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Abstract
We analyze the asymptotic behavior of the swallowtail integral

∫∞
−∞ e

i(t5+xt3+yt2+zt)dt
for large values of |y| and bounded values of |x| and |z|. We use the simplified saddle
point method introduced in [López et al., 2009]. With this method, the analysis is
more straightforward than with the standard saddle point method and it is possible
to derive complete asymptotic expansions of the integral for large |y| and fixed x and
z. There are four Stokes lines in the sector (−π, π] that divide the complex y−plane
in four sectors in which the swallowtail integral behaves differently when |y| is large.
The asymptotic approximation is the sum of two asymptotic series whose terms are
elementary functions of x, y and z. One of them is of Poincaré type and is given in
terms of inverse powers of y1/2. The other one is given in terms of an asymptotic se-
quence whose terms are of the order of inverse powers of y1/9 when |y| → ∞, and it
is multiplied by an exponential factor that behaves differently in the four mentioned
sectors. Some numerical experiments illustrate the accuracy of the approximation.

2010 AMS Mathematics Subject Classification: 33E20; 41A60.

Keywords & Phrases: Swallowtail integral. Asymptotic expansions. Modified saddle
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1 Introduction
The swallowtail integral is one of the most important canonical diffraction integrals [1, Chap.
36], integrals that are an essential ingredient in the modelling of many physical phenomena,
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especially those related to wave propagation (see [2], [5], [6], [12], [14], [16], [17] or refer-
ences therein for detailed information). Apart from their physical applications, the canonical
diffraction integrals have an important mathematical application in the uniform asymptotic
approximation of oscillatory integrals [13]. For a comprehensive description of these inte-
grals (symmetries, illustrative pictures, scaling relations, convergent series expansions, zeros,
differential equations, bifurcation sets,...) see [1, Chap. 36].

The canonical diffraction integrals are classified according to the number of free inde-
pendent parameters that describe the type of singularities arising in catastrophe theory.
The simplest integral in this hierarchy is the well-known integral representation of the Airy
function, and the second one is the Pearcey integral. In this paper we are concerned with
the third one: the swallowtail catastrophe. The canonical form of the oscillatory integral
describing the swallowtail diffraction catastrophe is given by the swallowtail catastrophe
integral [1, Chap. 36, Sec. 2, eq. 36.2.4]:

Ψ(x, y, z) :=

∫ ∞
−∞

ei(t
5+xt3+yt2+zt)dt. (1)

The computation of this integral is not straightforward because of the oscillatory character
of the integrand. Some numerical methods based in the numerical integration of certain
differential equations satisfied by the swallowtail integral or in complex contour quadrature
techniques may be found in [3] and [4]. A convergent expansion in powers of x, y and z is
given in [1, Sec. 36, Chap. 8, eq. 36.8.1]; but the convergence speed of this expansion is
rather slow for moderate or large values of the variables. On the other hand, asymptotic
expansions of this integral are not fully investigated. In [8] we can find some information
about the asymptotics of Ψ(x, y, z), but a complete asymptotic expansion is not given.

The three first canonical integrals: Airy function, Pearcey integral and swallowtail in-
tegral are the most important ones in applications. The asymptotic behavior of the Airy
function is well-known; the asymptotics of the Pearcy integral has been considered in recent
works [9, 10] and other more classical works [7, 14, 15]. In this paper we focus our attention
on the swallowtail integral, for which a complete asymptotic analysis is not known.

In [6] we investigated the asymptotic behavior of Ψ(x, y, z) for large |x| and fixed y and z.
In this work we derive new asymptotic expansions that provide satisfactory approximations
of Ψ(x, y, z) for large |y| and moderate values of x and z. The analysis of the case |z| large
and fixed x and y deserves a separate analysis in a forthcoming paper (see last paragraph of
Section 4 for further details). Once these three cases are fully investigated, the asymptotic
analysis of the swallowtail integral will be complete and Section [1, Sec. 36.11] dedicated
to the asymptotic analysis of the catastrophe integrals may be updated. Moreover, the
asymptotic analysis of these three cases would let a complete description of the dynamics
of the optical swallowtail catastrophe when either of the two transverse spatial variables is
large or the control parameter is large [19].

