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Institute for Advanced Materials and Mathematics (INAMAT2)
Universidad Pública de Navarra

31006 Pamplona, Spain

(Communicated by the associate editor name)

Abstract. In the framework of nonlinear stability of elliptic equilibria in
Hamiltonian systems with n degrees of freedom we provide a criterion to obtain
a type of formal stability, called Lie stability. Our result generalises previous

approaches, as exponential stability in the sense of Nekhoroshev (excepting a
few situations) and other classical results on formal stability of equilibria. In

case of Lie stable systems we bound the solutions near the equilibrium over

exponentially long times. Some examples are provided to illustrate our main
contributions.
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1. Introduction. We deal with elliptic equilibria in Hamiltonian systems with n
degrees of freedom, establishing a criterion to determine their formal stability and
providing asymptotic estimates on the solutions starting nearby.

The method consists in the calculation of a linear subspace of R2n that we call
S and that is contained into the orthogonal space related to the frequency vector.
Then the normal-form Hamiltonian is computed up to a suitable order and we check
whether the truncated Hamiltonian evaluated on S vanishes only at the origin of
R2n. If it occurs we obtain a type of formal stability that is called Lie stability. The
set S will be introduced in Section 2.

To our knowledge there are no examples of systems that are formally stable
but not Liapunov stable, which gives an idea of the strength of formal stability in
the setting of nonlinear stability of equilibria. However, very recently there have
appeared examples of unstable elliptic equilibria in analytic Hamiltonian systems
with three and four degrees of freedom, see [13], where the frequencies are very close
to resonance, and these cases are formally stable, as they are non-resonant.

Formal stability of elliptic equilibria was started by Siegel [37], and Moser [26, 27]
who established conditions on the quadratic terms of the Hamiltonians to achieve
formal stability. Moser also dealt with the formal stability of systems whose terms
starting at degree three in Cartesian coordinates have periodic coefficients. Glimm
[15] proved formal stability provided the quartic terms in normal form when ex-
pressed in action-angle variables do not depend on the angles and are a definite
function in the actions. Bryuno [3] refined earlier results getting a criterion for
formal stability of Hamiltonians based on the quadratic and quartic terms.

Other members of the Russian school also contributed significantly to the research
in formal stability starting in the decade of the 70s. We quote the pioneering work
by Khazin [18, 19] who set up the concept of Lie stability, although he named
it Birkhoff stability. More works dealing with formal stability and instability for
several cases involving resonant situations in systems with at least three degrees of
freedom are [23, 38, 20].

Based on Nekhoroshev theory [29] for steep functions in the context of elliptic
equilibria, several authors [14, 21] established results on bounds for exponentially
long times on the actual solutions near an equilibrium of an analytic Hamiltonian
system. These bounds were improved later in [12, 1, 30, 32]. Recently the theory of
stability has been enlarged in [36] to treat some degenerate situations where steep-
ness is obtained from higher-order terms, and thus Nekhoroshev estimates apply.
As well, paper [2] deals with very sharp estimates in case that the Diophantine
condition among the frequencies ωi is satisfied.

In addition to the above, in a series of papers Guzzo and coworkers, Niederman
and Bounemoura have relaxed the hypotheses to get Nekhoroshev estimates, al-
lowing the part of the Hamiltonian hinging only on the actions to be non-steep.
More precisely, Guzzo et al. [17] introduced the notion of rational convexity, which
roughly means that the convexity property is tested only on the subspaces of fast
drift. This idea has been generalised by Niederman [31] under the name of Diophan-
tine steepness condition, which is a weak condition of transversality that involves
only the affine subspaces spanned by integer vectors. This property leads to expo-
nential time estimates of Nekhoroshev type. Checking these conditions on a specific
problem is not usually an easy task.

Surprisingly there is almost no connection in the literature between Nekhoroshev
stability of elliptic equilibria and formal stability. Indeed, excepting the pioneering
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papers by Moser and Glimm, on the one hand the works related to formally stable
systems do not consider the issue of getting estimates that measure the validity of
the nonlinearly stable solutions. On the other hand the studies on elliptic equilibria
from the point of view of Nekhoroshev theory have obtained very sharp bounds
on the solutions but they do not deal with the existence of positive definite first
integrals. However, having a closer look at the papers by Glimm [15] and Bryuno [3]
it is straightforward to interpret that Glimm’s criterion corresponds to Nekhoroshev
stability when the elliptic equilibrium satisfies quasi-convexity whereas Bryuno’s
contribution is equivalent to Nekhoroshev stability under directional quasi-convexity
condition. Consequently formal and Nekhoroshev stabilities are related topics. In
fact, Glimm’s ideas inspired Nekhoroshev to establish the concept of steepness of a
function.

More recent papers on Lie stable and unstable systems are due to dos Santos and
coworkers [33, 34, 35] where the authors establish several criteria dealing with Lie
stable equilibria in cases of resonances. They also treat instability using suitable
Chetaev functions [24]. Another related work treating a particular case of Lie sta-
bility is [25]. The instability analysis using the invariant ray technique is developed
in [18, 19, 38, 6, 7]. Asymptotic estimates of exponential type for Lie stable systems
where the corresponding linear subspace S is trivial are carried out in [11].

In the present work we aim at getting Lie stability with the weakest possible
assumptions, thus acquiring a deeper insight in formal stability, generalising previ-
ous results on this type of formal stability. This is accomplished by exploiting the
algebraic structure of the linear part of the equation as much as we can. We do
not need to check whether the truncated normal-form Hamiltonian vanishes for all
non-null vectors of the orthogonal space related to the frequency vector, but only
for the subspace S. Thus the lower the dimension of S is, the more cases of Lie
stable systems we get. This upshot allows us to get Lie stability usually with a few
assumptions. In fact, this is achieved by exploiting the algebraic structure of the
linear part of the equation as much as we can. The set S is constructed by means
of the formal first integrals associated to the Hamiltonian in normal form.

Our second target is to provide Lie stable systems with estimates over exponen-
tially long times. We use a result on a recent paper by Chartier et al. [10] where the
authors determined error bounds for adiabatic invariants of Hamiltonian systems.
More specifically the variation of these invariants after a process of truncation may
remain bounded over exponentially long time intervals. This is due to the expo-
nentially small character of the remainder function obtained in the normal-form
calculation. In this setting we enlarge earlier approaches, as exponential stability
in the sense of Nekhoroshev of elliptic equilibria, mainly because we can handle
resonant terms, so this is an important novelty of our theory. Furthermore when
Lie stability is decided from a Hamiltonian in normal form that does not hinge on
any angle, we unravel some relations between Lie stability and Nekhoroshev-type
stability, comparing the estimates obtained with both approaches and showing that
our bounds are even better under certain circumstances.

Getting (formally) Lie stable systems and the asymptotic bounds on the null
solution related to Hamiltonian systems, where the stability is decided from the
resonant terms of the normal form, should not be underestimated. There are many
examples of this type in mechanical systems with three or more degrees of freedom
depending on various parameters. See for instance the various applications of Lie
stable Hamiltonians in the book by Markeev [23].
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The structure of the paper is the following. Section 2 is concerned with the
presentation of the material we need to carry out our study as well as with the
statement of the two main results. In Section 3 we provide the proof of Theorem
2.6. Section 4 is devoted to the analysis of the estimates for Lie stable systems and
the main achievement is the proof of Theorem 2.7. Finally, Section 5 deals with
comments relating our attainments with previous approaches. Moreover we give
several examples that illustrate our theory. We also furnish some useful corollaries
and remarks along Sections 3, 4 and 5, in particular Corollary 4.

We have preferred to exemplify the approach through many different examples
although some of them could sound a bit artificial, but the situations displayed in
Section 5 cover most cases where our theory can be applied. However we do not
forget about the applications to realistic systems depending on various parameters,
as it is the case of papers [8, 9] and [5], where the methods delineated in this paper
allow the nonlinear analysis of quite intricate systems.

This paper is part of the Ph.D Thesis of the first author [5], where several appli-
cations to problems of celestial mechanics are studied with great detail.

2. Statement of the Main Results. Consider the autonomous Hamiltonian sys-
tem with n degrees of freedom

ẋ = J∇H(x), (1)

such that the origin of the phase space is an equilibrium solution, the so called null
solution x = 0. Matrix J is the standard 2n×2n symplectic matrix of Hamiltonian
theory [24] and H = H(x) is a real analytic function of x = (q1, . . . , qn, p1, . . . , pn).
It is assumed that the Taylor series of H in a neighborhood of the origin is

H = H2 +H3 + · · ·+Hj + · · · , (2)

where Hj represents a homogeneous polynomial of degree j in x, that is,

Hj =
∑

|kj |1+|lj |1=j

hkj lj q
kjplj , (3)

with kj = (kj1, . . . , kjn) ∈ Zn≥0, lj = (lj1, . . . , ljn) ∈ Zn≥0, and | |1 stands for the 1-

norm, thus |kj |1 = kj1 + · · ·+kjn, |lj |1 = lj1 + · · ·+ ljn, hkj lj = hkj1···kjnlj1...ljn ∈ R,

qkj = q
kj1
1 · · · qkjnn and plj = p

lj1
1 · · · p

ljn
n .

