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Abstract

We consider the swallowtail integral Ψ(x, y, z) :=
∫∞
−∞ e

i(t5+xt3+yt2+zt)dt for large
values of |z| and bounded values of |x| and |y|. The integrand of the swallowtail inte-
gral oscillates wildly in this region and the asymptotic analysis is subtle. The standard
saddle point method is complicated and then we use the modified saddle point method
introduced in [López et al., 2009]. The analysis is more straightforward with this
method and it is possible to derive complete asymptotic expansions of Ψ(x, y, z) for
large |z| and fixed x and y. The asymptotic analysis requires the study of three dif-
ferent regions for arg z separated by three Stokes lines in the sector −π < arg z ≤ π.
The asymptotic approximation is a certain combination of two asymptotic series whose
terms are elementary functions of x, y and z. They are given in terms of an asymptotic
sequence of the order O(z−n/12) when |z| → ∞, and it is multiplied by an exponential
factor that behaves differently in the three mentioned sectors. The accuracy and the
asymptotic character of the approximations is illustrated with some numerical experi-
ments.
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1 Introduction
The mathematical models of many short wavelength phenomena, specially wave propagation
and optical diffraction, contain, as a basic ingredient, oscillatory integrals with several nearly
coincident stationary phase or saddle points. The uniform approximation of those integrals
can be expressed in terms of certain canonical integrals and their derivatives [2], [15]. The
importance of these canonical diffraction integrals is stressed in [13] by means of the following
sentence: The role played by these canonical diffraction integrals in the analysis of caustic
wave fields is analogous to that played by complex exponentials in plane wave theory.

Apart from their mathematical importance in the uniform asymptotic approximation of
oscillatory integrals [11], the canonical diffraction integrals have physical applications in the
description of surface gravity waves [10], [16], bifurcation sets, optics, quantum mechanics
and acoustics (see [1, Sec. 36.14] and references there in).

In [1, Chap. 36] we can find a large amount of information about this integrals. First
of all, they are classified according to the number of free independent parameters that de-
scribe the type of singularities arising in catastrophe theory, that also corresponds to the
number of saddle points of the integral. The simplest integral with only one free parame-
ter, that corresponds to the fold catastrophe, involves two coalescing stationary points: the
well-known integral representation of the Airy function. The second one, depending on two
free parameters corresponds to the cusp catastrophe and involves three coalescing stationary
points. The third one, depending on three free parameters corresponds to the swallowtail
catastrophe and involves four coalescing stationary points. The canonical form of the oscil-
latory integral describing the swallowtail diffraction catastrophe is given by the swallowtail
catastrophe integral [1, eq. 36.2.4]:

Ψ(x, y, z) :=

∫ ∞
−∞

ei(t
5+xt3+yt2+zt)dt. (1)

Apart from the classification of this family of integrals, in [1, Chap. 36] we can find many
properties such as symmetries, illustrative pictures, bifurcation sets, scaling relations, zeros,
convergent series expansions, differential equations and leading-order asymptotic approxi-
mations among others. But we cannot find complete asymptotic expansions.

The first three canonical integrals: Airy function, Pearcy integral and swallowtail integral
are the most important ones in applications. The first one is well-known and has been deeply
investigated in the literature. The second one has been considered in recent works [7, 8] and
other more classical works [5, 13, 14]. In this paper we focus our attention in the third one.
In [1, eq. 36.8.1] we can find the convergent expansion:

Ψ(x, y, z) =
2

5

∞∑
n=0

in cos

(
π(4n− 1)

10

)
Γ

(
n+ 1

5

)
an(x, y, z), (2)

where a0(x, y, z) = 1 and, for n = 0, 1, 2, ...,

an+1(x, y, z) =
i

n+ 1

min(n,2)∑
p=0

(p+ 1)x̂p+1an−p(x, y, z), (3)
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with x̂1 = z, x̂2 = y, x̂3 = x. The convergence speed of this expansion is rather slow for
moderate or large values of the variables. In [1, eq. 36.11.2] we can find the leading order
approximation of Ψ(x, y, z) in terms of elementary functions, but it is valid only when the
stationary points of the phase function are real and distinct. In [6] we can find an asymptotic
approximation of Ψ(x, y, z) in terms of Pearcey integrals, valid for large negative x with y
real, and that remains valid when x, y, z are near the cusp of the caustic.

