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Abstract. The list of known Banach spaces whose linear geome-
try determines the (nonlinear) democracy functions of their quasi-
greedy bases to the extent that they end up being democratic,
reduces to c0, `2, and all separable L1-spaces. Oddly enough,
these are the only Banach spaces that, when they have an un-
conditional basis, it is unique. Our aim in this paper is to study
the connection between quasi-greediness and democracy of bases
in non-locally convex spaces. We prove that all quasi-greedy bases
in `p for 0 < p < 1 (which also has a unique unconditional ba-
sis) are democratic with fundamental function of the same order
as (m1/p)∞m=1. The methods we develop allow us to obtain even
more, namely that the same occurs in any separable Lp-space,
0 < p < 1, with the bounded approximation property.

1. Introduction

The study of greedy-like bases from a functional analytic point of view
sprang from the celebrated characterization of greedy bases in Ba-
nach spaces as those bases that are simultaneously unconditional and
democratic [25]. Since Konyagin and Temlyakov’s foundational result,
several authors have considered derived forms of unconditionality and
democracy which, either combined or separately, have given rise to
new types of bases of interest both in approximation theory and in
functional analysis. In this paper we are concerned with the possible
connections between the properties of unconditionality and democracy
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(or some of its variations) in the general framework of quasi-Banach
spaces.

We shall start by recalling the main concepts that we will need and
setting the terminology.

Throughout this paper, a basis of a quasi-Banach space (in particu-
lar, a Banach space) X over the real or complex scalar field F will be a
norm-bounded sequence X = (xn)∞n=1 that generates the entire space
X and for which there is a (unique) bounded sequence (x∗n)∞n=1 in the
dual space X∗ such that (xn,x

∗
n)∞n=1 is a biorthogonal system. A basic

sequence in X will be a sequence which is a basis of its closed linear
span. According to this definition, a basic sequence (xn)∞n=1 in X is
semi-normalized, i.e., it satisfies

0 < inf
n∈N
‖xn‖ ≤ sup

n∈N
‖xn‖ <∞.

Note that semi-normalized Schauder bases are a particular case of
bases.

For a fixed sequence γ = (γn)∞n=1 ∈ FN, let us consider the map

Sγ = Sγ[X ,X] : span(xn : n ∈ N)→ X,
∞∑
n=1

an xn 7→
∞∑
n=1

γn an xn.

The basis X is unconditional if Sγ is well-defined on X for all γ ∈ `∞
and

Ku = Ku[X ,X] := sup
‖γ‖∞≤1

‖Sγ‖ <∞. (1.1)

If X is unconditional, Ku is called the unconditional basis constant.
Now, given A ⊆ N, we define the coordinate projection onto A (with
respect to the basis X ) as

SA = SγA [X ,X],

where γA = (γn)∞n=1 is the sequence defined by γn = 1 if n ∈ A and
γn = 0 otherwise. It is known (see, e.g., [2, Theorem 1.10]) that X is
unconditional if and only if it is suppression unconditional, i.e.,

sup{‖SA‖ : A ⊆ N finite} <∞.

Given a basis X = (xn)∞n=1 of a quasi-Banach space X, the coefficient
transform

F : X→ FN, f 7→ (x∗n(f))∞n=1

is a bounded linear operator from X into c0, hence for each m ∈ N
there is a unique A = Am(f) ⊆ N of cardinality |A| = m such that
whenever n ∈ A and k ∈ N \ A, either |an| > |ak| or |an| = |ak| and
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n < k. The mth greedy approximation to f ∈ X with respect to the
basis X is

Gm(f) = Gm[X ,X](f) := SAm(f)(f).

Note that the operators (Gm)∞m=1 defining the greedy algorithm on X
with respect to X are not linear nor continuous. The basis X is said
to be quasi-greedy if there is a constant C ≥ 1 such that

‖Gm(f)‖ ≤ C‖f‖, f ∈ X, m ∈ N.

Equivalently, by [37, Theorem 1] (see also [2, Theorem 3.1]), these are
precisely the bases for which the greedy algorithm merely converges,
i.e.,

lim
m→∞

Gm(f) = f for all f ∈ X.

This characterization shows that if the basis X is quasi-greedy then its
coefficient transform is one-to-one, i.e., X is a Markushevich basis (see
[2, Corollary 3.5]).

Unconditional bases area special kind quasi-greedy bases, and al-
though the converse is not true in general, quasi-greedy basis always
retain in a certain sense a flavour of unconditionality. For example,
they are suppression unconditional for constant coefficients (or SUCC,
for short), i.e., there is a constant C ≥ 1 such that whenever A, B are
finite subsets of N with A ⊆ B and (εn)n∈B are signs (i.e., scalars of
modulus one) we have∥∥∥∥∥∑

n∈A

εn xn

∥∥∥∥∥ ≤ C

∥∥∥∥∥∑
n∈B

εn xn

∥∥∥∥∥
(see [2, Lemma 2.2] and [37, Proposition 2]). If the basis is SUCC then
there is another constant C ≥ 1 such that∥∥∥∥∥∑

n∈A

θn xn

∥∥∥∥∥ ≤ C

∥∥∥∥∥∑
n∈A

εn xn

∥∥∥∥∥ (1.2)

for all finite subsets A of N and all choice of signs (θn)n∈A and (εn)n∈A.
In turn, a basis X = (xn)∞n=1 of a quasi-Banach space X is said to be

democratic if blocks of X of the same size have uniformly comparable
quasi-norms, i.e., there is a constant D ≥ 1 such that∥∥∥∥∥∑

n∈A

xn

∥∥∥∥∥ ≤ D

∥∥∥∥∥∑
n∈B

xn

∥∥∥∥∥ ,
for any two finite subsets A, B of N with |A| = |B|. The lack of
democracy of a basis X exhibits some sort of asymmetry. To measure
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how much a basis X deviates from being democratic, we consider its
upper democracy function, also known as its fundamental function,

ϕu[X ,X](m) := ϕu(m) = sup
|A|≤m

∥∥∥∥∥∑
n∈A

xn

∥∥∥∥∥ , m = 1, 2, . . . ,

and its lower democracy function,

ϕl[X ,X](m) := ϕl(m) = inf
|A|≥m

∥∥∥∥∥∑
n∈A

xn

∥∥∥∥∥ , m = 1, 2, . . .

