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Abstract. Literature of brain-computer interfacing (BCI) for steady-
state visual evoked potentials (SSVEP) shows that canonical correlation
analysis (CCA) is the most used method to extract features. However,
it is known that CCA tends to rapidly overfit, leading to a decrease
in performance. Furthermore, CCA uses information of just one class,
thus neglecting possible overlaps between different classes. In this pa-
per we propose a new pipeline for SSVEP-based BCIs, called corrLDA,
that calculates correlation values between SSVEP signals and sine-cosine
reference templates. These features are then reduced with a supervised
method called shrinkage linear discriminant analysis that, unlike CCA,
can deal with shorter time windows and includes between-class infor-
mation. To compare these two techniques, we analysed an open access
SSVEP dataset from 24 subjects where four stimuli were used in offline
and online tasks. The online task was performed both in control condi-
tion and under different perturbations: listening, speaking and thinking.
Results showed that corrLDA pipeline outperforms CCA in short trial
lengths, as well as in the four additional noisy conditions.

Keywords: Brain-computer interface · Steady-state visual evoked po-
tential · Linear discriminant analysis · Canonical correlation analysis.

1 Introduction

Brain-computer interfaces (BCI) use brain signals, and most commonly elec-
troencephalogram (EEG) to establish a new way to interact with our environ-
ment directly with mental activity. Their most common applications include
the control of external devices [10, 19], communication tools for disabled peo-
ple [26, 41] and neurological rehabilitation [6, 7]. However, they can also be ap-
plied to other fields such as entertainment [1, 23] and marketing [32].

There are several types of brain responses that can be used to achieve these
goals, such as event-related potentials [13, 30], sensorimotor rhythms [12, 14, 22,
25,28,33–36,38] and visual-evoked potentials (VEP) [18,39,40]. One type of VEP
is the steady-state visual evoked potential (SSVEP) which, in comparison to
other types of evoked potentials, is a robust phenomenon [9] with high signal-to-
noise ratio [31]. In particular, SSVEPs are natural responses to visual stimulation
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at specific frequencies, where the brain generates oscillatory responses at the
same (or multiples of) frequency of the visual stimulus at which the subject
focuses.

Over the past years, different methodologies have been followed to analyse
SSVEP signals. Among them, the most widely used method is the canonical
correlation analysis (CCA) [2, 5, 17]. CCA has also been extended [44, 45] and
combined [8] with other methods. The concept underlying CCA-based methods
is the maximization of the correlation between SSVEP signals and sine-cosine
reference matrices and typically, they do not need any calibration data. This
aspect offers an advantage in comparison to other methods, because the BCI
system is immediately ready-to-use by a new participant. Nevertheless, CCA
maximizes the correlation of multivariate datasets without minimizing the over-
lap between different classes, thus leading to poor performance, for example,
when trials are not sufficiently long or the number of dimensions (channels) is
large.

In this paper we propose a new pipeline to extract and classify SSVEP
features, based on linear discriminant analysis (LDA) [24, 27, 43] with shrink-
age [3,37]. The linear discriminant aims to minimize the within-class covariance
at the same time that maximizes the between-class covariance. Thus, it is a
supervised method that finds a linear combination of the input features that
best separates them according to its objective function. Our results show that
the proposed SSVEP-based BCI system outperforms the state-of-the-art CCA
method when trials are as short as 1 second. Besides, in out-of-the-lab conditions
and without prior knowledge of perturbations structure, its performance is also
superior to CCA. This new pipeline is also practical, since there is no need to
select subject-specific hyper-parameters.

2 Materials

We analysed open access data described and shared by [11]. In that study, data
of 24 subjects were analysed after acquiring written informed consent by partic-
ipants. In this paper, we used the same datasets for our analyses.

EEG from 60 channels were recorded with 1 kHz sampling rate, setting left
mastoid as the reference electrode. Stimuli markers that specified the start and
end of the flickering were used to segment EEG.

Each participant was presented a screen with four circles placed at different
locations with different flickering frequencies: 5.45 Hz (up), 8.57 Hz (down), 12
Hz (right) and 15 Hz (left). In order to prevent that these main frequencies
coincide with their higher harmonics, frequencies multiples of each other were
avoided. Offline and online tasks were carried out by all subjects. In this paper,
data acquired from offline task were used as the training dataset, whereas online
task data were used as the testing dataset.

