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Abstract—Doubly-fed induction generator (DFIG) wind tur-
bines connected to series compensated grids are prone to sub-
synchronous resonance (SSR) instability. In this paper we develop
a model to analyze SSRs and propose a damping strategy based
on the stator voltage feedback that is implemented in the rotor-
side converter (RSC). The control strategy is based on local
variables that are already measured, so it is applicable to any
new or existing DFIG wind turbine. Simulation results performed
for a real wind farm where sub-synchronous resonances were
reported validate the proposed damping strategy.

Index Terms—Doubly-fed Induction Generator (DFIG), Sub-
Synchronous Resonance (SSR), wind turbine, resonance damp-
ing, frequency response

I. INTRODUCTION

The rapid growth of wind power is forcing to install wind
farms far from the consumption centers, generally transporting
the power generated through the existing transmission lines.
In some cases, series capacitor compensation is required to
avoid the additional cost of building new lines. However, the
line series compensation interacts with DFIG wind turbines,
creating oscillation problems that can lead to instability [1].
This phenomenon, in which the grid, the DFIG and the power
converters and their control loops are involved, is referred as
sub-synchronous resonances, and problems have been reported
in Texas, Minnesota and China [2].

To avoid SSRs several damping strategies have been pro-
posed for Flexible Alternating Current Transmission Systems
(FACTS) [3] and for the two power converters used in DFIG
turbines. The latest being the preferred option, as it does not
require additional power converters.

The control loops of both the grid-side converter (GSC) and
the RSC can be modified in order to damp SSRs and avoid
instability. Some authors have proposed SSR dampers for the
GSC [4], [5], others for the RSC [2], [6]–[8] while some others
have combined damping strategies for both the RSC and the
GSC [9], [10]. In the existing SSR damping strategies, the
main variables used to damp the system are the voltage across
the line series capacitor, the stator and rotor currents and the
active power.
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The voltage across the line series capacitor has been used
to design effective SSR dampers to be used in the rotor or
the grid power converters [4], [5], [7], [9]. This voltage is
a remote signal, so it is normally estimated to avoid long
communication lines. Other authors proposed the use of the
stator and rotor currents, as they contain the sub-synchronous
resonant components [2]. A different approach to damp SSRs
is based on using the rotor currents to emulate a virtual resistor
in series with the stator winding and a virtual inductance
in series with the rotor winding [8]. The estimated series
capacitor voltage can be combined with a virtual inductance
implemented through the rotor current derivative [9]. SSRs
can also be damped by notch filters inserted in the DC-voltage
control loop of the GSC or in the inner current control loop of
the RSC [10]. At last, a different variable such as the active
power multiplied by a gain and a phase compensation can also
damp the resonance [6].

Despite the variety of damping controllers, there is a really
effective local variable that has not been considered yet,
the stator voltage, or equivalently the output harmonic filter
capacitor voltage. In this work, the damping capabilities of
the stator voltage are explored and a robust damping controller
is designed that can be used in any DFIG based wind farm,
regardless of the line impedance compensation level and the
wind turbine operating point.

II. SYSTEM MODELING AND STABILITY ANALYSIS

A. System Description and Model

Fig. 1 illustrates a DFIG wind turbine connected to a
series compensated grid. The RSC is directly connected to
the rotor and controls the torque and rotational speed. The
GSC controls the DC–bus, CDC , voltage and is connected
to the stator terminals through the converter inductor, LGSC .
The GSC output current, iG, and the DFIG output current
iS are filtered by an LCL filter, formed by the capacitor Cf

and the wind turbine’s step-up transformer, normally located
inside the nacelle. This transformer has a leakage inductance
Lt. The wind turbine is connected in parallel to the rest of
turbines and to the grid at the point of common coupling
(PCC). The grid is modeled as an ideal voltage source and
a series impedance, formed by an inductor, Lg , and the series
compensation capacitor, Cg .
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Fig. 1. DFIG wind turbine with an LCL filter connected to a series compensated grid.

DFIG wind turbines are commonly controlled in the syn-
chronous reference frame or dq axis, so all the elements are
modeled in this reference frame to properly study the system
stability. In the following, 2×2 transfer function matrices and
impedance matrices are used to model the system dynamics.
This is a straightforward approach to model the cross-coupling
terms between both axis and can be used for symmetric and
non-symmetric systems [11], [12], the later being the case of
the system under study when the phase-locked loop model,
PLL, used to synchronize the power converter to the grid is
included. The matrices obtained in the modeling procedure are
denoted by capital letters between brackets, with a subscript
that indicates the angular speed of the cross-coupling terms.
Vectors are represented by capital letters, and the subscript dq
is used to denote that they are expressed in the synchronous
reference frame.