The analysis here is different from the analysis in [6], as the location of the saddle points
and of the steepest descent paths is different. As a consequence, the complex y−plane is
divided in asymptotic regions different from those found in [6] for the x−plane, and the
Stokes lines are also different.
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In the following section, we analyze the saddle point features of the swallowtail integral
for large |y| and fixed x and z. In Section 3 we use a simplification of the saddle point method
proposed in [11] to derive complete asymptotic expansions of Ψ(x, y, z) for large |y|. Section
4 contains a summary of the discussion and some numerical experiments. Throughout the
paper we use the principal argument argw ∈ (−π, π] for any complex number w.

2 Preliminaries

The integral (1) converges for 0 < arg y < π and real x; or for real x, y and z, but the
integrand is highly oscillatory and then it is not an appropriate starting point for numerical or
analytical approximations. We can find a different representation of the swallowtail integral
with a monotonic integrand that is more appropriate for designing approximations. We
derive it in the following form: we split the integration interval (−∞,∞) at t = 0 and
rotate the path (−∞, 0) an angle −π/10, and the path (0,∞) and angle π/10. After these
manipulations the swallowtail integral may be written in the form

Ψ(x, y, z) = e−iπ/10S(xe−4iπ/5, ye3iπ/10, ze−3iπ/5) + eiπ/10S(xe4iπ/5, ye7iπ/10, ze3iπ/5), (2)

with
S(x, y, z) :=

∫ ∞
0

e−u
5+xu3+yu2+zudu. (3)

The integral S(x, y, z) is absolutely convergent for all complex values of x, y and z and
defines an entire function of the three variables. Therefore, the right hand side of (2) and (3)
constitute an explicit representation of the analytic continuation of the swallowtail integral
Ψ(x, y, z) to all complex values of x, y and z. Then, it is more convenient to work with the
representation (2)-(3) of the swallowtail integral. The derivation of the above representation
of the swallowtail integral is based on a similar derivation given in [14] for the Pearcey
integral.

3 The saddle point analysis of the integral S(x, y, z)

3.1 Saddle points and steepest descent paths of S(x, y, z)

Define θ := arg y. After the change of variable u = t
(

2|y|
5

)1/3

in the integral (3) we find that
this integral may be written in the form

S(x, y, z) =

(
2|y|
5

)1/3 ∫ ∞
0

e|y|(
2|y|
5 )

2/3
f(t)+

2|y|
5
xt3+z( 2|y|

5 )
1/3

tdt, (4)

where the phase function is f(t) := eiθt2 − 2
5
t5. This phase function has four saddle points:

t0 := 0 and t̄k := ei(θ+2kπ)/3, k = 0, 1,−1. From the steepest descent method [18, Chap. 2],
or its simplified modification [11], we know that the asymptotically relevant saddle points
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are those ones for which the integration path C := [0,∞) in (4) can be deformed into a
new path Γ containing portions of steepest descent paths that include all the relevant saddle
points. Therefore, the points t̄1 and t̄−1 have not any influence in the analysis. Then, we
only consider the saddle points t0 = 0 and t̄0 = eiθ/3 (see Figure 1).

Re(t)

ee

0

ιθ/3
ι(θ+2π)/3

π−θ
2

Γ

Γ

Γ0

1

1

Im(t)

e
ι(θ−2π)/3

−θ/2

Γ0

Figure 1: Saddle points t0 := 0 and t̄k := ei(θ+2kπ)/3, k = 0, 1,−1, of the phase function in (4)
and the steepest descent paths at t0 = 0 and at t̄0 = eiθ/3. The integration path [0,∞) in (4)
can be deformed either: (i) to a portion of one of the steepest descent paths Γ0 or Γ1 at the point
t0 = 0 or (ii) to the union of a portion of one of the steepest descent paths Γ0 or Γ1 at t0 = 0
and of another portion of the steepest descent path Γ̄0 ∪ Γ̄1 at t̄0 = eiθ/3. Therefore, the saddle
points t̄±1 = ei(θ±2π)/3 have not any influence in the asymptotic analysis of (4). This picture
corresponds to a certain θ > 0. For negative θ the picture is symmetric with respect to the axis
Re(t), interchanging also Γ0 and Γ1.

