} � {x, a} ∀a ∈ maxP (A)\ Â. Given that a ∈ A\ Â
we know that ¬(xPa) and ¬(x⊗1a). By assumption @a ∈ maxP (A) s.t aPx, therefore x⊗2a

∀a ∈ maxP (A) \ Â, which by the definition of ⊗2 implies {x} � {x, a} ∀a ∈ maxP A \ Â.

Step 3. Let maxP (A) \ Â = {a1, ..., an}. Take any aj ∈ maxP (A) \ Â. Given that

aj ∈ maxP (A) we know that ∀â ∈ Â neither ajP â nor âPaj . At Step 2 we have proved

that x ⊗2 aj ∀aj ∈ maxP (A) \ Â. Recall that, by assumption, ∀a∗ ∈ maxP (A) s.t a∗ ⊗2 x

@a ∈ maxP (A) s.t a ⊗1 a
∗. Thus, for all a ∈ maxP (A), ¬(aj ⊗1 a), which implies aj ⊗2 a

∀a ∈ maxP (A)\{aj}. Take a1. By CC we know that Â � Â∪{a1}; by Step 1 Â∪{x} � Â,

and by Step 3 {x} � {x, a1}. Therefore, we can apply MR to obtain Â∪{x, a1} � Â∪{a1}.
If maxP (A) \ Â = {a1} we have maxP (A) ∪ {x} � maxP (A). If not, take {a2}. We have

Â ∪ {x, a1} � Â ∪ {a1}; by CC Â ∪ {a1} � Â ∪ {a1, a2}, and by Step 2 {x} � {x, a2}.
Thus, we can apply MR to obtain Â∪ {x, a1, a2} � Â∪ {a1, a2}. Proceeding similarly until

exhausting all elements of maxP (A) \ Â we reach maxP (A) ∪ {x} � maxP (A).

Step 4. Let A \ maxP (A) = {a1, ..., an}. Take a1. We know that there exists a∗ ∈
maxP (A) such that a∗Pa1. Thus, by the definition of P , {a∗, a1} ∼ {a∗}. By reflexivity of %,

maxP (A)∪{a∗} ∼ maxP (A). Thus, we can apply IC to obtain maxP (A) ∼ maxP (A)∪{a1}.
By hypothesis @a ∈ maxP (A) such that aPx, thus, by transitivity of P , @a ∈ A such

that aPx, and by the definition of P , ¬({a1} ∼ {x, a1}). By Step 3 maxP (A) ∪ {x} �
maxP (A). Thus, we can apply MR to obtain maxP (A) ∪ {x, a1} � maxP (A) ∪ {a1}. If

A \maxP (A) = {a1} Step 4 is proved. If not take a2 ∈ A \maxP (A) = {a1, ..., an}. Again,

given that a2 /∈ maxP (A) there exists a∗
′ ∈ maxP (A) ∪ {a1} such that a∗

′
Pa2 and by

applying similarly the definition of P , reflexivity of % and IC we obtain maxP (A)∪ {a1} ∼
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maxP (A)∪{a1, a2}. Again, by hypothesis, @a ∈ maxP (A) such that aPx, and by transitivity

of P and the definition of P we obtain ¬({a2} ∼ {x, a2}). Then, given that maxP (A) ∪
{x, a1} � maxP (A) ∪ {a1}, by MR we have maxP (A) ∪ {x, a1, a2} � maxP (A) ∪ {a1, a2}.
Proceeding similarly until exhausting all elements of A we finally obtain A ∪ {x} � A.

(iii) Now, assume that x⊗2a
∗ for all a∗ ∈ maxP (A). By CC maxP (A) � maxP (A)∪{x}.

We can apply the definition of P , reflexivity of % and IC like in Step 4 above to prove that

for all a ∈ A\maxP (A), maxP (A) ∼ maxP (A)∪{a}. Thus, let A\maxP (A) = {a1, . . . , ak}.
We have that maxP (A) � maxP (A) ∪ {x} and maxP (A) ∼ maxP (A) ∪ {a1}. By CR this

implies maxP (A)∪ {a1} � maxP (A)∪ {a1} ∪ {x}. If A \maxP (A) = {a1} then the proof is

done. If A\maxP (A) = {a1, a2} we have that maxP (A)∪{a1} � maxP (A)∪{a1}∪{x} and

that maxP (A)∪{a1} ∼ maxP (A)∪{a1}∪{a2}. Again by CR we obtain maxP (A)∪{a1, a2} �
maxP (A) ∪ {a1, a2, x}, completing the proof. If #(A \maxP (A)) > 2, then we repeat the

same reasoning until exhausting the set A \maxP (A) to obtain A � A ∪ {x}.

7.7 Proof of Theorem 5.3

• WRI: Take any x, y ∈ X such that {x, y} ∼ {y}. This, by Definition 4, implies yPx,

which again by the same definition implies {x, y} � {x}. Now, take any x, y ∈ X such

that {x, y} � {y}. By Definition 4 this implies either xPy or x⊗1 y. By Definition 4,

if y ⊗1 x, then {x, y} � {x} and if xPy, then {x, y} ∼ {x}.