In each trial during the offline session, the participants were asked to focus
on one of the four randomly presented flickering circles for three seconds. After
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the stimuli, they could blink during 1 second. In total, each subject performed
25 trials for each of the four stimuli.

On the other hand, during the online task the subjects freely selected one of
the four circles and focused on it for three seconds. Then, they were presented
the classification result and they had to either confirm or reject this result.
If the result was rejected, the subjects had to specify the correct circle using
the keyboard. Furthermore, the online task was performed under four different
environmental conditions: control (i.e. no perturbation), listening, speaking and
thinking. In total, each subject performed 100 trials for each condition. For more
details on data acquisition procedure, please refer to [11].

3 Methods

In this manuscript we compare two pipelines to extract features for an SSVEP-
based BCI system: the state-of-the-art CCA method and the proposed approach,
that we named corrLDA. The notation used in this paper is boldface capital
letters to denote matrices (e.g. X), boldface lower-case letters for vectors (e.g.
x) and regular letters for scalars (e.g. x).

3.1 Pre-processing

In the two analysed pipelines, the EEG data was de-trended and band-pass
filtered between 0.53 and 40 Hz with a fourth order Butterworth filter to remove
DC, 50 Hz power line noise and high frequency artifacts.

3.2 Canonical Correlation Analysis (CCA)

The standard CCA method was selected as baseline, because it is considered
the most popular technique to extract features from SSVEP signals [2, 5, 9, 17,
21, 42]. Briefly, CCA aims at finding the maximal correlation between the EEG
signals and several reference signals (one or more at different frequencies) to
estimate the similarity between the EEG and each of the flickering frequencies
(classes); i.e., CCA aims at finding the SSVEP. In [11] canonical correlations were
calculated between the EEG and two sine-cosine reference signal matrices. The
reference functions of one of these two matrices were defined at the frequencies
corresponding to the stimulation, whereas the frequencies of the other matrix
corresponded to their second harmonics. Therefore, two canonical correlation
values were obtained for each of the eight reference signals, which were used as
features for classification. In order to obtain results for this study, we proceeded
similarly.

3.3 CorrLDA

The proposed corrLDA pipeline (see Fig. 1) consists of correlating each trial
in EEG pre-processed data with a sine-cosine reference matrix. This matrix is
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composed of N=16 signals that match with sines and cosines of the four flickering
frequencies and their corresponding second harmonics. This way, the dimensions
of resulting data are N by number of channels by number of trials.

CLASSIFIERCORRELATION

Trained
classifier

Shrinkage LDA

Shrinkage LDA

(N times)

PRE-PROCESSED
DATA

CORRELATION
VALUES FEATURES

Trained
weights (w  )
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Fig. 1. corrLDA block scheme (N=16).

Then, these correlation values are projected using regularized linear discrim-
inant analysis with shrinkage (shrinkage LDA), implemented in the BBCI Tool-
box of Matlab [4]. The LDA was regularized because of the high-dimensionality
of the features (60) in comparison to the number of trials per class (25). Recall
that the linear discriminant analysis (LDA) finds a one-dimensional subspace
in which the classes are well (linearly) separated. This is formalized by requir-
ing that after the projection onto the subspace, the ratio of the between-class
variance to the within-class variance is maximal:

w = argmax
w

{wTSbw}
{wTΣw}

(1)

where Sb and Σ are between-class and within-class scatter matrices, respectively,
computed as:

Sb = (µ1 − µ2) (µ1 − µ2)
T

(2)

Σ =
Σ1 + Σ2

2
(3)

where µ1 and µ2 are the sample class means and Σ1 and Σ2 are the sam-
ple covariances for class 1 and 2 respectively. The optimization problem in Eq.
1 amounts to solving a generalized eigenvalue decomposition (GEVD), which
solves Sbw = βΣw for the leading eigenvector. Thus, the optimal subspace is
defined by:

w = Σ−1(µ1 − µ2) (4)

As the covariance matrix is often typically poorly conditioned, we follow the
approach by Ledoit and Wolf [15,16] and replace in Eq. 4 by a shrinkage estimate
of the form:

Σλ = (1− λ)Σ̃ + λΣ̃, λ ∈ [0, 1] (5)

