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Supplementary Note 1: Impact of loss in the electromagnetic power flow distribution 

 

In this supplementary note we provide additional information on the impact of loss in the 

electromagnetic power flow distribution, and the behavior of NZI media as an electromagnetic 

ideal fluid. The role of material loss in the power flow distribution can be analyzed by inspecting 

the expressions for the divergence ∇ ∙ 𝐒R = −
𝜔

2
(𝜀0𝜀′′|𝐄|2 + 𝜇0𝜇′′|𝐇|2)  and curl ∇ × 𝐒R =

−
1

2
Re[(𝐄 ∙ ∇)𝐇∗] of the power flow (for TM waves exciting a two-dimensional system). It is 

clear from these equations that the presence of loss directly induces a nonzero divergence on the 

power flow, proportional to the imaginary part of the permittivity and/or permeability, and that 

can be associated with the field decay. On the other hand, the impact of loss on the curl of the 

power flow indirectly comes from the fact that the magnetic field is no longer uniform, and 

consequently makes it difficult to predict analytically.  

Intuitively, one can understand that the lack of vorticity is more robust in the presence of loss than 

the divergenceless property of the power flow. First, since deviations from a nonzero curl are 

induced by spatial variations of the magnetic field, the curl can be expected to be small as long as 

the fields are stretched as compared to the free-space wavelength in the NZI limit. Secondly, the 

term (𝐄 ∙ ∇)𝐇∗ implies that only the field variations along the electric field contribute to the curl 

of the power flow. Therefore, for fields similar to a plane wave, the spatial variation induced by 

the decay along the direction of propagation does not contribute to the vorticity of the power flow.  

However, field distributions observed in arbitrary geometries are complex, thus in general 

implying a complex interplay between material loss and vorticity. This effect can be addressed 

numerically, and Figs. S1-S2 provide an in-depth analysis on how different degrees of material 

loss affect the predictions for the configuration corresponding to Fig. 2 of the main text. 



 

Fig. S1. Impact of loss in the electromagnetic power flow distribution (vectorial plot). (a) Sketch of 

the geometry: a 2D lossy EMNZ waveguide, 𝜀 = 𝜇 = 𝑖 𝛿, of height ℎ = 3𝜆𝑝 containing a deformed section 

modeled as a half-ellipse with semiaxes 𝑎𝑦 = 𝑎1 + 𝑎2
2/𝑎1 and 𝑎𝑥 = 𝑎1 − 𝑎2

2/𝑎1 with 𝑎1 = 2.5 𝜆𝑝 and 𝑎2 =

0.8 𝜆𝑝. All waveguide walls are considered as PEC boundaries, and 𝜆𝑝 is the free-space wavelength at the 

NZI frequency. (b)-(d) amplitude and  vector plot of the real part of the time-averaged Poynting vector 

field (𝐒𝑅, power flow), normalized to their incident counterparts, for a loss parameter of (b) 𝛿 = 0 

(lossless), (c) 𝛿 = 0.01, and (d) 𝛿 = 0.1. These numerical results illustrate that the magnitude of the power 

flow exhibits an exponential decay in lossy EMNZ media. However, the normalized vectorial distribution 

is robust against the presence of dissipation damping, and the absence of vorticity is preserved in the 

parameter range studied here. The considered loss factors are realistic of metamaterial implementations of 

NZI media including dispersive waveguides and all-dielectric photonic crystals, and some of the highest-

quality ENZ continuous media, like silicon carbide (SiC), characterized by 𝜀𝐸𝑁𝑍 = 𝑖0.03. However, other 

implementations like those based on doped semiconductor exhibit higher losses 𝜀𝐸𝑁𝑍 = 𝑖0.2~0.5.  