The term H2 represents the quadratic Hamiltonian

H2(x) = 1
2x

TBx, (4)

with B = BT a 2n× 2n real symmetric matrix. The linearised equations of motion
are

ẋ = Ax, A = JB, (5)

where A is a 2n × 2n real Hamiltonian matrix. In the paper A is nonsingular
and the linearised system is stable, i.e., all the eigenvalues of A are nonzero purely
imaginary numbers (elliptic equilibrium point), say ±ω1i, . . . ,±ωni and A is di-
agonalisable over the complex numbers. It is assumed that the non-degenerate
equilibrium solution of the Hamiltonian system associated to (5) is stable in the lin-
ear approximation. We can suppose, without loss of generality (see [27, 23, 24] for
more details), that a linear canonical transformation has already been constructed
such that

H2 =
ω1

2
(q2

1 + p2
1) + · · ·+ ωn

2
(q2
n + p2

n). (6)
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The normal-form Hamiltonian of H defined in (2) up to a finite degree p is the
function

H = H2 +H3 + · · ·+Hp + · · · (7)

obtained from (2) through a symplectic change of coordinates whose series expansion
in x starts at degree two, such that each term Hk is a homogeneous polynomial of
degree k in x, and satisfies {Hk, H2} = 0, k = 2, . . . , p (the operator { , } being the
classical Poisson bracket in Hamiltonian theory), see for instance [24].

Along this paper Hp represents the truncation of the Hamiltonian function at
degree p, that is,

Hp = H2 +H3 + · · ·+Hp, (8)

associated with the system

ẋ = J∇Hp(x). (9)

We stress that the transformation to normal form can be accomplished to any finite
degree.

Customarily one can introduce action-angle variables I = (I1, . . . , In), θ =
(θ1, . . . , θn) such that

Ij = 1
2 (q2

j + p2
j ), θj = tan−1 pj

qj
,

where H2 takes the form

H2 = ω1I1 + · · ·+ ωnIn. (10)

In [14] strong non-resonance conditions are imposed on the frequencies, which are
not required here. We assume that ωj 6= 0 for all j. In addition, H2 is generically an
indefinite quadratic form in terms of x, in other words, the signs of the ωi are not
all the same, although the (trivial) case with the same signs for all the frequencies
will be mentioned in Section 5.

Using action-angle variables defined above, Hamiltonian function H in (3) leads
to a Poisson series (a finite Fourier series in θ whose coefficients are polynomials in

I
1/2
i ) with terms of the form

c I
α1/2
1 · · · Iαn/2

n cos(β1θ1 + · · ·+ βnθn),

where c is a real constant, the αj are non-negative integers and the βj are integers;
there is also a similar sin-term. Since the Poisson series came from a real power
series the terms must have the d’Alembert character [24], i.e., the coefficients αk,
βk satisfy

for j = 1, . . . , n, αj ≥ |βj | and αj ≡ βj mod 2. (11)

By virtue of d’Alembert character, we write down the normal-form Hamiltonian
up to degree p (when thought in rectangular coordinates) as

H(I, θ) = H2(I) + · · ·+H2l−2(I) +Hm(I, θ) + · · · (12)

with l ≥ 2, m = 2l−1 or m = 2l and m ≤ p or m > p. Thus m represents the lowest
degree in which θ arises explicitly when transforming to action-angle coordinates.
Terms of degree higher than p are not in normal form with respect to H2. Besides
we can write without loss of generality Hp(I, θ), assuming that Hp is independent
of θ when p < m (then p is even), but it can hinge on the angles when p ≥ m.

We realise that H in (12) is an analytic function of the variables I
1/2
j , θj and is

2π-periodic in θj , j = 1, . . . , n excepting at I = 0. To circumvent the problem at the
origin of R2n one uses d’Alembert condition. Specifically the plan is to keep track
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of the d’Alembert character of the Hamiltonians and related formulae in action-
angle coordinates. If the d’Alembert property is maintained through the different
manipulations, transforming these formulae back to rectangular coordinates, the
resulting expressions are polynomials in x, thus analytic everywhere. Throughout
the text all Hamiltonian functions satisfy (11).

Now we recall the notion of resonance vector.

Definition 2.1. System (1) presents a resonance relation if there exists an integer
vector k1 = (k11, . . . , k1n) 6= 0 such that

k11ω1 + · · ·+ k1nωn = 0.

The number |k1|1 = |k11|+ · · ·+ |k1n| is called the order of the resonance. On the
other hand, if

k11ω1 + · · ·+ k1nωn 6= 0

holds for all integer vectors k1 = (k11, . . . , k1n) ∈ Zn satisfying the equalities |k1|1 =
`, for ` = 1, . . . , l we say that system (1) does not present resonance relations,
including order l.

The dependence of Hj , j ≥ m with respect to θ occurs only through the s
resonant angles generated by means of the vectors k1, . . . , ks with 0 ≤ s ≤ n − 1
where {k1, . . . , ks} is a basis of the Z-module Mω associated to H2. Specifically we
introduce,

Mω = {k1 = (k11, . . . , k1n) ∈ Zn
∣∣ k11ω1 + · · ·+ k1nωn = 0}

and as Mω is finitely generated we also write

Mω = k1 Z + · · ·+ ks Z = {i1k1 + · · ·+ isks
∣∣ i1, . . . , is ∈ Z}.

It is clear that Mω = {0} is equivalent to consider ω1, . . . , ωn linearly independent
over Q, that is, Mω = {0} if and only if system (1) does not possess resonances.
Notice that, as the set Mω is finitely generated, we can take a minimal set of
generators, so the kj are linearly independent. In this work we will assume that the
set of generators {k1, . . . , ks} of Mω is minimal.

We deal with the definitions of single and multiple resonances.

Definition 2.2. Assume that Mω 6= {0}. If Mω is cyclic (equivalently s = 1) we
say that system (1) possesses a single resonance, otherwise (equivalently s > 1) we
say that the system possesses multiple resonances.

At this moment we deal with the different types of stability. We start by recalling
the definition of Liapunov stability in the setting of the Hamiltonian system (1).

Definition 2.3. We say that the origin of R2n in (1) is positively (respectively
negatively) stable, if for every ε > 0 there is δ > 0 such that if φ(t, ζ) is the general
solution of (1) then |φ(t, ζ)| < ε for all t ≥ 0 (respectively t ≤ 0) whenever |ζ| < δ.
The origin of R2n is said to be Liapunov stable if it is both positively and negatively
stable.

Regarding formal stability we provide the definition due to Moser [27].

Definition 2.4. We say that the equilibrium solution x = 0 in (1) is formally stable
if there exists a real formal power series G(x), which is an integral of (1) in the
formal sense, and is positive definite near the origin of R2n.
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Next we introduce the notion of Lie stability, which makes use of the Hamiltonian
function in normal form.

Definition 2.5. We say that the equilibrium solution x = 0 in (1) is Lie stable
if there exists p ≥ 2 such that the truncated Hamiltonian system in normal form
associated to Hq is stable in the sense of Liapunov for any q ≥ p (arbitrary).

By the truncated Hamiltonian system associated to Hq we consider the equation
(9) where p is replaced by q.

The pioneering idea of Lie stability goes back to Khazin in [18] who dubbed it
as Birkhoff stability as he dealt with equilibrium points with non-null semisimple
linear part, but Lie stability is more general as it makes sense even in the non-
diagonalisable case.

In the cases of stability handled in [33, 34] it is proved that Lie stability implies
formal stability. Here we will prove that the same feature holds, see Corollary 1.

We need a few more ingredients in order to state our first main contribution.
The orthogonal space of Mω is a vector subspace of Rn spanned by the vectors

{a1, . . . , ad} with d = n − s that satisfy ai · kj = 0, see details in [33]. Setting
Fl = al · I, l = 1, . . . , d, we get the independent formal first integrals of the normal-
form Hamiltonian (12). The set

S = {I = (I1, . . . , In)
∣∣ Ij ≥ 0, F1(I) = . . . = Fd(I) = 0} (13)

is introduced for later use, noting that 0 ≤ dimS ≤ s. It was first given in [33].
Hamiltonian Hj(I, θ) is rewritten as Hj(I, φ) where φ = (φ1, . . . , φs), φi = ki · θ.

It is stressed that Hj can be independent of some angles φj or even of all of them.
We are ready to state our first main upshot on stability for the elliptic equilib-

ria. In the following | | stands for the Euclidean norm. Additionally Hamiltonian
function H introduced in (1) is supposed to be real analytic in a neighbourhood of
the origin of R2n, although we could relax it and assume that H is regular up to
some order high enough.

Theorem 2.6. Consider Hamiltonian (12) corresponding to the normal form up
to degree p of system (1) with I ∈ S \ {0}, φ ∈ Ts.

(A) Suppose there is an even integer j (with 4 ≤ j ≤ p) such that Hj(I, φ) 6= 0 for
|I| small enough and all φ. Then the origin of R2n is Lie stable for the Hamiltonian
system (1).

(B) Suppose there is an integer i ≥ 3 such that Hi(I, φ) changes sign for some
I and φ. Then there is no index j (with i < j ≤ p) such that Hj(I, φ) 6= 0 for |I|
sufficiently small.

The quadratic part in terms of the formal first integrals Fk is expressed as

H2(I) =

d∑
k=1

σkFk(I), (14)

where the σk are linear combinations of the ωj and σk 6= 0 for all k. By construction
the σ1, . . . , σd are rationally independent, see [11], and the vector σ = (σ1, . . . , σd)
is well defined up to the natural GL(d;Z)-action.

With the aim of getting the time estimates we need to impose a Diophantine
condition on σ; in other words, we suppose that there are fixed constants c > 0 and
ν > d− 1 such that

∀k ∈ Zd \ {0} , |k · σ| ≥ c |k|−ν1 . (15)
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Next, we state our second main result on the exponential time estimates for the
elliptic equilibria when Lie stability holds from Theorem 2.6.

Theorem 2.7. If the real analytic Hamiltonian system (1) satisfies hypotheses (A)
of Theorem 2.6 and the frequency vector σ satisfies the Diophantine condition (15),
then there exist C > 0, K > 0, a > 1 and ε0 > 0 such that for all ε ∈ (0, ε0), and
for all x0 with |x0| < ε we have

|x(t, x0)| < aε2/j for all t with 0 ≤ t ≤ T = C exp

(
K

ε1/(ν+1)

)
.

