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Near-zero-index (NZI) supercoupling, the transmission of electromag-
netic waves inside a waveguide irrespective of its shape, is a counter-
intuitive wave effect that finds applications in optical interconnects
and engineering light-matter interactions. However, there is a limited
knowledge on the local properties of the electromagnetic power flow
associated with supercoupling phenomena. Here, we theoretically
demonstrate that the power flow in 2D NZI media is fully analogous
to that of an ideal fluid. This result opens an interesting connection
between NZI electrodynamics and fluid dynamics. This connection
is used to explain the robustness of supercoupling against any geo-
metrical deformation, to enable the analysis of the electromagnetic
power flow around complex geometries, and to examine the power
flow when the medium is doped with dielectric particles. Finally, elec-
tromagnetic ideal fluids where the turbulence is intrinsically inhibited
might offer interesting technological possibilities, e.g., in the design
of optical forces and for optical systems operating under extreme
mechanical conditions.
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One of the most iconic and fascinating effects related to1

near-zero-index (NZI) media (1–4) is supercoupling (5),2

i.e., the perfect transmission of electromagnetic waves through3

a deformed waveguide, with zero phase advance, and indepen-4

dently of the geometry of the deformation. In fact, it was one5

of the first effects to be discovered and demonstrated, and it6

is a very good example of how NZI media lead to qualitatively7

different dynamics (6), often of a geometry-invariant nature8

(7). NZI supercoupling has been experimentally demonstrated9

in different waveguide configurations (8–16). In addition,10

supercoupling has been proposed for multiple applications,11

including waveguide interconnects (16), enhanced nonlineari-12

ties (17, 18), sensing (19), antennas (20–22), lenses (23, 24),13

enhanced fluorescence (25), quantum emission (26–28), control14

of dipole-dipole interactions (29), and entanglement generation15

(30, 31). The extension of this effect to other physical systems,16

including acoustic (32, 33) and electron (34) waves, has also17

been investigated.18

However, despite the vast research activities around NZI19

supercoupling, less attention has been paid to the character-20

istics of the internal power flow associated to such effect. It21

has been extensively reported that the power does indeed flow22

between both waveguide ends, but, strikingly, the microscopic23

details of the power flow have been left unexplored. In other24

words, there is less knowledge on how the electromagnetic25

power actually flows within the waveguide, and how this flow26

is modified as the waveguide is deformed. Fig. 1 shows a27

typical example of the power flow distribution in a deformed28

two-dimensional (2D) waveguide at the NZI frequency. For29

the sake of comparison, we report the power flow in the same 30

geometry, but when resonant transmission (35) is achieved by 31

finely tuning the relative permittivity of a dielectric material 32

filling the waveguide to ε = 6.42 (while the relative permeabil- 33

ity is kept at µ = 1). These numerical results suggest that 34

the power flow in NZI supercoupling is unusually simple and 35

organized, smoothly adapting to the waveguide geometry. By 36

contrast with resonant dielectric transmission, there are no 37

whirpools in the power flow. In fact, the power flow locally 38

changes its direction, but it seems that it never points against 39

the incident direction inside the NZI waveguide. Here, we 40

shed light on the characteristics of this peculiar effect by theo- 41

retically investigating the local power flow in NZI media. In 42

particular, we theoretically demonstrate that the power flow 43

in two-dimensional (2D) NZI media is equivalent to the flow 44

of an inviscid, incompressible and irrotational fluid, usually 45

referred to as an ideal fluid (36–38). 46

Power flow in 2D NZI media. We start by considering the elec- 47

tromagnetic power flow within an isotropic medium charac- 48

terized by a complex relative permittivity ε = ε′ + iε′′ and 49

permeability µ = µ′ + iµ′′. An e−iωt time-convention is as- 50

sumed and omitted hereafter. For mathematical convenience, 51

we consider the time-averaged complex Poynting vector field, 52

S = SR+iSI = 1
2 E×H∗, where the real part SR characterizes 53

the time-averaged power flow, while the imaginary part SI 54

relates to reactive power flow that do not contribute to the 55

net power passing through the waveguide. First, outside the 56
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source region the divergence of S is given by57