In [3] we investigated the asymptotic behavior of Ψ(x, y, z) for large |x| and fixed y and
z. In [4] we investigated the asymptotic behavior of Ψ(x, y, z) for large |y| and fixed x and z.
In this work we derive new asymptotic expansions that produce satisfactory approximations
of Ψ(x, y, z) for large |z| and moderate values of x and y. The analysis here is different from
the analysis in [3] and [4], as the location of the saddle points and the analysis of the steepest
descent paths are different. As a consequence, the complex z−plane is divided in asymptotic
regions different from those found in [3] for the x−plane or in [4] for the y−plane, and the
Stokes lines are also different.

In the following section, we analyze the saddle point features of the swallowtail integral
for large |z| and fixed x and y. Section 2 contains some preliminaries necessary for the
asymptotic analysis. In Section 3 we analyze the saddle points and steepest descent paths
of the quadratic part of the phase function. In Section 4 we analyze the deformation of the
integration path. In Section 5 we compute the integrals over the asymptotically relevant sad-
dle points. Section 6 contains a summary of the discussion and some numerical experiments.
Throughout all the paper we use the notation θ := arg z and use the principal argument
argw ∈ (−π, π] for any complex number w and the notation w∗ for the complex conjugate
of w.

2 Preliminaries

The integral (1) exists only for 0 < arg y < π and real x, or for real x, y and z. After
splitting the integration interval (−∞,∞) at t = 0 and rotating the path (−∞, 0) an angle
−π/10, and the path (0,∞) and angle π/10, the swallowtail integral may be written in the
form

Ψ(x, y, z) :=

∫
L

ei(u
5+xu3+yu2+zu)du, (4)

where L := (∞ e9iπ/10, 0]
⋃

[0,∞eiπ/10) is the path depicted in Figure 1. This last integral is
absolutely convergent for all complex values of x, y and z. Therefore, the right hand side
of (4) is an analytic representation of the analytic continuation of the swallowtail integral
Ψ(x, y, z) to all complex values of x, y and z.
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Re(t)
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0
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Figure 1: The path L is the union of two half-straights joined at the origin t = 0 and form an angle
of ∓π/10 radians with the negative and positive real axes respectively.

3 Saddle points and steepest descent paths of Ψ(x, y, z)

After the change of variable u = t
(
|z|
5

)1/4

in the integral (4) we find that

Ψ(x, y, z) =

(
|z|
5

)1/4 ∫
L

e

(
|z|5
5

)1/4

f(t)+ix( |z|
5 )

3/4
t3+iy( |z|

5 )
1/2

t2

dt, (5)

where we have defined the phase function f(t) := ieiθt + i
5
t5. This phase function has four

saddle points: tk := ei(θ+(2k−1)π)/4, k = 1, 2, 3, 4; or t1 = ei(θ+π)/4, t2 = it1, t3 = it2, t4 = it3.
From the steepest descent method [17, Chap. 2], or its simplified modification [9], we know
that the asymptotically relevant saddle points are those ones for which the integration path
L in (5) can be deformed into a steepest descent path (or union of steepest descent paths)
that contains the relevant saddle points. We will show below that only the saddle points t1
and t2 are relevant in the asymptotic analysis.

The analytic expression of the steepest descent paths of f(t) at the saddle points is not
straightforward. On the other hand, we know from [9] that the asymptotic analysis of the
integral (5) does not require the computation of the steepest descent paths of f(t) at the
saddle points tk, but the steepest descent paths of the “main part” of f(t) at tk, that may
always be computed in a straightforward manner, as they are nothing but straight lines [9].