If X is SUCC then ϕl(m) . ϕu(m) for m ∈ N, hence X is democratic
if and only ϕu(m) . ϕl(m) for m ∈ N. Moreover, for any set A with
|A| = m we have

inf
|A|=m

∥∥∥∥∥∑
n∈A

xn

∥∥∥∥∥ . ϕl[X ,X](m), m = 1, 2, . . . , (1.3)

in which case it is super-democratic, i.e., there is a constant D ≥ 1 such
that ∥∥∥∥∥∑

n∈A

θn xn

∥∥∥∥∥ ≤ D

∥∥∥∥∥∑
n∈B

εn xn

∥∥∥∥∥
for any two finite subsets A, B of N with |A| = |B|, and any signs
(θn)n∈A and (εn)n∈B. Here, and throughout this paper, the symbol
αj . βj for j ∈ J means that there is a positive constant C <∞ such
that the families of non-negative real numbers (αj)j∈J and (βj)j∈J are
related by the inequality αj ≤ Cβj for all j ∈ J . If αj . βj and
βj . αj for j ∈ J we say (αj)j∈J are (βj)j∈J are equivalent, and we
write αj ≈ βj for j ∈ J .

Quasi-greedy vs. democratic bases. In general, quasi-greedy (or
even unconditional) bases need not be democratic and, conversely,
democratic bases may not be quasi-greedy. Thus, these two proper-
ties are a priori independent of each other and they can be thought of
as the two pillars that sustain the entire theory of greedy approximation
using bases. Indeed, apart from the aforementioned characterization of
greedy bases in terms of unconditionality and democracy, this claim is
supported by the characterization of almost greedy basis as those bases
that are at the same time quasi-greedy and democratic [12].

In order to investigate the connection between quasi-greediness and
democracy, it is very natural to ask in which way the geometry of the
space affects the democracy functions of quasi-greedy bases. For in-
stance, although the democracy functions ϕl[X ,X] and ϕu[X ,X] may
vary as we consider different quasi-greedy bases X within the same
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space X, there exist spaces for which all quasi-greedy bases have essen-
tially the same democracy functions. The first result in this direction
appeared in [37] where it was proved that for any quasi-greedy basis B
in `2 we have

ϕl[X , `2](m) ≈ m1/2 ≈ ϕu[X , `2](m), m ∈ N, (1.4)

so that all quasi-greedy bases of `2 are democratic.
Subsequently, Dilworth el al. proved that the unit vector system is,

up to equivalence, the unique quasi-greedy basis of c0 (see [11, Corol-
lary 8.6]), hence formally speaking all quasi-greedy bases X in c0 are
democratic with ϕu[X , c0] ≈ ϕl[X , c0] ≈ 1. In this case even more can
be said, namely that c0 is the unique Banach space whose dual is a
GT space and has a quasi-greedy basis ([11, Proposition 8.1]). In par-
ticular, c0 is the unique L∞-space with a quasi-greedy basis. In this
line of thought, Dilworth et al. [13] achieved the following result, which
applies, in particular to `1 and L1.

Theorem 1.1 ([13, Theorem 4.2]). Suppose that X is a quasi-greedy
basis of a GT space X. Then X is democratic with

ϕl[X ,X](m) ≈ m ≈ ϕu[X ,X](m), m ∈ N.

The non-specialist reader will find in the Appendix (see Section 4)
the necessary information on Lp-spaces, 1 ≤ p ≤ ∞, and GT spaces.

Let us next summarize the interplay between quasi-greediness and
democracy for bases in the spaces `p and Lp = Lp([0, 1]) for 1 < p <
∞, p 6= 2. Despite the fact that any super-democratic (in particular,
democratic and quasi-greedy) basis of `p satisfies

ϕl[X , `p](m) ≈ m1/p ≈ ϕu[X , `p](m), m ∈ N,
(see [1, Corollary 2.7]), `p possesses quasi-greedy bases that are not
democratic. Roughly speaking this could be interpreted by saying that
the linear structure of `p for p 6= 2, 1 is less restrictive on the (nonlinear)
democracy functions of quasi-greedy bases of the space, and in fact the
only geometric features that shed any information in this respect are
the Rademacher type and cotype. Indeed, a similar argument to the
one used in [37] to obtain (1.4) yields that all SUCC bases X of a
quasi-Banach X with type 0 < q ≤ 2 and cotype r ≥ 2 satisfy

m1/r . ϕl[X ,X](m), and ϕu[X ,X](m) . m1/q, m ∈ N (1.5)

(cf. [1, Lemma 2.5]). In the case when X = `p or X = Lp, 1 < p <∞,
these estimates are sharp. Indeed, it is well-known (see ([33]) that
for 1 < p < ∞, the space `p is isomorphic to Xp = (

⊕∞
n=1 `

n
2 )`p .

Hence, the canonical basis of Xp provides (through the isomorphism)
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an unconditional, hence quasi-greedy, basis of `p with ϕl(m) ≈ m1/r

and ϕu(m) ≈ m1/q for m ∈ N, where r = min{p, 2} is the optimal type
of `p and q = max{p, 2} is its optimal cotype.

As far the space Lp([0, 1]) for 1 < p < ∞, p 6= 2, is concerned we
point out that, unlike `p, this space possesses democratic quasi-greedy
bases with different fundamental functions. To see this it is convenient
to recall the following result.