The application of the standard steepest descent method to the integral S(x, y, z) is not
straightforward, as the steepest descent paths of f(t) at the saddle points are difficult to
handle. But we know from [11] that, instead of the steepest descent paths of the phase
function f(t), we may consider the steepest descent paths of the “main part” fm(t) of f(t)
at the relevant saddle points. The “main part” fm(t) is just the Taylor polynomial of degree
m of f(t) at the saddle point T : fm(t) := f(T ) + f (m)(T )(t − T )m/m!, where m is the
order of the first nonvanishing derivative of f(t) at t = T (f (m)(T ) 6= 0 and f (k)(T ) = 0 for
k = 1, 2, 3, ...,m−1). The steepest descent paths of fm(t) are nothing but straight lines [11].

Then, the first point of the asymptotic analysis of (4) is the computation, at each relevant
saddle point t0 and t̄0, of the steepest descent paths of fm(t). Following [11] (see [6] for a
similar derivation) we find that they are the following ones:

• At the saddle point T = t0 = 0 we have that m = 2, φ = θ, f2(t) = eiθt2 and its
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steepest descent paths are the following two half-lines (see Figure 1):

Γk :=

{
reiθk ; θk :=

(1− 2k)π − θ
2

; r ≥ 0

}
, k = 0, 1.

• At the saddle point T = t̄0 := eiθ/3 we have that m = 2, φ = θ+ π, f2(t) = 3e5iθ/3/5−
3eiθ(t−eiθ/3)2 and its steepest descent paths are the following two half-lines (see Figure
1):

Γ̄k :=

{
eiθ/3 + reiθ̄k ; θ̄k :=

2kπ − θ
2

; r ≥ 0

}
, k = 0, 1.

3.2 Deformation of the integration path

The second part of our analysis consists in showing that the original path of integration [0,∞)
in (4) may be deformed to another path Γ more appropriate for the asymptotic analysis,
and then we write:

S(x, y, z) =

(
2|y|
5

)1/3 ∫
Γ

e|y|(
2|y|
5 )

2/3
f(t)+

2|y|
5
xt3+z( 2|y|

5 )
1/3

tdt. (5)

In this formula, Γ := Γs∪Γε, where Γs is the union of one portion of one of the two half-lines
Γ0 or Γ1, and a portion of Γ̄0∪ Γ̄1; in such a way that it contains the relevant saddle point(s)
t0 and/or t̄0. The “irrelevant” path Γε is necessary to complete the deformation of [0,∞),
but the integral over this path is exponentially small compared with the integral over the
path Γs. The analysis of the deformation depends on the angle θ (see Figures 2, 3 and 4)
and all the deformations used in the following four paragraphs are justified by the use of
Cauchy’s residue theorem:

• When 4π/5 < θ ≤ π we have that |θ0| = |(π − θ)/2| < π/10. We can deform the
path [0,∞) to the path Γ0, whose end point is the saddle point t0 = 0. We have that
Γs = Γ0, Γε is empty and Γs = Γ0 (see Figure 2).

• When 3π/5 ≤ θ ≤ 4π/5 we can deform the path [0,∞) to the path Γ = Γs ∪ Γε,
where Γs is the segment 0A of Γ0 plus the segment AB of Γ̄0 (see Figure 3.a for
3π/5 < θ < 4π/5 and Figure 3.b for θ = 3π/5). Γε is the interval [B,∞).

• When 0 ≤ θ < 3π/5 we can deform the path [0,∞) to the path Γ = Γs ∪ Γε, where
Γs is the segment 0A of Γ0 plus the segment AB of Γ̄0 ∪ Γ̄1 (see Figure 4). Γε is the
interval [B,∞).

