
1

Trabajo Fin de Grado

Íñigo Domínguez Jalle

Jesús Villadangos Alonso

Pamplona, 07/09/2021

E. T.S. de Ingeniería Industrial, Informática

y de Telecomunicación

The Cost of Lies

Grado en Ingeniería

Informática

2

3

“What is the cost of lies? It's not that we'll

mistake them for the truth. The real danger is

that if we hear enough lies, then we no longer

recognize the truth at all. What can we do

then? What else is left but to abandon even

the hope of truth and content ourselves

instead with stories? In these stories, it doesn't

matter who the heroes are. All we want to

know is who is to blame.”

 Valery Legasov. 1:23:45, Chernobyl [1]

4

5

Contents

ACKNOWLEDGEMENTS .. 7

ABSTRACT ... 8

INTRODUCTION ... 9

CHAPTER 1. “GENERAL CONCEPTS” ... 11

STATE OF ART ... 11

OBJECTIVES .. 14

OVERVIEW (TECHNICAL PERSPECTIVE) ... 15

Description ... 15

Theme .. 15

Genre ... 15

Platform ... 15

Target audience ... 15

Latest version ... 15

ELEVATOR PITCH ... 16

CHAPTER 2. “DESIGN” ... 18

STORYLINE ... 18

CHARACTERS .. 20

ENEMIES ... 23

Characteristics and behaviors .. 24

GAMEPLAY .. 25

Gameplay Mechanics ... 25

Interactive Elements ... 29

Progression and upgrades .. 30

LEVEL DESIGN ... 32

Random generation with pre-built rooms... 32

GAME AESTHETICS ... 34

Low-Poly Art ... 34

Screenshots .. 34

6

CHAPTER 3. “PROGRAMMING”... 38

CAMERA AND MOVEMENT ... 38

Camera .. 38

Character movement.. 40

Movement through scenery and obstacles ... 41

PROCEDURAL GENERATION .. 42

Random Algorithm ... 42

Binary Space Partitioning ... 44

Results and conclusion ... 48

ARTIFICIAL INTELLIGENCE ... 50

Enemy Navigation system .. 50

State’s machine .. 52

OTHER SYSTEMS .. 53

Dialogue’s system .. 53

Quest’s system ... 53

RESULTS AND COMPARATIVE .. 54

Advantages and disadvantages .. 54

Results .. 55

FUTURE WORK .. 57

Finish the development .. 57

New game modes and fields to study ... 57

Improvements and additions .. 57

CREDITS ... 59

DAVID STENFORS .. 59

KENNY .. 59

ACRONYMS ... 60

BIBLIOGRAPHY .. 61

7

Acknowledgements

I would like to thank Jesús Villadangos Alonso for his interest, dedication and passion

for the world of video games and his crucial representation in the university

community through his involvement in the “Diploma de Especialización en Desarrollo

de Videojuegos y Aplicaciones de Realidad Virtual”.

Thanks to all my professors throughout my university career, my always supportive

family and my closest friends I have met here.

To my future me that he will know this as his early steps in his videogame industry

career.

8

Abstract

The aim of this Final Degree Project is to develop a video game technical demo

to study, compare and implement features from fields such as Physics, Procedural

Random Generation, Performance improvements and Artificial Intelligence among

others, using an Object-oriented programming language.

To accomplish this, the author has developed a playable 3D Videogame demo

showing his skills on the field, algorithms studied, implemented and some additional

comparations between techniques with their results and final conclusions.

When it is built, the demo allows the player to play and experience a First-

Person Shooter with a simple story and a totally procedural random level system

where the user can progress and advance until completion.

The project has been tested in different platforms and systems in order to

analyze and implement performance improvements with the goal to reach 144 Frames

per second, a smooth gameplay and overall good experience.

The engine used in the project is Unity Engine 2020.3.8f1 and the language C#.

Keywords: Videogame, Procedural Generation, Artificial Intelligence, Physics,

Programming.

9

Introduction

The inspiration to do this videogame technical demo came from the fact that I

aspire to become a videogames programmer in the future so I thought this could be

the perfect opportunity to interconnect my passion for videogames with my current

degree at the university being this work my first steps into becoming a videogames

developer.

In this project I pretend to illustrate the knowledge I have acquired through all

these years as a Computer Science student and videogames lover creating a playable

demo putting to test my programming and design skills.

To do so I have created a videogame in which I explore some fields of the

videogame development industry, comparing different algorithms and techniques and

putting them into test, addressing its advantages and disadvantages as well as its

implementations problems and how I solved them.

On the first hand, I explore the world of design in which I create a basic

storyline inspired by the Chernobyl HBO miniseries. [1]
You play the role of a soviet KGB agent that has been called to help in a top-secret

important rescue mission. Some scientists have been trapped in a strange dimension

and you are the chosen one to save them.

On the other hand, we encounter a classic first-person shooter with a three

main statistic-based progression: Strength, Dexterity and Intelligence. Each of one will

upgrade the characteristics of the player through the progression of the story and will

transition from carefully slow gameplay into a fast and extremely fun experience.