In the preceding result the constants C, K, a, ε0 are supposed to be independent
of ε. Moreover it is assumed Lie stability of the null solution, hence we obtain
exponential time bounds for Lie stable systems. One of the salient points of this
work is that our estimates can be applied to Hamiltonian systems that do not
satisfy Nekhoroshev estimates’ conditions appearing in [17, 31], see in particular
the examples of Section 5. Furthermore, we can handle Hamiltonian functions that
contain resonant terms in order to establish the Lie stability of a certain equilibrium
point, a feature certainly not covered by Nekhoroshev theory.

3. Proof of Lie Stability.

Proof of Theorem 2.6. (A) We invoke Liapunov Stability Theorem, see for instance
[24] Theorem 13.1.1: If there exists a function V that is positive definite with respect

to ξ0 and such that V̇ ≤ 0 in an open neighbourhood O of ξ0 then the equilibrium
ξ0 is (Liapunov) stable. Consider ξ0 = 0 and define V to be

V (x) = (F1(x))2 + · · ·+ (Fd(x))2 + (Hp(x))2, (16)

with x ∈ O and Hp introduced in (8). As Fk and Hp are first integrals of the
Hamiltonian system related to Hp the function V is a first integral of it and that

holds for every p ≥ j arbitrary, hence V̇ = {V,Hp} = 2(
∑d
k=1 FkḞk +HpḢp) = 0.

Furthermore V = 0 if and only if F1(I) = . . . = Fd(I) = 0 and Hp = 0. Thus we
may restrict I to the set S.

When S = {0} we get Lie stability straightforwardly since Hp evaluated at I ∈ S
is trivially zero, the last term of (16) can be dropped and V is definite (no condition
on the sign of Hj is required). In this case we set j = 2.

When S 6= {0} we perform a stretching of coordinates (also called dilation), say
x → εy with ε > 0 small, that in action-angle variables reads I → ε2J , θ → θ.
(Notice that |I| small in (A) is equivalent to consider ε small and J of order O(1).)
To make the transformation symplectic we multiply (12) by ε−2 arriving at

H(J, θ, ε) = H2(J) + · · ·+ ε2l−4H2l−2(J) + εm−2Hm(J, θ) + · · · . (17)

Assuming hypotheses in (A) hold for ε > 0 sufficiently small, then Hp = 0 if and
only if J = 0 since there is an integer j with 4 ≤ j ≤ p such that Hj 6= 0 for
all J ∈ S \ {0} and all φ ∈ Ts. Thus the addition of higher-order terms Hj+1,
Hj+2, . . ., Hp, cannot change the sign of Hj as a finite sum of terms is added, all
factorised by powers of ε and ε is chosen as small as needed, whereby V is definite.
By Liapunov Stability Theorem [24] the null solution is stable for the Hamiltonian
system associated to Hp. Considering the truncated normal form up to degree q in
rectangular coordinates, i.e. Hq with q > p, and taking V as above but changing
Hp by Hq it follows that V is a first integral of Hq which is positive definite, and the
origin of R2n is Liapunov stable for the system defined by Hq. Since q is arbitrary
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and the normal-form transformation only requires a finite number of steps, the null
solution of (1) is Lie stable.

(B) When there is an index i ≥ 3 such that Hi changes sign for some I ∈ S \{0},
φ ∈ Ts, then there are two possibilities: either there exists I∗ ∈ int(S), φ∗ ∈ Ts
with Hi(I∗, φ∗) = 0 or there is an integer i′ < i such that Hi′ keeps the same sign

while the change of Hi−Hi′ is the opposite (if this happens the change occurs at I
in the boundary of S). From (17) it is clear that higher-order terms of the normal
form cannot alter the sign change of Hi, provided ε is taken small enough. Thus,
one cannot find Hj with j > i such that (A) can be applied.

Corollary 1. If in the function V introduced in (16), Hp is replaced by the normal
form up to infinity, and then H is at least of class C∞ in a neighbourhood of the
origin, one has H2 +H3 + · · ·+Hp +Hp+1 + · · · (i.e., formally), then V becomes
a formal first integral of Hamiltonian (7) which is positive definite, thus the null
solution of the Hamiltonian system (1) is formally stable.

Remark 1. Part (A) of Theorem 2.6 is essentially Theorem 1.1 of [34], but here
we clarify this criterion and shows how to apply it in different situations, extending
and simplifying its use. See also Remark 2 right below, the proof of Theorem 2.7
in Section 4 and the examples in Section 5.

Remark 2. When determining the sign of Hj for I ∈ S \ {0} if there is an index
i < j such that Hi = 0 for certain I∗ in the boundary of S, φ∗ ∈ T then we have
to evaluate Hi+1 only at I∗, φ∗ and proceed in this way degree by degree until
reaching degree j (when the normal form is expressed in Cartesian coordinates).
For an illustration see the second and the last examples in the fourth subsection of
Section 5.

Remark 3. We can refine the hypotheses of the Theorem by considering sj an
integer in [0, s] such that Hj hinges only on sj angles – without loss of generality
their first sj angles – thus we write Hj(I, φ1, . . . , φsj ).

Remark 4. Part (B) of the Theorem suggests that we could achieve instability
of the origin of R2n for the Hamiltonian system associated to (12). Nonetheless
we would need to add extra hypotheses on some terms in normal form, Hk with
k > i, in order to build a suitable Chetaev function. This analysis deserves more
attention, see also Remark 11.

Remark 5. In the classical approach to Lie stability, see [23], each particular res-
onance was studied separately. However with the function V defined in (16) we
provide a unique Liapunov function to analyse all possible situations, thus simpli-
fying the analysis considerably. This feature is shared with the function provided
in papers [33, 34] to get Lie stability.

4. Proof of the Asymptotic Estimates. There exist only a few results dealing
with estimates on formally stable equilibria. As classical achievements we report
the papers by Moser [26] (dealing with the stability of periodic solutions of systems
with one degree of freedom) and Glimm [15] where time estimates proportional to
the reciprocal of a small parameter, and recently the paper [11] that accounts for
the exponentially large estimates on time for Lie stable systems for which S = {0}.

For the cases of Lie stable equilibria provided in Theorem 2.6 we give time esti-
mates of exponential type, similar to those of Nekhoroshev theory. Our upshot is
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based upon the time estimates for adiabatic invariants, i.e. truncated formal first
integrals, established by Chartier et al. in [10].

Noticing that for k = 1, . . . , d, Fk(I) = ε2Fk(J), Hamiltonian (17) has d indepen-
dent formal first integrals given by Fk(J). In practice they are adiabatic invariants
as the normal-form process is pushed only to a finite order. Moreover, one can con-
struct other adiabatic invariants whose main part, i.e. their lowest-degree terms,
are Fk(J). Our goal is to provide estimates on the time evolution of these adia-
batic invariants. To achieve this we introduce a few ingredients before stating the
attainment of Chartier et al. in a form suited to our needs.

Hamiltonian function (2) is rewritten in terms of the rectangular coordinates y
as

H(y, ε) = H2(y) + εH3(y) + · · ·+ εj−2Hj(y) + · · · , (18)

here Hamiltonian H2(y) in (18) can be expressed in terms of the Fk by means of

H2(y) =

d∑
k=1

σkFk(y), (19)

as in (14). The associated normal form of Hamiltonian (18) until degree p is

H = H2 + εH3 + · · ·+ εp−2Hp + · · · , (20)

which can be obtained directly from (18) or from (7) after doing the stretching
x = εy. Notice that H in (20) corresponds to the normal form (17) if one applies
the standard transformation from rectangular to action-angle coordinates.

At this point we introduce some more notation. Let N = BR be the open ball of
radius R > 0 centred on 0 in R2n. Given a solution y = y(t, y0, ε) of the Hamiltonian
system related to (18) with initial condition y0 inN (which is equivalent to a solution
x = x(t, x0) of system (1)), let γ = γ(y0, ε) be the solution’s first time of escape
from N , i.e.

γ = inf{t > 0
∣∣ |y(t, y0, ε)| ≥ R}. (21)

Given γ > 0 and T > 0, we set

D = [0, γ) ∩ [0, T ], (22)

thus D is the shortest of the two intervals.
In paper [10] another requirement on the well behaviour of the Fourier series

related to the Hamiltonian function H in (1) is established. This is done in order
to guarantee the convergence of some expansions and the existence of good bounds
to achieve the main results. This requirement appears in the Hamiltonian setting
under the name of Assumption B in Section 3.2 of [10]. Assuming that H in (1) is
analytic, it readily satisfies Assumption B and the results about adiabatic invariants
and bounds of [10] apply in our context.

Let

Ipi (y, ε) = Fi(y) +

p∑
k=3

εk−2Ii,k(y), i = 1, . . . , d,

be adiabatic invariants of Hamiltonian (18) truncated at degree p, where Ii,k(y) are
homogeneous polynomials in y of degree k. Then the following result appeared as
Corollary 3.6 in [10].

Theorem 4.1 (Chartier, Murua and Sanz-Serna, 2015). Let the real analytic system
associated to (18) satisfy the Diophantine condition (15) and let y0 ∈ N . Then there
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are constants C > 0 and K > 0 such that for small enough ε > 0, there is a positive
integer p such that for arbitrary κ > 0 and for i = 1, . . . , d,

|Ipi (y(t, y0, ε), ε)− Ipi (y0, ε)| < κ2 for all t ∈ D = [0, γ) ∩ [0, T ],

where

T = C κ2 exp

(
K

ε1/(ν+1)

)
.

