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Abstract

Throughout this paper, our main idea is to explore different classical
questions arising in Utility Theory, with a particular attention to those
that lean on numerical representations of preference orderings. We intend
to present a survey of open questions in that discipline, also showing the
state-of-art of the corresponding literature.
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1 Introduction

Many researches in the topic of ordered structures and its numerical represen-
tations would undoubtedly agree on the fact that the book [17], by D.S. Bridges
and G.B. Mehta, published in 1995, is one of the best treatises on this kind of
question. In fact, that book has been a cornerstone, the bedside book of many
professional colleagues. It covers from different perspectives and alternative
points of view, the most important topics that are in the basis of the search for
representations of preferences through utility functions.

Needless to say, not everything has been done. Classical problems, as, e.g.,
the existence of a numerical representation for a given semiorder, in the classical
approach introcuced by Scott and Suppes (see [77, 38]), have been solved in the
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last ten years. But it is also true that some crucial questions still resist to the
researchers, and remain as open.

Therefore, it seems necessary to dispose at hand of a commented account of
open problems arising in utility theory, at least in all what has to do with the
numerical representations of the main different –and classical– kinds of ordered
structures, already considered in [17], namely total preorders, interval orders
and semiorders.

This is the idea that inspires the present manuscript.

2 Preliminaries

2.1 Basic definitions

Henceforward X will denote a nonempty set, and R will stand for a binary
relation defined on X, that is R is a subset of X2. Given x, y ∈ X, with the
standard notation xRy we mean that (x, y) ∈ R ⊆ X ×X.

Definition 2.1. A binary relation R on X is called:

(i) Reflexive: If xRx holds for every x ∈ X.

(ii) Transitive: If (xRy) ∧ (yRz) =⇒ xRz holds for every x, y, z ∈ X.

(iii) Total or complete: If (xRy) ∨ (yRx) holds for every x, y ∈ X.

(iv) Irreflexive: If for any x ∈ X, it never happens that xRx.

(v) Asymmetric: If for any x, y ∈ X such that xRy holds, it never happens
that yRx.

(vi) Antisymmetric: If (xRy) ∧ (yRx) =⇒ x = y holds for any x, y ∈ X.

(vii) Negatively transitive: If xRz =⇒ (xRy) ∨ (yRz) holds for all x, y, z ∈ X.

Associated to a binary relation R on a set X, we consider its negation (re-
spectively, its transpose) as the binary relation Rc (respectively, Rt) on X
given by (x, y) ∈ Rc ⇔ (x, y) /∈ R for every x, y ∈ X (respectively, given by
(x, y) ∈ Rt ⇔ (y, x) ∈ R, for every x, y ∈ X). We also define the adjoint Ra
of the given relation R, as Ra = (Rt)c.

In the particular case in which some ordering has been implemented, the
standard notation usually changes. We include it here for the sake of complete-
ness, since we will use it throughout the present manuscript.

Definition 2.2. A preorder - on X is a reflexive and transitive binary relation
defined on X. An antisymmetric preorder is called an order, whereas a total
preorder - is a preorder such that if x, y ∈ X then (x - y) ∨ (y - x) holds. A
total order is also known as a linear order in this literature.

If - is a preorder on X, then as usual we denote the associated asymmetric
relation by ≺ and the associated equivalence relation by ∼ and these are defined
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by x ≺ y ⇔ (x - y) ∧ ¬(y - x) and x ∼ y ⇔ (x - y) ∧ (y - x). (Here the
symbol “¬” stands for negation).

Remark 2.3. In the case of a total preorder -, we may observe that x - y ⇔
(x ≺ y)∧ (x ∼ y) holds for all x, y ∈ X. Also, in this case the adjoint of - is ≺
and vice versa.

Definition 2.4. An interval order ≺ is an asymmetric binary relation on X
such that (x ≺ y)∧(z ≺ t)⇒ (x ≺ t)∨(z ≺ y) (x, y, z, t ∈ X). Its corresponding
adjoint will be denoted -, so that a - b ⇔ ¬(b ≺ a). This relation - is
called the weak preference associated to ≺. By the way, ≺ is also called a
strict preference defined on X. In addition, the binary relation ∼ defined by
a ∼ b⇔ (a - b) ∧ (b - a) is said to be the indifference associated to ≺.

Remark 2.5. It is well known that given an interval order ≺ on a set X, the
associated relations - and ∼ may fail to be transitive ([56, 57, 58, 66, 77]).

Definition 2.6. An interval order ≺ is said to be a semiorder if (x ≺ y) ∧
(y ≺ z)⇒ (x ≺ w)∨(w ≺ z) (x, y, z, w ∈ X). A semiorder ≺ is said to be typical
if its associated weak preference - defined by x - y ⇔ ¬(y ≺ x), (x, y ∈ X) is
not a total preorder on X.

2.2 Numerical representations of different kinds of order-
ings

Following [9] we introduce the notion of representability for different kinds of
orderings.

The underlying idea corresponds to the possibility of converting qualitative
scales into quantitative ones. Thus, in a way, a binary relation on a nonempty
set X could give us the idea of comparison, preference, choice, better position,
etc., depending on the context. For instance, given a, b ∈ X, the fact a - b could
be interpreted as “b is at least as good as a”. Obviously, it is more practice to
compare directly real numbers rather than dealing with qualitative scales. This
suggest us to convert, when possible, a qualitative scale into a quantitative or
numerical one.

Definition 2.7. A total preorder - on X is called representable if there is
a real-valued function u:X → R that is order-preserving, so that, for every
x, y ∈ X, it holds that x - y ⇔ u(x) ≤ u(y). The map u is said to be a utility
function for -1.

An interval order ≺ defined on X is said to be representable (as an interval
order) if there exist two real valued maps u, v:X −→ R such that x ≺ y ⇔
v(x) < u(y) (x, y ∈ X). The pair (u, v) is called a utility pair representing ≺.

A semiorder ≺ defined on X is said to be representable in the sense of Scott
and Suppes if there exists a real-valued map u:X → R (again called a utility

1In other quite different and multidisciplinary contexts, this is sometimes called an isotony,
an entropy function, a measurement, a score or an order-preserving map. (See e.g. [8, 10, 17,
18, 30, 31, 43, 49, 77])
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function) such that x ≺ y ⇔ u(x) + 1 < u(y) (x, y ∈ X) (see the seminal
reference [77]).

In this case, the pair (u, 1) is said to be a Scott-Suppes representation of ≺.

Remark 2.8. If (u, v) is a utility pair representing an interval order ≺ defined
on a set X, it is straightforward to see that u(x) ≤ v(x) for every x ∈ X.
The real interval [u(x), v(x)], that could degenerate to a point if u(x) = v(x),
is said to be the interval of discrimination or perception corresponding to the
element x ∈ X. And the non-negative real number v(x)−u(x) is said to be the
discrimination threshold for the element x ∈ X. Notice that these thresholds
depend on the elements of X. If x 6= y ∈ X it may happen that v(x)− u(x) 6=
v(y)−u(y). In the case of a semiorder that is representable in the sense of Scott
and Suppes, the discrimination thresholds are all equal to 1.

There exist interval orders that fail to be representable (as interval orders).
Also, there exist semiorders that are not representable in the sense of Scott
and Suppes. By the way, since every semiorder is, by definition, a special case
of an interval order, it may still happen that some particular semiorder can
be represented as an interval order through a utility pair, but it fails to be
representable as a semiorder in the sense of Scott and Suppes (see [41, 73] for
suitable examples and further information).

Definition 2.9. Associated to an interval order ≺ defined on a nonempty set
X, we shall consider three new binary relations (see [4, 48, 55, 56]).

These binary relations are said to be the traces of ≺. They are respectively
denoted by ≺∗ (left trace), ≺∗∗ (right trace) and ≺0 (main trace), and defined
as follows: x ≺∗ y ⇔ x ≺ z - y for some z ∈ X, and similarly x ≺∗∗
y ⇔ x - z ≺ y for some z ∈ X (x, y ∈ X). In addition, x ≺0 y ⇔ (x ≺∗
y) ∨ (x ≺∗∗ y) (x, y ∈ X).

Remark 2.10. We denote x -∗ y ⇔ ¬(y ≺∗ x), x ∼∗ y ⇔ x -∗ y -∗ x,
x -∗∗ y ⇔ ¬(y ≺∗∗ x) and x ∼∗∗ y ⇔ x -∗∗ y -∗∗ x, and finally x -0

y ⇔ (x -∗ y) ∧ (x -∗∗ y) and x ∼0 y ⇔ (x -0 y) ∧ (y -0 x) (x, y ∈ X).
Both the binary relations -∗ and -∗∗ are total preorders on X. Moreover, the
indifference relation ∼ associated to the interval order ≺ is transitive if and only
if -∗, -∗∗ and - coincide. In this case - is actually a total preorder on X (see
[12, 48, 55, 56, 70, 73]).

In addition, the binary relation -0 allows us to characterize semiorders
among interval orders (see [55, 56, 70]).

Indeed, if ≺ an interval order on X, then it is a semiorder if and only if -0

is a total preorder on X. A semiorder ≺ is not typical if and only if -∗,-∗∗,-0

and - coincide.

Let us recall now some characterizations of the numerical representability of
total preorders, interval orders and semiorders.

Definition 2.11. Let X be a nonempty set. A total preorder - defined on X
is said to be perfectly separable if there exists a countable subset D ⊆ X such
that for every x, y ∈ X with x ≺ y there exists d ∈ D such that x - d - y.
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An interval order ≺ defined on X is said to be interval order separable if
there exists a countable subset D ⊆ X such that for every x, y ∈ X with x ≺ y
there exists d ∈ D such that x -∗ d ≺ y. Equivalently, for every x, y ∈ X with
x ≺ y there exists c ∈ D such that x ≺ c -∗∗ y (see [9, 12]).