∇ · S = −ω2
[(
ε0ε
′′ |E|2 + µ0µ

′′ |H|2
)

58

59

+i
(
ε0ε
′ |E|2 − µ0µ

′ |H|2
)]

[1]60

It is clear from Eq. (1) that the real part is zero for any61

lossless media (µ′′, ε′′ → 0). This conclusion simply points to62

the fact that there are no sinks of power in lossless media, i.e.,63

∇ · SR = 0. Interestingly, the imaginary part of Eq. (1) also64

vanishes in epsilon-and-mu-near-zero (EMNZ) media (µ′, ε′ →65

0), for which the entire complex vector field S can be treated66

as a divergenceless (or solenoidal) quantity ∇ · S = 0.67

Next, we use vector calculus identities to rewrite the curl68

of the Poynting vector field as follows69

∇× S = 1
2 [(H∗ · ∇) E− (E · ∇) H∗70

71

+E (∇ ·H∗)−H∗ (∇ ·E)] [2]72

First, we have that outside the source region ∇ ·E = 0 and73

∇ ·H = 0 except at the material boundaries. Secondly, we74

consider a two-dimensional (2D) configuration with transverse75

magnetic (TM) polarization, i.e., H = ẑHz (x, y) and E =76

x̂Ex (x, y) + ŷEy (x, y), for which the first term in the r.h.s.77

of Eq. (2) is zero. Finally, we note that the magnetic field in a78

2D medium with a near-zero permittivity must be constant,79

Hz (x, y) = Hcst
z , in order to avoid a divergent electric field,80

E = (−iωε0ε)−1∇Hz × ẑ, so that the second term in the81

r.h.s. of Eq. (1) also vanishes. Therefore it is found that82

∇× S = 0 for TM fields in all two-dimensional (2D) media83

with a near-zero permittivity (i.e., epsilon-near-zero (ENZ)84

media), independently of the value of its permeability.85

In other words, it can be concluded from Eqs. (1) and (2)86

that the complex Poynting vector field S for TM waves in87

2D EMNZ media is characterized by the simple conditions88

∇ · S = 0 and ∇× S = 0. For an ENZ medium of arbitrary89

permeability µ, the same equations hold for the real part of90

the Poynting vector field (power flow), i.e., ∇ · SR = 0 and91

∇×SR = 0. Note that an identical reasoning for mu-near-zero92

(MNZ, µ ' 0) media leads to the same conclusions, for the93

transverse electric (TE) polarization. In addition, when the94

system is surrounded by opaque media (e.g., metallic mirrors95

in a waveguide), the boundary condition n̂ · S = 0 must be96

satisfied, where n̂ is the unit vector normal to the boundary97

(see Fig. 1(a)). Interestingly, these are exactly the equations of98

motion and boundary conditions for the velocity field v of an99

inviscid, incompressible and irrotational fluid, often labelled100

as an ideal fluid (36–38).101

The fluid dynamics in such scenario is usually described by102

using two scalar fields, the velocity potential φ and the stream103

function ψ (36). First, since ∇ × S = 0 it is clear that the104

power flow can be described through a scalar potential S = ∇φ,105

with S thus being perpendicular to the constant potential lines.106

Similarly, it is convenient to define S = ∇× (ẑψ), such that107

S is parallel to the streamlines, i.e., (S · ∇)ψ = 0. Note that108

φ and ψ have W ·m−1 units in this context. Moreover, the109

electric field distribution can be directly linked to the velocity110

potential and the stream function as E = −
(
Hcst∗
z

)−1∇×(ẑφ)111

and E = −
(
Hcst∗
z

)−1∇ψ. Therefore, the electric field is112

parallel to the constant potential lines and perpendicular to113

the streamlines.114

(c) Resonant dielectric coupling (𝜀 = 6.42, 𝜇 = 1)
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Fig. 1. (a) Sketch of the geometry: a two-dimensional (2D) waveguide of height
h = 0.25λ containing a deformed section of length L = λ, filled with a material
with relative permittivity ε and permeability µ. λ is the free-space wavelength at the