Independent models are obtained for all the system compo-
nents, which are later combined to obtain the complete plant
model. This model considers the coupled dynamics between
the GSC and the RSC, as they are both connected to the same
terminals and both control loops interact with each other.

1) DFIG Model: The dynamics of a doubly-fed induction
generator in dq can be described by two equations

VSdq = [ZRLlS
]ω0
ISdq + [ZLm

]ω0
Imdq (1)

and

VRdq = [ZRLlR
]ωR

IRdq + [ZLm
]ωR

Imdq, (2)

where the current, I , and voltage, V , subscripts, R and S,
stand for the rotor and stator, respectively. Imdq is the mag-
netizing current in dq axis. [ZRLlS

]ω0
and [ZRLlR

]ωR
model

the rotor and stator winding series resistance and the leakage
inductance. ω0 is the rotational speed of the dq axis, provided
by the PLL, while ωR is the difference between ω0 and the
mechanical rotational speed ωm. The general expression for
[ZRLl

]ω is

[ZRLl
]ω =

[
R+ Lls −Llω
Llω R+ Lls

]
, (3)

where R = RS , Ll = LlS and ω = ω0 for [ZRLlS
]ω0 , while

R = RR, Ll = LlR and ω = ωR for [ZRLlR
]ωR

. The last
impedance, [ZLm

]ω , models the magnetizing inductance

[ZLm ]ω =

[
Lms −Lmω
Lmω Lms

]
. (4)

Note that in (1) and (2) the impedance [ZLm
]ω is expressed

at two different rotational speeds. To obtain an equivalent
circuit for the DFIG in terms of impedance matrices, [ZLm

]ω
has to be expressed in both equations at the same rotational
speed. For this reason, a transformation matrix [B] is proposed
in this paper

[B] =

[
1 + ωRωm

s2+ω2
R

− sωm

s2+ω2
R

sωm

s2+ω2
R

1 + ωRωm

s2+ω2
R

]
, (5)

that multiplies both sides of (2). Doing so,

[B]VRdq = ([B][RR] + [ZLlR
]ω0

) IRdq + [ZLm
]ω0
Imdq. (6)

It should be noticed that [ZRLlR
]ωR

in (2) is divided in (6)
into the rotor winding series resistance [RR], to which the
transformation matrix [B] is applied, and the winding leakage
inductance, [ZLlR

]ω0 , with cross-coupling terms at ω0. (1) and
(6) are the equations of the physical circuit represented in
Fig. 2. These two equations can be rearranged, knowing that
IRdq + ISdq = Imdq , and expressed in terms of admittance
matrices that capture the current dynamics as a function of
the two model inputs, the rotor and stator voltages

ISdq = [YISVR
]VRdq + [YISVS

]VSdq, (7)

and

IRdq = [YIRVR
]VRdq + [YIRVS

]VSdq. (8)

Fig. 2. DFIG equivalent circuit.



2) Harmonic LC filter: The GSC output current, IGdq , de-
pends on the difference between the converter output voltage,
VGdq , and the filter capacitor voltage, VCfdq

IGdq = [ZRLG
]−1
ω0

(VGdq − VCfdq) . (9)

[ZRLG
]ω0

is a matrix impedance similar to (3) that models
the GSC inductor, LGSC , with a series resistor RGSC . The
filter capacitor, Cf , has a series damping resistor, Rd, and its
impedance, [ZCf ]ω0

, is given by

[ZCf ]ω0 =

[
Rd +

s
Cf (s2+ω2

0)
ω0

Cf (s2+ω2
0)

− ω0

Cf (s2+ω2
0)

Rd +
s

Cf (s2+ω2
0)

]
, (10)

so

VCfdq = [ZCf ]ω0
ICfdq. (11)

From Fig.1 it also becomes evident that the DFIG stator
voltage and the filter capacitor voltage are equal,

VCfdq = VSdq. (12)