• For negative θ the analysis is similar: (i) for −π < θ < −4π/5 the analysis is identical
to the case 4π/5 < θ ≤ π; (ii) for −4π/5 ≤ θ ≤ −3π/5 it is identical to the case
3π/5 ≤ θ ≤ 4π/5; (iii) for −3π/5 < θ ≤ 0 it is identical to the case 0 ≤ θ < 3π/5. The
only difference is that the figures are symmetric with respect to the Re(t)-axis and Γ̄0

is replaced by Γ̄1.
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Figure 2: When 4π/5 < θ ≤ π the path [0,∞) is deformed to the path Γ = Γ0.
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−θ/2

π−θ
2
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Γ
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0
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Im(t)

Re(t)

e

0

−3π/10

Γ

ιπ/5

π/5

Γ

Γ0

0

BC

Im(t)

(a) (b)

Figure 3: When 3π/5 ≤ θ ≤ 4π/5 we can deform the path [0,∞) to the path Γ = OA∪AB∪[B,∞)
represented in Figure (a) for 3π/5 < θ ≤ 4π/5 or in Figure (b) for θ = 3π/5 (when θ = 3π/5 then
A = t0 = eiθ/3 = eiπ/5). In these figures A := Γ0 ∩ Γ̄0 and B := Γ̄0∩ Re(t)-axis.

3.3 Computation of the integrals over the steepest descent paths

The third point of our analysis is the computation of the right hand side of (5) when Γ is
one of the paths described in the previous subsection. We only give details for θ ≥ 0, as the
case θ ≤ 0 is symmetric. The following two observations are essential in the analysis:

• Regardless of the value of θ, the segment OA is present1 in Γs. Besides, when 0 ≤
θ ≤ 4π/5, the segment AB is also present in Γs; although only for 0 ≤ θ ≤ 3π/5, the
saddle point t̄0 = eiθ/3 is in AB. On the other hand, among the two saddle points
t0 = 0 and t̄0 = eiπ/3, the most relevant one is the one for which <[f(t)] is maximal;

1Although when θ = 0 this segment is irrelevant because A = 0.
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Re(t)

e

0

ιθ/3

−θ/2π−θ
2
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Γ

Γ0

0
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Im(t)

Figure 4: When 0 ≤ θ < 3π/5 the path [0,∞) can be deformed to the path Γ = OA∪AB∪ [B,∞).
In this figure A := Γ0 ∩ Γ̄1 and B := Γ̄0∩ Re(t)-axis.

and this depends on θ: <[f(0)] = 0 and <[f(eiθ/3)] = 3 cos(5θ/3)/5. Therefore, t0 = 0
is the relevant saddle point for |θ| > 3π/10, t̄0 = eiθ/3 is the relevant saddle point for
|θ| < 3π/10 and both are equally relevant for θ = 3π/10.

• For π/2 ≤ θ ≤ π we have that <[f(t)] is a decreasing function in [0,∞) and <[f(t)] ≤
<[f(0)] = 0 for t ∈ [0,∞). For 0 ≤ θ < π/2 we have that the maximum of <[f(t)] is
located at t = (cos θ)1/3 and is a decreasing function in [(cos θ)1/3,∞). But B ≥ C :=
cos(θ/3) ≥ (cos θ)1/3 and then, <[f(t)] is a decreasing function in Γε = [B,∞). In any
steepest descent path, <[f(t)] decreases as t runs away from the saddle point and then
<[f(t)] ≤ <[f(B)] < <[f(eiθ/3)] for t ∈ Γε = [B,∞).

From the above first observation we conclude that we may consider that Γs = OA for
3π/10 < |θ| ≤ π and Γs = OA ∪ AB for 0 ≤ |θ| < 3π/5. From the second observation we
conclude that the contribution of Γε is exponentially small compared to the contribution of
Γs for any θ. In summary,

S(x, y, z) ∼


S0(x, y, z) if

3π

10
< |θ| ≤ π,

S0(x, y, z) + S̄(x, y, z) if |θ| < 3π

5
,

(6)

where

S0(x, y, z) :=

(
2|y|
5

)1/3 ∫ A

0

e|y|(
2|y|
5 )

2/3
f2(t)e|y|(

2|y|
5 )