The integer p refers to the degree to which the normal form has to be carried out
to get the required estimate on the time; it is the N of Theorem 3.5 and Corollary
3.6 in [10]. The parameter κ is independent of ε and is not necessarily small as it
can be deduced from the proof of Theorem 3.5, while ν is the parameter related to
the Diophantine condition (15). Finally it is assumed that ε ∈ (0, ε1), where ε1 > 0
is an appropriate threshold.

Theorem 4.1 was established in the context of the averaging procedure devised
by the authors (see references in [10]) to deal with vector fields – both dissipative
and Hamiltonian vector fields – from the point of view of the design and analysis of
numerical integrators. It is stressed that the averaging (or normal-form) transfor-
mation accomplished in [10], under the assumptions of the above theorem, are such
that the corresponding remainder is exponentially small. In [11] an exponentially
large time estimate based on Chartier et al. was established for the case S = {0},
while here we enlarge this result for the elliptic equilibria that are (formally) Lie
stable using the criterion of Theorem 2.6.

Similar bounds on adiabatic invariants to those of [10] have been proved by other
authors, see for instance [29, 28]. Nevertheless we have preferred to use the results
by Chartier et al. as they are better adapted to our needs.

We deal now with Theorem 2.7.

Proof of Theorem 2.7. We prove the bounds on the system derived from the Hamil-
tonian in normal form, either (7) or (12), and it will imply the bounds on the system
(1), as the passage to normal form involves only a finite number of steps. Therefore
we work with Hamiltonian H in normal-form coordinates until the last step of the
proof.

We suppose that there is an integer j ≥ 4 such that Hj does not vanish for
I ∈ S \ {0}, φ = (φ1, . . . , φs) ∈ Ts. Let p ≥ j be the degree to which the normal-
form Hamiltonian (7) has been obtained.

As a first step we prove that given a small enough ε̃0 > 0 there are positive
constants α, β, δ such that whenever |x| ≤ ε̃0 we have

α|x|2j ≤ V (x), (Hp(x))2 ≤ β|x|4, (Fl(x))2 ≤ δ|x|4, l = 1, . . . , d, (23)

where V is defined in (16).
For |x| ≤ ε̃0 < 1 one obtains (Hp(x))2 = (H2(x))2 + O(|x|5), then there exists

β′ > 0 such that the terms of degree 5 and higher are bounded from above by
β′ε̃0|x|4. Setting β = β′ε̃0 + β′′2/4 with β′′ = max{|ω1|, . . . , |ωn|} we ensure that
β|x|4 ≥ (Hp(x))2 for ε̃0 sufficiently small.

It is straightforward to notice that for l = 1, . . . , d, one has |Fl(x)| ≤
√
δl|x|2 for

some δl > 0, thus δ is chosen as max{δ1, . . . , δd}.
When x = 0 the first inequality of (23) holds trivially as an equality, so we

consider x 6= 0. Setting W (x) = V (x) − α|x|2j we get W (x) =
∑d
l=1(Fl(x))2 +

(H2(x))2 + O(|x|5) provided |x| ≤ ε̃0 < 1. When x is in correspondence with an
action I /∈ S it is clear that W (x) > 0 as its terms of degree 4 are strictly positive
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and higher-order terms do not change it when |x| is small enough. Then we focus
on x such that its corresponding I ∈ S \ {0}, ending up with

W (x) = (Hp(x))2 − α|x|2j = (Hj(x))2 − α|x|2j +O(|x|2j+1)

= (Hj(x)−
√
α|x|j)(Hj(x) +

√
α|x|j) +O(|x|2j+1).

Since hypotheses (A) of Theorem 2.6 hold, without loss of generality we assume
Hj(x) > 0, thus it suffices to prove that U(x) = Hj(x)−

√
α|x|j is non-negative for

x small enough, i.e. 0 < |x| ≤ ε̃0, and an adequate choice of α. We introduce the
small parameter ε through the stretching x→ εy and apply it to U , arriving at

U∗(y, ε) =
1

ε3

(
ε2Hj(y, ε)− εj

√
α|y|j

)
= H3(y) + εH4(y) + · · ·+ εj−3

(
Hj(y)−

√
α|y|j

)
,

(24)

where U∗(y, ε) = ε−3U(εy), Hj(y, ε) = H2(y) + εH3(y) + · · · + εj−2Hj(y) and we
have taken into account that Hj(x) = ε2Hj(y, ε) and H2(y) = 0 for y associated
to J ∈ S with J = ε−2I. According to part (B) of Theorem 2.6, we note that
given y related to J ∈ S \ {0}, for all k between 3 and j − 1, each Hk(y) in (24)
cannot change sign, henceforth Hk(y) ≥ 0. Moreover, if for some k′ = 3, . . . , j − 1,
Hk′ is not identically zero but vanishes at some y∗, these values are necessarily
associated to J∗ 6= 0 being in the boundary of S. Otherwise we would obtain a
term Hk′ such that it changes sign for values of y related to J in the interior of
S, contradicting the hypotheses of part (A) in Theorem 2.6. Following Remark 2,
every time we get Hk′(y∗) = 0, we continue checking the sign of Hk′+1 (provided
it is not null), but restricting it to the values that annihilate Hk′ . Proceeding in
ascending degree we arrive at degree j and then Hj is analysed only in the subset of
the ball |y| ≤ ε−1ε̃0 where all previous Hk, k = 3, . . . , j − 1 vanish and in addition
y is in correspondence with J ∈ S \ {0}. We call this subset B∗ε̃0,ε. So, for y ∈ B∗ε̃0,ε
it necessarily follows that Hj(y, ε) = εj−2Hj(y) > 0. The positiveness of Hj , a
homogeneous polynomial in y of degree j, restricted to B∗ε̃0,ε ensures the existence

of α > 0 such that Hj(y) ≥
√
α|y|j for y ∈ B∗ε̃0,ε. Therefore U∗(y, ε) ≥ 0 for all y

related to J ∈ S \ {0}. In consequence V (x) ≥ α|x|2j where |x| ≤ ε̃0, ε̃0 is small
enough and x is in correspondence with I ∈ S \ {0}. As before terms of order
O(|x|2j+1) in W (x) cannot change its sign when |x| ≤ ε̃0.

From (23) we conclude that for all x with |x| ≤ ε̃0 the following inequalities hold:

α|x|2j ≤ V (x) ≤ (β + dδ)|x|4, (25)

where α is chosen smaller than β + dδ.
The second step consists in proving that when t ∈ D with D defined in (22), we

get

|Hp(x(t))| < Qε2 and |Fl(x(t))| < Q′ε2, (26)

with certain positive constants Q, Q′ independent of ε that will be specified later.
Notice that Hp(x) = ε2Hp(y, ε) with Hp(y, ε) = H2(y) +

∑p
k=3 ε

k−2Hk(y), Fl(x) =
ε2Fl(y). Then we use the fact that Hp and Fl are adiabatic invariants – i.e. formal
first integrals truncated at degree p – of the normal-form Hamiltonian H in (20)
and that the Poisson brackets between H and these adiabatic invariants are made
exponentially small (see the different bounds in Theorem 3.5 and additional Lemmas
and Propositions of [10]). Thus, we can apply the estimate given in Theorem 4.1
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to Hp, F1, . . ., Fd, from where it is readily deduced that for t ∈ D and for arbitrary
κ > 0:

|Hp(y(t), ε)−Hp(y0, ε)| < κ2,

where y0 = ε−1x0. Thus

|Hp(x(t))−Hp(x0)| < κ2ε2.

Applying the second inequality in (23) we find that

|Hp(x(t))| < |Hp(x0)|+ κ2ε2 ≤
√
β|x0|2 + κ2ε2 < Qε2 with Q = κ2 +

√
β,

when t ∈ D.
As |Fl(y(t)) − Fl(y0)| < κ2 one has |Fl(x(t)) − Fl(x0)| < κ2ε2, l = 1, . . . , d,

therefore |Fl(x(t))| < |Fl(x0)|+κ2ε2, but we know that |Fl(x0)| ≤
√
δ|x0|2 <

√
δε2,

hence when t is in D, |Fl(x(t))| < Q′ε2 with Q′ = κ2 +
√
δ.

The third step consists in providing an upper small bound for x(t). Combining
the previous inequalities with (23) and setting Q′′ = dQ′2 +Q2 we end up with

α|x(t)|2j ≤ V (x(t)) =

d∑
l=1

(Fl(x(t)))2 + (Hp(x(t)))2 < dQ′2ε4 +Q2ε4 = Q′′ε4 (27)

for t ∈ D, and then

|x(t)| < a′ ε2/j where a′ =

(
Q′′

α

)1/(2j)

, (28)

stressing that a′ > 1 because α < β + dδ < Q′′. It is remarkable that both
inequalities in (27) apply when |x(t)| ≤ ε̃0, thus imposing a′ ε2/j ≤ ε̃0 we get the
bound ε ≤ (ε̃0/a

′)j/2 and choose ε0 = min{(ε̃0/a
′)j/2, ε1}, where ε1 > 0 is the

threshold guaranteed by Theorem 4.1.
Since κ > 0 is arbitrary we set it equal to one converting T of Theorem 4.1 into

T = C exp

(
K

ε1/(ν+1)

)
.

As a four step we want to show that γ given in (21) is bigger than T implying
that D = [0, T ]. Assume the contrary, that is, take γ ≤ T so that D = [0, γ)
and consider ε < min{ε0, (R/(2a

′))j/(2−j)}. Now by assumption |y(t, y0, ε)| ↗ R
as t ↗ γ. Applying Theorem 4.1 and estimate (28) given above, we arrive at
|y(t, y0, ε)| < a′ ε2/j−1 < R/2 for all t ∈ [0, γ), which is a contradiction. It follows
then that γ > T , so D = [0, T ] as desired.