3) Grid Model: The grid is modeled as a lumped induc-
tance, Lgt. It includes the step-up transformer leakage induc-
tance, Lt, and the distribution and wind farm grid inductance,
as well as the wind farm substation, under the parameter Lg

of Fig.1. This inductance has a series resistance that models
the resistance at 50 Hz of the elements lumped in Lgt. Cg

is the line series compensation capacitor. The grid impedance
matrix, [Zg]ω0

, is thus defined as

[Zg]ω0
=

[
Rg + Lgts+

s
Cg(s2+ω2

0)
−Lgtω0 +

ω0

Cg(s2+ω2
0)

Lgtω0 − ω0

Cg(s2+ω2
0)

Rg + Lgts+
s

Cg(s2+ω2
0)

]
(13)

If the grid voltage is neglected, as it does not have an influence
on the system small signal stability, the grid current, Igdq , is
determined by the LCL filter capacitor voltage

VCfdq = [Zg]ω0
Igdq. (14)

4) Plant Model: The combination of (7), (8), (9), (11), (12),
(14) with

IGdq = ISdq + ICfdq + Igdq, (15)

allows to compute the complete plant model that correlates
the four voltage inputs, VGdq and VRdq , with the six model
outputs IGdq , IRdq and VCfdq IGdq

IRdq

VCfdq

 = [Plant]

[
VGdq

VRdq

]
. (16)

Where [Plant] is a 6×4 transfer function matrix. Note that
in this model, the influence and interaction between the RSC
and the GSC variables is considered.

B. RSC and GSC Control Loops

As represented in Fig. 3, both the GSC and RSC are
controlled as current sources in dq axis by means of a PI
controller. The elements that model the current control loops
are represented in blue, while the PLL model is represented
in red.

1) Current Control Loop Model: The GSC and RSC output
currents are the variables controlled in the current control
loops. As represented in Fig. 3, these variables are filtered
by a low-pass analog filter, LPAF = 1/(τs + 1), to reduce
the switching ripple. However, this filter is applied to the GSC
currents in the stator stationary reference frame, αβS , and to
the RSC currents in a different stationary reference frame that
rotates at ωm, αβm.

To properly analyze the system stability, all the elements
must be referred to the same reference frame, the dq axis in
this paper. For this reason, the transformation proposed in [13]
to rotate the transfer functions between the different frames is
used. The model of LPAF in dq axis, rotating at ω, is a 2×2
transfer function matrix

[LPAF ]ω =
1

2

[
LPAF1(s) LPAF2(s)
−LPAF2(s) LPAF1(s)

]
, (17)

whose diagonal term LPAF1(s) = LPAF (s + jω) +
LPAF (s − jω) and anti-diagonal term LPAF2(s) =
jLPAF (s + jω) − jLPAF (s − jω). The low-pass analog
filter in the GSC and the RSC have the same time constant, τ ,
but each of them is defined in a different stationary reference
frame. For this reason, for the GSC filter, the rotation is made
with ω0, leading to the transfer function [LPAF ]ω0 , while
for the RSC, as the filter is defined in αβm rotating at ωm,
the transformation is made with ωR = ω0 − ωm, leading to
[LPAF ]ωR

.
A PI controller is applied to the current error. The PI

controller in the dq axis is a diagonal matrix

Fig. 3. GSC and RSC current control loops including the PLL model.



[PI] =

[
Kp

Tns+1
Tns

0

0 Kp
Tns+1
Tns

]
. (18)

The parameters for the RSC controller, [PIR], are different
than the ones for the GSC, [PIG], as each current control loop
has different dynamics.

The last element in the current control loop, Dconv , models
the delays introduced by the power converter, i.e., the compu-
tation delay in the DSP and the zero order hold that represents
the PWM power converter. A forth order approximation is
used for Dconv , in order to achieve an accurate representation
[14]. Similarly to the LPAF , Dconv is transformed to dq axis,
leading to two different transfer function matrices; [Dconv]ω0

for the GSC and [Dconv]ωR
for the RSC.

2) PLL Model: The power converters are synchronized with
the grid by means of a phase-locked loop. The PLL provides
the angle for the transformation to the synchronous reference
frame. Ideally, the grid voltage, vg , would be measured,
however, this is not a feasible solution, and normally the filter
capacitor voltage is used instead, vCf . The synchronization
with vCf introduces an interaction between the PLL and the
current control loop that can have an influence on the system
stability at low frequencies [12], [15]. As SSRs occur at
low frequencies, the PLL model is included in the stability
analysis.