Regarding programming, we find a totally procedural random dungeon

generation, where different dungeon layouts generate each time, we play adding

monsters that we should fight in order to save the soldiers. These enemies have

different behaviors guided by a State’s machine and a pathfinding AI which allows

them to target the player among the dark corridors of the different dungeons and

worlds. Other systems like a dialogue AI, achievement or quest system can be found

which give more depth to the gameplay and story to give an overall better experience

to the player.

This is mainly a technical demonstration of my skills on programming so the

game assets regarding aesthetics, sound and other animations come from third-party

people. We can see the credits to this people in the credits section at the end.

The art is low poly based which allows us to focus the insight of the project in the

gameplay, physics and other playable elements rather than the artist aspect of

videogame development.

10

11

Chapter 1. “General concepts”

State of Art

The current videogame industry is a constantly changing world surrounded

with innovation, technology, art and lots of new challenges to overcome. Finding new

algorithms, methods of optimization or the improvement for the latest AI available are

some of the topics being talk about in the current state of the market.

PAST

Because we cannot conceive videogames without technology, from the very

begging the videogame world has been constantly growing as the technology advance.

The original Pong put in comparison with the latest AAA title is the best example. The

nonstop improvement of game developers creating new engines, algorithms and

methods to create are the things that allowed this crucial progress.

Figure 1.1: Pong. Bumm13, en.wikipedia.org, Public domain [2]

12

PRESENT

 Not only videogames have become a symbol of progress during the course of

time but also a way to express feelings, political concern, a way to communicate and

interact with people around the world or even teaching at schools.

 Figure 1.2: GRIS. Nomada Studio, Devolver Digital. [3]

 During the current pandemic situation around the world the consume of

videogames has been increased everywhere leading to a bigger than ever profit. One

of the reasons if the isolation we are suffering with the constant restrictions to travel

and limited mobility. These videogames are a way to experience something new and

“travel” to another world for a few hours putting your mind somewhere else and

focusing on having a good time.

It is known that videogames are a big business, and this will not change in short

period. To put things in perspective in this current year 2021, video game industry in

U.S grew 27% and made up to 57 billion in revenue surpassing movies and music

combined.

13

FUTURE

 With these advances in technology new ways to develop videogames are being

develop by technological companies. One of them that is talked about recently is

Virtual Reality. This new technique allows the player to experience an immersive world

that tricks the brain into thinking you are actually inside the videogame.

Figure 1.3: Current generation of Valve Index VR Kit. Valve. [4]

It is hard to predict where these nonstop advances will end but for now, it is

secure to say that we have an exciting future ahead for the players and developers

around the planet!

14

Objectives

 The objectives in these kinds of project can be endless, so I chose some fields

that match my interests or attention and some that would connect with the purpose of

this final degree project studying and implementing the most technical part of the

videogame’s development such as AI or high-end procedural algorithms. The

objectives for this project are the following:

▪ Study the different fields of the videogame industry comparing techniques,

methods and algorithms as well as the implementation of those:
o Storyline: Create a basic storyline for the gameplay.

o Gameplay: Design, study and implement an attractive gameplay

mainly focused on a first-person shooter.

o Level design: Design, study and implement the level design of the

scenery focused on the use of a procedural random generation.

o Camera and movement: Create a fluent and smooth movement

based on physics with a first-person camera.

o Physics: Study and implement a physics system for the videogame.

o Logic: Study and implement all the logics necessary for the videogame.

o Procedural Random Generation: Study the different methods for

a procedural random generation and the current situation in the

videogame industry. Propose a comparative between different

algorithms checking advantages and disadvantages. Finally choose the

best fit for the project and implement it.

o Artificial Intelligence: Study the AI behaviors in videogames, select

the best strategy, create an AI for the enemies and make some

improvements until enemies feel real.

o Other systems: Implement other systems and methods which help

interact with the demo and make the videogame playable such as

controls, interactions, buttons and settings.

▪ Create a final stable build with the objectives proposed.
▪ Implement different methods to improve performance in different platforms

and systems.

15

Overview (Technical perspective)

Description

Videogame technical demo in which the author pretends to illustrate his

technical skills in some fields such as Procedural Random Generation, Artificial

Intelligence, Physics and Logic. Moreover, study and compare the different

methods proposed and discarded addressing the advantages and

disadvantages between them given the current industry state.

Theme

You are a soviet soldier in a distant dystopic future in which you are being

hired by the Russian government to perform a rescue mission on a parallel

universe infested with dangerous creatures and the strangest infinite

dungeons.

Genre

 First-Person Shooter, Story driven, Single player.

Platform

 UWP (Universal Windows Platform), Linux, Mac OS.

Target audience

 FPS players and Indie videogames developers.

Latest version

 Demo pre-presentation 1.0. (Last update: 20/08/2021)

16

Elevator Pitch

“A classic low-poly FPS Indie game with zombies
where your biggest preoccupation is whether kill
them soft and gently or blow everything up.”

