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Abstract—This paper presents a fuzzy-based power 
exchange management between two neighboring residential 
grid-connected microgrids comprising both photovoltaic 
generation and battery energy storage system (BESS). The 
proposed power exchange management accounts for the 
magnitude of the energy rate-of-change of each microgrid and 
the charge difference between the BESSs of both microgrids to 
charge the ESS that has an energy deficit. As such, the 
proposed power exchange management can reduce the amount 
of power absorbed from the mains of each microgrid by 
operating jointly with each other rather than separately, and it 
also synchronizes the ESS of both microgrids, improving the 
behavior of ESSs. A comparison of the simulated results for a 
scenario with and without power exchange is presented in 
order to demonstrate the adequate behavior of the proposed 
power exchange management. 

Keywords—energy management, cooperative microgrid, 
Fuzzy Logic control, power exchange, grid-tied microgrids 

I. INTRODUCTION

The growth of energy demand in the last decades has led 
to the inclusion of alternative generation systems to support 
the main network, which in turn, has led to the appearance of 
residential microgrids commonly based on photovoltaic 
generation and energy storage systems (ESS) [1]. In this 
residential microgrid scenario, energy management systems 
(EMS) [2], [3] are responsible for, among others, regulating 
the power flow within the microgrid to minimize the amount 
of power absorbed from the main grid while maintaining the 
comfort of home inhabitants [4]. 

In residential microgrids (MG), the generation and 
storage of energy is mostly limited to each MG, therefore by 
a larger grid of these grid-tied interconnected microgrids is 
referred as multi-microgrids (MMS) [5] or networked 
microgrids NMGs. The microgrids involved in an MMS may 
collaborate with each other on a centralized or decentralized 
manner in order to allocate resources and coordinate the 
operation of individual MGs, [6]. Operators of MMS are still 
confronted with many challenges due to very different 
owners of MGs, privacy issues and adopted management 

strategy, actually one among these four strategies for MG 
management: centralized, decentralized, hybrid, and nested 
[7]. Not only is the chosen type of EMS important when 
dealing with MMS but also the strategies for coping with 
contingencies. Some of these strategies presented in various 
publications, like e.g., [5], [8], [9], include solving of  
unforeseen events by using variable weighted multi-objective 
functions, where the weights are changed depending of the 
type of contingency and based on an efficient optimization 
algorithm called targeted search shuffled complex evolution 
for quick decisions. However, this seems a time-consuming 
strategy since all possible types of contingencies should be 
accounted for in development of the algorithms. Many of the 
published literature related to MMS makes use of Model 
predictive control (MPC) strategies for developing EMS in 
such MMS, like [8], [10], [11] that describe hierarchical 
stochastic energy management strategies for MMS with 
endogenous and exogenous sources of uncertainties. 
However, as many authors have shown the MPC strategies 
have the drawback of longer computational times depending 
on various parameters. Bi-level EMS wherein both exchange 
of information and power is possible are also common in the 
literature [6], [12], [13]. Most of these models, mostly multi-
agent-based models, analytical models and auction models, 
include also energy pricing and (peer-to-peer, P2P) trading 
components among the participants and various cooperation 
and decision making strategies, like in [14]–[20]. In the very 
comprehensive overview in [21] the limitations of EMS for 
resilient interconnected MGs have been studied to show that 
there may exist fundamental discrepancies between real and 
estimated system states of an EMS due to the uncertainties in 
the real systems.  

Since one of the critical components in MGs, with large 
impact on MG’s total costs, is the battery ESS (BESS), care 
is needed when designing EMS to guarantee the optimal use 
of these BESSs. It is known that the lifetime of the battery 
reduces during charging and discharging cycles, therefore 
state-of-charge (SOC) of the BESS should remain in the safe 
and advisable ranges. Cooperation strategies for energy 
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Fig. 5. MFs of the difference in charge between the energy storage 
systems of MG1 and MG2 

Similarly, the output variables PXC1-2 (n) and PXC2-1 (n) are 
mapped into four fuzzy sets represented by four triangular 
MFs, namely zero (ZE), small (S), medium (M), and big (B), 
as shown in Fig. 6(a) and Fig. 6(b). 