As shown in Fig. 4, the capacitor voltage in the stator
stationary reference frame is filtered by a SOGI filter and
transformed to dq axis using the Park transformation [PT ].
The capacitor voltage q-component is driven to zero by a
PI controller. The angular speed at the output of the PI
controller is integrated to compute the angle and used in
the feedback path for the Park transformation. The [SOGI]
filter in Fig. 4 is a diagonal matrix with diagonal terms
FSOGI = kωs/(s2+kωs+ω2), that must be transformed to
dq coordinates using the previously mentioned transformation
for Dconv and LPAF .

The model for the PLL proposed in [12] represents the Park
direct and inverse transformation as a disturbance, depicted
in red in Fig. 3. The Park direct transformation introduces a
disturbance dependent on the capacitor voltage in the RSC
current control loop, [YPLLR], and in the GSC one, [YPLLG].
Similarly, the inverse park transformation introduces a distur-
bance in the RSC, [HPLLR], and in the GSC, [HPLLG]. These
matrices are equal to

Fig. 4. Phase-locked loop used for grid synchronization.

[HPLL] =

[
0 −FTPLLVq
0 FTPLLVd

]
, (19)

and

[YPLL] =

[
0 −FTPLLIq
0 FTPLLId

]
, (20)

where

FTPLL ≈ PIPLLFSOGI1

s+ PIPLLFSOGI1VCfd

. (21)

It should be noted that the matrices [YPLL] and [HPLL]
are different for the GSC and the RSC, as the steady-state
currents, Id and Iq in (20), equal IGdq for the GSC and IRdq

for the RSC. Similarly, the voltages imposed by each control
loop, Vd and Vq in (19), are different for the GSC, VGdq , and
for the RSC, VRdq . At last, VCfd is the filter capacitor voltage
in the d-axis, as the q-component is driven to zero by the PLL,
so FTPLL is the same for both converters.

TABLE I
SYSTEM PARAMETERS

Parameter Magnitude
Distribution grid (Zorillo-Rio Hondo)

SB = 100 MVA, U = 345 kV
Line reactance 0.034 p.u.
Line resistance 0.003 p.u.

Wind farm substation
SB = 250 MVA, 34.5/345 kV

Reactance 0.1 p.u.
Resistance 0.004 p.u.

Wind farm grid
SB = 100 MVA, U = 34.5 kV

Line reactance 0.013 p.u.
Line resistance 0.008 p.u.

Wind turbine transformer
SB = 2.5 MVA, 34.5/0.69 kV

Reactance 0.05 p.u.
Resistance 0.007 p.u.

DFIG
SB = 2.5 MVA, U = 690 V

Number of turbines 100
Rotor resistance 0.008 p.u.
Rotor leakage inductance 0.102 p.u.
Stator resistance 0.006 p.u.
Stator leakage inductance 0.097 p.u.
Magnetizing inductance 4.34 p.u.

Power converter
Rated power 500 kVA
Switching frequency 2.8 kHz
Sampling frequency 5.6 kHz
GSC reactance 0.2 p.u.
GSC resistance 0.005 p.u.
GSC filter capacitor 0.036 p.u.
GSC filter series damping resistance 0.21 p.u.

Control parameters
GSC PI proportional gain 0.15
GSC PI integral constant 0.03
RSC PI proportional gain 0.14
RSC PI integral constant 0.016
Low-pass analog filter time constant 20.10−6

PLL PI proportional gain 0.2
PLL PI integral constant 0.22
SOGI proportional gain 0.2



C. Stability Analysis

A preliminary stability analysis is performed for the system
parameters summarized in Table I. These are the parameters
of a real SSR event reported in the southern Electric Relia-
bility Council of Texas (ERCOT) [2]. 100 wind turbines are
connected at the PCC, and thus, an aggregated model is used
to analyze the stability [16].

The stability of any MIMO system, as the 2 × 2 dynamic
model obtained for the current control loop of a DFIG wind
turbine controlled in the synchronous reference frame, can be
analyzed through the Bode diagram of the open-loop matrix
eigenvalues [11]. According to this criterion (MIMO GBC),
the number of closed-loop unstable poles, Z, is equal to
the number of open-loop unstable poles, P , minus the total
number of ±m180 degrees crossings (m odd integer) with
positive magnitude counted in the Bode diagram of all the
system open-loop eigenvalues, C+ (crossings with increasing
phase), C− (with decreasing phase) and C0 (at 0 Hz)

Z = P − [2(C+ − C−) + C0]. (22)