17

18

Chapter 2. “Design”

Storyline

 In a dystopic future where has been discovered parallel universes, the race to

conquer and dominate these worlds is the current preoccupation and goal for most of

the powers that reign over the earth. Russia, one of these biggest powers has been

trying to access one of these parallel universes but has lost communication with its

soldiers inside.

 You, as a government hired soldier must help those trapped comrades and go

back alive to earth. The first step is to recover your equipment from the shooting range

in a laboratory lost in the vast Russian continent. A comrade called Yago is the head of

the laboratory. It tells you to take your equipment from the shooting range and

practice a little bit to refresh your abilities on the field.

 Figure 2.1: “Laboratory”, The Cost of Lies.

19

After talking with him, you will go to the shooting range where your equipment is.

After picking it you can practice shooting some targets.

 Figure 2.2: ”Shooting Range”, The Cost of Lies.

 When you are ready to go, Yago opens the portal to the other dimension with

the help of Stefan, another scientist there, here is where your adventure truly begins:

Dangerous random generated dungeons, beautiful sceneries and an amazing gameplay

is left for the player to discover the secrets these new worlds have to offer and how he

can save his comrades.

 Figure 2.3: “Encampment”, The Cost of Lies.

20

Characters

 All characters have their own specific reason to appear in the game, from giving

you quest to sell you ammunition as well as its own personalized dialogue system the

player can interact with. Here are all the main ones that are introduced in this demo,

its characteristics and a summary of their role on it:

Main character

▪ Name: <UNKOWN>

▪ Photo: <UNKOWN>

▪ Occupation: KGB Specialist Agent (KGB)

Summary: This is the main character of the story, a KGB agent that has

 been hired by the Russian government to accomplish a

 difficult mission involving parallel universes and lots of

 mysteries.

Yago

▪ Name: Vladimir, Yago.

▪ Photo:

▪ Occupation: Head Scientist (KGB)

Summary:

Head of the main laboratory for parallel

studies in Russia. The guy who

contacted you regarding the incident.

 Figure 2.4: “Yago”. The Cost of Lies.

21

Stefan

▪ Name: Petkov, Stefan.

▪ Photo:

▪ Occupation: Scientist (KGB)

Summary:

Scientist at main laboratory for

parallel studies in Russia.

 Figure 2.5: “Stefan”, The Cost of Lies.

Rubén

▪ Name: Toutanov, Rubén.

▪ Photo:

▪ Occupation: Captain (Russia Army)

Summary:

Captain of the second brigade at the

Russian army.

Currently in a mission on an

Unknown parallel world.

 Figure 2.6: “Rubén”, The Cost of Lies.

22

Álvaro

▪ Name: Lergov, Álvaro.

▪ Photo:

▪ Occupation: Soldier (Russia Army)

Summary:

Weapon specialist of the second

brigade at the Russian army.

Currently in a mission on an unknown

parallel world.

 Figure 2.7: “Álvaro”, The Cost of Lies.

Asier

▪ Name: Kiprotich, Asier.

▪ Photo:

▪ Occupation: Soldier (Russia Army)

Summary:

After a tragic mission on a parallel

universe.

Asier is out of combat and you must

take his position in this difficult mission

while he recovers.

 Figure 2.8: “Asier”, The Cost of Lies.

23

Enemies

 The enemies introduced in the demo are zombies. These types of enemies are

located inside the different dungeons and have different behaviors depending the

situation they are in. We have two differentiable ones:

Standard Zombie

▪ Photo:

▪ Damage: 15 - 25.

▪ Speed: 6.

 Figure 2.9: “Zombie”, The Cost of Lies.

Mini-Zombie

▪ Photo:

▪ Damage: 10 - 20.

▪ Speed: 8.

 Figure 2.10: “Mini-Zombie”, The Cost of Lies.

24

Characteristics and behaviors

 One of the key aspects of a PVE game is how it feels to fight versus the AI or

enemies in this case, a good design of enemy’s movements and attacks is crucial to get

the player engaged and challenged at the same time. Here are some characteristics

and behaviors of the previously mention zombies:

Unique enemies The first point when designing a variety of enemies is to provide

unique features for each one of them. In this case we encounter two different types of

zombies. The standard zombie: A classic slow zombie with a damage range from 20 to

30 that patrols the dungeon corridors at 6 speed and another smaller zombie which is

up to 8 speed faster than the previous one but has the downside of a lower damage in

return to balance it.

This would make the player try to evade the second due to its dangerous speed and

take care of the first and its incredible damage, both make a combination between

force and speed which will induce a sense of challenge when the player is fighting

them inside the dungeons.

Random patrolling Another interesting point is the randomness on the enemies

when it comes to patrolling. If the enemy does not have the player in range for him to

chase, he will patrol through the dungeon corridors randomly. This will create for

example, extremely unusual situations in this dungeon-based kind of videogame,

usually it is expected for the player to enter a room and encounter some monsters to

engage and fight, however the patrolling implemented in these dungeons is random,

which means the player can be looting in a room and a monster can randomly appear

and start chasing him.