 

Fig. S2. Impact of loss in the electromagnetic power flow distribution (streamlines). (a) Sketch of the 

geometry: a 2D lossy EMNZ waveguide, 𝜀 = 𝜇 = 𝑖 𝛿, of height ℎ = 3𝜆𝑝 containing a deformed section 

modeled as a half-ellipse with semiaxes 𝑎𝑦 = 𝑎1 + 𝑎2
2/𝑎1 and 𝑎𝑥 = 𝑎1 − 𝑎2

2/𝑎1 with 𝑎1 = 2.5 𝜆𝑝 and 𝑎2 =

0.8 𝜆𝑝. All waveguide walls are considered as PEC boundaries, and 𝜆𝑝 is the free-space wavelength at the 

NZI frequency. (b)-(d) streamlines of the real part of the time-averaged Poynting vector field (𝐒𝑅, power 

flow), normalized to their incident counterparts, for a loss parameter of (b) 𝛿 = 0 (lossless), (c) 𝛿 = 0.01, 

and (d) 𝛿 = 0.1. These numerical results illustrate that streamlines of the power flow are very robust against 

dissipation damping, and the absence of vorticity is preserved. 



Supplementary Note 2: Frequency response of the electromagnetic power flow distribution 

This supplementary note provides a numerical analysis of the frequency response of the power 

flow distribution in the NZI limit. To this end, we define material parameters with a Lorentzian 

dispersion profile model 𝜇(𝜔) = 𝜀(𝜔) = (𝜔2 − 𝜔𝑝
2)/(𝜔2 − 𝜔0

2) with 𝜔0 = 0.9 𝜔𝑝, and with a 

group velocity of 𝑣𝑔(𝜔𝑝) = (𝑐/2)(1 − 𝜔0
2/𝜔𝑝

2) = 0.095𝑐. Fig. S2 shows the power flow 

distributions at frequencies 𝜔 = 0.97 𝜔𝑝, 0.99 𝜔𝑝, 1 𝜔𝑝, 1.01 𝜔𝑝 and 1.03𝜔𝑝. These numerical 

results demonstrate that the behavior of NZI media as an electromagnetic ideal fluid is a well-

behaved frequency limit. In other words, it does not correspond to a singular frequency point, but 

the vorticity in the power flow is inhibited in a finite bandwidth where the material parameters 

can be considered sufficiently small, while vortices of the power flow appear as one get further 

from the NZI frequency.  

 

 

 

Fig. S3. Frequency response of the electromagnetic power flow distribution. (a) Sketch of the 

geometry: a 2D EMNZ waveguide of height ℎ = 3𝜆𝑝  containing a deformed section modeled as a half-

ellipse with semiaxes 𝑎𝑦 = 𝑎1 + 𝑎2
2/𝑎1 and 𝑎𝑥 = 𝑎1 − 𝑎2

2/𝑎1 with 𝑎1 = 2.5 𝜆𝑝 and 𝑎2 = 0.8 𝜆𝑝. All 



waveguide walls are considered as PEC boundaries, and 𝜆𝑝 is the free-space wavelength at the NZI 

frequency. (b) Dispersion profile of the permittivity and permeability, following a Lorentz model 𝜇(𝜔) =

𝜀(𝜔) = (𝜔2 − 𝜔𝑝
2)/(𝜔2 − 𝜔0

2) with 𝜔0 = 0.9 𝜔𝑝 and with a group velocity of 𝑣𝑔(𝜔𝑝) = (𝑐/2)(1 −

𝜔0
2/𝜔𝑝

2) = 0.095𝑐. (c)-(f) (Left) Amplitude and vector plot of the real part of the time-averaged Poynting 

vector field (𝐒𝑅, power flow), normalized to their incident counterparts, and (right) streamlines, at different 

frequencies (c) 𝜔 = 0.97 𝜔𝑝, (d)  𝜔 = 0.99 𝜔𝑝, (e)  𝜔 = 𝜔𝑝, (f)  𝜔 = 1.01 𝜔𝑝 and (g)  𝜔 = 1.03 𝜔𝑝. 

These numerical results illustrate that the vorticity in the power flow is inhibited in a finite bandwidth where 

the material parameters can be considered sufficiently small.  