Hitherto we have obtained the estimates in the normal-form coordinates. The
last step consists in putting inequality (28) in terms of the coordinates prior to
the normal-form transformation. We rename x in (28) as xnf , using x for the
variables related to the Hamiltonian system (1). We know that |x(t)− xnf (t)| is of
order ε, choosing the same initial condition for the untransformed and transformed

coordinates, in other words, x0 = xnf0 , see for instance [24]. This remains true for
all t ∈ D because the transformation to normal form is performed up to a finite
order, thus the process is convergent. Hence, there exists a constant b > 0 such that
|x(t)−xnf (t)| < b ε from where we get |x(t)| < |xnf (t)|+b ε. Applying (28) to xnf (t)

we arrive at |x(t)| < a′ ε2/j + b ε = (a′ + b ε1−2/j) ε2/j ≤ a′(1 + a′−j/2 b ε̃
j/2−1
0 ) ε2/j ,

hence

|x(t, x0)| < aε2/j where a = a′(1 + a′−j/2 b ε̃
j/2−1
0 ) > 1 ∀ t ∈ [0, T ]. (29)
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Remark 6. Theorem 2.7 generalises Theorem 5.1 of [11], because when S = {0},
in the proof of Theorem 2.7 we can drop Hp in V , set j = 2, κ = 1, improving the
time estimate given in [11]. In this case the bounds on x(t) are obtained working
essentially with the functions Fl.

Remark 7. The estimate (29) gets worse for the confinement of the solution x(t) as
j grows, indicating the fact that the more terms one needs to conclude Lie stability
the poorer the bounds on the solutions are. However the exponential estimates on
the time T do not hinge on j.

Remark 8. As stated in [10], when d = 1 it is possible to set ν = 0 in (15)
because small divisors cannot arise and the Diophantine condition is dropped. In
this case the time T can be very large, moreover the constants C and K are better.
In particular this happens in fully resonant Hamiltonians, where there is only an
adiabatic invariant (or formal first integral).

Corollary 2. Suppose hypotheses (A) of Theorem 2.6 are valid with j = 4 and the
corresponding frequency vector σ is Diophantine. Then for all ε ∈ (0, ε0) (with ε0
of order ε2

0) and for all initial conditions I(0) with |I(0)|1 < ε we have

|I(t)|1 < ã ε1/2 for all t with 0 ≤ t ≤ T = C exp

(
K

ε1/(2(ν+1))

)
,

where ã > 1 is independent of ε.

Definition 4.2. Suppose that in Hamiltonian (12) the inequalities 4 ≤ j < m
hold, then Hj(I) is convex (C.) at I = 0 if the quadratic form H4(I) is definite; it is
quasi-convex (Q.C.) at I = 0 if H2(I) = H4(I) = 0 imply I = 0; it is directionally
quasi-convex (D.Q.C.) at I = 0 if H2 and H4 vanish simultaneously for Ii ≥ 0 only
at I = 0.

Remark 9. If in Corollary 2, H4 depends only on the actions I, i.e., m > 4, our
estimates are usually better than those of Nekhoroshev type obtained in [1] in the
case of directional quasi-convexity, provided σ in (15) is Diophantine. In fact when
D.Q.C. holds the estimates given in [1] are of the form

|I(t)|1 < ε1/n for all t with 0 ≤ t ≤ T = exp
(
ε−1/n

)
,

or,

|I(t)|1 < ε1/2 for all t with 0 ≤ t ≤ T = exp
(
ε−1/(2n)

)
.

In the bounds given above no Diophantine condition is required. Taking into
account that C, K and ã in Corollary 2 can be considered of order O(1) we realise
that in the worst situation d = n, implying that ν + 1 > n and then our estimate
of Corollary 2 is comparable to the second of the estimates of [1] (given in their
Theorem 1). Nevertheless, when d < n our result enhances the estimates of [1],
especially in the case of fully resonant Hamiltonians. Besides, as mentioned before,
in Corollary 2 we can incorporate resonant terms of any arbitrary form, starting at
degree 3.

Corollary 3. Suppose hypotheses (A) of Theorem 2.6 hold with j = 6 and the
corresponding frequency vector σ is Diophantine. Then for all ε ∈ (0, ε0) and for
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all initial conditions I(0) with |I(0)|1 < ε we have

|I(t)|1 < ã ε1/3 for all t with 0 ≤ t ≤ T = C exp

(
K

ε1/(2(ν+1))

)
,

where ã > 1 is independent of ε.

Remark 10. If in Corollary 3 Hamiltonians H4 and H6 hinge only on the actions
I, our estimates are different from those of Nekhoroshev type mentioned in [1] for
the case of 3-jet non-degenerate systems (these Hamiltonians are steep functions).
Indeed, when n = 3 the bounds claimed in [1] read

|I(t)|1 < ε for all t with 0 ≤ t ≤ T = exp
(
ε−b
)
,

where b = min{p−7
20 ,

p+1
36 }, p ≥ 8 stands for the degree reached in the normal-form

transformation and such that no resonant terms are encountered in Hp. In a recent
study on steep Hamiltonian systems Guzzo et al. [16] have obtained sharp bounds
for exponentially large time in terms of the steepness indices of the Hamiltonian
function independent of angles. Nevertheless the application to elliptic equilibria
still seems far from being fully achieved. Indeed for n > 3 no explicit estimate based
on Nekhoroshev theory is available yet for 3-jet non-degenerate systems. Note how-
ever that the estimates of Corollary 3 apply regardless of the presence of resonant
terms.

Remark 11. It might happen that a certain Hamiltonian is a 3-jet non-degenerate
function, thence Nekhoroshev stability holds and even the estimates given in Re-
mark 10 apply if n = 3. Nonetheless, if Hamiltonian H4(I) changes sign in the
interior of S (then at least dimS > 1), and if moreover H3 = H5 = 0, the applica-
tion of part (B) in Theorem 2.6 prevents us of getting Lie stability from H6(I). In
this situation we could not obtain a definite function V as (16), therefore we could
not apply Theorem 2.7 to find asymptotic estimates. So, we content ourselves with
the estimates of Nekhoroshev type, as we have done in [8].

Remark 12. When convexity holds better time bounds, compared to the ones
of D.Q.C. written in Remark 9, are obtained whether the normalisation can be
executed to an adequate high order without encountering resonant terms, see for
instance [30, 32]. If the order reached by the normal-form Hamiltonian is high
enough, these bounds are also better than the estimates obtained in Corollary 2, or
the estimates of Theorem 2.7.

On our part we can improve the confinement of the solution with a slight change
in hypotheses as in Theorem 2.6, part (A) and Theorem 2.7, as we show in the
following result.

Corollary 4. Suppose there are two even integers j′, j such that 4 ≤ j′ ≤ j ≤ p,

Hk(x) = 0 for k = 3, . . . , j′ − 1 and
∑j
k=j′ Hk(x) 6= 0 for all x associated to

I ∈ S \ {0}. Suppose in addition that the frequency vector σ is Diophantine. Then
with the same notation as in Theorem 2.7, the estimates are of the form

|x(t, x0)| < aεj
′/j for all t with 0 ≤ t ≤ T = C exp

(
K

ε1/(ν+1)

)
.
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Proof. For an integer r ≥ j we define H∗,r = Hr −H2 = Hj′ + · · ·+Hj +Hj+1 +
· · ·+Hr, and choose

V (x) = F j
′

1 (x) + · · ·+ F j
′

d (x) + (H∗,p(x))2

= F j
′

1 (x) + · · ·+ F j
′

d (x) + (Hj′(x) + · · ·+Hj(x) + · · ·+Hp(x))2.

We observe that j′ cannot be odd. If this occurs then Hj′ would be composed of

terms of the form c I
α1/2
1 · · · Iαn/2

n cos(β1θ1 + · · ·+βnθn) (as well as sin-terms) with
αk, βk satisfying d’Alembert character. This in turns leads to Hj′(x) would change
sign in the interior of S, then preventing H∗,j to be definite in S.

As {Hk, H2} = 0, k ∈ {j′, . . . , p} and {Fl, H2} = 0, l ∈ {1, . . . , d}, V is a first
integral of Hp. Notice in addition that since j′ is even, then V (x) ≥ 0 for all x.
Besides for |x| ≤ ε̃0 small enough, V (x) = 0 if and only if x = 0. The reasoning is
almost the same as the one done in the proof of Theorem 2.6, part (A). Applying
Liapunov Stability Theorem the null solution is stable for the Hamiltonian system
associated to Hp. The same holds if we consider the normal form to any degree
q > p thus, as in the proof of Theorem 2.6, Lie stability is established.

Next, we claim that there are positive constants α, β and δ independent of ε
such that β + dδ > α > 0 and

α|x|2j ≤ V (x) ≤ (β + dδ)|x|2j
′
, (30)

for all |x| ≤ ε̃0.
To prove that V (x) − α|x|2j ≥ 0 notice that for x = 0 we get a trivial identity,

so we distinguish between x related to I 6∈ S and I ∈ S \ {0}. Choose x such
that its corresponding I is not in S, the lowest-degree terms of V are of degree 2j′,

concretely, F j
′

1 (x)+· · ·+F j
′

d (x)+(Hj′(x))2 and it is a homogeneous polynomial in x
strictly positive. Then, higher-order terms cannot change the sign of V (x)−α|x|2j
for x selected in such a way that |x| ≤ ε̃0. Next, take x in correspondence with
I ∈ S \ {0}, set V (x)− α|x|2j = (H∗,j(x))2 − α|x|2j +O(|x|2j+1) and assume that
H∗,j is positive definite for |x| small. Then use the same argument as in the proof of
Theorem 2.7 where we showed that U(x) ≥ 0, proving thatH∗,j(x))−

√
α|x| remains

non-negative for |x| small and an appropriate choice of α > 0 small enough. As
terms of order O(|x|2j+1) cannot turn H∗,j(x)−

√
α|x|j into a negative expression,

the inequality holds.