2/3
[f(t)−f2(t)]+

2|y|
5
xt3+z( 2|y|

5 )
1/3

tdt (7)

and

S̄(x, y, z) :=

(
2|y|
5

)1/3 ∫ B

A

e|y|(
2|y|
5 )

2/3
f2(t)e|y|(

2|y|
5 )

2/3
[f(t)−f2(t)]+

2|y|
5
xt3+z( 2|y|

5 )
1/3

tdt. (8)
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In formula (7) f2(t) = eiθt2 and f2(t) = 3e5iθ/3/5 − 3eiθ(t − eiθ/3)2 in formula (8). Figure
5.a shows the different asymptotic behavior of S(x, y, z) in the complex y−plane, according
to (6). In the red sector |θ| < 3π

10
, S(x, y, z) ∼ S0(x, y, z) + S̄(x, y, z), whereas in the blue

sector 3π
5
< |θ| ≤ π, S(x, y, z) ∼ S0(x, y, z). In the purple sector 3π

10
< |θ| ≤ 3π

5
, either of the

two approximations is valid, as S̄(x, y, z) is exponentially small compared with S0(x, y, z).
Inside the red sector |θ| < 3π/10, S̄(x, y, z) dominates S0(x, y, z)2. The Stokes lines are the
lines arg(y) = ±3π/10, where both, S0(x, y, z) and S̄(x, y, z) are of the same order.

Re(y)

Im(y)

3π/10

−3π/10

3π/5

−3π/5

Im(y)

Re(y)

−2π/5

3π/10

−π/10

−3π/5

−9π/10

7π/10

(a) (b)

Figure 5: (a) The saddle point analysis of the integral (3) is different in the two regions of
the complex y-plane separated by lines arg y = ±3π/10; (b)Both, S0(xe−4iπ/5, ye3iπ/10, ze−3iπ/5)
and S0(xe4iπ/5, ye7iπ/10, ze3iπ/5) contribute to the asymptotic behavior of the swallowtail integral
in the whole complex y−plane (except for arg y = −3π/10 and arg y = −7π/10 respectively
when they respectively vanish). But S̄(xe−4iπ/5, ye3iπ/10, ze−3iπ/5) and S̄(xe4iπ/5, ye7iπ/10, ze3iπ/5)
contribute differently in the four sectors depicted in the figure: both of them contribute in
the blue sector −9π/10 ≤ arg y ≤ −π/10, none in the yellow sector 3π/10 < arg y <
7π/10, only S̄(xe−4iπ/5, ye3iπ/10, ze−3iπ/5) in the red sector −π/10 < arg y ≤ 3π/10 and only
S̄(xe4iπ/5, ye7iπ/10, ze3iπ/5) in the green sector −π ≤ θ < −9π/10 and 7π/10 ≤ arg y ≤ π. The
Stokes lines are the thick blue lines arg y = −3π

5 , −2π/5, 0 and π.

3.4 The approximate computation of S0(x, y, z) and S̄(x, y, z)

The fourth point of the analysis is the approximation of the integrals S0(x, y, z) and S̄(x, y, z).
Again, we only give details for positive θ, as the analysis for negative θ is identical. After
the change of variable t→

(
5
2

) 1
3 ei(π−θ)/2|y|−5/6t in (7) we find

S0(x, y, z) =
1

(−y)1/2

∫ Ay

0

e−t
2

g(x, y, z, t)dt, (9)

2Moreover, when θ = 0, A = 0 and then S0(x, y, z) = 0.
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with Ay := |A|(2/5)1/3|y5/6| ≥ 0 and

g(x, y, z, t) := exp

{
− t5

(−y)5/2
+

xt3

(−y)3/2
+

zt

(−y)1/2

}
.