Player chasing The zombies will chase the player until one of these conditions is

fulfilled, either it reaches the player and its able to attack or the player has run out of

his range and it is not worth it for him to chase. In this second case the zombie will

stop chasing the player and will return to patrol the current area he is in. The zombie

will always choose the optimal path to chase the player as it has an A* algorithm for

path finding. If the zombie encounters an unreachable zone in which the player is in,

for example a tall obstacle where it cannot climb, then the zombie will wait for the

player in the closest available position and continue to chase the player.

25

Gameplay

 The exploration of the gameplay field in videogames has led to an incredible,

smart ways to propose each year new ways to play, new mechanics to explore and

better forms for the player to interact.

 Therefore, this is considered by most of the industry one of the key aspects

when developing a videogame. Because it can have an incredible story, awesome new-

gen graphics and an insanely complex AI but in the end when it comes to playability,

the gameplay must feel smooth and fun otherwise is a waste of time and money as the

player will notice it in the first 5 min of play.

 As a gamer myself this was the most difficult part in this project to be satisfied

with. I have played a lot of videogames in the past and I know how it feels when a

camera does not move exactly how you expect it to or how the player movement is

not as accurate as you would think. That is why in this project, I developed and design

a first-person gameplay involving a smooth raw camera movement, a quick fun and

easy to understand combat system with some physics and some QoL features for the

player and an interactive dialogue and quest system between characters.

 The goal was to implement a gameplay in which my years of experience as a

consumer in this industry would be satisfied and did not feel awful when I test it. In the

end I was very satisfied with the final result and smoothness of it.

Gameplay Mechanics

 When we talk about game mechanics, we refer everything related to the core

gameplay of the game itself and what it is possible to do in game. For example, in an

ARPG genre it is expected to be able to equip gear like a heavy armor or a sword, a

puzzle game is expected to have different levels of difficulty and interactive elements

on screen. In the case of first-person shooter this core mechanic will obviously be the

weapons or guns, the shooting experience.

 Figure 2.11: “AK-47 Rifle”, The Cost of Lies.

26

 Unlike other videogame shooters, this weapon is not modifiable at any level. In

this case I have created a progression system based in three statistics which provide

different bonusses for the player which affect directly to the gameplay itself, we will

talk about this in the next section. Now let me introduce the basic gameplay controls

implemented:

 Figure 2.12: “Controls panel”, The Cost of Lies.

Movement

The basic movement through the game. It is performed by the classic AWSD controls

which allow us for example to get the input and control the camera rotation as well as

the player’s transform. The basic movement’s speed can be increased by purchasing a

dexterity point on Alvaro’s shop, each point gives 5% increased speed.

▪ Keycode: A, W, S, D

Run

In relation to basic movement, we have the running ability, it allows the player to

increase the speed of the character by 75%. It disables the ability of shooting when

moving and can be improved by purchasing a dexterity point at Alvaro’s shop,

increasing the running speed 5% for each dexterity point available.

▪ Keycode: LEFT SHIFT

27

Jump

Finally, as the first set of controls we have the jump, this ability allows the

player to jump up to 6 units and can be upgraded by strength at points 25

and 50 with a final hard capped value 10.

▪ Keycode: SPACE

Fire

The main ability for combat in the videogame. When pressed the player releases

projectiles that come out of his weapon dealing 25 of damage to enemies. It has a

random patron in which each bullet has a random spawn and a cadency that can be

increased by the intelligence.

▪ Keycode: Mouse 1

Aim

The second main ability for combat. When hold pressed the view of the current

equipped weapon changes into a more versatile non-recoil version in which the player

has the ability to have perfect recoil control and a gun sight for better aiming at

targets.

▪ Keycode: Mouse 2

Reload

When the current weapon runs out of ammo the reload comes into action, reloading

the weapon adding to the current magazine ammo the total amount of ammo per

magazine and reducing the total ammo available by the same quantity. The reload

speed can be improved by 3% each time a dexterity point is bought.

▪ Keycode: R

Knife attack

The basic attack of the main character. It throws a powerful attack to the enemies in

front dealing up to 15 damage to 3 concurrent enemies. The player becomes

vulnerable while performing the attack and it cannot be stopped once started.

▪ Keycode: Q

28

Grenade

The player throws a devastating explosive which causes an explosion and deals 100

damage to the enemies in range. The player is only permitted to carry one grenade per

time and can be bought as many times as he wants at Alvaro’s shop on the

ammunition package.

▪ Keycode: G

Inspect weapon

This special interaction between the player and the weapon allows the user to inspect

the current weapon performing an animation. This is purely esthetic and has barely

any implications in the gameplay, it cannot be stopped once started.

▪ Keycode: T

Interact

The basic button to interact with other character and the environment in the

videogame. It allows the player to pick up ammunition, interact with other player or

for example open Alvaro’s shop at the encampment.

▪ Keycode: F

Check quests

This UI interaction grants the player with the ability to check the current quest status

every time he wants by pressing a button. It shows the current quests available for 3s

and after that it automatically closes by itself.