That (β + dδ)|x|2j′ ≥ V (x) follows first from the bounds F j
′

l (x) ≤ δ|x|2j′ , for
an adequate choice of δ. Besides, we need to take into account that (H∗,p(x))2 can

be rewritten as (Hj′(x))2 + O(|x|2j′+1), observing that (Hj′)2 is a homogeneous
polynomial in x of degree 2j′. So, for |x| ≤ ε̃0 there is a positive constant, say β,

such that β|x|2j′ − (Hj′(x))2 + O(|x|2j′+1) ≥ 0 and β can be selected satisfying
β + dδ > α > 0.

Now perform the stretching x = εy noting that V (x) = εj
′
V (y, ε) and assume

|x0| < ε and y0 = ε−1x0. As V is composed by first integrals of Hp, namely,
Fl and H∗,p, we can apply the bounds provided in Theorem 4.1. Following the
same approach as in the proof of Theorem 2.7, and applying (30), we arrive at

V (x(t)) < Qε2j′ for t in the interval D introduced in (22), where the constant

Q > α is independent of ε. Then α|x(t)|2j < δ ε2j′ from where we obtain

|x(t)| < a′ εj
′/j ,
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and a′ = (Q/α)1/(2j) > 1 depends only upon α, β, δ and d. The bound for x(t)
is true for all t ∈ [0, T ] with the same T as in Theorem 2.7. The rest of the proof
follows similar steps to those given in the course of the proof of Theorem 2.7.

Remark 13. Notice that the optimal situation is j′ = j as then the confinement of
|x(t)| is of order ε, similar to that obtained in [30, 32], although in our case j′ can be
any even integer greater than 3. Besides in V we could retain resonant terms, thus
enlarging considerably the approach of the previous contributions handling convex
situations and mentioned in Remark 12. Suppose for example a Hamiltonian system

with 4 degrees of freedom where H∗,8 is H6 +H7 +H8 = I3
1 +2I3

2 +5I1I
5/2
4 sin(2θ1 +

5θ4) + 4I4
3 − 30I4

2 while H3 = H4 = H5 = 0. It is easy to infer that H8 is positive
for x related to any I ∈ S and 0 < |x| ≤ ε̃0 with ε̃0 small enough. (We also assume
dimS = 3.) Then the origin of R8 is Lie stable for a Hamiltonian system where
the terms in normal form up to degree 8 are given above while H2 could be taken
as any indefinite form such that {H2,H8} = 0 and dimS = 3. Then one takes
j′ = 6, j = 8 and x(t) satisfies |x(t)| < aε3/4 for an exponentially large time.

Remark 14. In case that Lie stability is not accomplished (or even instability
is obtained) one can still deduce asymptotic bounds for some action coordinates
as follows. Since we have d adiabatic invariants Fl satisfying Theorem 4.1, there
always exists a linear change of coordinates from I, θ to Ĩ , θ̃ such that Ĩl = Fl for
l = 1, . . . , d and θ̃m = km · θ for m = d + 1, . . . , n. Therefore, these actions satisfy
Chartier et al.’s estimates and from the proof of Theorem 2.7 one gets bounds of
the form |Ĩl(x(t, x0))− Ĩl(x0)| < ε2 for exponentially large time.

Remark 15. When d > 1 it would be desirable to lessen the Diophantine condition
stated above, replacing it by another weaker non-resonance condition, but at present
the Diophanticity of the vector σ is required. Perhaps applying the techniques of
Lochak’s method of averaging [21] by analysing the neighbourhoods of periodic
solutions of the unperturbed system and approximating all other initial positions
by periodic ones, see also [30, 32], would help to relax the Diophantine hypothesis
on the vector σ. Additionally it is a well-known fact that for a fixed ν the Lebesgue
measure of the set of vectors σ ∈ Rd that does not satisfy the Diophantine condition
for any c > 0 is null. On the other hand although in the contributions [21, 12, 30, 32]
no Diophantine hypothesis is needed to get Nekhoroshev stability, a non-resonance
condition affecting the frequencies ωi is required, usually involving resonances of
orders 3 and 4.

5. Implications and Examples.

5.1. The case n = 2. For two degrees of freedom, our result is the same as the
stability part in Cabral-Meyer’s Theorem (Theorem 4.1 of [4]) that includes Arnold’s
Theorem of stability as well as other results of Alfriend (for references, see [4]) and
Markeev [22, 23]. Therefore Lie stability becomes Liapunov stability. The reason of
this is that the function Hj of Theorem 2.6 agrees with the function Ψ in Theorem
4.1 of [4].

5.2. The case S = {0}. On this occasion one always achieve Lie stability, see also
details in [34]. More specifically, part (A) of Theorem 2.6 applies trivially with

V =
∑d
k=1 F

2
k and no normal-form computation has to be carried out.

When H2 is definite Dirichlet Theorem [24] applies and Liapunov stability is
fulfilled.
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Corollary 5. Assuming that H2 is definite the null solution of (1) is Lie stable.

Proof. It is clear that the formal first integrals Fk are written as linear combinations
of the form

∑
j αj,kIj and without loss of generality we assume αj,k > 0. Hence for

every k = 1, . . . , d, Fk = 0 if and only if Ij = 0 for all j appearing in Fk, therefore
S = {0}.

Corollary 6. In the absence of resonances among the ωi the null solution is Lie
stable.

Proof. In fact, since ω1, . . . , ωn are linearly independent over Q, the formal first
integrals are Fj = Ij with j = 1, . . . , n, then d = n, s = 0 and the set S is null.

Remark 16. A particular situation of Corollary 6 occurs when (ω1, . . . , ωn) is
Diophantine. Then, under an additional condition on the coefficients of the normal
form which is of full Lebesgue measure, the bounds on time have been largely
sharpened, becoming super-exponentially long. See for instance [2] and references
therein. Thus our bounds of Theorem 2.7 are considerably improved.

Remark 17. Normal stability introduced in [25] is a particular case of Lie stability
with S = {0} as it was concluded in [34]. The estimates obtained in [11] when
S = {0} are comparable to those provided by Theorem 2.7, see Remark 6.

An example of a Hamiltonian function with S = {0} is the following:

H = (1−
√

2)I1 −
√

2I2 + (2−
√

2)I3 −
√

2I4 + · · · ,
where · · · refers to higher-order terms in normal form starting at degree three,
has resonance vectors k1 = (2, 0,−1,−1), k2 = (0, 2, 0,−2) and two formal first
integrals, namely, F1 = I1 + 2I2 + 2I4 and F2 = I1 + I2 + I3 + I4. Hence it is
easily deduced that S is null, concluding Lie stability. As H2 = σ1F1 + σ2F2 with
(σ1, σ2) = (−1, 2 −

√
2), which is a Diophantine vector, the estimates of Theorem

2.7 apply with j = 2 and ν > 1.
We stress that when S = {0} Lie stability can be achieved even for Hamiltonians

whose first nonlinear term H3 is non-zero. If this occurs then H3 in terms of action-
angle coordinates hinges on angles because d’Alembert character (11) is satisfied.

For instance, the equations of motion corresponding with Hamiltonian

H = 5(
√

5− 1)I1 + 2(
√

5− 1)I2 + (
√

5− 1)I3 − 18I4 + 18(1 +
√

5)I5

+ 3
√
I2I3 sin(θ2 − 2θ3) + · · · ,

has the null solution as Lie stable because S = {0}. Note that the corresponding
term H3 is given by 3

√
I2I3 sin(θ2 − 2θ3) and satisfies d’Alembert character so the

perturbation starts with a polynomial of degree three in x. This Hamiltonian has
two other independent resonances of orders 6 and 21. The estimates are the same
as in the preceding example, but more details can be looked at [11].

5.3. Lie stability decided from terms that do not depend on angles. Our
theory extends previous results in the sense that we can get Lie stability for Hamil-
tonian systems that even do not satisfy the conditions needed in Nekhoroshev the-
ory, obtaining Lie stable systems under rather weak conditions. More specifically
we assume in this subsection that hypotheses (A) hold for some j ≥ 4 and such
that Hj does not hinge on angles, so j < m in (12).

Corollary 7. Directional quasi-convexity of elliptic equilibria is a particular case
of Lie stability.
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Proof. When j = 4 and H4(I) = H2(I) +H4(I) is directionally quasi-convex, then
H2(I) = H4(I) = 0 with Ii ≥ 0 imply I = 0. Then exponential estimates of
Nekhoroshev type apply [1]. Choosing I ∈ S \ {0} we get H2(I) = 0 and as D.Q.C.
holds, H4(I) 6= 0 so H4(I) 6= 0, entailing the application of Theorem 2.6.

We observe that Corollary 7 applies regardless of the number and type of reso-
nances the Hamiltonian function has, provided m > 4. In addition we notice that
Theorem 2.6 particularises to D.Q.C. not only when j = 4, H3 = 0, and also d = 1,
dimS = n− 1. In contrast, if dimS < n− 1, the requirement H4(I) 6= 0 is checked
in a space of lower dimension.

Remark 18. It is well known that 3-jet non-degenerate functions [29, 36] are a
particular case of steep functions, hence they are Nekhoroshev stable. The non-
degeneracy is concluded whether from the system H2(I) = H4(I) = H6(I) = 0 the
only solution with Ii ≥ 0 is I = 0. IfH4(I) changes sign at some I ∈ S\{0}, then we
cannot decide on the Lie stability of the system whereas if, on the contrary, H4(I)
does not change sign for any I ∈ S \{0}, then the system is Lie stable. So, there are
steep systems for which we cannot decide on their Lie stability. When higher-order
jets are needed, according to Schirinzi and Guzzo [36], extra hypotheses are required
in order to guarantee steepness. Although these assumptions have been established
for 4-jets when n = 3, 4, for degrees higher than 4 this property is hard to analyse.
Nevertheless we emphasise that steepness does not imply nonlinear stability of an
elliptic equilibrium since instability could occur through a slow diffusion mechanism.