Theorem 1.2 (see [32, Theorem 1.4] and [13, Theorem 1.4]). There is
an orthogonal system Ψ = (ψn)∞n=1 in L2 with supn ‖ψn‖∞ < ∞ such
that Ψ is a quasi-greedy basis of Lp for each 1 < p <∞.

Now, on one hand, if 1 < p < ∞ and Ψ is as in Theorem 1.2, by
[3, Proposition 2.5] we have

ϕl[Ψ, Lp](m) ≈ m1/2 ≈ ϕm[Ψ, Lp](m), m ∈ N.

On the other hand, the Lp-normalized Haar system H(p) is a uncondi-
tional and democratic basis of Lp with

ϕl[H(p), Lp](m) ≈ m1/p ≈ ϕm[H(p), Lp](m), m ∈ N

(see [35]). In contrast, since any unconditional basis of Lp possesses
a subbasis equivalent to the unit vector system of `p (see [19]), any
democratic unconditional basis X of Lp satisfies

ϕl[X , Lp](m) ≈ m1/p ≈ ϕu[X , Lp](m), m ∈ N.

Since `2 is a complemented subspace of Lp, applying [16, Proposition
6.1] yields that the direct sum of H(p) and the unit vector system of
`2 is an unconditional basis (hence, quasi-greedy) basis of (a space
isomorphic to) Lp with ϕl(m) ≈ m1/r and ϕu(m) ≈ m1/q for m ∈
N. Let us also mention that every Lp-space X other than `p has a
democratic quasi-greedy basis with fundamental function equivalent to
(m1/s)∞m=1 for s ∈ {2, p} (see [4, Example 4.6]).

The above examples show that the connection between democracy
and quasi-greediness of bases in Lp-spaces for 1 ≤ p ≤ ∞ is by now
completely understood. The attentive reader might have noticed a
pattern here, namely that the only indices p ∈ [1,∞] for which all
quasi-greedy bases of `p (with the convention that `∞ means c0) are
democratic coincide with the values of p for which `p has a unique
unconditional basis ([26, 30,31]).

Motivated by those results, and also by the recent nontrivial ex-
tension to (not necessarily locally convex) quasi-Banach spaces of the
characterization of almost greedy bases as democratic and quasi-greedy
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(see [2, Theorem 5.3]), in this article we initiate the study of the con-
nection between quasi-greediness and democracy of bases in the lack of
local convexity of the underlying space. Since Lp([0, 1]) for 0 < p < 1
has trivial dual (making it therefore impossible for Lp to have a ba-
sis), the first non-locally convex spaces that come to mind as objects
of study are the spaces `p for 0 < p < 1. Kalton proved that these
spaces also have a unique unconditional basis (see [20]), hence it seems
reasonable to conjecture that quasi-greedy bases in `p for 0 < p < 1
will follow the pattern of quasi-greedy bases in `p for p = 1, 2,∞, and
will end up being democratic. Our guess was reinforced by the results
obtained in the recent paper [5], where the authors construct a con-
tinuum of mutually permutatively nonequivalent quasi-greedy bases in
each `p, and all of them are democratic. The main result of the present
paper consists of confirming our conjecture by showing the following
theorem.

Theorem 1.3. Let 0 < p < 1. If X is a quasi-greedy basis of `p then

ϕl[X , `p](m) ≈ m1/p ≈ ϕu[X , `p](m), m ∈ N.
In particular, X is democratic.

Note that the p-convexity of the space immediately yields that any
basis X of a p-Banach space X , 0 < p ≤ 1, satisfies

ϕu[X ,X](m) . m1/p, m ∈ N. (1.6)

So, the challenge with Theorem 1.3 consists on developing the specific
tools that permit to show that when 0 < p < 1, m1/p . ϕl[X , `p](m)
for m ∈ N. We will take care of this in Section 3. Prior to that, for
the reader’s sake, in Section 2 we gather the most relevant preliminary
results. We close with an Appendix mainly devoted to providing a
simplified and more direct proof of Theorem 1.1. This last section has
a heuristic purpose and exhibits once again the fact that the methods
used for the case p = 1 are rendered useless when the local convexity
of the space is lifted.

We use standard facts and notation from Banach spaces and approx-
imation theory (see, e.g., [6,15]). The reader will find the required spe-
cialized background and notation on greedy-like bases in quasi-Banach
spaces in [2].

2. Preliminaries

A family of nonlinear operators of key relevance in the study of the
convergence of the greedy algorithm (Gm)∞m=1 in a quasi-Banach space
X with respect to a basis X = (xn)∞n=1is the sequence (Um)∞m=1 of
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restricted truncation operators, defined as follows. For m ∈ N, the
mth-restricted truncation operator Um : X→ X is the map

Um(f) = U(f, Am(f)), f ∈ X,
where for each f ∈ X and each A ⊆ N finite,

U(f, A) = min
n∈A
|x∗n(f)|

∑
n∈A

sign(x∗n(f))xn.

Here, as is customary, sign(·) denotes the sign function, i.e., sign(0) = 1
and sign(a) = a/|a| if a ∈ F \ {0}.

A crucial property for our purposes is that quasi-greedy bases in
quasi-Banach spaces have the bounded restricted truncation operator
property, i.e., the operators (Um)∞m=1 are uniformly bounded ([2, The-
orem 3.13]).

Since a basis X is unconditional if and only if it is suppression un-
conditional, to quantify the conditionality of a quasi-greedy basis in a
quasi-Banach space X we use the conditionality constants of the basis,

km[X ,X] = sup
|A|≤m

‖SA[X ,X]‖, m = 1, 2, . . .