A semiorder ≺ defined on X is said to be regular with respect to sequences
if for any x, y ∈ X, and sequences (xn)n∈N, (yn)n∈N ⊆ X, none of the situations
x ≺ · · · ≺ xn+1 ≺ xn ≺ · · · ≺ x1 and y1 ≺ · · · ≺ yn ≺ yn+1 ≺ · · · ≺ y may
occur.

The following facts are well-known in this literature (see [12, 17, 73]).

Theorem 2.12. On a nonempty set X the following statements hold:

(a) A total preorder - is representable if and only if it is perfectly separable.

(b) An interval order ≺ is representable if and only if it is interval order
separable.

And the following result has recently been proved (see [35, 38]).

Theorem 2.13. Let X be a nonempty set. Let ≺ be a typical semiorder defined
on X. Then, ≺ is representable in the sense of Scott and Suppes if and only if
it is both interval order separable and regular with respect to sequences.

Remark 2.14. When X is countable, the condition of interval order separa-
bility trivially holds. Therefore, a semiorder ≺ on a countable set X is repre-
sentable in the sense of Scott and Suppes if and only if it is regular with respect
to sequences. This fact was already known ([7, 68]).

2.3 Order topology

Definition 2.15. Let ≺ denote an asymmetric binary relation on X. Given
a ∈ X the sets L(a) = {t ∈ X : t ≺ a} and U(a) = {t ∈ X : a ≺ t} are called,
respectively, the lower and upper contours of a relative to ≺. We say that ≺ is
τ -continuous if for each a ∈ X the sets L(a) and U(a) are τ -open. (See also [64]
for further details). The minimal topology τ≺ for which all the contours L(a)
and U(a) are open (a ∈ X) is said to be the topology generated for ≺. When ≺ is
the asymmetric part of a total preorder -, the topology τ≺ is also known as the
order topology associated to -. Sometimes it is also denoted by τ-. Notice that
a subbasis for this topology is {∅} ∪ {X}

⋃
{U(a) : a ∈ X}

⋃
{L(a) : a ∈ X}.

If - is a total preorder on X, a topology τ on X is said to be natural as
regards - if ≺ is τ -continuous, or equivalently, if the topology τ≺ is coarser than
τ (i.e., τ is finer than τ≺. We also say that τ≺ is a subtopology of τ).

The order topology τ≺ associated to a total preorder - defined on a nonempty
set X characterizes in topological terms the numerical representability of -
through a utility function, as follows:

Theorem 2.16. A total preorder - on a nonempty set X is representable if
and only if its associated order topology τ≺ is second countable.

Proof. See Sections 1.4 and 1.6 in [17].
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2.4 Debreu’s open gap lemma and the continuous repre-
sentability of total preorders

Debreu’s open gap lemma is a powerful tool to obtain continuous representations
of a total preorder - defined on a nonempty set X endowed with a natural
topology τ . (See Ch. 3 in [17], as well as [25] and [46]). To explain this lemma,
we introduce the following definition.

Definition 2.17. Let S be a subset of the real line R. A lacuna L corresponding
to S is a non degenerate interval of R that has both a lower bound and an upper
bound in S and that has no points in common with S. A maximal lacuna is
said to be a Debreu gap (see e.g. pp. 38 and ff. in [17]).

Lemma 2.18. If S is a subset of the extended real line R̄ , then there exists
a strictly increasing map, called a gap function, g : S −→ R̄ such that all the
Debreu gaps of g(S) are open.

Proof. See Section 3.1 in [17].

Theorem 2.19. A total preorder - on a topological space (X, τ) is representable
through a continuous utility function if and only if - is perfectly separable and
the topology τ is natural for -.

Proof. See Theorem 3.2.9 in [17]. We outline here the main ideas of the proof
of this result, for the sake of completeness. Using Debreu’s open gap lemma,
the classical method to get a continuous real-valued strictly isotone function
goes as follows: First, one constructs a strictly isotone function (which may
not necessarily be continuous) f , whose existence is guaranteed by part (a) of
Theorem 2.12 above (for a further account, see e.g. [8], Theorem 24 on p. 200,
or else [17], Theorem 1.4.8 on p. 14). Then Debreu’s open gap lemma is applied
to find a strictly increasing function g : f(X) −→ R such that all the Debreu
gaps of g(f(X)) are open. Consequently, the composition F = g ◦ f : X −→ R
is also a utility representation for the preorder - defined on X, but now F is
continuous with respect to any given natural topology τ on X.

From Theorem 2.19 and Theorem 2.12, next Corollary 2.20 is easily achieved.

Corollary 2.20. Let (X, τ) be a topological space. Suppose that X is endowed
with a representable total preorder -. Assume also that the topology τ is natural
for -. Then - is continuously representable.

2.5 The problem of the continuous representability of in-
terval orders and semiorders

Unlike the case of total preorders, no general characterization of the continuous
representability of interval orders and semiorders has been achieved yet.

At this stage one may expect some result similar to Theorem 2.19, maybe
substituting perfectly separable by interval order separable or perhaps by inter-
val order separable plus regular with respect to sequences. Moreover, we would
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also need to introduce a concept as natural topology with respect to an interval
order or to a semiorder. But, unfortunately, these attempts do not work in
general, as proved in [9].

Since in Theorem 2.12 the condition of interval order separability is cru-
cial, and that condition involves the traces, in order to analyze the continuous
representability of interval orders it seems reasonable to introduce the follow-
ing definition, which adapts to interval orders the notion of a natural topology,
formerly introduced for total preorders.

Definition 2.21. Let X be a nonempty set endowed with a topology τ . Let
≺ be an interval order on X. We say that τ is natural as regards ≺, if all the
upper and lower contour sets of ≺, ≺∗ and ≺∗∗ are τ -open.

The main result in [9], namely Theorem 2.22 below, gives a characteriza-
tion of the continuous representability of an interval order provided that some
additional conditions hold. That is, it does not constitute yet a general char-
acterization of the continuous representability of an interval order. However,
up-to-date it is, perhaps, the best achievement in this direction.

Theorem 2.22. Let ≺ denote an interval order defined on a nonempty set X
endowed with a topology τ . There exists a pair of continuous functions f, g :
X → R, where on X we consider the topology τ , and R is endowed with the
usual Euclidean one, such that the pair (f, g) represents ≺ and in addition f
is a representation for the associated trace -∗∗ (which is a total preorder) and
g is a representation for the total preorder -∗ if and only ≺ is interval order
separable and τ is a natural topology with respect to ≺.

Proof. See Theorem 1 in [9].

Remark 2.23. Notice that we may have continuous representations (f, g) of
an interval order ≺ such that f does not represent -∗∗ or g fails to represent
-∗. Furthermore, unlike the situation for total preorders, if an interval order ≺
on a topological space (X, τ) admits a continuous representation, the topology
τ could still fail to be natural as regards ≺. (See [9, 11] for further details).

Other (partial) characterizations of the continuous representability of inter-
val orders provided that some topological condition, different from the fact of
the topology being natural with respect to the interval order, is accomplished
a priori have been achieved in [13]. Among them, it is noticeable that a full
characterization of the continuous representability of an interval order has been
obtained provided that the set X is finite. (See subsection 4.2 in [11]).

Following [11], where the results that follow below in this subsection 2.5
were already proved, we furnish now several necessary conditions for the rep-
resentability of an interval order through a pair of continuous real-valued func-
tions, in the general case.

Lemma 2.24. Let ≺ denote an interval order defined on a nonempty set X.
Assume that ≺ is representable by means of a pair (u, v) of real-valued functions.
Then, the following statements hold for any x, y ∈ X:
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(i) x ≺∗ y =⇒ v(x) < v(y),

(ii) x ≺∗∗ y =⇒ u(x) < u(y),

(iii) v(x) = v(y) =⇒ x ∼∗ y,

(iv) u(x) = u(y) =⇒ x ∼∗∗ y.

Proposition 2.25. Let (X, τ) be a topological space endowed with an interval
order ≺. If the interval order is representable through a pair (u, v) of continuous
real-valued functions, then the following properties hold:

(i) The interval order is τ -continuous.

(ii) If a net (xj)j∈J ⊆ X converges to two points a, b ∈ X, then a ∼0 b.

(iii) If a net (xj)j∈J ⊆ X converges to a ∈ X, and b, c ∈ X are such that
xj ≺ b - a and xj ≺ c - a for any j ∈ J , then b ∼∗∗ c.

(iv) If a net (xj)j∈J ⊆ X converges to a ∈ X, and b, c ∈ X are such that
a - b ≺ xj and a - c ≺ xj for any j ∈ J , then b ∼∗ c.

The characterization of the continuous representability of interval orders on
a topological space (X, τ) of finite support goes as follows:

Theorem 2.26. Let (X, τ) be a topological space in which the set X is finite.
Let ≺ be an interval order defined on X. The following statements are all
equivalent:

(i) The interval order ≺ has a representation by means of a pair (u, v) of
continuous real-valued functions.

(ii) The interval order ≺ satisfies the necessary conditions (i)-(iv) introduced
in Proposition 2.25.

(iii) The interval order ≺ satisfies the condition (ii) introduced in Proposition
2.25, namely, if a net (xj)j∈J ⊆ X converges to two points a, b ∈ X, then
a ∼0 b.

(iv) The topology τ is natural with respect to the interval order ≺.

The situation for semiorders, looking for continuous Scott-Suppes repre-
sentations is even more deceiving. Only a few partial results are known (see
[28, 53]). Among them, one of the best achievements is the characterization of
the continuous representability of semiorders on a topological space (X, τ) in
which the set X is finite.

Theorem 2.27. Let (X, τ) stand for a topological space in which the set X is
finite. Let ≺ be a semiorder on X. Then ≺ admits a continuous Scott-Suppes
representation if and only if for any net (xj)j∈J in X it happens that if the net
converges to two points a, b ∈ X then a ∼0 b holds.
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Proof. See Section 4 in [53].

Matching Theorem 2.26 and Theorem 2.27, the following straightforward
corollary arises.