        (a)                                                        (b) 
Fig. 6. MFs of the fuzzy logic outputs (a) PXC1-2 (n) and (b) PXC1-2 (n) 

The inputs and outputs MFs are distributed along the 
variation range defined as: 

( ) ( ) ( )( )MIN MAX
AVG MGx AVG MGx AVG MGxP P n P≤ ≤   (12) 

1 250% ( ) ( ) 50%MG MGSOC n SOC n− ≤ − ≤ (13) 

1 2 2 1
0 ( ) 0.3 0 ( ) 0.3XC XCP n P n

− −
≤ ≤ ≤ ≤   (14) 

where ( )
MIN

AVG MGxP and ( )
MAX

AVG MGxP are the minimum and 
maximum variation of ERoC (i.e., derivative term computed 
by block 2 of Fig. 2), respectively, of each microgrid MG1 
and MG2, which according to [23] are expressed in W/s and 
are calculated using the approximation developed in [26] 
considering a time window TW, of one day 
(i.e., TW = 60∙60∙24 = 86400s). Note that this study assumes a 
scenario where two neighboring residential microgrids 
exchange energy. In this scenario, it is considered that the 
two residences have a different consumption profile and 
since they are neighbors, the generation of photovoltaic 
power is the same. Therefore: 

( ) ( )( ) ( )9 10MAX
AVG MGx LOAD MGx WP P T= ⋅ (15) 

( ) ( )( ) 9 10MIN
AVG MGx PV WP P T= ⋅ (16) 

where PLOAD(MGx) is the load power of MG1 or MG2, 
respectively.  

Under different operating conditions, the control policy 
can be described in terms of 32 linguistic rules implemented 
in the FLC. For instance, the heuristic knowledge, for the 
highlighted rule, is explained next:  

IF the BESS of MG1 has a higher amount of energy 
stored than the BESS of MG2 (i.e., SOCMG1 - SOCMG2  is P) 
AND the MG1 has a strong negative ERoC, which implies a 
strong increase of power generation or a strong decrease in 
power consumption (i.e., ṖAVG(MG1) is NB) AND the MG2 has 
a strong positive ERoC, which implies a strong increase of 
load consumption or a strong decrease in generating power 
(i.e., ṖAVG(MG2) is PB) THEN a large percentage of the energy 
stored in the BESS of MG1 is exchanged to the BESS of 
MG2 (i.e., PXC1-2 is B and PXC2-1  is ZE). Consequently, there is 
a power exchange from MG1 to MG2 only. 

TABLE I. POWER EXCHANGE FUZZY LOGIC RULE-BASE 

  PXC1-2 (n) 
  PXC2-1 (n) 

ṖAVG (MG2) (n) 

NB NS PS PB 

ṖAVG (MG1) (n) 

NB S/ZE M/ZE B/ZE B/ZE 
NS S/ZE M/ZE M/ZE B/ZE 

PS ZE/ZE ZE/ZE M/ZE M/ZE 

PB S/ZE S/ZE ZE/ZE S/ZE 

SOCMG1 (n) - SOCMG2 (n) P 

  PXC1-2 (n) 
 PXC2-1 (n) 

ṖAVG (MG2) (n) 

NB NS PS PB 

ṖAVG (MG1) (n) 

NB ZE/S ZE/S ZE/ZE ZE/S 

NS ZE/M ZE/M ZE/ZE ZE/ZE 

PS ZE/B ZE/M ZE/M ZE/S 

PB ZE/B ZE/M ZE/S ZE/S 

SOCMG1 (n) - SOCMG2 (n) N 

The adjustment of all parameters involved in the fuzzy 
controller (e.g., number of MFs per input/output, mapping, 
and rule-base), is performed by an off-line adjustment 
procedure [27] towards minimization of a set of quality 
criteria. This set of quality criteria are defined in [23]–[25], 
[28], [29]and includes PG,MAX the maximum power delivered 
by the grid in one year, PG,MIN the maximum power fed into 
the grid in one year, MPD the maximum power derivative of 
PGRID in one year, APD the yearly average power derivative 
of PGRID, PVR the power variation range of PGRID, and PPV 
the grid power profile variability. These criteria are used to 
quantify the performance of an EMS, where a lower value 
implies an improved EMS. 

IV. SIMULATION RESULTS

The performance of the proposed EMS is tested using the 
same generation profile in both microgrids and different 
consumption profile in each microgrid. Fig. 7 presents the 
grid power profile of MG1 before and after performing the 
power exchange (PE) with MG2. It can be seen that the grid 
power profile of MG1 has reduced its power peaks (area 
marked with red dashed circles on top graph) after the power 
exchange and the maximum power absorbed from the mains  
is PG,MAX = 1.910 kW while the   maximum power injected to 
the mains is PG,MIN = -1.483 kW. Furthermore, Fig. 8 shows 
the evolution of battery SOC for MG1. It can be seen that 
BESS of MG1 is more efficiently managed and prevents the 
battery SOC from approaching its full charge and minimum 
discharge limit. This behavior is best presented in Fig. 9 
where the operation of the proposed fuzzy-based power 
exchange management on six consecutive days is shown. 