The matrix Σ̃ is the sample-covariance matrix of a restricted sub-model, and
the optimal shrinkage intensity λ can be estimated from the data. We use the
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following sub-model: all variances (i.e. all diagonal elements) are equal, and all
covariances (i.e. all off-diagonal elements) are zero (see [29] for other alternatives,
and their corresponding optimal λ). As we were interested in finding subspaces
for each of the correlation matrices (which were N = 16 in total) we computed
the same number of subspaces employing one versus rest approach: for each
of the main frequencies (fi, i=1...4) four correlation matrices related to that
frequency were computed (i.e. correlations with sin(fi), cos(fi), sin(2*fi) and
cos(2*fi) reference signals), with dimensions number of channels by number of
trials. With each of these matrices, a shrinkage LDA was trained to find the
linear combination wN best separating the classes according to Eq. 1. For each
shrinkage LDA, the trials that belonged to the class with the same fi as the one
used to calculate the corresponding correlation matrix (see Fig. 1) were taken
as targets, while the remaining trials were non-targets. Thus, the final number
of features per trials was reduced to N=16.

3.4 Classification

Following the procedures of [11], three classifiers were used: Decision Tree, Näıve
Bayes (using kernel distribution to model the data) and K-Nearest Neighbor (K-
NN) (with K=5 neighbors), implemented with Statistics and Machine Learning
Toolbox of Matlab.

All of them were used to calculate the training (offline) dataset classification
accuracy, using a leave-one-out approach. This was done for the two techniques
discussed in this paper (i.e. the standard CCA method and the new proposed
pipeline, corrLDA), using three different trial lengths (1, 2 and 3 seconds).

On the contrary, the testing (online) dataset results were obtained using the
best classifier for each analysed technique, estimated from the training dataset
analysis. These two technique-classifier pipelines were evaluated using 1 second
trial length, for the four perturbations present in the dataset, after training with
the whole training dataset.

3.5 Statistical Analysis

We conducted a two-way analysis of variance (ANOVA) for repeated measures
to analyse the effect of technique (CCA, corrLDA) and classifier (K-NN, Näıve
Bayes, Decision Tree) on the results obtained with cross-validation in the training
set, when using 1 second trial length. For the testing dataset, we conducted a two-
way repeated measures ANOVA to see the influence of approach (the selected
CCA-classifier and corrLDA-classifier combinations) and perturbation (control,
listening, speaking, thinking) factors on classification results obtained with 1
second long trials.

When the interaction of factors or the main effects were significant, a Tuckey’s
honestly significant difference (HSD) post hoc test was computed. Furthermore,
we used Mauchly’s test to analyse the sphericity of the response variables in
the repeated measures model of each ANOVA. When this null hypothesis was
rejected, we looked at the Greenhouse-Geisser adjusted p-values.
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4 Results

4.1 Training Dataset Classification

Fig. 2 depicts mean accuracies (%) and standard errors across subjects for each
of the presented techniques. Classification results of the three tested classifiers
when changing trials length from 1 to 3 seconds are represented in each of the
subplots.
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Fig. 2. Mean accuracies (%) and standard errors for different stimuli lengths and classi-
fiers (training dataset; 24 subjects). ***: p<0.001. Differences (Tuckey’s HSD) between
techniques for 1 second trial length.

As described in section 3.5, we performed a 2-way repeated measures ANOVA
(see Table 1) with factors technique and classifier, using accuracy results ob-
tained with 1 second trial length. Both main factors and their interaction were
significant (p<0.001 in each case). Thus, post-hoc tests followed.

Tuckey’s HSD revealed that corrLDA outperformed CCA with the three anal-
ysed classifiers (p<0.001 in each case). Besides, when using CCA, Näıve Bayes
classifier performance was superior to K-NN and Decision Tree (p<0.001 in each
case). On the other hand, with the corrLDA pipeline both K-NN and Näıve
Bayes classifiers had better results than Decision Tree (p<0.001 in each case).

Mean classification accuracies across subjects obtained with the proposed
corrLDA pipeline were higher than 90% with 1 second long trials. This result
was consistent for all three analysed classifiers (mean ± std; K-NN: 98.29 ± 0.53,
Näıve Bayes: 97.83 ± 0.72, Decision Tree: 91 ± 1.76). However, for 1 second long
trials, CCA could not reach 80% of mean accuracy for any of the classifiers (mean
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Table 1. Two-way repeated measures ANOVA for mean accuracies in training dataset
with 1 second trial length, with classifier and technique factors.

Source SS df MS F p

Classifier 1120.88 2 560.44 33.25 <0.001

Error(Classifier) 775.46 46 16.86 - -

Technique 23332.56 1 23332.56 84.28 <0.001

Error(Technique) 6367.27 23 276.84 - -

Classifier x Technique 603.79 2 301.90 15.40 <0.001

Error(Classifier x Technique) 901.88 46 19.61 - -

± std; K-NN: 67.04 ± 3.53, Näıve Bayes: 75.25 ± 3.25, Decision Tree: 68.46 ±
3.40).