If X is a p-Banach space, then the p-convexity of the space immediately
yields km[X ,X] . m1/p for m ∈ N, and this is the best one can hope
for in general. Indeed, the difference basis of `p given by d1 = e1 and
dn = en − en−1 for n = 2, 3, . . . , satisfies km[X ,X] ≥ (2m)1/p for
each m. As is customary, en denotes the nth unit vector basis of FN,
i.e, en = (δk,n)∞k=1, where δk,n = 1 if k = n and δk,n = 0 otherwise.
However, when the basis is quasi-greedy the size of the members of the
sequence (km[X ,X])∞m=1 is controlled by a slowly growing function:

Theorem 2.1 (see [5, Theorem 5.3]). Let X be a p-Banach space,
0 < p ≤ 1. Suppose X is a basis of X with the bounded restricted
truncation operator property. Then

km[X ,X] . (1 + log(m))1/p, m ∈ N.

Let us next recall the basic ingredients and facts that we will need
about embeddings via bases. Loosely speaking, this method aims at ob-
taining qualitative estimates on the symmetry of bases in X by squeez-
ing the space X in between two symmetric sequence spaces that are
sufficiently close to each other.

A symmetric sequence space will be a subset S ⊆ FN equipped with
a “gauge” ‖ · ‖S : FN → [0,∞] such that

(q1) ‖f‖S > 0 for all f 6= 0;
(q2) ‖t f‖S = |t| ‖f‖S for all t ∈ F and all f ∈ FN;
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(q3) ‖(bj)∞j=1‖S ≤ ‖(aj)∞j=1‖S whenever |bj| ≤ |aj| for every j ∈ N;
(q4) ‖

∑
j∈A en‖S <∞ for every A ⊆ N finite;

(q5) if the sequence (aj,k)j,k∈N ⊆ [0,∞) is non-decreasing in k, then∥∥∥∥(lim
k
aj,k

)∞
j=1

∥∥∥∥
S

= lim
k
‖(aj,k)∞j=1‖S;

(q6) ‖(aπ(j))
∞
j=1‖S = ‖(aj)∞j=1‖S for every permutation π of N;

(q7) S = {f ∈ FN : ‖f‖S <∞}.
Let S be a symmetric sequence space and X be a quasi-Banach space

with a basis X . Let us denote by F the coefficient transform with
respect to X . The following terminology was introduced in [1].

(a) We say that S embeds in X via X , and put S X
↪→ X, if there is a

constant C such that for every g ∈ S there is f ∈ X such that
F(f) = g, and we have ‖f‖ ≤ C‖g‖S.

(b) We say that X embeds in S via X , and put X X
↪→ S, if there is

a constant C such that F(f) ∈ S with ‖F(f)‖S ≤ C‖f‖ for all
f ∈ X.

Given a sequence (an)∞n=1 in F with limn an = 0, the non-increasing
rearrangement of (|aj|)∞j=1 will be denoted by (a∗n)∞n=1. Letw = (wn)∞n=1

be a sequence of positive numbers, and let s = (sn)∞n=1 be its primitive
weight defined by sn =

∑n
k=1 wk for n ∈ N. For 0 < q ≤ ∞, the

weighted Lorentz sequence space dq(w) is the symmetric sequence space
associated to the gauge ‖ · ‖q,w defined for f = (aj)

∞
j=1 by

‖f‖q,w =

(
∞∑
n=1

(a∗n)qsq−1
n wn

)1/q

, if 0 < q <∞,

and

‖f‖∞,w = sup
n
sna

∗
n, if q =∞.

If s = (sn)∞n=1 is an increasing weight we denote by ∆s = (sn−sn−1)∞n=1

its difference weight (with the convention that s0 = 0). There is an
obvious relation between primitive and difference weights: if w = ∆s
then s is the primitive weight of w. Note that, if sα = (nα)∞n=1 then
dq(∆s1/p) = `p,q, for all 0 < p <∞ and 0 < q ≤ ∞.

The following lemma summarizes the connections between greedy-
like bases and embeddings involving sequence Lorentz spaces. We refer
the reader to [1,4,7,8,11,37] for the uses of this type of embeddings in
the theory of non-linear approximation in Banach spaces with respect
to bases.
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Lemma 2.2 (see [2, Theorem 8.12 and Corollary 8.13]). Let X be a
basis of a q-Banach space X, 0 < q ≤ 1. Let w be a weight with
primitive weight s = (sn)∞n=1.

(a) Suppose the X has the bounded restricted truncation operator prop-

erty. Then X X
↪→ d∞(w) if and only if sm . ϕl[X ,X](m) for m ∈ N.

(b) dq(w)
X
↪→ X if and only if ϕu[X ,X](m) . sm for m ∈ N.

Remark 2.3. Lemma 2.2 yields in particular that if a basis X is demo-
cratic and has the bounded restricted truncation operator property,
and s is equivalent to the fundamental function of X , then we have

dq(w)
X
↪→ X X

↪→ d∞(w)

(see [2, Theorem 8.14]). The possibility of having such embeddings
has been considered by some authors as a condition which ensures in a
certain sense the optimality of the compression algorithms with respect
to the basis X (see [14]).

Finally, we recall that if X is a quasi-Banach space of type p > 1 then
X is isomorphic to a Banach space [21, Theorem 4.1] while if the type
of X is p < 1 then X is isomorphic to a p-Banach space [21, Theorem
4.2]. Combining Lemma 2.2 with the estimates in (1.5) we obtain that
if X is a quasi-Banach space of type p and cotype r, and X is a basis
of X with the bounded restricted truncation operator property then

`p,q
X
↪→ X X

↪→ `r,∞,

where q = 1 if p > 1, q = p if p < 1, and 0 < q < 1 is arbitrary if p = 1.
In the case when p = r = 2 (i.e., X is a Hilbert space [27]), we obtain

`2,1
X
↪→ X X

↪→ `2,∞ (2.1)

(cf. [37, Theorem 3.1]).