Remark 19. As mentioned in the introduction, exponential estimates of Nekhoro-
shev type have been obtained recently by several authors relaxing steepness con-
ditions, see the papers [17, 31]. The hypotheses that one has to examine are not
straightforward, but they essentially involve to check whether some Hessian ma-
trices obtained in suitable affine subspaces of R2n are non-degenerate. Translated
to the setting of elliptic equilibria it implies a significant restriction in the terms
H4(I), H6(I), . . ., Hj(I). However we can handle rather simply examples of Lie
stable systems with exponential bounds that are very degenerate, some of non-steep
nature, as we see below.

Next example illustrates that we can have Lie stability from H4(I) under very
weak conditions. Consider the Hamiltonian with three degrees of freedom

H = H2 +H4 + · · · , (31)

with
H2 = − 1

10 (6 +
√

6)I1 + 1
10 (−2 + 3

√
6)I2 + I3,

H4 = I2
1 + αI2

2 + I2
3 + I1I2 + I1I3 + I2I3,

and α a real parameter. Hamiltonian H is supposed to be in normal form up to
a certain order. The Z-module Mω is spanned by k1 = (3, 1, 2) and the functions
F1 = −2I1 + 3I3, F2 = −I1 + 3I2 are the formal first integrals of the system whose
Hamiltonian is H, so d = 2. The corresponding set S related to the quadratic terms
of (31) is given by {(3I3, I3, 2I3) | I3 ≥ 0}, thus dimS = 1. As H4(I) = H2(I) +
H4(I) = (24 + α)I2

3 for I ∈ S, one gets H4 6= 0 when I3 6= 0, α 6= −24. Thence,
applying Theorem 2.6 the null solution of the Hamiltonian system associated to
(31) is Lie stable, provided α 6= −24.

Nonetheless, Hamiltonian function H4 in (31) is convex at I = 0 only if α > 1/3.
This condition can be somewhat relaxed, assuming directional quasi-convexity as
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introduced in [1]. After some straightforward computations we conclude that H4 is

directionally quasi-convex at I = 0 for α > 2(
√

6− 4)/3, which is the bound for α
in order to get Nekhoroshev type of stability from H4. Nevertheless, the previous
bound is extended applying the notion of rational convexity of Guzzo et al. [17],
where convexity is tested only in the affine planes of fast drift, which are subspaces
formed by integer vectors of dimensions up to n − 1. In this case it is enough to
take into account the one-dimensional subspace spanned by k1. By proceeding as in
[17] one arrives at exponential stability when α 6= −24, i.e. the same restriction we
found to achieve Lie stability, suggesting that when Lie stability is established from
Hamiltonian functions using only the two first terms of the form H2(I) +H4(I) is
equivalent to rational convexity of Guzzo and coworkers.

In case the origin of R6 is Lie stable we note thatH2 = σ2F1+σ2F2 with σ1 = 1/3,

σ2 = (3
√

6− 2)/30, thus (σ1, σ2) is Diophantine and the estimates of Theorem 2.7
hold. Notice in addition that ν can be taken above one, thence applying Corollary
2, T = C exp(Kε−1/4), and we get a better estimate than the one corresponding
to the application of Nekhoroshev theory (choosing a = 1/2 and b = 1/(2n)). The
confinement is in general of order ε1/2 but applying Corollary 4 it becomes of order
ε.

For the following example we take

H = H2 +H10 + · · · = 3I1 − 2I2 + 6I3 − I5
2 + · · · . (32)

The resonance vectors are k1 = (2, 0,−1), k2 = (0, 3, 1) and

S = {(2(I2 − 3I3), 3I2, 3I3) | I2 ≥ 3I3 ≥ 0},

the only formal first integral is F1 = 3I1 − 2I2 + 6I3, hence d = 1. Considering
I ∈ S it is clear that H10(I) = H2(I) + H10(I) = −I5

2 = 0 if and only if I2 = 0,
but then I1 = I3 = 0, thus H10 < 0 for I ∈ S \ {0} and Lie stability holds.
However the system is too degenerate to obtain stability from Nekhoroshev theory.
In fact as H4 = H6 = 0 steepness condition fails and the more relaxed conditions
of rational convexity [17] and Diophantine steepness [31] break down as well since
we can select a two-dimensional affine subspace of R3 so that the corresponding
Hessian matrix is degenerate. Regarding the estimates on x(t) and the time T they
can be straightforwardly applied as d = 1, thus no Diophantine condition is required
in this case, see Remark 8. Theorem 2.7 is applied with ν = 0 and j = 10. Notice
that Corollary 4 applies, then the bound on x(t) is of order ε.

Let us consider now H = H2 +H6 + · · · where H2 is as in the preceding example
and H6 = 40I3

3 − I3
2/2. Then H6(I∗) = 0 for points of the form I∗ = (I∗1 , I

∗
2 , I
∗
3 ) =

((2/3− 10−1/3)I∗2 , I
∗
2 , I
∗
2/(2 · 101/3)), which are in the interior of S for I∗2 > 0. So,

we cannot build a positive definite first integral V as defined in (16) and then,
applying part (B) of Theorem 2.6, Lie stability for the null solution of the system
related to H cannot be achieved by adding higher-order terms to H6. In Fig. 1 we
compare the effect of taking two different H6 with the same H2, leading to different
behaviours. Theorem 4.1 can be applied to the formal first integral F1 getting an
exponential time estimate for it, see Remark 14.

For the next example we choose a Hamiltonian (7) with n degrees of freedom,
H3 = 0 and such that H4 is independent of the angles and a directionally quasi-
convex function of I, so Nekhoroshev stability of the origin of R2n holds. Fur-
thermore it is assumed that there is only one resonant angle, thus s = 1 and one
can take the integer vector k1 = (k11, . . . , k1n) as the resonance vector. We notice
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Figure 1. On the left we plot the curves I2 = 3I3 (blue) and
40I3

3 = I3
2/2 (orange) showing that H6 changes sign in S, hence

Lie stability cannot be accomplished. On the right we consider
H6 = 4I3

3 − I3
2/3 and plot the curves I2 = 3I3 (blue) and 4I3

3 =
I3
2/3 (orange) showing that the origin of R6 is Lie stable for the

Hamiltonian H2 +H6 + · · · .

that d = n − 1 and the corresponding formal first integrals Fj are obtained as
Fj = k11Ij − k1jI1 with j = 2, . . . , n where without loss of generality we can take
k11 6= 0. If I ∈ S and dimS = 1, we get Ij = (k1j/k11)I1 for j = 2, . . . , n. Thus,
Hamiltonian (7) evaluated at I ∈ S takes the form

H =
1

k2
11

H4(k11, k12, . . . , k1n)I2
1 + · · · . (33)

Since H4 is directionally quasi-convex, H4 6= 0 for I1 6= 0 and the null solution is
Lie stable for the Hamiltonian system associated to H. This should be expected
as Nekhoroshev stability of elliptic equilibria implies Lie stability in this case, see
Corollary 7. Regarding the estimates issue one can apply Nekhoroshev’s bounds
provided in [1] (or the ones provided in Remark 9). Alternatively it is possible to
use the estimates of Corollary 2 with T = C exp(Kε−1/(2n−2)), slightly improving
the bound given by Nekhoroshev theory. Finally for the action confinement, when
dimS = 0 then j = 2 and one gets |I(t)|1 < ã ε, ã > 1. Applying Corollary 4 the
same bound on the actions is achieved regardless of the dimension of S.

In [8], see also [5], we dealt with the Lie stability of the equilibrium points L4/L5

in the spatial circular restricted three-body problem when both points are elliptic.
Specifically we show that there is an interval depending on the parameter of the
problem, say µ, where Lie stability can be accomplished fromH4(I) = H2(I)+H4(I)
since it is possible that H4(I) does not change sign for I ∈ S \ {0}. In these cases
we have dimS = 0 or 1. (Note that when S = {0} no normal form is needed.)
Nonetheless directional quasi-convexity does not hold in this interval and H6(I)
has to be computed to achieve 3-jet non-degeneracy, hence steepness, excluding
only a few values of µ, see [1].

5.4. Lie stability decided from terms that depend on angles. As the Hamil-
tonian Hj of Theorem 2.6 can hinge on φk, our result generalises Theorem 3.1 of
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[33] and Theorem 1.1 of [34], dealing with the situations of single and multiple res-
onances, respectively. Furthermore, our upshot remains valid for any Hj satisfying
the hypotheses in (A) regardless of the dependence of intermediate Hamiltonians
Hi with i < j with respect to some angles φk. This makes the approach of Theorem
2.6 of broader application than any other result we know on Lie stability of elliptic
equilibria.

An example of a Hamiltonian system with three degrees of freedom that has
two resonances, one of order 4 and the other of order 5 and is derived from the
Hamiltonian

H = H2 +H4 +H5 + · · · , (34)

where
H2 =

(√
2− 7

)
I1 + 3

(
7−
√

2
)
I2 + 1

2

(
5
√

2− 35
)
I3,

H4 = I
3/2
1

√
I2 cosφ1 + I2

1 + I2
2 + I2

3 + I1I2 + I1I3 + I2I3,

H5 =
√
I1I2I3 cosφ2,

and φ1 = 3θ1 + θ2, φ2 = θ1 + 2θ2 + 2θ3. Notice that H satisfies d’Alembert
character. The resonance vectors are k1 = (3, 1, 0), k2 = (1, 2, 2); F1 = 2I1 − 6I2 +
5I3 is the corresponding formal first integral and the set S is given by {(6I2 −
5I3, 2I2, 2I3) | 0 ≤ 5I3 ≤ 6I2} with dimS = 2. Taking I ∈ S we get

H4(I, φ1) = 52I2
2 + 19I2

3 − 54I2I3 +
√

2I2(6I2 − 5I3)3/2 cosφ1.