frequency of the incoming wave. n̂ and l̂ are the normal and tangential unit vectors
to the boundary of the NZI region, respectively. (b)-(c) Amplitude and normalized
vector plot of the real part of the Poynting vector field (SR, power flow) when the
waveguide is filled with (b) epsilon-and-mu-near-zero (EMNZ) media (ε, µ ' 0), and
(c) a nonmagnetic dielectric material with the relative permittivity finely tuned to enable
resonant transmission (ε = 6.42, µ = 1). Those results were obtained by using a
full-wave numerical solver (39).

Both the velocity potential and the stream function are 115

harmonic functions found as solution to Laplace’s equation, 116

i.e., ∇2φ = 0 and∇2ψ = 0, subject to the boundary conditions 117

∂φ/∂n = 0 and ∂ψ/∂l = 0, where n̂ and l̂ are the normal and 118

tangential unit vectors to the surface of solid bodies, respec- 119

tively (see Fig. 1(a)). This description is highly-convenient, 120

since the flow of electromagnetic energy in 2D NZI systems 121

can then be described through potential theory, for which 122

many tools have been developed, including the construction of 123

solution by means of the superposition of elementary functions, 124

conformal mapping and numerical methods (36–38, 40). 125

Revisiting supercoupling as ideal fluid flow. In the following, 126

we use this theory to analyze different transmission and scat- 127

tering configurations in 2D NZI media. First, we study how 128

the power flow in a 2D NZI waveguide is modified when the 129

waveguide walls are deformed (Fig. 2). As a case study, we 130

model the waveguide deformation by introducing a 2D obstacle 131

consisting of a semi-ellipse with major ay = a1 + a2
2/a1 and 132

minor ax = a1 − a2
2/a1 axes characterized by the parameters 133

a1 and a2. The potential and stream function in this config- 134

uration can be found in closed-form via conformal mapping 135

by taking the complex potential for a circular cylinder of ra- 136

dius a1, z+ a2
1/z, applying an inverse rotation transformation, 137

z → z e−iπ/2, followed by an inverse Joukowski transformation, 138
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Fig. 2. (a) Sketch of the geometry: a 2D EMNZ waveguide of height h = 3λp

containing a deformed section modeled as a half-ellipse with semiaxes ay = a1 +
a2

2/a1 and ax = a1 − a2
2/a1 with a1 = 2.5λp and a2 = 0.8λp. All waveguide

walls are considered as perfect electric conductor (PEC) boundaries, and λp is the
free-space wavelength at the NZI frequency. (b) Constant potential lines (dashed
blue) and stream lines (black) as obtained from the closed-form solution derived via
conformal mapping. (c)-(d) Amplitude and streamlines of the (c) Poynting vector field
and (d) electric field, normalized to their incident counterparts, as obtained with a
full-wave electromagnetic solver (39).