Corollary 2.28. Let (X, τ) be a topological space in which the set X is finite.
Let ≺ be a semiorder defined on X. The following statements are equivalent:

(i) The binary relation ≺ admits a continuous representation as an interval
order, through a pair (f, g) of continuous real-valued functions f, g : X →
R such that a ≺ b⇔ g(a) < f(b) holds for every a, b ∈ X.

(ii) The binary relation ≺ admits a continuous representation as a semiorder,
by means of a continuous function u : X → R such that a ≺ b⇔ u(a)+1 <
u(b) holds for every a, b ∈ X.

3 Open questions related to numerical repre-
sentability

In this section we start with the task of furnishing the reader an explicit list
of open questions related to utility theory, paying a particular attention to the
numerical representability (without additional conditions such as, e.g., continu-
ity), passing then to give an account of open questions concerning the continuous
representability of several kinds of ordered structures on a topological space.

3.1 Open problems about numerical representability of bi-
nary relations

In general, most of the open questions relative to the numerical representations
of binary relations appear when dealing with additional structures, in particular
the topological (e.g.: concerning continuity) and the algebraic ones.

However, there are still some open questions that appear in this setting,
without any additional structure on a given nonempty set X, but related to the
numerical representation of some binary relation R (that is, a qualitative scale
on X), provided that it satisfies some natural restriction (e.g.: acyclicity).

Definition 3.1. A binary relation R on a nonempty set X is said to be acyclic
if for any (x1, . . . , xn) ∈ Xn such that xiRxi+1 (i = 1, . . . , n − 1) it holds that
(xn, x1) /∈ R (in other words, xnRx1 cannot hold).

Problem 3.2. It is an open question to find some kind of numerical repre-
sentation that could convert and (re)-interprete an acyclic binary relation (as
a qualitative scale) into one or more numerical or quantitative scales. Some
partial results in this direction were issued in [3].

Problem 3.3. Other open questions follow just the opposite order of ideas
in Problem 3.2. That is, suppose that we have one or more numerical scales
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of a certain type, and we want to identify exactly which type of binary re-
lation they represent. To put just an example, bearing in mind the defini-
tion of a representable interval order, suppose that we are given three real-
valued functions f, g, h : X −→ R, where X is a nonempty set. We wonder
which are the main abstract properties of the binary relation R defined by
xRy ⇔ f(x) < g(y) < h(x) (x, y ∈ X). Conversely, given a binary relation
R on X we may ask ourselves if there exists a trio of real-valued functions
f, g, h : X −→ R such that xRy ⇔ f(x) < g(y) < h(x) (x, y ∈ X) holds.

Some results in a close direction appeared in [79], but, in general, problems
of this kind remain still open.

Another interesting source of open problems comes to our mind when we
analyze non-representability. To fix our ideas, suppose that we are studying
the numerical representability of total preorders through a real-valued utility
function. Due to the characterization stated in Theorem 2.12, one may give
examples of non-representable total preorders: consider for instance the plane
R2 endowed with the lexicographic ordering -L given by (a, b) -L (c, d)⇔ (a <
c) ∨ [(a = c) ∧ (b ≤ d)] (a, b, c, d ∈ R) (see e.g. pp. 10 and ff. in [17] for further
details). At this point we may wonder if there some minimal non-representable
total preorder (up-to-isomorphisms) such that any non-representable total pre-
order should contain an isotonic copy of it. Those minimal non-representable
totally preordered structures (if there is any) would then act as germs of non-
representability. Each time that a total preorder contains a copy of one of those
germs, we could immediately say that it fails to be representable.

For the case of total orders this problem was studied in depth in [6], and the
corresponding main germs of non-representability were identified. These are the
lexicographic plane, as well as, on the one hand, the so-called long line and on
the other hand the Aronszajn chains (see [6] for definitions and further details).

Problem 3.4.

(i) Analyze the existence of germs of non-representability for interval orders.

(ii) Analyze the existence of germs of non-representability (in the sense of
Scott and Suppes) for semiorders.

3.2 Continuous utility functions that represent different
kinds of orderings: the state-of-art

The study of the existence of continuous representations of different kinds of
orderings is a substantial part of the analysis of the interaction between Order
and Topology. It is important to realize that when we have a nonempty set X
endowed with a a topology τ and some ordering of a certain class (e.g.: a total
preorder -), the topological properties of τ may force the ordering to have some
special features, and vice versa. A pioneer work on this interaction was due to
Leopoldo Nachbin in the 1950’s but published as a book much later (see [71]),
and nowadays it is a classical reference in this literature. Conceptually, it is quite
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important to realize that having at hand a set X endowed with two structures of
different kind (namely, its topology and ordering) may give rise to new situations
in which it could not be enough to study those structures (topology vs. order)
independently, as watertight compartments or pigeon holes.

In addition, the mere existence of a continuous representation for a binary
relation R defined on a topological space (X, τ) may also induce on both τ
and R some restrictive additional properties. To put an example, and as a
straightforward exercise, consider thatR has a numerical representation through
a real-valued function F : X → R such that aRb⇔ F (a) ≤ F (b) holds for every
a, b ∈ X and, additionally, F is continuous with respect to the topology τ in X
and the usual Euclidean topology on the real line. Then, it easily follows that
R is a total preorder on X that is actually τ -continuous. (In other words, the
topology τ is natural as regards the total preorder R). Needless to say, when
two or more functions are involved in the numerical representation (as, e.g.,
when representing interval orders), the situation could be much more subtle
and feature many more nuances.

Among the classical orderings that may be defined on a nonempty set X,
namely total preorders, interval orders and semiorders, the continuous repre-
sentability has only been characterized for the case of total preorders (Theorem
2.19 above). In the case of interval orders and semiorders, it has only been
characterized for the case in which X is finite (Theorem 2.26 and Theorem 2.27
above). Also, for the continuous representability of interval orders, other partial
characterizations known use some additional restrictions in their corresponding
statements (see e.g. Theorem 2.22 above). They are not valid for the general
case.

For other binary relations R on a topological space (X, τ) the general sit-
uation about the possibility of converting the qualitative scale R into one of
more quantitative or numerical ones, by means some ad hoc kind of continuous
functions constitutes an open framework of research in this literature.

Problem 3.5. Given a topological space (X, τ) and a binary relation R defined
on it, of particular features, analyze the existence of one or more continuous real-
valued functions whose domain is X such that they fully represent ≺ someway.

3.3 Continuous numerical representability of interval or-
ders and semiorders

As aforesaid in the subsection 2.5 above, it is still an open problem to find a
full characterization of the continuous representability of interval orders and
semiorders. Only partial results have been got up-to-date.

Moreover, many collateral open questions appear as a by-product when
studying those main questions. Consider the following example:

Problem 3.6. Which could be a suitable definition of a natural topology in
the case of semiorders? Should we take into account the trace -0?

We explore these questions now, in order to furnish a further account of open
problems in this setting.
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Problem 3.7.

(i) Given a topological space (X, τ) endowed with an interval order ≺, char-
acterize the existence of a pair of real-valued functions f, g : X → R that
are continuous as regards the topology τ on X and the usual one on the
real line, and represent ≺ so that x ≺ y ⇔ g(x) < f(y) holds for every
x, y ∈ X.

(ii) Given a topological space (X, τ) endowed with a semiorder ≺, characterize
the existence of a real-valued utility function u : X → R that is continuous
as regards the topology τ on X and the usual one on the real line, and
represents ≺ in the sense of Scott and Suppes, so that x ≺ y ⇔ u(x)+1 <
u(y) holds for every x, y ∈ X.

(iii) Given a topological space (X, τ) endowed with a semiorder ≺, characterize
the existence of a pair of real-valued functions f, g : X → R that are
continuous as regards the topology τ on X and the usual one on the
real line, and represent ≺ so that x ≺ y ⇔ g(x) < f(y) holds for every
x, y ∈ X. (In other words, the semiorder ≺, considered just as an interval
order, is continuously representable).

(iv) Characterize the topological spaces (X, τ) for which a semiorder ≺ that is
representable in the sense of Scott and Suppes actually admits a contin-
uous Scott-Suppes representation. (In other words, study the topological
spaces (X,≺) for which a generalization of Corollary 2.20 to semiorders
and Scott-Suppes representations is still possible).

(v) Given a topological space (X, τ) and a semiorder ≺ that is representable
as an interval order through a pair of real-valued functions f, g : X → R
that are continuous as regards the topology τ on X and the usual one
on the real line, try to find a continuous and strictly increasing function
h : f(X) ∪ g(X) ⊆ R −→ R such that h(g(x)) = h(f(x)) + 1 holds for
every x ∈ X.

Remark 3.8. Part (v) of Problem 3.7 is closely related to the study of a
classical functional equation on a single real variable, known in the literature
as the Abel’s functional equation (see [1] for further details). Notice here that
when the function h exists, we get a continuous Scott-Suppes representation of
the semiorder ≺ since, calling u = h ◦ f we have that x ≺ y ⇔ g(x) < f(y) ⇔
h(g(x)) < h(f(y))⇔ h(f(x)) + 1 < h(g(y))⇔ u(x) + 1 < u(y) (x, y ∈ X).

4 The continuous representability properties in
General Topology

Given a nonempty set X, in this section we study topologies through the prop-
erties that they induce on different kinds of orderings that may be defined on
the given set X.

12



4.1 The continuous representability property (CRP)

Following [20, 23, 24, 26] we introduce the following key definition. (The corre-
sponding concept had also been analyzed in [60, 62], but under the name of a
useful topology).

Definition 4.1. Let (X, τ) be a topological space. We say that the topology
τ satisfies the continuous representability property (CRP) if every τ -continuous
total preorder - defined on X admits a continuous utility representation by
means of an order-preserving real-valued function u : X −→ R such that x -
y ⇔ u(x) ≤ u(y) holds for every x, y ∈ X, and u is continuous with respect to
the topology tau on X and the usual topology on R.

Definition 4.2. Given a topological space (X, τ) we say that the topology τ is
preorderable (respectively, orderable) if it coincides with the order topology τ≺
of some total preorder (respectively, total order) - defined on X.