From here, the computation of the asymptotic expansion of this integral follows from Wat-
son’s Lemma [18, Chap. 1, Sec. 5], [11]. Replacing g(x, y, z, t) by its Taylor expansion at
t = 0, interchanging sum and integral, and neglecting exponentially small terms, we find
that S0(x, y, z) = 0 for θ = 0 and, for θ 6= 0,

S0(x, y, z) ∼ 1

2

∞∑
n=0

Γ

(
n+ 1

2

)
Bn(x, z)

(−y)(n+1)/2
as |y| → ∞, (10)

with

Bn(x, z) :=
∑

5k+3j+l=n

(−1)kxjzl

k!j!l!
. (11)

From the differential equation g′(x,−1, z, t) = (z + 3xt2− 5t4)g(x,−1, z, t) in the variable t,
it is straightforward to see that the coefficients Bn(x, z) satisfy the recurrence relation

Bn(x, z) =
zBn−1(x, z) + 3xBn−3(x, z)− 5Bn−5(x, z)

n
,

with

B0(x, z) = 1, B1(x, z) = z, B2(x, z) =
z2

2
, B3(x, z) = x+

z3

6
, B4(x, z) = xz +

z4

24
.

On the other hand, after the change of variables t→ u defined by t = eiθ/3+e−iθ/2 (5/2)1/3

|y|5/6
√

3
u

in the integral (8) we find

S̄(x, y, z) =
1√
3y
eh(x,y,z)

∫ By

Ay

e−u
2+uw(x,y,z)g(x, y, z, u)du, (12)

with Ay := (2/5)1/3
√

3eiθ/2(A− eiθ/3)|y|5/6 < 0, By := (2/5)1/3
√

3eiθ/2(B − eiθ/3)|y|5/6 > 0;

h(x, y, z) :=
3

5

(
2

5

)2/3

y5/3 +
2xy

5
+ z

(
2y

5

)1/3

; w(x, y, z) :=
√

3

(
2

5

)2/3

xy1/6 +
z√
3y

;

g(x, y, z, u) = exp

{
a2(x, y, z)

y5/9
u2 +

a3(x, y, z)

y5/6
u3 +

a4(x, y, z)

y10/9
u4 +

a5(x, y, z)

y25/18
u5

}
,

and

a2(x, y, z) :=

(
2
5

)1/3
x

y1/9
, a3(x, y, z) :=

1

3
√

3

[
−25/351/3 +

x

y2/3

]
,

a4(x, y, z) := −21/352/3

9y5/9
, a5(x, y, z) := − 1

35/2y10/9
.

(13)
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Replacing the Taylor expansion of g(x, y, z, u) at u = 0 in (12), interchanging sum and
integral, and neglecting exponentially small terms, we find that

S̄(x, y, z) ∼ 1√
3y
eh(x,y,z)+w2(x,y,z)/4

∞∑
n=0

Cn(x, y, z)An(x, y, z)

y5n/18
, (14)

where, for n = 0, 1, 2, 3, ..., Cn(x, y, z) are the Taylor coefficients of g(x, y, z, y5/18u) at u = 0:

Cn(x, y, z) :=
∑

2n2+3n3+4n4+5n5=n

an2
2 (x, y, z)an3

3 (x, y, z)an4
4 (x, y, z)an5

5 (x, y, z)

n2!n3!n4!n5!
. (15)

It is obvious that C0(x, y, z) = 1 and C1(x, y, z) = 0. And, from the following differential
equation with respect to the variable u: g′(x, y, z, y5/18u) = g(x, y, z, y5/18u)

∑5
k=2 kak(x, y, z)uk−1,

it is straightforward to see that, for n = 2, 3, 4, ..., the coefficients Cn(x, y, z) satisfy the re-
currence relation:

Cn(x, y, z) =
1

n

min{n,5}∑
k=2

k ak(x, y, z)Cn−k(x, y, z). (16)

On the other hand, the functions An(x, y, z) are the integrals

An(x, y, z) :=

∫ ∞
−∞

une−(u−w(x,y,z)/2)2du =

∫ ∞
−∞

[
t+

w(x, y, z)

2

]n
e−t

2

dt

=
n∑
k=0

(
n
k

)(
w(x, y, z)

2

)n−k ∫ ∞
−∞

tke−t
2

dt =

bn/2c∑
k=0

(
n
2k

)(
w(x, y, z)

2

)n−2k

Γ

(
k +

1

2

)
.