Fig. 7. Yearly grid power profile of MG1 before (top) and after (bottom) 
the power exchange with MG2 

Fig. 8. Yearly evolution of battery SOC of MG1 before (top) and after 
(bottom) the power exchange with MG2 

Fig. 9. Grid power profile and battery SOC of MG1 before and after using 
the proposed fuzzy-based power exchange management on 6 consecutive 
days  

Similarly, Fig. 10, Fig. 11, and Fig. 12 show that the 
same results are achieved in MG2, namely reduction of 
power peaks and improved BESS management, for instance 
as shown in Fig. 10, the maximum power absorbed from the 
mains is PG,MAX = 1.535 kW and the maximum power fed 
into the grid is PG,MIN = -1.515 kW after performing the 
power exchange between microgrids. 

Fig. 10. Yearly grid power profile of MG2 before (top) and after (bottom) 
the power exchange with MG1 

Fig. 11. Yearly battery SOC of MG2 before (top) and after (bottom) the 
power exchange with MG1 

Fig. 12. Grid power profile and battery SOC of MG2 before and after using 
the proposed fuzzy-based power exchange management on 6 consecutive 
days 

  (a)  (b) 
Fig. 13. Histogram (in %) of the battery SOC ranges established for MG1 
and MG2 before and after using the proposed fuzzy-based power exchange 
management 

Fig. 14 presents the behavior of ESSs of both MG1 and 
MG2 during two periods of six consecutive days. It can be 
observed that before performing the power exchange 
between microgrids, each BESS operates autonomously 
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intending to improve the individual performance of each 
microgrid. However, after performing the power exchange, 
both BESSs are synchronized, improving the behavior of 
each microgrid for working together rather than individually. 

Fig. 14.  The battery SOC of MG1 and MG2 before and after the power 
exchange between them.  

Finally, the proposed fuzzy-based power exchange 
management achieves an important reduction in the 
magnitude of the defined quality criteria concerning the 
individual performance of each microgrid without power 
exchange. In short, after the power exchange between 
microgrids, the absolute values of all defined quality criteria 
has been reduced, which results are summarized in Table II. 

TABLE II. QUALITY CRITERIA COMPARISON BEFORE AND AFTER THE 
POWER EXCHANGE BETWEEN MICROGRIDS 

Scenario 
Grid power profile quality criteria 

PG,MAX 
(kW) 

PG,MIN 
(kW) 

MPD 
(W/h) 

APD 
(W/h) PVR PPV 

MG1 before 
PE 1.924 -1.575 661 41.84 0.34 2.51 

MG1 after 
PE 1.910 -1.483 600 38.29 0.33 2.46 

MG2 before 
PE 1.678 -1.638 748 42.98 0.38 2.12 

MG2 after 
PE 1.535 -1.515 685 36.63 0.35 2.03 

V. CONCLUSIONS 
This paper has presented a fuzzy-based power exchange 

management between two grid-connected interconnected 
residential microgrids with renewable generation and battery 
storage system. The proposed power exchange management 
has been designed considering the magnitude of the energy 
rate-of-change of each microgrid and the SOC difference 
between the BESSs of both microgrids. The proposed 
strategy has reduced power fluctuations in the grid power 
profile of both microgrids achieving a maximum power fed 
into the grid of 1.483 kW and 1.515 kW for MG1 and MG2, 
respectively, and a maximum power injected by the grid of 
1.910 kW and 1.535 kW for each microgrid. Also, the use of 
the proposed fuzzy-based power exchange management has 
improved the battery SOC evolution in the year under study 
where the battery SOC of each microgrid has kept in a range 
between 60% and 80% of the rated battery capacity the 84% 
of the year. The operation of the microgrids under this 
scheme has led to the BESS of both microgrids being 
synchronized, which allows improving the behavior of the 
BESS of each microgrid by working together rather than 
individually. Finally, the proposed EMS has contributed to 
the reduction of the quality criteria, which implies an 

improved quality in the grid power profile. Future work will 
focus on extending the proposed study for a scenario of 
multiple interconnected residential microgrids. The behavior 
of the EMS will be studied when including generation and 
demand forecast. Besides, interconnection scenarios of 
multiple isolated microgrids will be analyzed. 
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