Remark 4.3. The orderability of a topology was studied and characterized in
[74, 80] in terms of the existence of subbases accomplishing some list of suitable
properties. Completing the panorama, the preorderability of a topology was
also characterized in Theorem 3.1 (ii) in [24].

Problem 4.4. As mentioned above, topological spaces (X, τ) such that the
topology τ is the order topology of some total preorder on X were characterized
in [24]. But nothing similar is known for topologies induced by other different
kinds of binary relations (not necessarily total preorders), see e.g. [64]. Thus,
given an asymmetric binary relation R on a nonempty set X, we can also
consider the sets of the form U(x) = {a ∈ X : xRa}(x ∈ X) as well as the sets
L(x) = {b ∈ X : bRx}(x ∈ X), and consequently define a topology τR on X, a
subbasis of which is given by {∅} ∪ {X}

⋃
{U(t) : t ∈ X}

⋃
{L(y) : y ∈ X}.

Here it is no longer true, in general, that the binary relation Ra, adjoint
of R, is a total preorder. Important particular cases correspond to interval
orders and semiorders. In this framework, it is an open problem to characterize
topologies that coincide with the topology τ≺ induced by an interval order or a
semiorder ≺ defined on the given set X.

The property CRP has also been characterized in topological terms as fol-
lows:

Theorem 4.5. Let (X, τ) be a topological space. The topology τ satisfies the
continuous representability property if and only if every topology τ ′ on X such
that τ ′ is coarser than τ (it is also said that τ ′ is a subtopology of τ), and
preorderable, satisfies the second countability axiom.

Proof. See Theorem 5.1 in [24].

Problem 4.6. We could also say that a topological space (X, τ) satisfies the
continuous representability property for interval orders (respectively, continuous
representability property for semiorders) (CRP-I.O) (respectively (CRP-S) if for
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every interval order ≺ (respectively, for every semiorder) defined on X and such
that all the sets U(x) = {a ∈ X : xRa}(x ∈ X) and L(x) = {b ∈ X : bRx}(x ∈
X) are τ -open, there exists a continuous representation as an interval order
(respectively, as a semiorder, in the sense of Scott and Suppes). The analysis
and characterization of topological spaces that satisfy CRP-I.O or CRP-S is still
an open problem.

Definition 4.7. A topological space (X, τ) is said to have the hereditary con-
tinuous representation property (HCRP) if every nonempty subset Y ⊆ X has
the continuous representation property (CRP) with respect to the topology τY
that τ induces on Y .

Remark 4.8. It is obvious that HCRP implies CRP. But the converse is not
true, as proved in Example 5.4 in [22] or Example 4.1 in [26].

Problem 4.9. It is an open question to characterize the topological spaces
(X, τ) that satisfy the hereditary continuous representability property (HCRP).

Remark 4.10. Concerning classical topological properties encountered in Gen-
eral Topology, and its relationship with the continuous representability property
(CRP), it is well-known that connected plus separable topological spaces satisfy
CRP (see [51]). In addition, in [26] is has been proved that locally connected
plus separable topological spaces also satisfy the continuous representability
property. However, the converses are not true. See also Theorem 4.3 in [27] for
additional information.

Problem 4.11. Are there other topological conditions (perhaps more general
than separability, connectedness or local connectedness) that imply the contin-
uous representability presentability property?

4.2 The semicontinuous representability property (SRP)

If we pay attention now to semicontinuity instead of continuity, some remarkable
subtleties appear. Notice that given a topological space (X, τ) and a total
preorder - on X it could still happen that - admits a semicontinuous utility
representation and τ fails to be a natural topology for -. Indeed, if we pay
attention to Theorem 2.19, we may observe that in order to pass from a mere
utility representation of - to a continuous one, we needed τ to be a natural
topology. But this could not be the case now. So, the following problem appears:

Problem 4.12. Let (X, τ) a topological space. Let - be a total preorder
defined on X. Assume that the topology τ is not natural with respect to -. Is
it still possible to find a semicontinuous utility representation for -?

Remark 4.13. An important result in this direction was obtained by T. Rader
in 1963 (see [69, 75]). Namely, Rader’s utility representation theorem guaran-
tees the existence of an upper semicontinuous utility function for any upper
semicontinuous total preorder on a second countable topological space.
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Let us introduce now some helpful definitions, related to that question.

Definition 4.14. Let (X, τ) be a topological space. A real-valued function
f : X −→ R is said to be lower (respectively upper) semicontinuous with
respect to the topology τ on X and the usual topology on R, if for every a ∈ R
the set {x ∈ X : a < f(x)} (respectively, the set {x ∈ X : f(x) < a}) is τ -open.

Definition 4.15. Let (X, τ) a topological space. Let - be a total preorder
defined on X. Then - is said to be τ -lower (respectively, τ -upper) semicontin-
uous on X if for each x ∈ X the set U(x) = {y ∈ X : x ≺ y} (respectively, the
set L(x) = {z ∈ X : z ≺ x} is τ -open. The topology τ on X is said to have the
semicontinuous representability property (SRP) if every semicontinuous total
preorder defined on X admits a representation by means of a semicontinuous
order-monomorphism (of the same type of semicontinuity). Topologies satisfy-
ing SRP were studied in [15] under a different nomenclature. Then they have
been analyzed in [22, 23, 24, 27].

Definition 4.16. Let X be a nonempty set. Let - be a total preorder on X.
The topology τ l≺ on X, a subbasis of which is given by {∅} ∪ {X}

⋃
{U(x) : x ∈

X}, where U(x) = {a ∈ X : x ≺ a} (x ∈ X) is said to be the lower order
topology associated to -. In the same way, the topology τu≺ on X, a subbasis
of which is given by {∅} ∪ {X}

⋃
{L(x) : x ∈ X}, where L(x) = {b ∈ X : b ≺

x} (x ∈ X), is said to be the upper order topology associated to -.

Definition 4.17. Let (X, τ) be a topological space. The topology τ is said
to be lower preorderable if there exists a total preorder - on X such that τ
coincides with the lower order topology τ l≺.

Remark 4.18. As in Remark 4.3 above, the lower preorderability of a topology
has already been characterized in terms of suitable bases (see Theorem 3.1 (i)
in [24]).

Problem 4.19. Again, topological spaces (X, τ) such that the topology τ is
the lower order topology of some total preorder on X have already been char-
acterized in [24]. Also, nothing similar is known for topologies induced by
other different kinds of binary relations. Thus, given an asymmetric binary
relation R on a nonempty set X, we can also consider the sets of the form
L(x) = {b ∈ X : bRx}(x ∈ X), and consequently define a topology τ lR on X, a
subbasis of which is given by {∅} ∪ {X}

⋃
{L(y) : y ∈ X}. Here it is an open

problem to characterize topologies that coincide with the topology τ l≺ induced
by an interval order or a semiorder ≺ on X.

Furthermore, the semicontinuous representability property (SRP) has been
characterized as follows:

Theorem 4.20. Let (X, τ) be a topological space. The topology τ satisfies
the semicontinuous representability property if and only if every topology τ ′ on
X such that τ ′ is coarser than τ and lower preorderable, satisfies the second
countability axiom.
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Proof. See Theorem 5.1 in [24].

Problem 4.21. Here again, we could say that a topological space (X, τ) sat-
isfies the semicontinuous representability property for interval orders (respec-
tively, semicontinuous representability property for semiorders) (SRP-I.O) (re-
spectively (SRP-S) if for every interval order≺ (respectively, for every semiorder)
defined on X and such that all the sets L(x) = {b ∈ X : bRx}(x ∈ X) are
τ -open, there exists a semicontinuous representation as an interval order (re-
spectively, as a semiorder, in the sense of Scott and Suppes). The study and
characterization of the topological spaces (X, τ) that accomplish SRP-I.O or
SRP-S is still an open question. Some pioneering ideas in this direction were
launched in [16].

Lemma 4.22. Let X be a nonempty set. Let - denote a total preorder defined
on X. Then the order topology τ≺ is second countable if and only if the lower
order topology τ l≺ is second countable.

Proof. See Theorem 4.2 in [24].

Theorem 4.23. The semicontinuous representability property (SRP) implies
the continuous representability property (CRP).

Proof. Let (X, τ) be a topological space. Suppose that τ satisfies SRP. Take
a subtopology of τ that coincides with the order topology τ≺ of some total
preorder - defined on X. By Theorem 4.20, the lower topology τ l≺ is second
countable. Therefore, by Lemma 4.22, τ≺ is second countable. Hence τ satisfies
the continuous representability property (CRP) by Theorem 4.5.

Remark 4.24. The converse of Theorem 4.23 is not true in general: Following
Corollary 4.2 in [23], to see that the converse may fail, consider the first uncount-
able ordinal ω1. Endowed with the lower order topology ω1 trivially satisfies
the continuous representability property (CRP). But is not second countable,
so that by Theorem 4.20 it does not accomplishes the semicontinuous repre-
sentability property (SRP). See [15, 22] for further details.

Problem 4.25. Another appealing problem is to identify the semicontinuous
representability property (SRP) among the classical ones, or its variants, in Gen-
eral Topology. In this direction, in Corollary 4.6 and Theorem 4.8 in [23] it has
been proved that every second countable topological space (X, τ) satisfies SRP.
Also, any topological space that satisfies the semicontinuous representability
property SRP is hereditarily separable and hereditarily Lindelöf. The converses
are not true. (See also [67] for further details). Thus, SRP can be viewed as a
property that falls in the area of separability-countability. It is an open question
to identify it exactly with some known property of that kind, or, alternatively,
to prove that it is indeed a new intermediate variant.

Theorem 4.26. The semicontinuous representability property is hereditary.
That is, given a topological space (X, τ) that satisfies SRP, and a nonempty
subset Y ⊆ X, the topological space (Y, τY ) also satisfies SRP. (Here τY stands
for the topology that τ induces on Y ).
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Proof. See Corollary 5.2 in [22].

Problem 4.27. Since the semicontinuous representability property (SRP) is
hereditary, and it implies the continuous representability property (CRP), it
immediately follows that SRP carries the hereditary continuous representability
property HCRP. It is an open question to study the converse implication. Does
HCRP imply SRP or not?