z → 1/2 (z +
√
z2 − 4a2

2), and then adding the contributions139

from the images on the waveguide walls (37). This calculation140

leads to a complex potential, whose real and imaginary parts141

correspond to the potential and stream function, respectively:142

φ (x, y) + i ψ (x, y) = − i2

{
z +

√
z2 − 4a2

2143

144

−a
2
1
a2

2

∞∑
n=−∞

(
zn −

√
z2
n − 4a2

2

)}
[3]145

with z = x+ iy and zn = z − n2h.146

Fig. 2b depicts the constant velocity potential (dashed blue)147

and stream function (black) lines, as calculated from Eq. (3).148

As it could be expected from an ideal fluid, the constant stream149

function lines smoothly go around the obstacle, no vorticity is150

observed, and the flow recovers its distribution as we move past151

the obstacle. Next, the same structure is analyzed by solving152

the electromagnetic problem with a full-wave numerical solver153

(39). Figs. 2c and 2d report the amplitude and streamlines of154

the Poynting vector field and electric field, respectively. By155

comparing the results it can be directly concluded that the156

streamlines for the electric and Poynting vector fields perfectly157

match those of the constant potential and stream function158

lines.159

Therefore, these numerical simulations ratify that the power160

flow in deformed NZI waveguides mimicks that of an ideal161

fluid. Consequently, we can state that deformations in NZI162

waveguides do not introduce any turbulent behavior. In addi-163

tion, although the characteristics of this power flow have been164

theoretically derived in the zero-index limit (thus including165

the lossless limit), numerical simulations reveal that the lack166

of vorticity is very robust against the presence of loss (SI167

Appendix, Figs. S1-S2). A similar effect is observed as the168

value of the real part of the permittivity and permeability de-169

viate from zero, limiting the bandwidth in which this effect is170

observed, which critically depends on the size of the structure171

and the dispersion properties of the material parameters (SI172

Appendix, Fig. S3).173

Scattering configurations and airfoil theory. This theory can 174

be applied to a large number of 2D scenarios, not necessarily 175

restricted to waveguide configurations. Moreover, the pos- 176

sibility of using conformal mapping enables the analysis of 177

complex geometries, while at the same time drawing inter- 178

esting connections between NZI electrodynamics and differ- 179

ent aspects of fluid dynamics such as airfoil theory (36–38). 180

For example, Fig. 3 illustrates the power flow of a finite size 181

perfect electric condutor (PEC) 2D object immersed in an 182

open EMNZ medium, whose cross-section matches that of 183

a typical airfoil model. In particular, the surface of this 184

object can be parametrically described as x (θ) + i y (θ) = 185

1
2

[
αeiθ + β +

(
αeiθ + β

)−1
]
, with β = 0.3 ei0.65π, α = |1−β|, 186

and θ ranging from 0 to 2π (36, 37). We assume that this object 187

is in the presence of an uniform flow at an angle θ0 = 10 deg. 188

In this case, a closed-form solution for the potential and stream 189

functions can also be found using conformal mapping (36, 37). 190

In particular, we start with the complex potential of a circle 191

cylinder of radius α, i.e., φ+ iψ = z + α2/z, and then apply 192

an inverse rotation transform, z → ze−iθ0 , followed by an 193

inverse translation transform, z → z−β, and finally an inverse 194

Joukowski transform z → 1
2

(
z −
√
z2 − 4

)
is carried out (40). 195

Fig. 3b depicts the constant velocity potential and stream 196

function lines as computed from such solution. Again, the 197

flow around the object is characterized by a smooth transition 198

avoiding the object, with no shadow, vorticity or turbulence 199

at the object edges. The flow is also characterized by two 200

stagnation points where the stream lines are perpendicular to 201

the surface of the object, and the velocity field is zero (36–38). 202

Figs. 3c and 3d depict the Poynting vector field and electric 203

field distribution, respectively. This example confirms how the 204

power flow over objects immersed in NZI media, even with a 205

complex geometry, can be readily analyzed via fluid mechanic 206

tools. 207

The role of the permeability. Up to this point, all examples 208

have focused on EMNZ media, for which both ε and µ are 209

near zero. However, since most materials are nonmagnetic 210

(µ = 1) at optical frequencies, one should consider if the 211

role of the permeability is crucial in the behavior of NZI 212

media as an electromagnetic ideal fluid. Indeed, EMNZ me- 213

dia and ENZ media with a nonzero value of the permeabil- 214

ity present differing properties. For example, while both 215

share a near-zero refractive index,
√
µ (ωp) ε (ωp) → 0, the 216

medium impedance diverges in nonmagnetic (µ = 1) ENZ 217

media Z (ωp) = 1/
√
ε (ωp)→∞, while it converges to a finite 218

value in EMNZ media, Z (ωp) =
√
∂ωµ (ωp) /∂ωε (ωp). Simi- 219

larly, ENZ media with a nonzero value of permeability, when 220

lossless and infinitely extent, necessarily exhibits a near-zero 221

group velocity, vg (ωp)→ 0 (41), while EMNZ media, exhibits 222

a nonzero group velocity vg (ωp) = c/
(
ωp ∂ω

√
µ (ωp) ε (ωp)