The two first functions An(x, y, z) are

A0(x, y, z) =
√
π, A1(x, y, z) =

√
π

2
w(x, y, z),

and, for n = 2, 3, 4, ..., the remaining ones may be computed from the recurrence relation

An(x, y, z) =
w(x, y, z)

2
An−1(x, y, z) +

n− 1

2
An−2(x, y, z). (17)

This recurrence relation follows straightforwardly integrating by parts in the integral defini-
tion of An(x, y, z).

On the one hand, from (13) and (15) it is obvious that the coefficients Cn = O(1) when
|y| → ∞ with fixed x and z. On the other hand, from (17) it is straightforward to see that
An(x, y, z) = O(wn(x, y, z)) = O(yn/6). Then, every term of the asymptotic expansion of
S̄(x, y, z) in (14) is of the order O(y−n/9) as |y| → ∞ for bounded x and z.
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4 Summary of the discussion and numerical experiments

From (6), (10) and (14) we see that, when |y| → ∞, S(x, y, z) is of the order O(y−1/2)
if | arg y| > 3π/10 and of the order O(y−1/2eh(x,y,z)+w2(x,y,z)/4) if | arg y| ≤ 3π/10. Then,
S(x, y, z) has an exponential behavior in the red region of Figure 5.a and a power behavior
in the blue and purple regions. The Stokes lines for S(x, y, z) are the rays arg y = ±3π/10.

In order to determine the asymptotic behavior of the swallowtail integral Ψ(x, y, z) we
must use the relations (2) and (6). The first function S(x, y, z) on the right hand side of (2)
is evaluated at ye3iπ/10, and the second one at ye7iπ/10. Therefore, the complex y−plane is
divided into the four regions depicted in Figure 5.b, according to the asymptotic behavior
of Ψ(x, y, z):

Ψ(x, y, z) ∼ e−iπ/10S0(xe−4iπ/5, ye3iπ/10, ze−3iπ/5) + eiπ/10S0(xe4iπ/5, ye7iπ/10, ze3iπ/5)

+e−iπ/10S̄(xe−4iπ/5, ye3iπ/10, ze−3iπ/5)χ[0,3π/5)

(∣∣∣∣arg y +
3π

10

∣∣∣∣)

+eiπ/10S̄(xe4iπ/5, ye7iπ/10, ze3iπ/5)χ[0,3π/5)

(∣∣∣∣arg y +
7π

10

∣∣∣∣) ,
(18)

where χ[a,b)(θ) is the characteristic function of the interval [a, b). The function S0(x, y, z) is
approximated by the right hand side of (10) and S̄(x, y, z) by the right hand side of (14). The
Stokes lines of the swallowtail integral are arg y = −3π

5
, −2π/5, 0 and π, and separate the

complex y−plane in four different sectors: −π < arg y < −3π/5, −3π/5 < arg y < −2π/5,
−2π/5 < arg y < 0 and 0 < arg y < π.

Table 1 shows the accuracy of the approximations summarized above. We evaluate the
swallowtail integral Ψ(x, y, z) by using formula (2), evaluating the function S(x, y, z) defined
in (3) with the NIntegrate command of Wolfram Mathematica 10.4, using 16 digits for the
numerical evaluation of the integral.

The asymptotic analysis of Ψ(x, y, z) for large |x| or large |y| has been posible through the
splitting (2) and the asymptotic approximation of the functions S(x, y, z). But the analysis
of the asymptotic behavior of Ψ(x, y, z) for large |z| and fixed x and y is more cumbersome.
In this case, the point t = 0 is not a saddle point of the phase function. This fact translates
into numerical instabilities in the asymptotic approximation of Ψ(x, y, z) by means of the
splitting (2) and the asymptotic approximation of the functions S(x, y, z). Therefore, we
plan to investigate the large z asymptotic of the swallowtail integral in a separate paper
avoiding the mentioned splitting.
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x = 0.5 eiπ
6 , z = 0.25 x = −0.7, z = 2 i