▪ Keycode: TAB

29

Interactive Elements

We can find diverse interactive elements around the different sceneries and worlds, some of

these elements are purely cosmetic elements, others have the purpose of giving gold to the

player or unlock certain secrets when touched, we called these interactive elements. In this

case we have two different types:

Easter Eggs

The Easter eggs are cosmetic collectibles that are hidden one per area in the videogame. They

gave the player 500 gold per unit and are accompanied by a classic quote from other

videogames such as Bioshock [5] or Path of Exile [6]. The mission for these secrets can be

consulted on the quest UI interface pressing TAB and it is automatically updated when the

player touch one of these secrets.

 Figure 2.13: “Golden collectible”, The Cost of Lies.

30

Progression and upgrades

 A good gameplay with incredible mechanics and a fun gun system will feel

empty for the player if he has no upgrade system or a way to feel he is progressing

somehow. That is why I created a statistic-based system where the player can interact

buying upgrades with gold, a currency obtained killing monsters and discovering

secrets through the map. In this progression there are three elements to take into

consideration:

 Figure 2.14: “Alvaro’s Shop”, The Cost of Lies.

 The Strength A buyable stat in Alvaro’s shop which allows the player to

increase in-game health ten points per time bought, it has a cost of a thousand in-

game gold currency, and it can be bought up to 50 times which will result in six

hundred total health for the player in comparison of 100 health in the begging. This

will make the player feel safer when exploring the dungeon and fighting monsters.

31

The Dexterity A buyable stat in Alvaro’s shop which allows the player to increase in-

game movement speed by 5% and reload speed by 3% per time bought, it has a cost of

a thousand in-game gold currency, and it can be bought up to fifty times which will

result in 250% increased movement speed and 150% increased reload speed in total

for the player. Dexterity stat is incredibly important in making the gameplay smooth

and fun, the lower cooldown when reloading and a faster movement speed allows the

player to feel smooth control of the character and an overall better experience.

 The Intelligence A buyable stat in Alvaro’s shop which allows the player to

increase in-game cadency of fire of all weapons by 5% per time bought and upgrades

all magazines by adding one bullet of capacity, it has a cost of a thousand in-game gold

currency, and it can be bought up to fifty times which will result in 250% increased

cadency for all weapons the player owns. The increased cadency and upgraded

magazines will increase the speed in which the player kills monsters, so it will in the

end means faster gain of gold and progress through the levels.

 Faster reload and movement, more cadency of fire and a bigger health pool, all

this statistic makes the gameplay to feel incredible better as the player progress

through the story. It also induces the player a sense of risk every time he enters a

dungeon, as he might be saving money for the next upgrade but if he dies inside the

dungeon his gold will be reduced to half. Also, this system makes the different golden

collectibles hidden around the worlds an attractive for the player, as they give each

one five hundred gold on discover.

32

Level Design

 Level design is one the biggest challenges of developing a videogame due to its

complexity and the number of hours you must spend design each one of the level

layouts. The goal for this field was to be able to create an algorithm that does this for

us automatically and generates a random level each time we cross a specific trigger for

example a portal to another dimension or a door.

Random generation with pre-built rooms

 The first approach I contemplated was a completely random dungeon level

system with pre-built rooms to choose. It was a good method for small games with

almost cero complexity in programming, I rejected the idea because it also implied

building each room with decoration, enemies and all kind of other elements. Here is a

photo of what the early results looked like and the problems and downsides I have

encountered when I first tested it:

 Figure 2.15: “Random Algorithm v1”, The Cost of Lies.

33

At first sight it may look convincing,

well design dungeon but if we look

closer, we can see for example, in

the room 3 exits are blocked due to

the randomness of the generation

and it blocks the entrance resulting

in a 2 rooms dungeon. After fixing a

couple bugs and errors like that one,

I came up with a second version

where everything looked promising.

Here is a photo with the results of

this second version where we can

see the entrance bug fixed:

 Figure 2.16: “Random Algorithm Fix”, The Cost of Lies.

Once again looking at the result we can clearly see another problem in this random

generation, the length of the dungeon and the unbalanced routes. Some results show

a dungeon with 10-12 rooms which are the ideal result expected, but some iterations

are giving us around 25-30 rooms or 5.

The disparity is not great for our demo, as we want an equal number of rooms for each

level especially on the first levels where the player is still getting used to the gameplay.

The solution to this was the implementation

of Binary Space Partitioning. We will talk

about it in the section about programming

and how I solved this level design problem,

check the final result:

 Figure 2.16: “BSP”, The Cost of Lies.

34

Game Aesthetics

 The selection of game assets for this project was a challenge rather than

something simple because I knew this was not a doable aspect of my project and I had

to take some assets from third parties in order to put some decoration and color to the

demo. The final decision was to pick low-poly assets which I think they fit perfectly for

this purpose.

Low-Poly Art

The low-poly art is a technique used mainly in

videogames to generate textures and models

with lower number of polygons this allows the

game to run smoother and optimize for

performance. Nowadays this has been a mode

between indie game developer that does not

have that many resources and need something

colorful and different.