)
223

(42). In passing, note that a near-zero group velocity in the 224

unbounded lossless case does not prevent supercoupling phe- 225

nomena, as it takes place in finite waveguide sections, and as 226

it can also be shown in the time-domain analysis of the effect 227

(43). With their different material properties, ENZ and EMNZ 228

media also exhibit differing wave phenomena. For example, 229

EMNZ supercoupling is observed for any waveguide geome- 230

try (44), while ENZ supercoupling is observed only in narrow 231

channels in the limit in which the area of the waveguide goes 232
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Fig. 3. (a) Sketch of the geometry: a perfect electric conductor (PEC) body, with a
typical cross-section of an airfoil, immersed in an open EMNZ medium and illuminated
by a plane-wave with transverse magnetic (TM) polarization. (b) Constant potential
lines (dashed blue) and stream lines (black) as obtained from the closed-form solution
derived via conformal mapping. (c)-(d) Amplitude and streamlines of the (c) Poynting
vector field and (d) electric field, normalized to their incident counterparts, as obtained
with a full-wave electromagnetic solver (39).

to zero (5), albeit independently of the geometry in which this233

limit is approached.234

Knowing these different material properties and wave dy-235

namics, one should expect that the power flow distribution236

would be different as a function of the permeability of the237

ENZ medium. Remarkably, this is not the case. In particular,238

it can be shown that the power flow in ENZ and EMNZ media239

is identical up to a scalar factor. In order to demonstrate this240

point, we revisit Eqs. (1) and (2) and note that the power flow241

SR = Re [S] in ENZ media (ε ' 0, µ 6= 0), also obeys the242

equations of the velocity field of an ideal fluid ∇ · SR = 0 and243

∇× SR = 0. Mathematically, this conclusion can be drawn244

from the fact that the solutions to Laplace’s equation are in245

such a way that they do not contain any material parameters.246

Therefore, those solutions are purely geometrical, depending247

only on the shape of the bodies and on the exciting fields.248

For the same reason, the distribution of the power flow SR249

in ENZ media is independent of its relative permeability, up250

to a scalar factor (please refer to SI Appendix Figs. S4-S6251

for numerical examples illustrating this point). Specifically,252

this scalar factor is given by the squared magnitude of the253

constant magnetic field excited in the ENZ host, normalized254

to the incident field, i.e.,
∣∣Hcst

z

∣∣2. The value of the magnetic255

field can be found by imposing Faraday’s law on the NZI256

region: Hcst
z =

(
1 + iω

c
A
2hµ
)−1, where A is the area of the257

deformed waveguide section. The value of this scalar factor258

determines the magnitude and phase of the transmitted and re-259

flected waves, and the different supercoupling effects observed260

in EMNZ and ENZ media.261

Photonic doping and power flow around dielectric particles.262

Aside from the examples above in which PEC boundaries have263

been considered (including waveguide walls, obstacles, and264

finite-size objects), there is much interest on the electromag-265

netic response of ENZ bodies containing dielectric particles 266

(11). In fact, it has been found that a 2D ENZ medium goes 267

beyond conventional effective medium theories, and dielec- 268

tric particles immersed in it modify its effective permeability, 269

while maintaining a near-zero permittivity. In addition, the 270

contribution from each dielectric particle is additive (as if 271

the particles were not interacting) and independent of the 272

particles positions. This represents a fundamentally different 273

way of synthesizing artificial electromagnetic materials, usually 274

referred to as photonic doping (11). 275

The theory introduced in this work can be used to clar- 276

ify the power flow around dielectric particles acting as pho- 277

tonic dopants. Since the magnetic field of a TM wave in a 278

2D ENZ host is constant, the magnetic field inside a dielec- 279

tric inclusion of area Ap and boundary ∂Ap can be written 280

as Hz(x, y) = Hcst
z ξp(x, y), where ξp is the solution to the 281