y n = 2 n = 4 n = 6 y n = 2 n = 4 n = 6

10 eiπ
3 0.0019 0.001 4.8e-4 10 e3iπ

4 0.0087 0.0027 8.2e-4

100 eiπ
3 1.e-5 6.4e-7 3.5e-8 100 e3iπ

4 1.1e-4 2.e-6 7.6e-8

1000 eiπ
3 9.4e-8 6.2e-10 2.9e-12 1000 e3iπ

4 1.16e-6 3.9e-9 2.2e-9

x = 0.2, z = 0.1 e2iπ
3 x = 0.2 i, z = 0.5 eiπ

4

y n = 2 n = 4 n = 6 y n = 2 n = 4 n = 6

5 e−4iπ
5 0.108 0.096 0.033 10 e−3.2iπ

5 0.03 0.023 0.001

20 e−4iπ
5 0.023 7.e-3 2.5e-4 30 e−3.2iπ

5 0.014 3.6e-3 3.7e-5

60 e−4iπ
5 0.01 1.1e-3 1.6e-5 70 e−3.2iπ

5 0.008 9.e-4 4.6e-6

x = 0.5, z = 0.3 eiπ
3 x = 0.1 i, z = −1.25

y n = 1 n = 3 n = 5 y n = 2 n = 4 n = 6

−5 i 0.3 0.1 0.007 20 e−iπ
5 7.e-3 6.9e-3 2.6e-4

−10 i 0.097 0.02 2.e-4 30 e−iπ
5 5.e-3 3.6e-3 7.6e-5

−30 i 0.03 0.0028 9.7e-5 60 e−iπ
5 3.7e-3 1.1e-3 9.8e-6

x = 0.2i, z = 0.5 e−iπ
4 x = 0.3, z = 0.5

y n = 2 n = 4 n = 6 y n = 2 n = 4 n = 6

10 ei(−3π
5
−0.001) 0.029 0.023 0.001 10 ei(−2π

5
−0.001) 0.07 0.023 1.9e-3

30 ei(−3π
5
−0.001) 0.013 0.004 4.e-5 40 ei(−2π

5
−0.001) 0.02 2.e-3 1.7e-5

70 ei(−3π
5
−0.001) 8.e-3 8.7e-4 3.e-6 70 ei(−2π

5
−0.001) 0.01 8.7e-4 3.9e-6

x = 0.2i, z = 0.5 e−iπ
4 x = 0.3, z = 0.5

y n = 2 n = 4 n = 6 y n = 2 n = 4 n = 6

10 e−i 3π
5 0.029 0.023 0.001 10 ei−2π

5 0.07 0.023 1.9e-3

30 e−i 3π
5 0.013 0.004 4.e-5 40 ei−2π

5 0.02 2.e-3 1.7e-5

70 e−i 3π
5 8.e-3 8.7e-4 3.e-6 70 ei−2π

5 0.014 8.7e-4 1.e-5

x = −0.15, z = 0.3 i x = 0.05i, z = 0.3

y n = 2 n = 4 n = 6 y n = 4 n = 6 n = 8

10 e0.005i 0.017 0.014 4.7e-4 10 ei(π−0.05) 0.1221 0.122 0.12199

15 e0.005i 0.015 0.0096 1.e-4 15 ei(π−0.05) 0.03743 0.037416 0.037414

20 e0.005i 0.01 0.005 3.7e-5 20 ei(π−0.05) 0.00719 0.007175 0.007174

x = −0.15, z = 0.3 i x = 0.05i, z = 0.3

y n = 2 n = 4 n = 6 y n = 4 n = 6 n = 8

10 0.018 0.015 4.9e-4 10 eiπ 0.345146 0.34504 0.345032

15 0.025 0.015 1.7e-4 15 eiπ 0.7035 0.70348 0.70347

20 0.03 0.014 8.9e-5 20 eiπ 0.4732 0.473198 0.473196

Table 1: Relative errors in the approximation of the integral Ψ(x, y, z) given in (1) by using
(18)-(10)-(14) with the series (18) and (10) truncated after n terms. Several values of y in the four
regions given in Figure 5b are considered. We can observe that the approximation is more accurate
away from the Stokes lines.
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