 Figure 2.16: “Delphin low-poly”, Wikipedia [7]

Screenshots

Here is a compilation of screenshots showing the art in-game:

 Figure 2.17: “Shooting range”, The Cost of Lies

35

 Figure 2.18: “Encampment”, The Cost of Lies

 Figure 2.19: “Beach”, The Cost of Lies

36

 Figure 2.20: “Gunplay version 0.5”, The Cost of Lies

 Figure 2.21: “Gunplay final version”, The Cost of Lies

37

38

Chapter 3. “Programming”

Camera and Movement

 In this section we are going to talk about the camera and movement

implementation in the game, the programming structure and methods used to create

a camera and the character movement. As I commented in the last chapter, I am a

consumer of this industry and I guided myself by how I expect the controls and feelings

to react.

Camera

 The camera controller is the game

object that controls the view following the

player depending on the mouse input and

has the objective of rendering all the

scenery and game objects. Here are the

three key elements used in the demo:

Culling Mask
List that give us the power to avoid or

exclude some types of game objects from

rendering. This is used for minimap

elements like the position of the player or

some elements that we do not want to

render.

FOV
Allow us to control how much angle of

vision the player has. By default, it is set on

60º but can be changed in game so the

player has a better customized experience,

some user can experience headaches from

low field of view, so it is important. Figure 3.1: “Main Camera”, The Cost of Lies.

39

Clipping Planes
The minimum and maximum distance the camera is rendering objects. This is very

important for the performance as we do not want to render all objects in the scene all

the time due to it increase in cost. This is one of the methods studied and

implemented after testing the performance of the application, we will talk in depth

later.

The camera by itself will not do anything rather than render some elements in a static

range, to follow the player and render the real view the player is expected to see we

need a script to control how the view is rotating depending the mouse input and the

character itself:

 private void RotateCameraAndCharacter()
 {
 // Get the raw input from the player.
 float rotationX = inputMapping.RotateX * mouseSensitivity;
 float rotationY = inputMapping.RotateY * mouseSensitivity;

 // Rotate camera, horizontal axes.
 transform.Rotate(0f, rotationX, 0f);

 // Rotate camera, vertical axes.
 if (rotationY > 0)
 {
 verticalAngle = new Vector3(Mathf.MoveTowards(verticalAngle.x, -90, rotationY), 0);
 }
 else
 {
 verticalAngle = new Vector3(Mathf.MoveTowards(verticalAngle.x, 90, -rotationY), 0);
 }
 player.transform.localEulerAngles = verticalAngle;
 }

In this script we calculate the raw input rotation we are getting from the player’s

mouse and we multiply it by the mouse sensitivity to get a float value for the X axis

angle. The rotation on X axis can be directly applied using the method Rotate() which

allow us to rotate the current game object (In this case the camera) given a vector.

Next, we have the rotation on Y which is applied taking into consideration that we

cannot go beyond 90 degrees when looking upwards or downwards, so we have to

limit that camera behavior. We calculate the vertical vector angle given the input and

the restriction and after that we apply the calculated angle to the player character

body local angles.

40

Character movement

 For the character movement we have to think about the physics that implies

the movement of a given character. We have the force of gravity and the input the

user is giving us through the keyboard. To take control of the character we have the

character controller a unity object that allow us to take the control and works as a

collider as well. The first thing to do as usual is receive the player’s input from the

keyboard:

 // Get the raw input from the player.
 float speed = inputMapping.Run ? speedRunning : speedWalking;
 float hInput = inputMapping.MoveH;
 float vInput = inputMapping.MoveV;

After taking this input we must check wether the player is touching the ground or not:

 // Touch the ground.
 if (charController.isGrounded && charVelocity.y < 0)
 {
 charVelocity = new Vector3(0f, 0f, 0f);
 onGround = true;
 }

Finally, if the character is on the ground and its moving (We receive some input) we

proceed with the character controller and apply the movement. We must think we are

working with physics here so we multiply the speed by Time.deltaTime which

determine per video frame the current speed of the player, if we do not take care of

this the systems where the application runs at higher fps, we will get higher speed and

that is not the output we want.

 // Player is on the ground and moving.
 if (hInput != 0 || vInput != 0)
 {
 // Movement settings.
 moveInput = transform.right * hInput + transform.forward * vInput;
 charController.Move(speed * Time.deltaTime * moveInput.normalized);
 onMove = true;
 }
 // Player is not moving.
 else
 {
 onMove = false;
 }

 // Apply Gravity.
 charVelocity.y += gravity * Time.deltaTime;
 charController.Move(charVelocity * Time.deltaTime);

At the end we apply the gravity to cover the case where the player is not on ground.

41

Movement through scenery and obstacles

 Related to movement we have the topic of the scenery and the obstacles.

Whether this could be seen as something trivial or simple this implies a lot of things

when we talk about movement because it is essential another factor to take into

consideration when programming or designing the players and AI systems of

movement.

Two different perspectives

 From the player point of view, we do not have too many concerns regarding

collisions and pathing as the user will interact with the environment and take care of

the obstacles he encounters, the colliders the character controller has are enough for

it to interact and give feedback to the player about where to go. The only thing we

should take care here is the physics involving those objects and the rigid body unity

provides solves this issue, the problem comes from the enemy perspective.