scalar Helmholtz equation, subject to the boundary condi- 282

tion ξp = 1 on ∂Ap. Consequently, the electric and Poynting 283

vector fields are given by E = Hcst
z (iωε0εp)−1 ẑ × ∇ξp and 284

S =
∣∣Hcst

z

∣∣2 (i2ωε0εp)−1 ξp∇ξp, respectively, where εp is the 285

relative permittivity of the dielectric inclusion. Interestingly, 286

for particles in which both εp and ξp are real, as it is indeed the 287

case for lossless particles, the Poynting vector field is purely 288

imaginary within the particle. In other words, the power flow 289

is identically zero within the particle, SR = 0. Consequently, 290

the power flow distribution in an ENZ medium photonically 291

doped with 2D dielectric particles is independent of the inter- 292

nal properties of the particles, except to a scalar factor, and 293

it is purely determined by its external boundaries. This scalar 294

factor is again
∣∣Hcst

z

∣∣2, with Hcst
z =

(
1 + iω

c
A
2hµeff

)−1, where 295

A is the area of the ENZ host, and µeff = 1 +
∑

p
∆µp with 296

∆µp = A−1
[∫
Ap
ξp(x, y) dA−Ap

]
is the effective permeabil- 297

ity induced by the dielectric dopants (11). 298

In order to illustrate this effect, Fig. 4 depicts the power flow 299

within a metasurface composed by a 2D ENZ slab periodically 300

doped by dielectric particles. The dopants consists of circular 301

cylinders of radius rp and relative permittivity εp, for which 302

ξp = J0 (kpr) /J0 (kprp), with kp = ω/c
√
εr. As anticipated, 303

the power flow within the dielectric particles is zero. Outside 304

the particles, the power flow corresponds to that of a perfect 305

fluid flow around a circular cylinder, i.e., φ (x, y) + iψ (x, y) = 306

z + r2
p/z, despite the fact that the particles are dielectric. 307

Conclusions. Our formulation demonstrates that the power 308

flow in 2D NZI media can be understood as analogous to that 309

of an ideal fluid (inviscid, incompressible and irrotational flow). 310

We believe that this result provides additional insight and a 311

better understanding of how NZI supercoupling takes place, 312

and why it is independent of the waveguide deformations. 313

In addition, our results might trigger additional research by 314

establishing further connections between the fields of fluid 315

dynamics and NZI electrodynamics. In this regards, different 316

effects and directions could be explored. For example, it is 317

known that the drag of any body of any shape immersed in a 318

uniform stream is identically zero (a result often referred to as 319

D’Alambert paradox). On the contrary, the lift, i.e., the force 320

perpendicular to the stream, can be nonzero (Magnus-Robins 321

Force). These effects might have important implications on 322

the optical forces induced in objects immersed in ENZ media. 323

Beyond supercoupling, our theory might enable revisiting the 324
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Fig. 4. (a) Sketch of the geometry: an nonmagnetic ENZ slab (ε ' 0, µ = 1)
of thickness Lx = λp is periodically doped with two identical dielectric cylinders
with a circular cross-section Ap = πr2

p with radius rp = 0.122λp, bounded by
the contour ∂Ap, and with relative permittivity εp = 10. The slab periodicity in
y-axis is of Ly = 2λp. This configuration is excited under normal incidence by a
plane-wave with transverse magnetic (TM) polarization. (b) Amplitude and streamlines
of the Poynting vector field (real part), normalized to the incident Poynting vector field
obtained with a full-wave electromagnetic solver (39). (c) Stream lines obtained from
the closed form solution to the ideal fluid flow around a circular cylinder.

power flow in other salient features of NZI media, including325

nonradiating eigenmodes (45–47), geometry-invariant resonant326

cavities (48), highly-directive systems (6, 49, 50) and nonlinear327

phenomena (2, 51). Furthermore, viscosity is known to have328

destabilizing effect on fluids, giving rise to a disorderly, random329

flows, usually referred to as turbulence. Here, it is shown that330

NZI media gives access to optical systems where turbulence331

is intrinsically inhibited, an effect that might offer interesting332

technological possibilities for optical systems operating under333

extreme mechanical conditions.334
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