3. Quasi-greedy basis in Lp-spaces, 0 < p < 1

Our approach towards proving Theorem 1.3 is inspired by the tech-
niques from [36], where it was shown that if a quasi-Banach space has
a strongly absolute basis and is isomorphic to its square then it has
a unique unconditional basis up to a permutation. Let us record this
important definition for further reference.

Definition 3.1. A semi-normalized unconditional basis B = (bj)j∈J of
a quasi-Banach space B is said to be strongly absolute if for every ε > 0
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there is a (smallest) constant A(ε) > 0 such that∑
j∈J

|b∗j(f)| ≤ max

{
A(ε) sup

j∈J
|b∗j(f)|, ε‖f‖

}
, f ∈ X. (3.1)

In this case, the map A : (0,∞) → (0,∞) will be called the strongly
absolute function of B.

Strongly absolute bases were introduced in [23] to study the unique-
ness of unconditional structure of non-locally convex quasi-Banach
spaces. Roughly speaking, a basis is strongly absolute if it dominates
the unit vector system of `1 while remaining far from it. This is the
case with the unit vector system (ej)

∞
j=1 when regarded as a basis of

`p for 0 < p < 1. Recall that for j ∈ N, ej = (δi,j)
∞
i=1, where δi,j = 1

if i = j and δi,j = 0 otherwise. The vectors (ej)
∞
j=1 form a normal-

ized 1-unconditional basis of `p whose associated sequence (e∗j)
∞
j=1 of

biorthogonal functionals satisfies f = (e∗j(f))∞j=1 for all f ∈ `p.

Lemma 3.2 (cf. [29, Lemma 2.2]). For 0 < p < 1, the unit vector
system is a strongly absolute basis of `p whose strongly absolute function
A satisfies

A(ε) ≤ ε−p/(1−p), ε > 0.

Proof. Given ε > 0, set C = ε−p/(1−p). For f ∈ `p we have
∞∑
j=1

|e∗j(f)| = ‖f‖1

≤ ‖f‖1−p
∞ ‖f‖pp

= (C‖f‖∞)1−p (ε‖f‖p)p

≤ max{C‖f‖∞, ε‖f‖p}

= max

{
C sup

j∈N
|e∗j(f)|, ε‖f‖p

}
. �

Suppose X is a quasi-Banach space with an unconditional basis
(bj)j∈J . Given a family S = (xn,x

∗
n)i∈A in X × X∗, and δ > 0 we

consider the following sets of indices from J :

Ωδ(S) = {j ∈ J : |x∗n(bj) b
∗
j(xn)| ≥ δ for some n ∈ A}. (3.2)

The analysis of the sets Ωδ(S) for families S associated to uncon-
ditional bases was successfully used in [36] to advance the research
initiated in [23] on uniqueness of unconditional bases in quasi-Banach
spaces. The following lemma is in the spirit of the estimates obtained in
[36]. In the absence of unconditionality, the role played by Lemma 3.3
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in the proof of Theorem 1.3 runs parallel to the role played in the
proof of Theorem 1.1 by the interpretation of Grothendieck’s inequal-
ity of Lindenstrauss and Pe lczyński in their proof of the uniqueness of
unconditional basis of `1 (see Section 4).

Lemma 3.3. Let B be a quasi-Banach space with a strongly absolute
semi-normalized unconditional basis B = (bj)j∈J and S = (xn,x

∗
n)i∈A

be a finite family in B × B∗ such that x∗n(xn) = 1, ‖xn‖ ≤ a and
‖x∗n‖ ≤ b for all n ∈ A. Then for each C ∈ (1,∞), there is δ > 0 such
that

|A| ≤ C
∑

j∈Ωδ(S)

∣∣∣∣∣∑
n∈A

x∗n(bj) b
∗
j(xn)

∣∣∣∣∣ .
Moreover, if c = supj ‖bj‖, Ku is the unconditional basis constant of
B, and A is the strongly absolute function of B, we can choose

δ =
C − 1

C

1

A(ε)
, where ε =

C − 1

C

1

abcKu

.

Proof. For j ∈ J and n ∈ A set

λj =
∑
n∈A

x∗n(bj) b
∗
j(xn),

fn =
∑

j∈J\Ωδ(S)

x∗n(bj) b
∗
j(xn) bj.

By construction, |b∗j(fn)| ≤ δ for all n ∈ A and j ∈ J , and by uncon-
ditionality, ‖fn‖ ≤ bcKu‖xn‖ for all n ∈ N. Then,

|A| =

∣∣∣∣∣∑
n∈A

x∗n(xn)

∣∣∣∣∣
=

∣∣∣∣∣∑
n∈A

∑
j∈J

x∗n(bj) b
∗
j(xn)

∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
n∈A

∑
j∈J\Ωδ(S)

x∗n(bj) b
∗
j(xn)

∣∣∣∣∣∣+
∑
n∈A

∣∣∣∣∣∣
∑

j∈Ωδ(S)

x∗n(bj) b
∗
j(xn)

∣∣∣∣∣∣
=
∑
n∈A

∑
j∈J

|b∗j(fn)|+
∑

j∈Ωδ(S)

|λj|

≤
∑
n∈A

max {A(ε)δ, ε‖fn‖}+
∑

j∈Ωδ(S)

|λj|

≤
∑
n∈A

max{A(ε)δ, bcKuε‖xn‖}+
∑

j∈Ωδ(S)

|λj|
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=
C − 1

C
|A|+

∑
j∈Ωδ(S)

|λj|.

Hence, C−1|A| ≤
∑

j∈Ωδ(S) |λj|. �

The following square-function estimate for vectors with constant co-
efficients is valid for quasi-greedy bases and, in lack of unconditionality,
serves as a substitute of the Littlewood-Paley formula for unconditional
bases in Lp-spaces.