At the four saddle points tk, k = 1, 2, 3, 4, we have that the first non-vanishing derivative
of f(t) is f ′′(t). Then, following the notation of [9], at every saddle point tk, we denote by
φk the phase of f ′′(tk) and by f2(t) the Taylor polynomial of degree 2 of f(t) at the saddle
point: f2(t) := f(tk) + f ′′(tk)(t− tk)2/2. At every steepest descent straight, the “main part”
of f(t) is just f2(t) and, at each saddle point tk, k = 1, 2, 3, 4, we have that the steepest
descent paths of f2(t) are the following straights trough the saddle points [9]:

Γk =

{
tk + reiθk ; θk =

π − φk
2

; −∞ < r <∞
}
.
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Figure 2: Saddle points tk := ei(θ+(2k−1)π)/4, k = 1, 2, 3, 4, of the quadratic part f2(t) of the phase
function f(t) in (5) and the steepest descent paths Γk of f2(t) at each of the four saddle points.
This picture corresponds to θ = π/6. The integration path L in (5) can be deformed to the path
Γ = L2 ∪ Γ2 ∪ Γ1 ∪ L1, with L1 := {reiπ/10; |R1| < r < ∞}, L2 := {re9iπ/10; |R2| < r < ∞},
Γ1 := [A,R1], Γ2 := [R2, A], A := Γ1 ∩ Γ2, R1 := Γ1 ∩ L and R2 := Γ2 ∩ L.

Then, the first point of the asymptotic analysis of (5) is the computation of the steepest
descent paths of f2(t). We have that φk = 3(θ + (2k − 3)π)/4, k = 1, 2, 3, 4. Therefore,
θk := −3[(2k + 1)π + θ]/8, k = 1, 2, 3, 4. Then, the steepest descent paths are the following
straights (see Figure 2):

Γk :=

{
ei(θ+(2k−1)π)/4 + reiθk ; θk := −3

8
[(2k + 1)π + θ]; −∞ < r <∞

}
, k = 1, 2, 3, 4.

Moreover, at every saddle point tk, k = 1, 2, 3, 4, we have that the quadratic part of the
phase function is

f2(t) :=
4

5
ei(5θ+(2k+1)π)/4 + 2ie3i(θ+(2k−1)π)/4(t− ei(θ+(2k−1)π)/4)2. (6)

4 Deformation of the integration path
Following [9], the second part of our analysis consists in the deformation of the integration
path L in (5) to a new path Γ appropriate for the asymptotic analysis: it must contain
certain portions Γk of some of the four steepest descent straights Γk, k = 1, 2, 3, 4. In fact,
by the use of Cauchy’s residue theorem we can deform L → L2 ∪ Γ ∪ L1, where L1 and L2

are residual portions of the original path L and Γ is a portion of one or two appropriate
steepest descents Γk. Figure 2 shows the four steepest descent paths Γk trough the four
saddle points tk = ei(θ+(2k−1)π)/4, k = 1, 2, 3, 4, for the particular case θ = π/6. We have that
L1 = [R1,∞eiπ/10) and L2 = [R2,∞e9iπ/10), where R1 and R2 are intersections points of Γ1

and Γ2 with the original path L. (when θ = π/6, Γ is the union of two portions Γ1 and Γ2

of Γ1 and Γ2 respectively).
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The precise form of the deformation of the original path L depends on θ:

Γ =



Γ1 ∪ Γ3 for − π < θ < −3π/5,

Γ1 for − 3π/5 ≤ θ < −π/15,

Γ1 ∪ Γ2 for − π/5 < θ < π/5,

Γ2 for π/15 < θ ≤ 3π/5,

Γ2 ∪ Γ4 for 3π/5 < θ ≤ π.

(7)

Figure 3 shows the precise form of the five possible deformations of the path L according
to the five regions for the angle θ detailed above. Therefore, after the deformation,

Ψ(x, y, z) =

(
|z|
5

)1/4 ∫
L2∪Γ∪L1

e

(
|z|5
5

)1/4

f(t)+ix( |z|
5 )

3/4
t3+iy( |z|

5 )
1/2

t2

dt. (8)

5 Computation of the integrals over the steepest descent
paths

The third point of our analysis is the approximate computation of the right hand side of (8)
when Γ, L1 and L2 are the paths described in the previous section. The following observations
are essential in the analysis:

• <[f(t)] is a decreasing function in both paths, L1 and L2, as |t| → ∞ (t runs from the
points R1 or R2 to the infinity trough L1 or L2 respectively).