4.3 Yi’s extension property in topological spaces

A classical characterization of normality in topological spaces is the Tietze ex-
tension theorem, so that in a normal topological space a continuous real valued
map defined on a closed subset has a continuous extension to the whole space.

At this stage, given a topological space (X, τ) we may observe that any
continuous real-valued map f : X → R immediately defines a continuous total
preorder - on X by declaring that x - y ⇐⇒ f(x) ≤ f(y) (x, y ∈ X).

This obvious fact suggests to analyze a generalization of the Tietze’s exten-
sion property. Consider the following key definition (see [22, 82]).

Definition 4.28. A topological space (X, τ) is said to have Yi’s extension
property provided that any total preorder defined on a closed subset A, and
continuous with respect to the relative topology τA that τ induces on the subset
A, admits a τ -continuous extension to the entire set X.

Remark 4.29. This notion was introduced in an approach of utility theory,
concerning the problem of extending total preorders (preferences) from a subset
of a topological space to the entire space. It was launched by the Korean
mathematical economist Gyoseob Yi.

Definition 4.30. Let (X, τ) be a topological space. (X, τ) is said to be normal
if for each pair of disjoint τ -closed subsets A,B ⊆ X there exists a pair of
disjoint τ -open subsets A∗, B∗ ⊆ X such that A ⊆ A∗, B ⊆ B∗. (For basic
topological definitions see e.g. [50, 52]).

It is well-known that this property of being normal is equivalent to an ex-
tension property for continuous real-valued functions. This is the “Tietze’s
extension theorem” (see e.g [81], 15.8).

Theorem 4.31. (Tietze’s extension theorem) Let (X, τ) be a topological space.
Then (X, τ) is normal if and only if for every τ -closed subset A ⊆ X, each con-
tinuous map f : A → R admits a continuous extension F : X → R. Moreover,
if f(X) ⊆ [−a, a] for some a > 0, then F can be chosen so that F (X) ⊆ [−a, a].
(This topological property is known as the Tietze’s extension property).

Now suppose that (X, τ) is a normal topological space. An immediate corol-
lary of Tietze’s extension theorem states that continuous and representable pref-
erences defined on closed subsets of X can be continuously extended to the entire
set X.
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Corollary 4.32. Let (X, τ) be a normal topological space. Let S ⊆ X be a
τ -closed subset of X. Let -S be a continuous total preorder defined on S. Then
if -S is representable through a continuous utility function uS : S → R, it can
also be extended to a continuous total preorder -X defined on the whole X.

Proof. Just observe that, by Tietze’s theorem, the utility function uS admits
a continuous extension to a map uX : X → R. Then define -X on X as
x -X y ⇐⇒ uX(x) ≤ uX(y) (x, y ∈ X).

It can be seen that Yi’s extension property implies Tietze’s extension prop-
erty, but the converse does not hold, in general. Therefore, this new extension
property of topological spaces, based on the consideration of total preorders
defined on its closed subsets, is actually a more restrictive variant of the nor-
mality property. Thus, Yi’s extension property was initially understood as an
strengthtening of Tietze’s extension property, in a direction in which we are
not interested in extending utility functions, but only total preorders (usually
known as preferences in applied contexts arising, e.g., in Mathematical Eco-
nomics). Observe that Yi’s and Tietze’s extension properties are not equivalent
in the general case. This is because preferences could fail to be representable.

Let us see that, indeed, Yi’s extension property is stronger than Tietze’s
extension property, as claimed before. First we introduce a helpful definition.

Definition 4.33. A topological space (X, τ) is said to be separably connected
if for every a, b ∈ X there exists a connected and separable subset Ca,b ⊆ X
such that a, b ∈ Ca,b.

Theorem 4.34. Let (X, τ) be a topological space that satisfies Yi’s extension
property. Then (X, τ) is normal. The converse is not true, in general.

Proof. Let A,B ⊆ X be two (nonempty) τ -closed disjoint subsets of X. Let
S = A ∪ B. S is obviously τ -closed. Consider the total preorder -S defined
on S as a1 ∼ a2 for every a1, a2 ∈ A, b1 ∼ b2 for every b1, b2 ∈ B and a ≺ b
for every a ∈ A, b ∈ B. It is plain that the total preorder -S is continuous on
S. Applying Yi’s extension property, there exists a continuous total preorder
-X defined on the whole set X, and extending -S . We distinguish two possible
situations:

1. In the first case, we assume that there exists some element c ∈ X \S such
that a ≺X c ≺X b for every a ∈ A, b ∈ B. We observe that B ⊆ U(c) =
{x ∈ X : c ≺X x} and also A ⊆ L(c) = {x ∈ X : x ≺X c}. Since -X is
τ -continuous, the sets L(c), U(c) are τ -open. In addition, they are disjoint
by its own definition.

2. Suppose that there is no element c ∈ X\S such that a ≺X c ≺X b for every
a ∈ A, b ∈ B. In this case, if we fix an element α ∈ A and also an element
β ∈ B, by definition of -S we immediately observe that A ⊆ L(β) = {x ∈
X : x ≺X β} and in the same way, B ⊆ U(α) = {x ∈ X : α ≺X x}. Since
-X is τ -continuous, the sets L(β), U(α) are τ -open. In addition, they are
disjoint because α ≺S β by hypothesis.
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Thus we see that X is a normal topological space. But normality is a property
that is equivalent to Tietze’s extension property.

To see that the converse is not true in general, we should have at hand a
counterexample. In [37] (see also [22]) it was proved that on separably con-
nected metric spaces Yi’s extension property is equivalent to separability. On
the other hand, metric spaces are always normal. Thus, an example of a sepa-
rably connected metric space that is not separable would fit our purposes. This
is easy: consider a non-separable Banach space (e.g., `2(R)) endowed with its
norm topology.

Problem 4.35. As far as we know, Yi’s extension property has not been identi-
fied yet as some of the classical notions related to normality encountered in Gen-
eral Topology. The general problem of characterizing those topological spaces
that satisfy Yi’s extension property for preferences has not been solved yet.

Under several topological restrictions, Yi’s extension property also has strong
connections with the continuous representability property (CRP) analyzed be-
fore. This was studied in [22]. In fact, both properties may be equivalent in
some particular cases, as next theorem states.

Theorem 4.36. On separably connected metric spaces Yi’s extension property
is equivalent to the continuous representability property CRP.

Proof. See Theorem 3.3 in [22].

Remark 4.37. In general topological spaces, Yi’s extension property and the
continuous representability property (see Example 4.5 in [22]).

Problem 4.38. Is there some other set of topological conditions on a topolog-
ical space (X, τ) such that under those conditions the Yi’s extension property
amounts to the continuous representability property CRP?

Finally, suppose that we analyze the analogous of Yi’s extension property
for the semicontinuous case. We would introduce accordingly the following
definition.

Definition 4.39. A topological space (X, τ) is said to have the semicontinuous
Yi’s extension property whenever any total preorder defined on a closed subset
A and lower semicontinuous with respect to the relative topology τA that τ
induces on the subset A, admits a τ - lower semicontinuous extension to the
entire set X.

At this stage, perhaps surprisingly, it can be proved that any topological
space satisfies the semicontinuous Yi’s extension property.

Theorem 4.40. In any topological space semicontinuous extensions of total
preorders always exist, even without asking the subsets considered to be closed.

Proof. See Theorem 5.1 in [22].
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Problem 4.41. In spite of the Yi’s extension property falling in the area of
separation axioms in General Topology, and, in particular, around normality,
it is also true that under other topological restrictions Yi’s extension property
may also fall in the area of separabity-countability. Thus, as aforesaid, in [37] it
has been proved that on separably connected metric spaces Yi’s extension prop-
erty amounts to separability. It could be interesting to look for other different
families of topological spaces having the same property.

5 Algebraic representability of different kinds of
orderings

5.1 Algebraic utility

Given a nonempty set X endowed with an ordering of a certain kind, it is com-
mon that the underlying set X also has some additional algebraic structure.
Just to put an example and fix ideas, consider the Euclidean plane X = R2

endowed with the lexicographic order -L given by (a, b) -L (c, d) ⇔ (a <
c)∨ [(a = c)∧ (b ≤ d)] (a, b, c, d ∈ R), and a binary operation +̄ defined coordi-
natewise as (x1, x2)+̄(y1, y2) = (x1 + y1, x2 + y2), where (x1, x2), (y1, y2) ∈ R2,
and + denotes the usual addition of real numbers. Provided that the algebraic
operation is compatible with the given ordering, it is then natural to look for
numerical representations that not only preserve the ordering, but, in addition,
they are also algebraic homomorphism. This is what we would call algebraic
utility.

As a matter of fact, these kind of contexts were also analyzed in several
papers that, having at hand algebraic structures as the main topic of study,
considered some additional compatible ordering so that the existence of order-
preserving homomorphism was a key question to be analyzed (see e.g. [5, 18,
34, 59, 63]).

In this framework, the algebraic structure and the ordering should feature
some sort of compatibility. A suitable starting point here could be the theory of
linearly ordered groups, or, more generally, that of totally ordered semigroups,
already analyzed in the classical book [59]. Following, [18], we include here some
ideas in this direction, for the sake of completeness.

Definition 5.1. A semigroup (S, ◦) is a nonempty set S equipped with a
binary operation ◦ that is associative. If, in addition, S has a null element e
such that s ◦ e = e ◦ s = s holds for every s ∈ S, then (S, ◦) is said to be a
monoid. Furthermore, if each element s of a monoid (S, ◦) has an inverse s̄ such
that s ◦ s̄ = s̄ ◦ s = e, then (S, ◦) is said to be a group. A semigroup (S, ◦)
endowed with a total order - is said to be a totally ordered semigroup if there
is a compatibility between the total order - and the binary operation ◦ such
that s - t⇔ s ◦ u - t ◦ u⇔ u ◦ s - u ◦ t holds for every s, t, u ∈ S2.