 The AI has a different approach when we talk about obstacles, because itself by

default cannot avoid those obstacles, we must take care of those manually. The

solution is path-finding algorithms such as A* and Dijkstra. In the next sections we will

see the problems these algorithms have while implementing them and why it is

extremely difficult to implement them correctly on a procedural generated world.

 Figure 3.3: “Obstacles”, The Cost of Lies

42

Procedural Generation

 Nowadays procedural generation in videogames is one the biggest challenges

to overcome due to complexity and the problems it causes during runtime when taking

into consideration the physics, colliders and other parallel systems running in the

background. But what is in essence this technique?

 Procedural Generation is a computing technique of creating some data

automatically between the combination of pre-built assets, for example, some textures

or game objects with the computer-generated randomness and processing power.

It can be used for texture generation, 3D models or even a complete layout which is

what we are using them here for. The advantages it provides over other techniques are

the randomness for less predictable gameplay, solves the problem talked earlier about

level design and generation and overall gives the player the possibility of replayability

as the player will encounter different layouts, enemies and loot each time the game is

turned on.

In the following points, we are about to see three different implementations of a

procedural the generation, the advantages and disadvantages of each one and what it

is best for our context and type of videogame and why.

Random Algorithm

The first type of algorithm we are about to study is a complete random algorithm. In

this first case we apply the basic concept of procedural random generation and

construct X different rooms to generate a random layout with the randomness and

computer power:

 Algorithm Random Generation

1. Pre-create X random rooms with the decoration and elements we

desire.

2. Create the points mesh for each pre-created room, considering which

other rooms can be generated depending on entrances and exits of

each room and its positions.

3. Generate the first room.

4. For each possible point of generation, generate a room with the

orientation matching entrance with exit.

5. Repeat step 4 until there is no more points available in the mesh.

6. Check each generated room for blocked entrances and nonsense exit

points.

43

 This will create an automatically generated layout with the pre-built rooms we

give it through parameter allowing us to avoid most of the runtime problems regarding

random generation, collisions and bake routes for AI. We will see why this is a huge

advantage later when we encounter problems in other algorithms and methods.

Here is a photo result of a random generated layout:

 Figure 3.2: “Random Algorithm”, The Cost of Lies.

The problem with this algorithm comes when we talk about its cost, unwanted

randomness and volatility of the generated layouts. As we can see in the picture, the

generated layout is not 100% well generated, as some room’s walls are obstructing

other entrances.

Another big problem is the lack of control we have on the layout itself due to the

complete randomness. We cannot control how many rooms will be generated and if

we try to do it, the complexity increases and varies a lot. We can encounter layouts

with 10 rooms on it, 5 or even 35 which is not what we are looking for in our game as

we pretend to increase the difficulty and complexity of the layouts each time the

player completes a level to create a sense of progress and an increase of difficulty on

the game.

44

Binary Space Partitioning

 The second approach to the random generation is the use of a well-known

algorithm used on optimization, the Binary Space Partitioning. But first let me

introduce a little bit of history of why this algorithm and its importance in the

videogames industry when it comes to 3D rendering.

Brief History

 This algorithm was used as a 3D rendering resource in a one of the most

influential and important games in videogames history the original 1993, DOOM.

 Figure 3.3: “DOOM” (1993), id Software LLC, ZeniMax Media Company. [3]

 Here is an article written by Two-Bit History about it:

“In 1993, id Software released the first-person shooter Doom, which

quickly became a phenomenon. The game is now considered one of the

most influential games of all time.

45

A decade after Doom’s release, in 2003, journalist David Kushner

published a book about id Software called Masters of Doom, which has

since become the canonical account of Doom’s creation. I read Masters

of Doom a few years ago and don’t remember much of it now, but there

was one story in the book about lead programmer John Carmack that

has stuck with me. This is a loose gloss of the story (see below for the

full details), but essentially, early in the development of Doom, Carmack

realized that the 3D renderer he had written for the game slowed to a

crawl when trying to render certain levels. This was unacceptable

because Doom was supposed to be action-packed and frenetic. So

Carmack, realizing the problem with his renderer was fundamental

enough that he would need to find a better rendering algorithm, started

reading research papers. He eventually implemented a technique called

“binary space partitioning,” never before used in a video game, that

dramatically sped up the Doom engine.

(…)

Initially, Carmack tried to solve this problem by relying on the layout

of Doom’s levels. His renderer started by drawing the walls of the room

currently occupied by the player, then flooded out into neighboring

rooms to draw the walls in those rooms that could be seen from the

current room. Provided that every room was convex, this solved the VSD

issue. Rooms that were not convex could be split into convex “sectors.”

You can see how this rendering technique might have looked if run at

extra-slow speed in this video, where YouTuber Bisqwit demonstrates a

renderer of his own that works according to the same general algorithm.

This algorithm was successfully used in Duke Nukem 3D, released three

years after Doom, when CPUs were more powerful. But, in 1993,

running on the hardware then available, the Doom renderer that used

this algorithm struggled with complicated levels—particularly when

sectors were nested inside of each other, which was the only way to

create something like a circular pit of stairs. A circular pit of stairs led

to lots of repeated recursive descents into a sector that had already been

drawn, strangling the game engine’s speed.”