• For −π < θ ≤ π, whatever the path Γ is (see (7)), only the saddle points t1 and t2 are
relevant when they are in Γ (for any value of θ, at least one of them is in Γ). We have
plotted in Figure 4 the functions <[f(tk(θ))]χk(θ) = 4

5
cos[((2k + 1)π + 5θ)/4]χk(θ),

k = 1, 2, 3, 4, for −π < θ ≤ π, where the function χk(θ) = 1 if the saddle point tk ∈ Γ
and χk(θ) = 0 if tk /∈ Γ (that is, <[f(tk(θ))] is plotted only for those values of θ for
which tk ∈ Γ).

• The difference between the integrals over the whole steepest descent paths Γk and the
segments Γk that make up Γ is exponentially small.

From the above observations we conclude that

Ψ(x, y, z) ∼



Ψ2(x, y, z)−Ψ1(x, y, z) for |θ| < π

5
,

−Ψ1(x, y, z) for − 3π

5
≤ θ < − π

15
,

Ψ3(x, y, z)−Ψ1(x, y, z) for − π < θ < −3π

5
,

Ψ2(x, y, z) for
π

15
< θ ≤ 3π

5
,

Ψ2(x, y, z) + Ψ4(x, y, z) for
3π

5
< θ ≤ π,

(9)
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Figure 3: Precise form of the deformed path L1 ∪ Γ ∪ L2 according to the value of θ. In all the
figures, Γk are pieces of the respective steepest descent paths Γk, k = 1, 2, 3, 4: (a) −π < θ < −3π/5
and Γ = Γ1 ∪ Γ3. (b) −3π/5 ≤ θ < −π/15 and Γ = Γ1. (c) −π/5 < θ < π/5 and Γ = Γ1 ∪ Γ2. (d)
π/15 < θ ≤ 3π/5 and Γ = Γ2. (e) 3π/5 < θ < π and Γ = Γ2 ∪ Γ4. (f) θ = π and Γ = Γ2 ∪ Γ4.

where, for k = 1, 2, 3, 4,

Ψk(x, y, z) :=

(
|z|
5

)1/4 ∫
Γk

e

(
|z|5
5

)1/4

f2(t)+

(
|z|5
5

)1/4

[f(t)−f2(t)]+ix( |z|
5 )

3/4
t3+iy( |z|

5 )
1/2

t2

dt, (10)

and f2(t) has been defined in (6). After the change of variables t → u given by t =

ei((2k−1)π+θ)/4 + e−3i[(2k+1)π+θ]/8
(

5
|z|5

)1/8
u√
2
in the integral (10) we find for k = 1, 2, 3, 4,
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Figure 4: Graphics of the functions <[f(tk(θ))] = 4
5 cos[((2k+ 1)π+ 5θ)/4], k = 1, 2, 3, 4, for those

values of θ for which tk ∈ Γ.

Ψk(x, y, z) =
ehk(x,y,z)

√
2(5z3)1/8

∫ b|z|5/8

−a|z|5/8
e−u

2+uwk(x,y,z)gk(x, y, z, u)du, (11)

where a and b are positive numbers related to the end points R1, R2 and A of the piece Γk of
the saddle straight Γk defining the integral (10). The precise value of a and b is not relevant
in the forthcoming analysis. Moreover,

hk(x, y, z) := e
iπ
4

(6k−1)x
(z

5

)3/4

+ (−1)ky
(z

5

)1/2

+
4

5
e

1
4
iπ(2k+1)

(
z5

5

)1/4

− 1

8
iπ(6k + 3),

wk(x, y, z) :=
3√
2
e

1
8
iπ(2k−3)x

( z
55

)1/8

+

√
2e−

1
8
iπ(2k+1)y

(53z)1/8
,

gk(x, y, z, u) := exp

{
a2
k(x, y, z)

z5/12
u2 +

a3
k(x, y, z)

z5/8
u3 +

a4
k(x, y, z)

z5/6
u4 +

a5
k(x, y, z)

z25/24
u5

}
,

and

a2
k(x, y, z) :=

e−
iπ
4

(6k+1)y

2 51/4z1/3
− 3i(−1)kx

2
√

5z1/12
, a3

k(x, y, z) :=
e−

iπ
8

(2k+3)x

2
√

253/8
√
z

+
51/8
√

2

2
e
iπ
8

(7−10k),

a4
k(x, y, z) := −51/4e−

iπ
4

(2k+1)