Lemma 3.4. Let 0 < p < 1. Suppose (xn)∞i=1 is a SUCC basic sequence
in `p. Then ∥∥∥∥∥∑

n∈A

xn

∥∥∥∥∥
p

≈

 ∞∑
j=1

(∑
n∈A

|e∗j(xn)|2
)p/2

1/p

for all A ⊆ N finite.

Proof. Using inequality (1.2) and the classical Khintchine’s inequality
[24] we obtain ∥∥∥∥∥∑

n∈A

xn

∥∥∥∥∥
p

p

≈ Ave
εn=±1

∥∥∥∥∥∑
n∈A

εn xn

∥∥∥∥∥
p

p

= Ave
εn=±1

∞∑
j=1

∣∣∣∣∣e∗j
(∑
n∈A

εn xn

)∣∣∣∣∣
p

=
∞∑
j=1

Ave
εn=±1

∣∣∣∣∣∑
n∈A

εn e
∗
j(xn)

∣∣∣∣∣
p

≈
∞∑
j=1

(∑
n∈A

|e∗j(xn)|2
)p/2

. �

We are almost ready to tackle the proof of Theorem 1.3. Actually
Theorem 1.3 will follow as a particular case of Theorem 3.7, where we
prove our main result for subspaces of `p that admit the extension to
the whole `p of compact operators mapping into quasi-Banach spaces.
This ideas go back to [28, Theorem 2.2] and rely upon the following
definition.

Definition 3.5. Suppose X and B are quasi-Banach spaces and that
X is a subspace of B. We shall say that X has the compact extension
property in B if every compact operator S : X → Y mapping into a
quasi-Banach space Y extends to a compact operator T : B→ Y.
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The next theorem follows from the open mapping theorem (see com-
ments previous to [22, Theorem 2.2]).

Theorem 3.6. Let X and B be quasi-Banach spaces such that X is
a subspace of B, and let 0 < p ≤ 1. If X has the compact extension
property in B then there is a constant D ≥ 1 such that any compact
operator S : X → Y mapping into a p-Banach space Y extends to a
compact operator T : B→ Y with ‖T‖ ≤ D‖S‖.
Theorem 3.7. Let X be a closed subspace of `p, 0 < p < 1, and suppose
that X has the compact extension property in `p. If X is a basis of
X with the bounded restricted truncation operator property, then X is
democratic with

ϕl[X ,X](m) ≈ m1/p ≈ ϕu[X ,X](m), m ∈ N.

Proof. Set X = (xn)∞n=1, X ∗ = (x∗n)∞n=1, a = supn ‖xn‖ and b =
supn ‖x∗n‖.

Let A ⊆ N with |A| = m <∞. Use Theorems 2.1 and 3.6 to choose
an extension

TA : `p → [xn : n ∈ A]

of SA[X ,X] with ‖TA‖ ≤ C1(1 + log(m))1/p for some constant C1 only
depending on X . For n ∈ A, let y∗n = x∗n ◦ TA so that TA(f) =∑

n∈A y
∗
n(f)xn for every f ∈ `p. We have

sup
n∈N
‖y∗n‖ ≤ bC1(1 + log(m))1/p.

By Lemma 3.2 the unit vector system in a strongly absolute basis of
`p. Moreover, if A denotes its strongly absolute function and

ε0 =
1

2abC1(1 + log(m))
,

we have

δ :=
1

A(ε0)
≥ ε

p/(1−p)
0 =

1

2
(2abC1)−p/(1−p)(1 + log(m))−1/(1−p). (3.3)

Applying Lemma 3.3 to S = (xn,y
∗
n)n∈A with C = 2 yields

m ≤ 2
∑

j∈Ωδ(S)

∣∣∣∣∣∑
i∈A

y∗n(ej) e
∗
j(xn)

∣∣∣∣∣
≤ 2

∑
j∈Ωδ(S)

∥∥∥∥∥∑
i∈A

y∗n(ej)xn

∥∥∥∥∥
p

= 2
∑

j∈Ωδ(S)

‖TA(ej)‖p
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≤ 2|Ωδ(S)| ‖TA‖
≤ 2bC1(1 + log(m))1/p|Ωδ(S)|. (3.4)

For every j ∈ Ωδ(S) we have(∑
n∈A

|e∗j(xn)|2
)1/2

≥ 1

b

(∑
n∈A

|e∗j(xn)x∗n(ej)|2
)1/2

≥ δ

b
. (3.5)

Set q = (1− p+ p2)/(p2 − p3) and

sm =
m1/p

(1 + log(m))q
.

Combining Lemma 3.4, with (3.4), (3.5) and (3.3) gives∥∥∥∥∥∑
n∈A

xn

∥∥∥∥∥
p

≥ 1

C2

 ∑
j∈Ωδ(S)

(∑
n∈A

|e∗j(xn)|2
)p/2

1/p

≥ δ

C2b
|Ωδ(S)|1/p

≥ δ

C2b

m1/p

(2bC1)1/p(1 + log(m))1/p2

≥
(

2ap
2

bC1−p+p2
1 Cp−p2

2

)−1/p(1−p)
sm,

where C2 is a constant depending only on X .
Since for m large enough, s = (sm)∞m=1 is increasing, there is a weight

w whose primitive weight is equivalent to s. By Lemma 2.2 (a), the
coefficient transform F is a bounded linear operator from X into d∞(w).
But

∑∞
n=1 1/sn <∞, which yields d∞(w) ⊆ `1 and so F is a bounded

linear map from X into `1. With this new piece of information about the
coefficient transform we will next be able to use a bootstrap argument
for improving the above estimates.