At this point we notice that when I3 ∈ (0, 6I2/5) then 52I2
2 + 19I2

3 − 54I2I3 >
|
√

2I2(6I2 − 5I3)3/2| from where it is easily deduced that H4(I, φ1) is positive for
I ∈ S \ {0} and any φ1 ∈ T. Thus, the null solution of the Hamiltonian system
associated to H defined in (34) is Lie stable. We observe that for H5 we could have
chosen any Hamiltonian in normal form in terms of I and φ2 provided it satisfies
(11). As in this case we only have a first integral, F1, the estimates of Theorem 2.7
on x(t) and T apply with j = 4 and d = 1, noticing that no Diophantine hypothesis
is required for the estimates. Specifically the time estimate is T = C exp(Kε−1).
Moreover, according to Corollary 4 the bound for x(t) is of order ε.

A slight variation of the previous example consists in a Hamiltonian function
with the same H2 and H5 as before, but where we modify H4 taking it as

H4 = 1
4I

3/2
1

√
I2 cosφ1 + I2

1 + I2
2 − I2

3 − I1I2 + 2I1I3 + 11
30I2I3,

and also we add H6 = I3
3 . Then we calculate H4(I, φ1) for I ∈ S, obtaining

H4(I, φ1) = 1
60 (6I2 − 5I3)

(
280I2 − 12I3 + 15

√
2I2(6I2 − 5I3) cosφ1

)
,

which is non-negative and vanishes for I2 = I3 = 0 and for I3 = 6I2/5, thus
H4 = 0 for I∗ = (0, 2I∗2 , 12I∗2/5), with I∗2 ≥ 0. Then, we proceed to check H5 for
I∗, φ1, φ2, getting H5(I∗, φ1, φ2) = 0. Next we consider H6(I∗, φ1, φ2) arriving at

H6(I∗, φ1, φ2) = 13824I∗
3

2 /125 > 0 if I∗2 > 0. This is enough in order to conclude
Lie stability, a feature which is not possible to achieve applying the theory of [34].
The application of Corollary 4 in terms of the actions gives |I(t)|1 < ã ε2/3 with time
estimate C exp(Kε−1/2). It is remarkable that this example does not contradict part
(B) of Theorem 2.6 because H4, H5 vanish only on the boundary of S for small
enough |I|.

Our next example represents a Hamiltonian with multiple resonances of orders
3 and 4 for which the Hamiltonian function is

H = H2 +H3 +H4 + · · · , (35)
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where

H2 = 1
20

(
2− 3

√
6
)
I1 + 1

10

(
3
√

6− 2
)
I2 − 3

20

(
3
√

6− 2
)
I3,

H3 = I1
√
I2 cosφ1,

H4 =
√
I1I3I2 cosφ2 + 2I2

1 − 5I1I2 − I1I3 + 3I2I3,

with φ1 = 2θ1 + θ2, φ2 = θ1 + 2θ2 + θ3. D’Alembert property is satisfied, thus
H is regular at any point. The resonance vectors are k1 = (2, 1, 0), k2 = (1, 2, 1),
F1 = I1 − 2I2 + 3I3 is a formal first integral and the set S is given by {(2I2 −
3I3, I2, I3) | 0 ≤ 3I3 ≤ 2I2} with dimS = 2. Taking a point in the interior of S, say
I∗ with 0 < I∗3 < 2I∗2/3, we build the function H3(I∗, φ1) = (2I∗2 − 3I∗3 )

√
I∗2 cosφ1

that has a simple zero at φ∗1 = π/2. Then part (B) of Theorem 2.6 applies and
we cannot deduce stability of the null solution of R6. In fact it is likely that it is
unstable for the Hamiltonian system associated to (35), but currently none of the
known theorems on instability applies. Even when stability does not likely hold,
Theorem 4.1 applies on the (transformed) action given as the first integral F1 and
the exponential time estimate of Chartier et al. is true for it. Note that H4 plays
no role in the analysis performed.

We present a case of a Hamiltonian system with three degrees of freedom that
has multiple resonances of order 4 and that is given by the function

H = H2 +H4 + · · · , (36)

where

H2 = 1
20

(
2− 3

√
6
)
I1 + 3

20

(
3
√

6− 2
)
I2 + 7

20

(
3
√

6− 2
)
I3,

H4 = I2
1 + I2

2 − I2
3 + I1I2 + I1I3 + I2I3 + I

3/2
1

√
I2 cosφ1 +

√
I1I3I2 cosφ2,

and φ1 = 3θ1 +θ2, φ2 = θ1−2θ2 +θ3. We emphasise that d’Alembert character (11)
fulfills. The resonance vectors are k1 = (3, 1, 0), k2 = (1,−2, 1). The corresponding
formal first integral reads as F1 = −I1 + 3I2 + 7I3 whereas the set S is given by
{(3I1, I1 − 7I3, 3I3) | I1 ≥ 7I3 ≥ 0}, so dimS = 2. Taking I ∈ S we get

H4(I, φ1, φ2) = 13I2
1 + 19I2

3 − 23I1I3 + 3
√

3I
3/2
1

√
I1 − 7I3 cosφ1

+3
√
I1I3(I1 − 7I3) cosφ2,

and assuming that I3 ∈ [0, I1/7], I1 > 0, we know that 13I2
1 + 19I2

3 − 23I1I3 > 0
and moreover

13I2
1 + 19I2

3 − 23I1I3 > |3
√

3I
3/2
1

√
I1 − 7I3|+ |3

√
I1I3(I1 − 7I3)|,

concluding that H4(I, φ1, φ2) is positive for I ∈ S \ {0} and any φ1, φ2 ∈ T. Thus,
the null solution of the equations of motion related to H in (36) is Lie stable. Since
d = 1 no Diophantine condition is needed and we can apply the bounds obtained
in Theorem 2.7 with j = 4 and ν = 0. By virtue of Corollary 4 the bound on the
confinement of x(t) is of order ε

For the last example we consider a Hamiltonian which is in normal form up to
terms of degree 6 and is given by

H = H2 +H4 +H6 + · · · (37)

with
H2 = 2

√
2I1 − 2I2 + 4I3 − 3

√
2I4 + 4I5,

H4 = 3I2
1 + 4I2

5 ,

H6 = 2I3
3 + I3

4 + 5I5(I3 + I5)2 − 2I2
2I5 sin(4θ2 + 2θ5).
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As in the preceding cases H is regular at any point since d’Alembert property holds.
Analysing H2 it is straightforward to deduce that Mω is spanned by three vectors,
specifically k1 = (0, 2, 0, 0, 1), k2 = (0, 0, 1, 0,−1), k3 = (3, 0, 0, 2, 0). From the
orthogonal space of the linear subspace of R5 spanned by k1, k2, k3 we build the
two formal first integrals, namely F1 = −I2 + 2I3 + 2I5 and F2 = −2I1 + 3I4. Next
the set S is obtained from Fk, yielding the three-dimensional subspace of R5 given
by {(3I4/2, 2(I3 + I5), I3, I4, I5) | I3, I4, I5 ≥ 0}.

Considering H4 = H2 + H4 we realise that it becomes zero for I ∈ S \ {0}, in
particular for I∗ = (0, 2I∗3 , I

∗
3 , 0, 0) with any I∗3 > 0, and besides H4 ≥ 0. Thus we

need to take into account the next non-null term and consider H6 = H2 +H4 +H6.
When I ∈ S we arrive at

H6(I, φ1) = 27
4 I

2
4 + 4I2

5 + 2I3
3 + I3

4 + I5(I3 + I5)2 (5− 8 sin(2φ1)) ,

where φ1 = 2θ2 + θ5. To check whether H6 changes sign when I is in S \ {0} and
close to the origin, it is enough to prove it doing I4 = I5 = 0. We get H6 = 2I3

3 > 0
for I = (0, 2I3, I3, 0, 0) and I3 > 0, which is a term in S \ {0}. Then, for |I| small
enough, H6 ≥ 0 and H6 = 0 if and only if Ij = 0. As a consequence the origin of
R10 is Lie stable for the Hamiltonian system associated to H in (37). Note however
that Lie stability cannot be concluded applying other known results on Lie stability.
From the identity H2 = 2F1 −

√
2F2 the frequency vector is (σ1, σ2) = (2,−

√
2),

which is Diophantine, and Theorem 2.7 applies with j = 6, see also Corollary 3.
The time T is of the form C exp(Kε−1/4) with an action confinement of order ε1/3,
which is improved to be of order ε2/3, applying Corollary 4. As H4 vanishes only
on the boundary of S, part (B) of Theorem 2.6 does not apply.

As said in the introduction there are many interesting cases where Lie stability
is obtained from a given Hamiltonian Hj depends on one or several resonant angles.
One example corresponds to the motion in the three-dimensional space of a satellite
with respect to its centre of mass where the orbit followed by the centre of mass
is circular and the satellite has unequal principal central moments of inertia. This
problem can be written as an autonomous Hamiltonian system with three degrees
of freedom and some of its equilibria are of elliptic type. The problem hinges
basically on two external parameters and this leads to many different possibilities
of getting Lie stability for the elliptic equilibria, either obtained from non-resonant
or resonant normal-form terms. A deep analysis of this problem has been made in
the monograph [5], see also [9] and there are several (formally) Lie stable situations
where the stability is deduced from resonant normal forms of degrees 3, 4 or 5. In
case of stability, exponential estimates are provided for these cases.
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