For further analyses with the testing dataset, we selected K-NN and Näıve
Bayes classifiers to analyse corrLDA and CCA techniques, respectively (i.e.
corrLDA-KNN and CCA-NB).

4.2 Testing Dataset Classification

As previously mentioned, two technique-classifier approaches were evaluated
with the testing dataset: CCA-NB and corrLDA-KNN. In Fig. 3 mean accura-
cies (%) and standard errors across subjects are shown for each studied approach
under different perturbations (using 1 second long trials).

A two-way ANOVA for repeated measures was conducted (see Table 2) with
approach and perturbation factors. The results showed that both main factors
were significant (p<0.001 in each case), but there was no significant interaction
between them (p=0.4435).

Table 2. Two-way repeated measures ANOVA for mean accuracies in testing dataset
with 1 second trial length, with approach and perturbation factors.

Source SS df MS F p

Approach 41477.52 1 41477.52 225.21 <0.001

Error(Approach) 4235.98 23 184.17 - -

Perturbation 2526.71 3 842.24 13.38 <0.001

Error(Perturbation) 4342.29 69 62.93 - -

Approach x Perturbation 80.44 3 26.81 0.84 0.4435

Error(Approach x Perturbation) 2211.06 69 32.04 - -

Both approaches got the highest mean accuracy result in Control condition
(mean ± std; corrLDA-KNN: 88.08 ± 1.73, CCA-NB: 59.00 ± 2.41), followed by
Listening (mean ± std; corrLDA-KNN: 85.58 ± 2.24, CCA-NB: 56.04 ± 2.30),
Thinking (mean ± std; corrLDA-KNN: 82.58 ± 2.45, CCA-NB: 51.29 ± 2.40)
and Speaking (mean ± std; corrLDA-KNN: 77.88 ± 3.38, CCA-NB: 50.21 ±
2.33) perturbations.
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Control Listening Speaking Thinking
40

50

60

70

80

90

100

M
e

a
n

 a
c
c
u

ra
c
y
 (

%
)

1 second

*** *** *** ***

CCA - NB

corrLDA - KNN

Fig. 3. Mean accuracies (%) and standard errors for different perturbations with 1
second trial length (testing dataset; 24 subjects). ***: p<0.001. Differences (Tuckey’s
HSD) between approaches for each perturbation.

Finally, post-hoc tests revealed that the CCA-NB approach achieved signif-
icantly less accuracy than corrLDA-KNN for all perturbations (p<0.001, in all
cases).

5 Discussion

As observed from previous results, the corrLDA pipeline outperforms CCA.
CCA-based methods do not take into account between-class information to com-
pute correlations, because each CCA is performed with reference signals of just
one class. Therefore, when features from different classes overlap, which on the
other hand is the most common setting for SSVEP signals [20], the classifi-
cation results are poor. On the contrary, the corrLDA pipeline employs linear
discriminant functions that maximize the difference between classes, thus (lin-
early) reducing the overlap between them. Consequently, and as we have seen,
corrLDA achieves significantly better performance than CCA.

Furthermore, corrLDA achieves higher mean accuracy classification results
with short trial lengths than CCA. In particular, we analysed trials of 1 second
length, with which it was possible to achieve almost 90% mean accuracy in the
control condition (without noise perturbations). In the case of CCA, however,
the mean accuracy was around 60% for condition control. The reason for this is
that regression-based methods are unable to achieve reliable estimates without
enough number of cycles of the signal of interest. It is clear thus, that our pro-
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posed pipeline corrLDA can be considered a good option to design fast and easy
to train SSVEP-based BCI systems, with the potential of increasing information
transfer rates [41].

Regarding classification results achieved under different perturbations, our
corrLDA pipeline again outperforms the classification results obtained with CCA,
in the four analysed conditions. Even without including knowledge of the noise
structure of each perturbation, corrLDA achieved an average of 83.53% of accu-
racy under all analysed disturbances, whereas CCA only reached 54.14%. Never-
theless, both techniques are affected by noise, being the speaking condition the
one that most affects (decreases) mean accuracies. As stated in [11], the reason
for this could be that the quality of the EEG signal decreases in the theta band.
Another reason could be the attention split that the subjects undergo due to
dual tasking. Indeed, the latter factor is also present in the thinking condition,
which is the next worst condition regarding classification performance. These
results suggest that further investigation needs to be done in order to develop
BCI systems that are robust against perturbations, so that they can be reliably
used in out-of-the-lab environments.