• SC: Take any x, y ∈ X such that ¬({x, y} % {x}). ¬({x, y} � {x}) implies by

Definition 4 ¬(x⊗1 y) and ¬(yPx). Moreover, ¬({x, y} ∼ {x}) implies by Definition 4

¬(xPy). Therefore, by the properties assumed on (P,⊗1,⊗2), ¬({x, y} % {x}) implies

necessarily x⊗2 y, which by Definition 4 implies {x} � {x, y}.

• CC: Let {a} � {a, x} ∀a ∈ A. This, by Definition 4, implies x⊗2 a ∀a ∈ A, therefore

x⊗2 a ∀a ∈ maxP (A), which by Definition 4 implies A � A ∪ {x}.

• IC: Let x, y ∈ X and A ∈ π(X) such that x /∈ A, {x, y} ∼ {x} and A ∪ {x} ∼ A.

By Definition 4 {x, y} ∼ {x} implies xPy. We distinguish two possibilities: either

y ∈ A or y /∈ A. If y ∈ A then A ∪ {y} ∼ A holds by reflexivity of %. If y /∈ A

then, by Definition 4, ∃a ∈ A such that aPx. By the transitivity of P , aPy. Thus,

by Definition 4, A ∪ {y} ∼ A.

• MR: Let A ∈ π(X) and let x, y ∈ X \A. Assume that A∪ {x} � A; A % A∪ {y} and

¬({y} ∼ {x, y}).
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A ∪ {x} � A implies by Definition 4 that ∃ai ∈ maxP (A) such that either xPai or

ai ⊗1 x; @a ∈ maxP (A) s.t aPx, and ∀a∗ ∈ maxP (A)) s.t x ⊗2 a
∗ @a ∈ maxP (A) s.t

a⊗1 a
∗.

Assume first that A ∼ A ∪ {y}. This implies, by Definition 4, that ∃a ∈ A s.t

aPy. Thus, given the transitivity of P , maxP (A) = maxP (A ∪ {y}). Therefore: (i)

∃a ∈ maxP (A∪{y}) such that xPai or ai⊗1x and (ii) ∀a∗ ∈ maxP (A∪{y}) s.t x⊗2a
∗

@a ∈ maxP (A ∪ {y}) s.t a⊗1 a
∗ and (iii) @a ∈ A ∪ {y} s.t aPx. That is, according to

Definition 4 all the conditions ((i), (ii) and (iii)) for A ∪ {x, y} � A ∪ {y} hold.

Now, assume that A � A ∪ {y}. By Definition 4 this implies y ⊗2 a ∀a ∈ maxP (A).

Therefore maxP (A ∪ {y}) = maxP (A) ∪ {y}, which implies (i) ∃a ∈ maxP (A ∪ {y})
such that xPai or ai ⊗1 x. ¬({y} ∼ {x, y}) implies ¬(yPx), therefore, given that

@a ∈ maxP (A) s.t aPx, we have that (ii) @a ∈ max(A ∪ {y}) s.t aPx. Given that

¬(yPx), we distinguish three possibilities: If it is the case that x⊗2y, since y⊗2a ∀a ∈
maxP (A), we know that @a ∈ maxP (A) s.t a⊗1 y. We also know that ∀a∗ ∈ maxP (A)

s.t x⊗2 a
∗ @a ∈ maxP (A) s.t a⊗1 a

∗. Therefore, (iii) ∀a∗ ∈ maxP (A∪{y}) s.t x⊗2 a
∗

@a ∈ maxP (A ∪ {y}) s.t a⊗1 a
∗. Thus, the three conditions for A ∪ {x, y} � A ∪ {y}

hold. If it is the case that either x⊗1 y or xPy, we already know that ∀a∗ ∈ maxP (A)

s.t x ⊗2 a
∗ @a ∈ maxP (A) s.t a ⊗1 a

∗. Given that ¬(x ⊗2 y), we have that (iii)

∀a∗ ∈ maxP (A ∪ {y}) s.t x⊗2 a
∗ @a ∈ maxP (A ∪ {y})) s.t a⊗1 a

∗. Thus, again, the

three conditions for A ∪ {x, y} � A ∪ {y} hold.

• MC: Assume that ∀A ∈ π(X), ∀x ∈ X \A, {x, a} � {a} ∀a ∈ A. Then, by Definition

4, either xPa or x⊗1 a ∀a ∈ A. Therefore, by Definition 4, A ∪ {x} � A.

• CR: Let A ∈ π(X) and x, y ∈ X \A. By Definition 4, A � A ∪ {x} implies x⊗2 a for

all a ∈ maxP (A). On the other hand, also by Definition 4, A ∪ {y} ∼ A implies aPy

for some a ∈ A. Therefore, given the transitivity of P , maxP (A ∪ {y}) = maxP (A),

which implies that x⊗2 a for all a ∈ maxP (A ∪ {y}), and by Definition 4 this implies

A ∪ {y} � A ∪ {x, y}.
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