2This property is also known as the translation-invariance of the total order - as regards
the binary operation ◦. Notice that, in particular, a totally ordered semigroup is always
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Given a totally ordered semigroup3 (S, ◦,-) an element s ∈ S is said to be
positive (respectively, negative) if s ≺ s + s (respectively, if s + s ≺ s). The
set of positive (respectively, negative) elements of S is called the positive cone
(respectively, negative cone), and denoted by S+ (respectively, S−). Notice in
addition that S may contain an element e that is neither positive nor negative.
If this happens, e must be, a fortiori, the null element of (S, ◦) and, in particular,
this structure is a monoid. A totally ordered semigroup is said to be positive
(respectively, negative) if it only has positive (respectively, negative) elements.

Finally, a totally ordered semigroup (S, ◦,-) is called additively representable
if there exists a real-valued function4 f : S → R accomplishing that f(s ◦ t) =
f(s) + f(t) and all s - t⇔ f(s) ≤ f(t) hold for every s, t ∈ S.

In order to characterize the totally ordered semigroups that are additively
representable, we still need to introduce the following definition.

Definition 5.2. A positive semigroup (S, ◦,-) is said to be Archimedean if
for every s, t ∈ S with s ≺ t, there exists a natural number n ∈ N such that
t ≺ sn = s ◦ . . . (n − times) . . . ◦ s. Moreover, it is called super-Archimedean if
for every s, t ∈ S such that s ≺ t there exists a natural number n ∈ N such that
sn+1 ≺ tn.

In the case of a totally ordered group, a classical result coming from Algebra,
and stated by Hölder early in 1901, characterizes the additive representability
in terms of Archimedeaness, as follows. (See [63] or else [8], p. 300).

Proposition 5.3. A totally ordered group (G, ◦,-) is additively representable
if and only if its positive cone is Archimedean.

In the case of a totally ordered semigroup, the additive representability was
characterized by Alimov in 1950, in terms of the super-Archimedean property,
as follows (see [5, 45] or else the reference-note 21 on p. 26 in [76]).

Proposition 5.4. A totally ordered semigroup (S, ◦,-) is additively repre-
sentable if and only if its positive cone S+ is super-Archimedean and its negative

cancellative, namely s ◦ u = t ◦ u⇔ s = t⇔ u ◦ s = u ◦ t (s, t, u ∈ S).

3Despite we are working with totally ordered semigroups, it can be proved that we could
actually be working with a totally preordered semigroup, where - is a total preorder but not
necessarily a linear order (i.e.: the binary relation - could fail to be antisymmetric). When
this happens, we might pass to be working with a quotient space S/ ∼ whose elements are
the indifference classes of the elements of S with respect to ∼. That is, given s ∈ S, its
corresponding class is the set {t ∈ S : t ∼ s}. Provided that there is a compatibility between
the total preorder - and the binary operation ◦ such that s - t⇔ s ◦u - t ◦u⇔ u ◦ s - u ◦ t
holds for every s, t, u ∈ S, it is easy to see that S/ ∼ inherits a structure of totally ordered
semigroup by considering in a natural way that the binary operation ◦ as well as - directly
act. on the indifference classes that ∼ induces on S.

By this reason, in what follows we will be working with totally ordered semigroups, instead
of just totally preordered semigroups, unless otherwise stated.

4In this setting, a mapping f with these properties is said to be an additive utility function.
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cone S− is also super-Archimedean when endowed with the transpose order -t

given by s -t u⇔ u - s (s, u ∈ S).

Remark 5.5.

(i) The Archimedeaness property on positive totally ordered semigroups is
not good enough to warrant the existence of an additive representation.
An example is the semigroup S = (0 +∞) × (0,+∞) of pairs of strictly
positive real numbers, endowed with the lexicographic total order and the
binary operation (s, t) ◦ (u, v) = (s + u, t + v). It is well-known that this
ordered set does not admit a numerical representation, even if we disregard
additivity (see e.g. [8], pp. 200-201).

(ii) A positive super-Archimedean totally ordered semigroup (S, ◦,-) is, in
particular, Archimedean. (For a detailed proof, see e.g., [45]). The con-
verse is not true: indeed S = (0 +∞)× (0,+∞) endowed with the lexico-
graphic ordering �L fails to be super-Archimedean since (3, 3) ≺L (3, 4)
but (3k, 4k) ≺L (3k + 3, 3k + 3) (k ≥ 1 ∈ N).

(iii) If (G, ◦,-) is an Archimedean totally ordered group, its positive cone is
Archimedean and also its negative cone is Archimedean with respect to
the transpose order. (See e.g., [45] for a proof and further details, related
properties and comments).

Here we introduce some open problems in this direction. Needless to say,
on most of them they some partial results have already appeared (See e.g.
[32, 39, 40, 42, 72]).

Problem 5.6. Let X be a nonempty set endowed with a total preorder -
and some kind of algebraic structure that may depend on one or more binary
operations defined on X. Indeed some operations could be external. Thus X
could be, say, a semigroup, a monoid, a ring, a vector space, an algebra, etc.
Depending on the structure considered, which is the most suitable definition of
compatibility between the total preorder - and the algebraic structure?

Problem 5.7. Let X be a nonempty set endowed with an interval order or
a semiorder ≺, as well as some kind of algebraic structure. What should be
understood as a suitable definition of compatibility or intertwined relationship
between the ordering ≺ and the algebraic structure we have on X ab initio?

At this respect, it is important to point out that sometimes we get a sur-
prising result, as next theorem states (see e.g. [18]).

Theorem 5.8. Let (S, ◦) stand for a semigroup. Let ≺ be an interval order
defined on S. Assume that ≺ is translation-invariant (i.e.: s ≺ t ⇔ s + u ≺
t+ u⇔ u+ s ≺ u+ t holds for every s, t, u ∈ S). Then if the interval order ≺
admits a representation through a pair of real-valued functions (u, v) such that,
in addition, both u and v are additive (i.e., s ≺ t ⇔ v(s) ≺ u(t); u(s ◦ t) =
u(s) + u(t); v(s ◦ t) = v(s) + v(t) hold for every s, t ∈ S), then the associated
binary relation - (adjoint of ≺) is a total preorder. In particular, both - and
∼ are reflexive binary relations on S.
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5.2 When algebra meets topology: the continuous alge-
braic representability property and related items

At this stage a next step is to consider a topological space (X, τ) that is also
endowed with an ordering (e.g.: a total preorder -) as well as with some alge-
braic structure. Needless to say, we will also assume some kind of compatibility
between the algebraic structure and the ordering, as well as some relationship
between the topology with respect to the ordering (e.g., assuming that - is
τ -continuous), and also between the algebraic structure and the topology (e.g.:
assuming that any binary operation is continuous as regards the product topol-
ogy τ × τ on X2 and the given topology τ on X).

To fix ideas, following [18], for the sake of completeness we include now
some results on numerical representability of a semigroup (S, ◦) endowed with
a compatible total preorder - and a topology τ .

Remark 5.9. Even being representable by an additive utility function, a totally
ordered semigroup could fail to admit a continuous and additive representation.
An example is the semigroup S = [2, 3)

⋃
[4,+∞) ⊂ R with the usual sum and

order of the reals, and also with the relative topology inherited from the usual
one in R. It can bee seen (see e.g. [32, 33]) that the crux for the non-existence
of an additive and continuous representation is the discontinuity with respect
to the order topology, of the sum in S.

Definition 5.10. A topological semigroup (S, ◦, τ) is a semigroup (S, ◦) en-
dowed with a topology τ that is compatible with the binary operation ◦ in the
following sense: it makes continuous5 the binary operation ◦ : S × S → S that
maps the pair (s, t) ∈ S×S to the element s◦t ∈ S. A totally ordered semigroup
(S, ◦,-) is said to be a topological totally ordered semigroup provided that the
binary operation ◦ is continuous with respect to the order topology τ- on S
(and its corresponding product topology on S × S).

Remark 5.11. Similarly to Definition 5.10, a topological group is defined as
a group (G, ◦) endowed with a topology τ such that the binary operation ◦ is
continuous, and also the unary operation of taking inverse in G , that assigns to
each element s ∈ G its opposite s̄ is a also continuous as regards the topology
τ in G.

A famous result due to Nyikos and Reichel (see [72]) proves that any to-
tally ordered group is topological with respect the order topology6. However, the
analogous result for semigroups is no longer valid (the counterexample shown
in Remark 5.9 also fits well here).

The following result is perhaps the best achievement in this setting.

5Here on S × S we will consider the product topology coming from τ on S.

6Notice that this is, so-to-say, a theorem about “automatic continuity”. It actually states
that on a totally ordered group (G, ◦,-), both the operation ◦ and the unary operation of
taking an inverse are, a fortiori, continuous as regards the order topology τ-.
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Theorem 5.12. Let (S, ◦,-) be a topological totally ordered semigroup. Sup-
pose in addition that S is given a topology τ that is natural as regards the the
linear order -. Asume that the positive cone S+ is super-Archimedean with
respect to -, whereas the negative cone S− is super-Archimedean with respect to
the transpose order. Then S is representable by an additive real-valued function
u : S → R such that u(s ◦ t) = u(s) + u(t), s - t⇔ u(s) ≤ u(t) holds for every
s, t ∈ S, and the function u is continuous with respect to the given topology τ in
S and the usual Euclidean topology in the real line R.

Proof. See Theorem 2 in [32].

Problem 5.13. In spite of a few studies having already appeared in this lit-
erature, a deep analysis of the numerical representability of several kinds of
compatible orderings defined on more sophisticated algebraic structures on a
topological space (X, τ) should be considered as a general source of open ques-
tions.

To conclude this section, we may consider some algebraic version of the
continuous representability property.

Remember that in the topological setting the continuous representability
property (CRP) appears whenever we look for ordinal representations of total
preorders that, in addition, preserve a nice topological property: namely, the
continuity. In the algebraic context, in addition to the order and continuity
properties for a utility function, we will ask for a new demanding requirement:
that of being an algebraic-homomorphism. Of course, this imposes some kind of
compatibility among the ordering, topology, and algebraic structure involved.