4z5/12
, a5

k(x, y, z) :=
e

5iπ
8

(1−6k)

4
√

255/8z5/6
.
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Replacing, for k = 1, 2, 3, 4, the Taylor expansion of gk(x, y, z, u) at u = 0 in the integrand
of (11), and interchanging sum and integral, we find that, as |z| → ∞,

Ψk(x, y, z) ∼ ehk(x,y,z)+w2
k(x,y,z)/4

√
2(5z3)1/8

∞∑
n=0

Ck
n(x, y, z)Akn(x, y, z)

z5n/24
, (12)

where, for k = 1, 2, 3, 4 and n = 0, 1, 2, 3, ..., Ck
n(x, y, z) are the Taylor coefficients of

gk(x, y, z, u) at u = 0,

Ck
n(x, y, z) :=

∑
2n2+3n3+4n4+5n5=n

[a2
k(x, y, z)]n2 [a3

k(x, y, z)]n3 [a4
k(x, y, z)]n4 [a5

k(x, y, z)]n5

n2!n3!n4!n5!
. (13)

The function gk(x, y, z, z5/24t) satisfies the differential equation g′k = gk
∑5

m=2mamk (x, y, z)tm−1

in the variable t. From this differential equation it follows that, for n = 1, 2, 3, ..., the coeffi-
cients Ck

n(x, y, z) may be obtained recurrently in the following form:

Ck
n(x, y, z) =

1

n

min{n,5}∑
j=2

kajk(x, y, z)Ck
n−j(x, y, z), Ck

0 (x, y, z) = 1.

On the other hand, the functions Akn(x, y, z) are the integrals

Akn(x, y, z) :=e−w
2
k(x,y,z)/4

∫ ∞
−∞

une−u
2+wk(x,y,z)udu

=e−w
2
k(x,y,z)/4


wk(x, y, z)Γ

(
n
2

+ 1
)
M
(
n
2

+ 1, 3
2
;
w2
k(x,y,z)

4

)
if n odd,

Γ
(
n+1

2

)
M
(
n+1

2
, 1

2
;
w2
k(x,y,z)

4

)
if n even,

whereM(a, b; z) is a confluent hypergeometric function [12]. The first two functionsAkn(x, y, z)
are

Ak0(x, y, z) =
√
π, Ak1(x, y, z) =

√
π

2
wk(x, y, z),

and, for n = 2, 3, 4, ..., the remaining ones may be computed from the recurrent relation

Akn(x, y, z) =
wk(x, y, z)

2
Akn−1(x, y, z) +

n− 1

2
Akn−2(x, y, z). (14)

This recurrence follows straightforwardly integrating by parts in the integral definition of
Akn(x, y, z).

We have that, for k = 1, 2, 3, 4, the coefficients Ck
n are O(1) when |z| → ∞ and fixed

x and y. On the other hand, from (14) it is straightforward to see that Akn(x, y, z) =
O(wk(x, y, z)n) = O(zn/8). Then, apart from the pre-factor in (12), every term inside the
series defining the asymptotic expansion of Ψk(x, y, z) in (12) is of the order O(z−n/12) as
|z| → ∞ for bounded x and y.
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6 Summary of the discussion and numerical experiments
The asymptotic behavior of the swallowtail integral Ψ(x, y, z) follows from (9) and (12) (see
also Figure 4). From (9) and Figure 4 it is clear that the Stokes lines of the swallowtail
integral for large |z| are arg(z) = ±π

5
and arg(z) = π, and the complex plane is divided into

the three regions depicted in Figure 5, according to the asymptotic behavior of Ψ(x, y, z):

Ψ(x, y, z) ∼ [Ψ2(x, y, z)−Ψ1(x, y, z)]χ(−π/5,π/5) (arg z) + Ψ2(x, y, z)χ[π/5,3π/5] (arg z)

+ [Ψ2(x, y, z) + Ψ4(x, y, z)]χ(3π/5,π] (arg z)−Ψ1(x, y, z)χ[−3π/5,−π/5] (arg z)

+ [Ψ3(x, y, z)−Ψ1(x, y, z)]χ(−π,−3π/5) (arg z) .
(15)

where χI(θ) is the characteristic function of the interval I and, for k = 1, 2, 3, 4, the asymp-
totic expansions of Ψk(x, y, z) for large |z| are given in the previous section.