Fig. 5 (a) shows the two eigenvalues of the RSC current
control loop, which is a 2×2 MIMO model, for two different
slips = ωR/ω0, when the line series capacitor, Cg , compen-
sates an 80% of the line impedance. The open-loop transfer
function matrix correlates IRdq to εRdq in Fig. 3. Note that in
the stability analysis, even though only the RSC current control
loop eigenvalues are represented, the open-loop matrix for the
RSC includes the influence of the GSC current control loop,
forcing IGref dq = 0. For the two rotational speeds, the set
of eigenvalues has a negative crossing at 37 Hz (C− = 1),
so as the system has no open-loop unstable poles (P = 0),
according to (22) the closed-loop system has 2 unstable poles
for each slip, Z = 2. If the line impedance compensation level
is reduced to 50%, Fig. 5 (b), the same number of crossings
occur at 42 Hz for the two sets of eigenvalues, and thus, the
closed-loop system has two unstable poles for each rotational
speed.

It becomes evident from the stability analysis that a sub-
synchronous resonance damping (SSRD) strategy is required.
The next section presents the proposed control strategy.

III. SSR DAMPER

The sub-synchronous instability identified in the previous
section is the result of the interaction between the DFIG, the
current control loops and the grid. Intuitively, from the analysis
of Fig. 1, if the RSC of each wind turbine can perform a
perfect feed-forward of the output LCL filter voltage, vCf , the
DFIG wind turbine is immune to SSRs, as the grid impedance
influence on the plant to be controlled is eliminated [17].

The sub-synchronous resonance damper proposed in this
paper is based on the stator voltage, which is equal to the LCL
filter capacitor voltage, a variable that is already measured in
DFIG wind turbines for grid synchronization, as previously
described. The SSRD strategy is a positive feedback loop
represented in Fig. 6 in green. The filter capacitor voltage (or

equivalently the stator voltage), filtered by a low-pass analog
filter and multiplied by the SSR damping controller, [FFR],
provides the voltage action, VRDdq , to be applied in the RSC.
The goal of [FFR] is to compensate the grid impedance and
voltage.

As the DFIG wind turbine is controlled from the RSC, the
stator voltage has to be referred to the rotor terminals. To do
so, the previously proposed model of a DFIG wind turbine
is converted to a block diagram and represented in Fig. 7,
neglecting the winding series resistance. It becomes clear that
there are two inputs to the model: the rotor voltage applied
by the RSC, VRdq , and the stator voltage, VSdq. In order to
compensate the stator voltage with the action applied by the
rotor-side converter, [FFR] has to equal

[FFR] = [B]−1
(
I + [ZLlR

]ω0
[ZLm

]−1
ω0

)
, (23)

where I is the order two identity matrix.

(a)

(b)

Fig. 5. Eigenvalues’ Bode diagrams of the RSC current control loop for two
slips when the line impedance compensation level is 80% (a) and 50% (b).



However, as indicated by the control diagram in Fig. 6, the
GSC and RSC interact with each other as they are two power
converters connected in parallel to the grid through the DFIG
and LGSC , respectively. This interaction must be considered
in the design procedure of the SSRD, as the stability of both
power converters is strongly influenced by each other and the
SSRD cannot be adjusted just with the expression in (23).

In Fig. 8 (a) the eigenvalues of the RSC inner SSR damper
loop, correlating VRDdq with VRcontdq are represented for
[FFR] equal to (23) (blue curves), considering the GSC
current control loop influence (with IGref dq = 0). The slip is
0.25 and the series compensation capacitor, Cg , compensates
80% of the line impedance. Only the lowest rotational speed
is represented, because it is the case that introduces a greater
instability, given that the magnitude in the Bode diagrams of
Fig. 5 is higher at reduced DFIG rotational speeds for both line
impedance compensation levels. These results match the ones
published by [1]. According to the MIMO GBC, as there are
two ±m180 degree (m odd integer) crossings with positive
magnitude, marked by the blue dots, the capacitor voltage
positive feedback introduces 4 unstable poles. Similarly, in
Fig. 8 (b), for a slip = 0.25 and a 50% line impedance
compensation (blue curves), the same conclusion is drawn. In
both cases, λFFR1 has two negative crossings, and thus, the
stator voltage positive feedback loop introduces four unstable
poles.