 

 

 

Supplementary Note 3: The role of the permeability 

As it is demonstrated in the main text, the power flow in an ENZ medium has the same spatial 

distribution independently of the value of its permeability 𝜇 except for a global scalar factor. For 

the typical supercoupling configuration, consisting of two identical TEM waveguides of height 

ℎ, connected by an arbitrarily shaped ENZ region of area 𝐴, the scalar factor reduces to |𝐻𝑧
𝑐𝑠𝑡|2 =

|1 + 𝑖
𝜔

𝑐
 

𝐴

2ℎ
μ|

−2
. To illustrate this fact, Fig. S4 represents the power flow for the configuration 

studied in Fig. 1, but for different values of the relative permeability. Fig. S5 represents the same 

results, but when the color scale has been normalized to the global scalar factor |𝐻𝑧
𝑐𝑠𝑡|2. Finally, 

Fig. S6 shows the streamlines of the power flow for different values of the relative permeability.  



 

 

 

Fig. S4. Electromagnetic power flow distribution as a function of the relative permeability of 

the epsilon-near-zero (ENZ) (vectorial plot). (a) Sketch of the geometry: a two-dimensional (2D) 

waveguide of height ℎ = 0.25𝜆 containing a deformed section of length 𝐿 = 𝜆, filled with a 

material with relative permittivity 𝜀 and permeability 𝜇. 𝜆 is the free-space wavelength at the 

frequency of the incoming wave. (b)-(d) Amplitude and normalized vector plot of the real part 

of the time-averaged Poynting vector field (𝐒𝑅, power flow) when the waveguide is filled with 

an ENZ medium, 𝜀 ≈ 0, with a relative permeability of  (b) 𝜇 ≈ 0, i.e., epsilon-and-mu-near-zero 

(EMNZ) media, (c) 𝜇 ≈ 1 and (d) 𝜇 ≈ 5. The numerical results illustrate that the magnitude of 

the power flow decreases as the permeability increases, but the normalized vectorial 

distribution is independent of the value of the relative permeability. 



 

Fig. S5. Electromagnetic power flow distribution as a function of the relative permeability of 

the epsilon-near-zero (ENZ) (vectorial plot with adjusted colorbars). (a) Sketch of the 

geometry: a two-dimensional (2D) waveguide of height ℎ = 0.25𝜆 containing a deformed 

section of length 𝐿 = 𝜆, filled with a material with relative permittivity 𝜀 and permeability 𝜇. 𝜆 

is the free-space wavelength at the frequency of the incoming wave. (b)-(d) Amplitude and 

normalized vector plot of the real part of the time-averaged Poynting vector field (𝐒𝑅, power 

flow) when the waveguide is filled with an ENZ medium, 𝜀 ≈ 0, with a relative permeability of  

(b) 𝜇 ≈ 0, i.e., epsilon-and-mu-near-zero (EMNZ) media, (c) 𝜇 ≈ 1 and (d) 𝜇 ≈ 5. The colobars 

on each figure have been adjusted to the value, 2|𝐻𝑧
cst|2, with 𝐻𝑧

cst = (1 − 𝑖
1

2

𝜔

𝑐
𝜇𝐿)

−1
. The 

numerical results illustrate that the power flow distribution is independent of the value of the 

relative permeability, except for a scalar factor |𝐻𝑧
cst|2. 

  



 

 

Fig. S6. Electromagnetic power flow distribution as a function of the relative permeability of 

the epsilon-near-zero (ENZ) (streamlines). (a) Sketch of the geometry: a two-dimensional (2D) 

waveguide of height ℎ = 0.25𝜆 containing a deformed section of length 𝐿 = 𝜆, filled with a 

material with relative permittivity 𝜀 and permeability 𝜇. 𝜆 is the free-space wavelength at the 

frequency of the incoming wave. (b)-(d) Streamlines of the real part of the time-averaged 

Poynting vector field (𝐒𝑅, power flow) when the waveguide is filled with an ENZ medium, 𝜀 ≈ 0, 

with a relative permeability of  (b) 𝜇 ≈ 0, i.e., epsilon-and-mu-near-zero (EMNZ) media, (c) 𝜇 ≈

1 and (d) 𝜇 ≈ 5. The numerical results illustrate that the streamlines of the power flow are 

independent of the value of the relative permeability. 

 

 