π/5

-π/5 Re(z) 

Im(z) 

3π/5

-3π/5

Figure 5: The Stokes lines arg(z) = ±π
5 and arg(z) = π are the thick blue lines depicted in the

figure; for large |z|, the swallowtail integral behaves differently in the three regions depicted in
the figure. The saddle point t1 is active for −π < θ < π/5. The saddle point t2 is active for
−π/5 < θ ≤ π. The saddle point t3 is active for −π < θ ≤ −3π/5. The saddle point t4 is active for
3π/5 < θ ≤ π.

The following tables show some numerical experiments about the accuracy of the approxima-
tions summarized above. We evaluate the swallowtail integral with the NIntegrate command
of Wolfram Mathematica 10.4. All the approximations have been computed by using this
software.
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x = 0.5, y = −0.3 x = −0.1, y = 0.2eiπ
9

z n = 2 n = 4 n = 6 z n = 2 n = 4 n = 6

10e−4iπ
5 0.065 0.038 7.e-3 10eiπ 0.037 0.025 0.0024

50e−4iπ
5 0.029 5.3e-3 4.7e-4 30eiπ 0.015 0.006 2.2e-4

100e−4iπ
5 0.02 2.3e-3 1.4e-4 40eiπ 0.007 6.5e-4 3.e-5

x = 0.4, y = −0.25 x = 0.05i, y = 1.3

z n = 2 n = 4 n = 6 z n = 2 n = 4 n = 6

10 0.052 0.039 0.0028 5ei π
16 0.12 0.08 0.007

25 0.045 0.008 0.0017 10ei π
16 0.08 0.03 0.0012

30 0.017 0.0077 6.e-5 20ei π
16 0.05 0.014 2.3e-4

x = −0.5, y = 0.1i x = 0.2eiπ
6 , y = 1.2

z n = 2 n = 4 n = 6 z n = 2 n = 4 n = 6

10e−2iπ
5 0.056 0.039 0.009 10i 0.06 0.037 0.002

40e−2iπ
5 0.036 0.007 7.8e-4 100i 0.008 0.002 4.8e-5

100e−2iπ
5 0.024 0.002 1.6e-4 300i 0.0024 5.6e-4 7.4e-6

x = 0.2, y = 1.2 x = −0.4, y = 0.5eiπ
3

z n = 2 n = 4 n = 6 z n = 2 n = 4 n = 6

10ei( 3π
5
−0.01) 0.056 0.039 0.009 10ei( 3π

5
+0.01) 0.08 0.04 0.006

50ei( 3π
5
−0.01) 0.018 0.005 2.3e-4 50ei( 3π

5
+0.01) 0.03 0.005 5.5e-4

100ei( 3π
5
−0.01) 0.0095 0.002 7.7e-5 100ei( 3π

5
+0.01) 0.02 0.0023 2.2e-4

x = 0.5i, y = −0.6 x = −1.3, y = −0.3

z n = 2 n = 4 n = 6 z n = 2 n = 4 n = 6

10ei(− 3π
5

+0.001) 0.1 0.04 0.0028 10ei(− 3π
5
−0.001) 0.3 0.1 0.07

40ei(− 3π
5

+0.001) 0.05 0.007 5.2e-4 70ei(− 3π
5
−0.001) 0.1 0.019 0.004

100ei(− 3π
5

+0.001) 0.027 0.002 2.e-4 130ei(− 3π
5
−0.001) 0.08 0.01 0.002

Table 1: Relative errors in the approximation of the integral Ψ(x, y, z) given in (1) by using (15)
with the series truncated after n terms. Several values of z in the regions given in Figure 5 are
considered.
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