Nevertheless, the SSR instability is only introduced in
one of the eigenvalues at positive frequencies, λFFR1. Con-
sequently, if a rotation is introduced in the stator voltage
feedback without changing the magnitude plot, these ±m180
degree crossings can be avoided. (24) shows the proposed sub-
synchronous resonance damper when a rotation matrix [RM ],
by an angle α, is applied

[FFR] =[RM ][B]−1
(
I + [ZLlR

]ω0 [ZLm ]−1
ω0

)
=

[
cosα −sinα
sinα cosα

]
×

[
LR

Lm

s2+ω0ωR

s2+ω2
0

LR

Lm

sωm

s2+ω2
0

− LR

Lm

sωm

s2+ω2
0

LR

Lm

s2+ω0ωR

s2+ω2
0

]
,

(24)

Fig. 6. GSC and RSC current control loops with the SSRD represented in
green.

Fig. 7. Block diagram representation of the DFIG matrix impedance model.

where LR is the sum of Lm and the rotor leakage inductance,
LlR.

A -120 degree rotation is added (α = −120), and the
eigenvalues are represented again (orange curves in Fig. 8 (a)
and (b)). With this rotation, the SSRD does not introduce any
unstable poles, as the resulting eigenvalues do not present any
crossing with positive magnitude. Thus, the stabilizing effect
in the outer current control loop of the proposed controller
based on the [FFR] matrix in (24) can be evaluated.

The open-loop matrix eigenvalues of the RSC and the GSC
current control loops, that correlate IRfdq with εRdq (blue

(a)

(b)

Fig. 8. Inner SSR damper loop eigenvalues’ Bode diagram without a rotation
in [FFR] (blue) and for a -120 degree rotation (orange) with an 80% line
impedance compensation (a) and 50% (b).
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Fig. 9. RSC (blue) and GSC (orange) current control loop eigenvalues’ Bode
diagram with the proposed SSRD and an 80% line impedance compensation
(a) and 50% (b).

curves), and IGfdq with εGdq (orange curves), are represented
in Fig. 9 for a slip equal to 0.25. These open-loop transfer
function matrices include the inner SSRD adjusted previously.
It can be seen that neither the RSC nor the GSC eigenvalues
have ±m180 degree crossings with positive magnitude, and
thus the closed-loop current control loops are stable.

The analysis performed through the eigenvalues’ Bode
diagram and the MIMO GBC is confirmed by the closed-
loop pole representation in Fig. 10. The closed-loop poles
are represented for all the range of possible rotational speeds
(wind speeds), and three line impedance compensation levels
80%, 50% and 20%. In all the cases, the system is stable,
proving that the SSR damper is effective and robust.

IV. SIMULATION RESULTS

To validate the proposed sub-synchronous resonance
damper, a model is created in Matlab using the Simscape Elec-

(a)

(b)

(c)

Fig. 10. Closed-loop pole evolution for the whole range of possible rotational
speeds for an 80% line impedance compensation (a), 50% (b), and 20% (c).

trical Library. The system parameters are the ones specified
in Table I.

Fig. 11 shows the grid current evolution as the proposed



(a)

(b)

Fig. 11. Grid current transient simulation disabling the SSR damping strategy
at 2.5 s for an 80% (a) and a 50% (b) line impedance compensation level.

SSRD is transiently disabled. At the beginning of the simu-
lation, the system is stable, but when the SSRD is disabled
([FFR] = [0]) at 2.5 s, the grid current becomes unstable and
a SSR component appears. However, if the damping control
strategy is enabled at 3 s the system becomes stable again. The
simulation is performed for an 80% and a 50% line impedance
compensation level and with a slip = 0.25, the minimum
rotational speed. These results confirm the stability analysis
and the conclusions drawn from Fig. 5 and Fig. 9. It also
proves the robustness of the proposed SSRD.

V. CONCLUSION

In this paper a sub-synchronous resonance damper imple-
mented in the RSC and based on the capacitor voltage positive
feedback is proposed. The damping strategy depends on the
DFIG impedances and a rotation. The DFIG impedances are
used to refer the stator voltage to the rotor terminals, where
the RSC is connected. In contrast, the rotation guarantees
the stability regardless of the DFIG operation point and the
interaction of the RSC with the GSC. The proposed control
strategy is robust, as it can stabilize the system for any line
impedance compensation level and DFIG rotational speed,
meaning that it is stable for any wind speed. Moreover, the
sub-synchornous resonance damper is based on local and
already measured variables in DFIG wind turbines, i.e. the

output filter capacitor voltage, so it can be implemented in
any new or existing DFIG wind turbine with minor changes
in the control algorithm.
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