Use again Theorem 3.6 to determine a constant C3 and linear oper-
ators

LA : `p → `1(A), A ⊆ N, |A| <∞,

such that ‖LA‖ ≤ C3 and LA(f) = (x∗n(f))n∈A for every f ∈ X. Fix
A ⊆ N finite and pick (z∗n)n∈A in (`p)

∗ such that LA(f) = (z∗n(f))n∈A for
every f ∈ `p. Consider the family T = (xn, z

∗
n)n∈A. Since ‖z∗n‖ ≤ C3

for every n ∈ A, Lemmas 3.2 and 3.3 yield the existence of β > 0
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depending only on p and the basis X such that

|A| ≤ 2
∑

j∈Ωβ(T )

∣∣∣∣∣∑
n∈A

z∗n(ej) e
∗
j(xn)

∣∣∣∣∣ .
With the natural identification of `∞(A) with the the dual space of
`1(A), the dual operator L∗A : `∞(A)→ (`p)

∗ of LA is given by

L∗A((an)n∈A)(f) =
∑
n∈A

an z
∗
n(f), an ∈ F, f ∈ `p.

Thus, if we set gj = (e∗j(xn))n∈A we have∣∣∣∣∣∑
n∈A

z∗n(ej) e
∗
j(xn)

∣∣∣∣∣ = |L∗A(gj)(ej)| ≤ C3‖gj‖∞‖ej‖p ≤ aC3.

for all j ∈ N. Therefore

|A| ≤ 2aC3|Ωβ(T )|.
Finally, applying again Lemma 3.4 yields∥∥∥∥∥∑

n∈A

xn

∥∥∥∥∥
p

≥ β

C2b
|Ωβ(T )|1/p ≥ β

(2abpCp
2C3)1/p

|A|1/p.

Hence m1/p . ϕl[X ,X](m) for m ∈ N. Taking into account inequal-
ity (1.6) the proof is over. �

Let B be a quasi-Banach space with a strongly absolute unconditional
basis B. Suppose that B has the property that all quasi-greedy bases of
B are democratic. Then, in particular, B is democratic hence greedy.
So, in light of Theorem 1.3, in order to enlarge the scant list of quasi-
Banach spaces where all quasi-greedy bases are democratic it is natural
to look for quasi-Banach spaces with a strongly absolute greedy basis.
Among them, Hardy spaces deserve special attention.

Question 3.8. Let 0 < p < 1 and d ∈ N. Are all quasi-greedy bases in
Hp(Dd) democratic?

We close this section by applying Theorem 3.7 to Lp-spaces for 0 <
p < 1. Recall that a closed subspace X of a quasi-Banach space B is
said to be locally complemented in B if there is a constant C such that
for every finite-dimensional subspace V of B and every ε > 0 there is
a linear operator T : V → X with ‖T‖ ≤ C and ‖T |V∩X − IdV∩X‖ ≤ ε.
Given 0 < p ≤ 1, following Kalton [22] we say that a quasi Banach
space is an Lp-space if it is isomorphic to a locally complemented
subspace of Lp(µ) for some measure µ.
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Corollary 3.9. Let 0 < p < 1. Suppose X is a quasi-greedy basis of a
Lp-space X with the bounded approximation property. Then:

(i) ϕl[X ,X](m) ≈ ϕu[X ,X](m) ≈ m1/p for m ∈ N. In particular, X
is democratic.

(ii) `p
X
↪→ X X

↪→ `p,∞.
(iii) For p < q ≤ 1, the q-Banach envelope of X is equivalent to the

unit vector system of `q.
(iv) For p < q ≤ 1, the q-Banach envelope of X is isomorphic to `q.
(v) The dual space X∗ is isomorphic to `∞.

(vi) The dual basis of X is equivalent to the unit vector system of c0.

Proof. By [22, Theorem 6.4] we can suppose without loss of generality
that X is a locally complemented subspace of `p. By [22, Theorem
3.4], X has the compact extension property in `p. Then, (i) follows
from [2, Theorem 3.13] and Theorem 3.7. Once we have proved (i),
(ii) is a consequence of Remark 2.3, and (iii) and (iv) follow from
[2, Proposition 9.12]. In turn, (v) is a consequence of (iv). Finally, (vi)
follows from combining (iii) with [2, Corollary 9.10]. �

Theorem 3.10. Let 0 < p < 1. If X is a quasi-greedy basis of an
Lp-space then X is almost greedy.

Proof. Just combine [2, Theorem 3.13], Corollary 3.9 (i) and [2, Theo-
rem 5.3]. �

4. Appendix. Democracy of quasi-greedy bases of `1

A Banach space X is called a GT space [34] if every bounded linear
operator T : X → `2 is absolutely summing, i.e., there is a constant C
such that for all finite collections (fk)k∈B in X,∑

k∈B

‖T (fk)‖2 ≤ C sup
|εk|=1

∥∥∥∥∥∑
k∈B

εkfk

∥∥∥∥∥ . (4.1)

The smallest constant C such that (4.1) holds is the absolutely sum-
ming norm of T and is denoted by π1(T ). Of course, if X is a GT
space then there is a constant D such that π1(T ) ≤ D‖T‖ for all
T ∈ L(X, `2).

Given 1 ≤ p ≤ ∞, following [30] we say that an infinite-dimensional
Banach space X is a Lp-space if there is λ ≥ 1 such that for every fi-
nite dimensional subspace E ⊆ X there is d ∈ N and an d-dimensional
subspace E ⊆ F ⊆ X such that d(F, `dp) ≤ λ. We could extend this
definition to non-locally convex spaces, but at the end we shall con-
clude that if a quasi-Banach is a Lp-space for some p ≥ 1 then it is
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(isomorphic to) a Banach space. It is known [22] that, for p = 1, this
definition coincides with the one we gave in Section 3.

Lindenstrauss and Pe lczyński [30] reinterpreted Grothendieck’s in-
equality [17] in the following fashion.