To fix ideas, we will include here some results already launched in [27, 39].
In that paper, although one could have begun with some much simpler alge-
braic structure (e.g.: a totally preordered semigroup) on a topological space
(X, τ), the algebraic structures actually considered were much more sophisti-
cated, namely, totally preordered real algebras.

Definition 5.14. A totally preordered real algebra (X,-,+, ·R, ∗) is a real alge-
bra equipped with a total preorder - which is compatible with the operations
+, ·R and ∗, i.e.:

(i) x - y implies x+ z - y + z, for all z ∈ X (translation-invariance).

(ii) x - y, 0 ≤ λ implies λ · x - λ · y (homotheticity).

(iii) x - y, 0- z imply z ∗ x - z ∗ y and x ∗ z - y ∗ z (multiplicativeness. 0
denotes the null element with respect to +).

Next we define the notion of a topological real algebra.

Definition 5.15. A real algebra (X,+, ·R, ∗) equipped with a topology τ is said
to be a topological real algebra if (X, τ,+, ·R) is a topological vector space and
∗ is a τ -continuous binary operation on X ×X.
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Given a topological space (X, τ) now introduce the concept of continuous
representability of total preorders in the algebraic environment, namely the so-
called continuous algebraic representability property.

Definition 5.16. Let (X,+, ·R, ∗) be a real algebra and τ a topology on X.
Then τ satisfies the continuous algebraic representability property (CARP for
short) if every τ -continuous and non-zero7 total preorder - defined on X, for
which the structure (X,-,+, ·R, ∗) becomes a totally preordered real algebra,
admits a continuous utility function which is an algebra-homomorphism (shortly,
a continuous algebraic utility function).

The following characterization of the continuous algebraic representation
property arises.

Theorem 5.17. Let (X,+, ·R, ∗) be a real algebra and τ a topology on X. The
the following assertions are equivalent:

(i) τ has CARP

(ii) (X, τ-,+, ·R, ∗) is a topological real algebra, for every non-zero and contin-
uous total preorder - that makes (X,-,+, ·R, ∗) to be a totally preordered
real algebra.

Proof. See Theorem 5.12 in [27].

If τ makes (X,+, ·R, ∗) to be a topological real algebra then we have the
following interesting consequence.

Corollary 5.18. Let (X,+, ·R, ∗) be a real algebra. Then any topology τ on
X that makes (X, τ,+, ·R, ∗) to be a topological real algebra accomplishes the
continuous algebraic representability property CARP.

Remark 5.19. In particular, Corollary 5.18 applies to the n-dimensional Eu-
clidean space Rn endowed with the usual binary operations defined compo-
nentwise. Moreover, in this case it can be easily seen that the continuous al-
gebraic utility functions are of the form ψ(x1, . . . , xj , . . . , xn) = xj , for some
j ∈ {1, . . . , n}. In other words, any continuous total preorder defined on Rn
which is translation-invariant, homothetic and multiplicative is projective.

Problem 5.20. This new approach of continuous algebraic representability
properties generates many open questions, such as the following ones:

(i) Explore and analyze continuous algebraic representability properties for
total preorders on a topological space (X, τ) endowed with different kinds
of compatible algebraic structures, as, e.g., semigroups, monoids, groups,
rings, vector spaces or cones.

7A total preorder - on (X,+, ·R, ∗) is said to be non-zero provided that there are x̄, ȳ ∈ X
such that 0 ≺ x̄ ∗ ȳ.
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(ii) Explore and analyze continuous algebraic representability properties on
a topological space (X, τ) equipped with some algebraic structure and a
compatible interval order and semiorder.

(iii) Define and study concepts relative to semicontinuous algebraic repre-
sentability properties on a topological space (X, τ) endowed with some
algebraic structure and a compatible ordering of a certain type (e.g.: total
preorder, interval order or semiorder).

6 Alternative versions of utility representations

6.1 Representations in codomains different from the real
line

Following [36], we may realize that the main emphasis in the utility theory liter-
ature, which deals with the study of order-preserving numerical representations
of binary relations that model preferences, different kinds of orderings, etc., has
been put on the use of real-valued functions. It is implicitly accepted that the
almost exclusive use of the real line R as the codomain on which the order-
preserving representations (also known as utility functions) take their values
is based on the fact that, at least intuitively, utilities are (real) numbers. In
addition, it is, perhaps, also implicitly accepted that real-valued utility func-
tions are used because R is much simpler than other possible codomains, and
consequently it is simpler to use numerical quantitative scales rather than qual-
itative ones to compare elements on a set, or to formalize the preferences of an
individual.

Nevertheless, as clearly stated by Herden and Mehta in [61] (see also [21]),
we may say that “it is highly desirable and even imperative to begin the de-
velopment of a theory of the existence and continuity of non-real-valued utility
functions”. Notice that the real line R, endowed with is usual linear order ≤ is
just one of the possible linearly ordered sets that we could choose as suitable
codomain to represent orderings. And, even being the most popular one, we
should not restrict ourselves to use only R. Moreover, as analyzed in [6] there
exist different classes of linear orders that fail to admit a utility representation.
Of course, those linear orders (e.g., the long line or the lexicographic plane)
could also be considered someway as alternative codomains to represent some
ordered structures. By cardinality reasons, it is clear that there is no “supreme
codomain” (X,�) where X is a nonempty set and � is a linear order on X, such
that given any nonempty set Y endowed with a total preorder -, there exists
a map f : Y −→ X such that a - b ⇔ f(a) � f(b) holds for every a, b ∈ X.
To prove this claim notice that, for any set X, the power set 2X , endowed with
a well ordering can never be represented into (X,�) because its cardinality is
bigger, so that there is no room in X for a surjective function from 2X into X to
exist. However, if we restrict the cardinality of the totally preordered set (Y,-)
we can still find some powerful result in this direction, such as the classical one
obtained by J.S. Chipman in [44].
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Theorem 6.1. A total preorder - defined on a nonempty set X can always
be represented in the classical sense in a codomain of the type Y = {0, 1}α
where α denotes a large enough cardinal number, and Y is endowed with the
corresponding lexicographic ordering.

Problem 6.2. Has Theorem 6.1 an analogous result valid for representability
of interval orders and semiorders in some way?

Problem 6.3. For a given cardinality α, find all the possible codomains (X,�)
where X is a nonempty set and � is a linear order on X, such that given any
nonempty set Y whose cardinality is not bigger than α, and assuming that the
given set X is endowed with a total preorder -, there exists a map f : Y −→ X
such that a - b⇔ f(a) � f(b) holds for every a, b ∈ X.

Problem 6.4. For a given cardinality α, is there a suitable codomain where
any interval order or semiorder defined on a nonempty set Y whose cardinality
is smaller than or equal to α can be represented in a feasible way?

We may also study here which are the most suitable codomains to represent
total preorders - that are τ -continuous with respect to some topology defined on
a nonempty set X, and satisfying some additional properties. In this direction,
a good example is furnished by the following theorem, whose proof appears in
[22].

Theorem 6.5. Every τ -continuous total preorder - on a separably connected
topological space (X, τ) admits an isotonic representation on the double long line
endowed with its natural order. Moreover, the representation can be chosen to
be continuous with respect to the topology τ on X and the order topology on the
double long line.

Proof. See Lemma 4.1 in [22] for the definition and properties of the double long
line, as well as for the proof of this result on representability.

Problem 6.6. Given a topological space (X, τ) that satisfies some fixed addi-
tional properties (e.g, separable connectedness as in Theorem 6.5 above), find
some suitable linearly ordered codomain on which any τ -continuous total pre-
order - can be continuously represented.

Another complementary idea that leads to a change of codomain was ana-
lyzed in [14, 21, 36, 54]. The key is to consider representations that use only
one map, instead of two (as in the case of interval orders), or one function plus
a threshold (as in the case of semiorders).

Definition 6.7. Let C stand for a particular class of binary relations (e.g.:
interval orders) that have been defined on a nonempty set X. Consider also
an standard fixed particular procedure P to represent the binary relations that
belong to the class C (e.g.: the representability of interval orders through a
pair of real-valued functions) . We say that a nonempty set Y endowed with a
suitable binary relation RY is a universal codomain for the class C with respect
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to the procedure P, if the representability of an element of C in the sense of the
procedure P is equivalent to the existence of a single map F : X → Y such that
xRy ⇔ F (x)RY F (y) holds for every x, y ∈ X.

The key here is to look for representations that use a single map. The main
underlying problem is the following (see [14]):

Problem 6.8. Given a particular class C of binary relations and a fixed pro-
cedure P of representation, find a universal codomain (if any) to represent the
elements of that class.

Partial answers to this general problem have already been introduced in this
literature for the case of total preorders, interval orders and semiorders (see
[14, 21, 36, 54]).

6.2 Utility through functional equations

Let us go back to the classical representability of a total preorder -, defined
on a nonempty set X, through a real-valued utility function u : X → R such
that x - y ⇔ u(x) ≤ u(y) holds for every x, y ∈ X. If we consider the
bivariate map F : X × X → R given by F (x, y) = u(y) − u(x) (x, y ∈ X)
we immediately observe that x - y ⇔ F (x, y) ≥ 0 holds. In addition, the
function F satisfies the so-called Sincov’s functional equation (see [78]), namely
F (x, y) + F (y, z) = F (x, z) (x, y, z ∈ X).

Following [29], we introduce the definition of some classical functional equa-
tions in two variables.

Let X be a nonempty set. Let F : X × X → R be a real-valued bivariate
map defined on X.