Finally, the proposed pipeline is practical and easy to use since it does not
require to select subject-specific hyper-parameters, which greatly simplifies the
set-up of the system. Unlike CCA, corrLDA needs some calibration data in order
to train the shrink LDAs. corrLDA offers, however, significantly better perfor-
mance than CCA, even under noisy conditions and using significantly shorter
trial lengths.

6 Conclusions

In this paper we proposed a new pipeline, named corrLDA, to develop a fast
SSVEP-based BCI system. This pipeline computes correlation values with sine-
cosine reference templates and uses shrinkage LDA to reduce the number of
features. Finally, a non-linear classifier is used to decode the EEG signal. We
showed that corrLDA outperforms CCA using trial lengths as short as 1 second,
under both ideal and noisy conditions. Further investigations need to be done
to robustly classify SSVEP data regardless of the perturbation.

Acknowledgements We are grateful to Zafer İşcan for partly sharing code and
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25. Pfurtscheller, G., Brunner, C., Schlögl, A., Da Silva, F.L.: Mu rhythm (de) synchro-
nization and eeg single-trial classification of different motor imagery tasks. Neu-
roImage 31(1), 153–159 (2006). https://doi.org/10.1016/j.neuroimage.2005.12.003

26. Pfurtscheller, G., Flotzinger, D., Kalcher, J.: Brain-computer interface—a new
communication device for handicapped persons. Journal of Microcomputer Appli-
cations 16(3), 293–299 (1993). https://doi.org/10.1006/jmca.1993.1030

27. Saa, J.F.D., Gutierrez, M.S.: Eeg signal classification using power spectral features
and linear discriminant analysis: A brain computer interface application. In: Eighth
Latin American and Caribbean Conference for Engineering and Technology. pp. 1–
7. LACCEI Arequipa (2010)

28. Sannelli, C., Vidaurre, C., Müller, K.R., Blankertz, B.: A large scale screening
study with a smr-based bci: Categorization of bci users and differences in their smr
activity. PloS one 14(1) (2019). https://doi.org/10.1371/journal.pone.0207351
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criminant analysis applied to motor imagery bipolar data. Medical & biological
engineering & computing 45(1), 61 (2007). https://doi.org/10.1007/s11517-006-
0122-5

39. Wang, Y., Gao, X., Hong, B., Jia, C., Gao, S.: Brain-computer interfaces based
on visual evoked potentials. IEEE Engineering in medicine and biology magazine
27(5), 64–71 (2008). https://doi.org/10.1109/MEMB.2008.923958

40. Wang, Y., Wang, R., Gao, X., Hong, B., Gao, S.: A practical vep-based brain-
computer interface. IEEE Transactions on neural systems and rehabilitation engi-
neering 14(2), 234–240 (2006). https://doi.org/10.1109/TNSRE.2006.875576

41. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.:
Brain–computer interfaces for communication and control. Clinical neurophysiol-
ogy 113(6), 767–791 (2002). https://doi.org/10.1016/S1388-2457(02)00057-3

42. Yin, E., Zhou, Z., Jiang, J., Yu, Y., Hu, D.: A dynamically optimized ssvep brain–
computer interface (bci) speller. IEEE Transactions on Biomedical Engineering
62(6), 1447–1456 (2014). https://doi.org/10.1109/TBME.2014.2320948

43. Zhang, R., Xu, P., Guo, L., Zhang, Y., Li, P., Yao, D.: Z-score linear discrim-
inant analysis for eeg based brain-computer interfaces. PloS one 8(9) (2013).
https://doi.org/10.1371/journal.pone.0074433

44. Zhang, Y., Zhou, G., Jin, J., Wang, M., Wang, X., Cichocki, A.: L1-regularized
multiway canonical correlation analysis for ssvep-based bci. IEEE transac-
tions on neural systems and rehabilitation engineering 21(6), 887–896 (2013).
https://doi.org/10.1109/TNSRE.2013.2279680

45. Zhang, Y., Zhou, G., Jin, J., Wang, X., Cichocki, A.: Frequency recog-
nition in ssvep-based bci using multiset canonical correlation analy-
sis. International journal of neural systems 24(04), 1450013 (2014).
https://doi.org/10.1142/S0129065714500130