Theorem 4.1 ([30, Theorem 4.1]). Every L1-space is a GT space.

Other examples of GT spaces besides L1-spaces are the spaces L1/H,
where H is a subspace of L1 isomorphic to a Hilbert space (see [34,
Corollary 6.11]), the dual of the disc algebra, and L1/H1 (see [9]).

Our approach to the proof of Theorem 1.1 relies on the following
lemma and a bootstrap argument.

Lemma 4.2. Let X be a basis of a GT space X. Assume that X has the
bounded restricted truncation operator property. Let s = (sm)∞m=1 be a
sequence of positive numbers such that sm . ϕl[X ,X](m) for m ∈ N.
Then

tm := m

(
m∑
n=1

1

s2
n

)−1/2

. ϕl[X ,X](m), m ∈ N.

Proof. The basis X is in particular SUCC. Let C be as in (1.2). By
Lemma 2.2 (a), the coefficient transform F with respect to X = (xj)

∞
j=1

is bounded from X into the weak Lorentz space d∞(∆s). Let us denote
by C1 its norm. Let A ⊆ N with |A| = m. The coordinate projection
from FN onto FA is, when regarded as an operator from d∞(∆s) onto
`2(A), bounded by m/tm. Indeed, given f = (an)∞n=1 ∈ d∞(∆s),∑

j∈A

|aj|2 ≤
m∑
n=1

(a∗n)2 ≤ ‖f‖2
∞,∆s

m∑
n=1

1

s2
n

= ‖f‖2
∞,∆s

m2

t2m
.

Consequently, the operator

TA : X→ `2(A), f 7→ (x∗j(f))j∈A

satisfies ‖TA‖ ≤ C1m/tm. Since X is a GT space, for every finite family
(fk)k∈B in X we have∑

k∈B

‖TA(fk)‖2 ≤ C1D
m

tm
sup
|εk|=1

∥∥∥∥∥∑
k∈B

εkfk

∥∥∥∥∥ , (4.2)

for some constant D depending only of X. Applying (4.2) to (xk)k∈A
we obtain

m ≤ C1D
m

tm
sup
|εk|=1

∥∥∥∥∥∑
k∈A

εk xk

∥∥∥∥∥ ≤ CC1D
m

tm

∥∥∥∥∥∑
k∈A

xk

∥∥∥∥∥ ,
and so inequality (1.3) completes the proof. �
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Next, we state and prove a result slightly more general than Theo-
rem 1.1.

Theorem 4.3. Let X basis of a GT space X. Suppose that X has the
bounded restricted truncation operator property. Then X is democratic.
Moreover,

ϕl[X ,X](m) ≈ m ≈ ϕu[X ,X](m), m ∈ N.

Proof. Since X is a SUCC basis, inequality (1.3) yields 1 . ϕl[X ,X](m)
for m ∈ N. We feed Lemma 4.2 with sm = 1 for all m ∈ N and obtain

m1/2 . ϕl[X ,X](m), m ∈ N.
Let Hm =

∑m
n=1 1/n for m ∈ N. Applying again Lemma 4.2, now with

sm = m1/2 for all m ∈ N, gives

H−1/2
m m . ϕl[X ,X](m), m ∈ N.

Since
∑∞

n=1Hnn
−2 <∞, using once more Lemma 4.2 gives

m . ϕl[X ,X](m), m ∈ N.
Appealing to inequality (1.6) the proof is over. �

We close with some applications. For the reader’s convenience we
will state our results for quasi-greedy bases, but they also hold for bases
with the bounded restricted truncation operator property.

Corollary 4.4. Let X be quasi-greedy basis in a GT space X. Then

`1
X
↪→ X X

↪→ `1,∞.

Proof. Just combine Lemma 4.3 with Lemma 2.2. �

Corollary 4.5. Suppose that a sequence X in `1 is a quasi-greedy basis
of both spaces `1 and `2. Then X is equivalent to the canonical basis of
`p for all 1 < p < 2.

Proof. Combining Corollary 4.4 with the embeddings in (2.1) and Mar-
cinkiewicz’s interpolation theorem (see [10]) we obtain

`p
X
↪→ `p

X
↪→ `p,

which yields the desired conclusion. �

Our last results show that the reason for leaving out L1 in Theo-
rem 1.2 is not due to a limitation of our methods but to the geometric
structure of the space.

Corollary 4.6. Let µ be a non-purely atomic measure. There is no
family of functions that is simultaneously a quasi-greedy basis in both
spaces L1(µ) and L2(µ).
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Proof. Suppose that X is a quasi-greedy basis in both L1(µ) and L2(µ).
In particular, L1(µ) and L2(µ) are separable Banach spaces. Let 1 <
p < 2. Combining Corollary 4.4 and the embedding (2.1) with Marcin-
kiewicz’s interpolation theorem we obtain

`p
X
↪→ Lp(µ)

X
↪→ `p.

Therefore Lp(µ) ' `p, an absurdity because Lp(µ) ' Lp([0, 1]) 6' `p
(see [18]). �

Corollary 4.7. Let µ be a finite measure and Ψ = (ψn)∞n=1 be a quasi-
greedy basis of L1(µ). Then, for 1 < q ≤ ∞,

lim
n→∞

‖ψn‖q =∞.

Proof. Suppose by contradiction that lim infn ‖ψn‖q <∞ for some q >
1. Then there is a subbasis Ψ0 = (ψnk)

∞
k=1 of Ψ with supk ‖ψnk‖q <∞.

Since Ψ0 is a quasi-greedy basic sequence, combining Theorem 4.3 with
[3, Lemma 2.3] yields

m . ϕl[Ψ, L1(µ)](m) ≤ ϕu[Ψ0, L1(µ)](m) . m1/q, m ∈ N,
so that supmm

1−1/q <∞, an absurdity. �
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