Definition 6.9. The bivariate map F is said to satisfy:

(i) The Sincov functional equation if F (x, y) + F (y, z) = F (x, z) holds for
every x, y, z ∈ X,

(ii) the Sincov functional equation (second version) if F (x, y) + F (y, z) +
F (z, x) = 0 holds for every x, y, z ∈ X,

(ii) the separability functional equation if F (x, y)+F (y, z) = F (x, z)+F (y, y)
holds for every x, y, z ∈ X,

(iv) the restricted separability functional equation if F (x, y)+F (y, z) = F (x, z)+
F (t, t) holds for every x, y, z, t ∈ X,

(v) the Ferrers functional equation if F (x, y) + F (z, t) = F (x, t) + F (z, y)
holds for every x, y, z, t ∈ X,

(vi) the semitransitivity functional equation if F (x, y) + F (y, z) = F (x, t) +
F (t, z) holds for every x, y, z, t ∈ X.
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Proposition 6.10. Let X be a nonempty set. Let F : X×F → R be a bivariate
map. The following statements hold:

(i)) Both versions of Sincov functional equation are equivalent.

(ii) The separability equation is equivalent to the Ferrers equation.

(iii) The restricted separability equation is equivalent to the semitransitivity
equation.

Proof. See Proposition 1 in [29].

Let us see now how those functional equations may intervene in alternative
representations of total preorders, interval orders and semiorders.

Theorem 6.11. Let X be a nonempty set. Let - be a total preorder on X.
Then the following statements are equivalent:

(i) The total preorder - is representable by means of a utility function u :
X → R such that x - y ⇔ u(x) ≤ u(y) (x, y ∈ X).

(ii) There exists a real-valued bivariate map F : X ×X → R that satisties the
Sincov functional equation and, in addition, x ≺ y ⇔ F (x, y) > 0 holds
for every x, y ∈ X.

Proof. See Proposition 5 in [29].

Let us see now what happens as regards interval orders.

Theorem 6.12. Let X be a nonempty set. Let ≺ be an interval order on X.
Then the following statements are equivalent:

(i) The interval order ≺ is representable by means of a pair of real-valued
functions u, v : X → R such that x ≺ y ⇔ v(x) < u(y) (x, y ∈ X).

(ii) There exists a real-valued bivariate map F : X ×X → R that satisfies the
separability functional equation and, in addition, x ≺ y ⇔ F (x, y) > 0
holds for every x, y ∈ X.

Proof. See Proposition 6 in [29].

Finally, with respect to semiorders, we also get an analogous result, that
goes as follows.

Theorem 6.13. Let X be a nonempty set. Let ≺ be a semiorder on X. Then
the following statements are equivalent:

(i) The semiorder ≺ is representable in the sense of Scott and Suppes by
means of a real-valued function u : X → R such that x ≺ y ⇔ u(x) + 1 <
u(y) (x, y ∈ X).
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(ii) There exists a real-valued bivariate map F : X × X → R that satisfies
the semitransitivity functional equation as well as F (x, x) = −1 for every
x ∈ X, and, in addition, x ≺ y ⇔ F (x, y) > 0 holds for every x, y ∈ X.

Proof. See Proposition 7 in [29].

Problem 6.14. Given a nonempty set X and a bivariate map F : X ×X → R
we may associate to F a binary relation RF on X given by xRF y ⇔ F (x, y) >
0 (x, y > 0) (see [29]). Suppose now that F satisfies some functional equa-
tion. What can be said about the corresponding binary relation RF ? Does it
correspond to some classical kind of ordering (e.g.: a total preorder, an interval
order or a semiorder)?

6.3 Utility theory in the fuzzy setting

Following [2], we pay now attention to the possibility of defining comparisons or
preferences that are fuzzy instead of crisp. Suppose that we consider different
kinds of orderings on a nonempty set X. Our idea is to establish some sort
of comparison or qualitative scale between its elements. Mathematically, when
this approach is formalized a variety of classical binary relations (e.g. total
preorders, interval orders, etc.) naturally arise. Usually, when dealing with
those different relations, if we consider that an element x ∈ X is related to
another element y ∈ X, it happens that the relationship is either void (= 0) or
total (= 1): That is, either the elements are not related at all, or they are fully
related. No intermediate situation is allowed. This is the crisp setting, and it
is the most usual one in classical Utility Theory.

However, a common feature, that nowadays, in more modern studies, is
arising in many models is the consideration of comparisons or suitable binary
relations that are graded. For instance, this is done in order to describe an
intensity in the relationship between two given elements. Or this setting can
also appear in situations of uncertainty. In these cases, two elements could be
related at any level between 0 and 1. Of course, now the binary relation becomes
fuzzy.

Definition 6.15. Given a nonempty set U , called universe, a fuzzy subset X of
U is a map µX : U → [0, 1].8 Also, a fuzzy binary relation defined on a nonempty
universe U is a function F : U × U → [0, 1]. In other words F becomes a fuzzy
subset of the Cartesian product U × U .

The classical properties of (crisp) binary relations should then be generalized
to the fuzzy setting in some suitable way. To put an example, one may say that
a fuzzy relation F on a universe U is reflexive if F (t, t) = 1 holds for every
t ∈ U . However, definitions such as asymmetry, transitivity, etc., as well as
certain operations such as intersections, unions, complements, etc., depend on
the choice of a suitable triangular norm (see [2]) for details). In fact, there

8It is usual that the map µX and the corresponding fuzzy set X are used interchangeably
if this does not give rise to confusion.
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are equivalent definitions of such concepts in the crisp setting (working with
classical sets, that is, non-fuzzy), that, when extended to the fuzzy approach,
are no longer equivalent, and give rise to many possible different theories and
approaches, depending on the definitions considered in each fuzzy context.

Problem 6.16. Extend to the fuzzy setting in a suitable way concepts such as
reflexivity, asymmetry, transitivity, negation, intersection and union, as well as
classical orderings arising in the crisp setting, namely total preorders, interval
orders and semiorders.

Remark 6.17. In [47, 65] several different kinds of fuzzy semiorders were in-
troduced and analyzed. In those studies it is put in evidence that many non-
equivalent definitions of the concept of a fuzzy semiorder are possible.

When working with fuzzy binary relation, we would also ask ourselves about
what could be a suitable way to represent them numerically, that is, the main
general question is the following.

Problem 6.18. Implement a suitable way to convert fuzzy binary relations of
certain types into numerical (crisp) scales.

A possible way to do so, is to consider the α-cuts of a fuzzy binary relation.
Any of this α-cuts is a crisp (i.e.: non-fuzzy) binary relation. So, if we are able
to represent those α-cuts in some suitable way, we could use those numerical
representations as a global or full representation of the fuzzy binary relation
considered a priori. This has been analyzed in [2] for the case of fuzzy total
preorders.

The definition of an α-cut goes as follows.

Definition 6.19. Given a fuzzy relation F on a universe U , and a real number
α ∈ [0, 1], we define the α-cut of F as the crisp binary relation on U given by
Fα = {(s, t) ∈ U2 : F (s, t) ≥ α}.

Remark 6.20. Obviously, the consideration of α-cuts could also generate new
extensions of the classical concepts of orderings from the crisp to the fuzzy
setting. To put an example, we could adopt the following definition of a fuzzy
total preorder: a fuzzy binary relation F is said to be a fuzzy total preorder if
Fα is a crisp total preorder for any α ∈ [0, 1].

Problem 6.21. Study and analyze the fuzzy binary relations such that all their
α-cuts are total preorders, interval orders or semiorders. Find suitable kinds of
numerical representations for each case.

7 Conclusion

Many advances have been achieved in Utility Theory in recent years. In partic-
ular, new approaches arose related to numerical representability of certain kinds
of qualitative scales, such as total preorders, interval orders and semiorders.
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Therefore, it could be helpful for any researcher in this framework to have at
hand not only a clear account of these new achievements, but, also, an exhaustive
list of open questions that may lead to new streams and trends in research.

This has been the main aim of the present work. Our intention has been to
highlight most of the open problem still encountered in this general theory and
its most classical branches.
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with irrational codomains: Debreu properties of real subsets, Order 23,
343-357 (2006).

[26] M.J. Campión, J.C. Candeal, E. Induráin, G.B. Mehta: Representable
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[43] J.C. Candeal-Haro, E. Induráin Eraso: Utility representations from the
concept of measure, Math. Social Sci. 26(1), 51-62 (1993).

[44] J.S. Chipman: The foundations of utility, Econometrica 28(2) 193-224
(1960).

[45] J.R. De Miguel, J.C. Candeal, E. Induráin: Archimedeaness and additive
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[54] A. Estevan, J. Gutiérrez Garćıa, E. Induráin: Numerical representation of
semiorders, Order 30, 455-462 (2013).

[55] P.C. Fishburn: Utility Theory for Decision-Making, Wiley, New York, 1970.

[56] P.C. Fishburn: Intransitive indifference with unequal indifference intervals,
J. Math. Psych. 7, 144-149 (1970).

[57] P.C. Fishburn: Intransitive indifference in preference theory: a survey,
Oper. Res. 18(2), 207-228 (1970).

[58] P.C. Fishburn: Interval Orders and Interval Graphs, Wiley, New York,
1985.

[59] L. Fuchs: Partially Ordered Algebraical Systems, Pergamon Press, Oxford
UK, 1963.

[60] G. Herden: Topological spaces for which every continuous total preorder
can be represented by a continuous utility function, Math. Social Sci. 22,
123-136 (1991).

[61] G. Herden, G. B. Mehta: The Debreu Gap Lemma and some generaliza-
tions, J. Math. Econom. 40(7) 747-769 (2004).

[62] G. Herden, A. Pallack: Useful topologies and separable systems, Appl. Gen.
Topol. 1 (1), 61-82 (2000).
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[78] D.M. Sincov: Über eine Funktionalgleichung, Arch. Math. Phys. (3) 6,
216-227 (1903).

[79] A.N. The, A. Tsoukias: Numerical representation of PQI interval orders,
Discrete Appl. Math. 147 (1), 125-146 (2005).

[80] J. Van Dalen, E. Wattel: A topological characterization of ordered spaces,
Gen. Topol. Appl. 3, 347-354 (1973).

[81] S. Willard: General Topology, Reading, Massachussets U.S.A.,1970.

[82] G. Yi: Continuous extension of preferences, J. Math. Econom. 22, 547-555
(1993).

37