Two-Bit History, “How Much of a Genius-Level Move Was Using Binary Space Partitioning in Doom?” [8]

https://youtu.be/HQYsFshbkYw?t=822

46

 The algorithm consists in the process of dividing a given space in two given a
random position in the space until some conditions are met, we store each partition in
a BSP (Binary Space Partitioning) tree which will be useful later when we create the
floor for dungeon.

 Figure 3.4: “Binary Space Partitioning”, Wikipedia [9]

In this example we can see how given a space A, we divide it in two different sections B

and C and store the division in a BSP tree as children of A. In the next iteration we do

the same with the children B dividing it in half and creating their children E and D and

storing them in the tree. Finally, in the 4th iteration we create F and G and store them

in the tree.

If we would apply our algorithm to this

example we would keep dividing until a

minimum room width and length is

met, so we do not keep diving

indefinitely. This would result in the

division of C rather than continue diving

D and we would have 4 different zones.

After that we would create the

corridors between the nodes of the

same parent, this is when the tree

becomes a powerful resource to use as

we can perform a tree traversal in order

to extract the lowest leaves and their

parents and connect them as we

advance through it. Figure 3.5: “BSP simulation”, The Cost of Lies.

47

The algorithm implemented follows these steps:

Algorithm: Binary Space Partitioning

1. Define a space with a specific width and length.

2. Divide the space using a horizontal or vertical line at a random point.

3. Add the partition to a BSP tree, being the two resulting spaces children

of the original.

4. Check if the new created spaces can be divided any further.

5. Repeat steps 2-4 until there are no more spaces that can be divided.

6. For every stored space in the tree create a room within the boundaries.

7. Perform an in-order traversal creating corridors between nodes of the

same parent.

8. Choose the next youngest branch.

9. Repeat steps 8-9 until finished.

Once the algorithm has finished, we have a well-constructed empty random dungeon,

but I wanted to push this algorithm as far as possible, so I added some steps to the

algorithm to create the decoration and enemies of each level automatically being it

random and dependent on how the player has been performing in previous levels. This

last addition would finish the level completely without pre-designing a single room:

 Figure 3.6: “BSP final result”, The Cost of Lies.

48

Results and conclusion

The final results in the simulations when implemented the algorithm looked promising.

A well-built dungeon that automatically creates the levels and their decoration,

spawns the enemies and player as well as the portal to next level and some interactive

objects to collect:

 Figure 3.7: “Dungeon Room”, The Cost of Lies.

However, there were still some problems that I was not aware in the begging such as

baking the level at runtime and the implementation of a pathfinding algorithm in a

randomly generated world.

This is a well-known problem in Unity about generating Navmesh in runtime that has

not been solved yet. You cannot directly bake the surfaces in which your AI is able to

walk using a pathfinding algorithm at runtime it must be done in a pre-rendered scene

and we are basically creating a labyrinth while we play.

This was not an easy problem to fix and after a lot of hours of testing and research, I

came up with an extern experimental plugin provided by Unity. This plugin gives us the

ability to use experimental surface scripts that automatically updates themselves at

runtime which allows us to bake the level once it is created. Here is a link to a unity

tutorial in which they talk about this:

https://learn.unity.com/tutorial/runtime-navmesh-generation

https://learn.unity.com/tutorial/runtime-navmesh-generation

49

After implementing these scripts into the algorithm, the prefabs used to create the

level and some intense testing, the level was baking properly, we finally have a

walkable dungeon for our Navmesh agents.

In the following images we can see the baked areas and the different vertices to

calculate the optimal path using a A* algorithm and avoiding all obstacles:

 Figures 3.8 and 3.9: “Baked Areas”, The Cost of Lies.

50

Artificial Intelligence

 For this project I also studied the field of artificial intelligence in order to create

a behavior for the enemies and their movement. In this section we are about to see

the pathfinding algorithm for the navigation system implemented in the enemies and

the state’s machine that controls the enemy’s behaviors towards the player.

After that we are going to see the results implemented in the dungeon that we have

created before and which problems I have encountered referring real-time area baking

and the obstacles in the dungeon.

Enemy Navigation system

 When creating a moveable enemy, it is important for it to be able to chase the

player and move around the scenery at its pace, the problem most of the times is the

complexity of the scene or the lack of freedom these enemies have.

The solution is to implement a pathfinding algorithm that is capable of both moving

the enemy creating a sensation of conscience and a real obstacle avoidance system

that allows the AI to evade the different object in its path.

This navigation system consists of:

Walkable Areas

The navigation system collects data form the

scenery in form of walkable area in which the

different agents in the scene can walk, in our

case these would be the enemies.

The NavMesh stores these areas as convex

polygons to posteriorly calculate the path

around the vertex of those polygons.

The walkable areas are built automatically

from the geometry in the scene and the

different obstacles in it. It basically tests the

position of the agent on each position and

stores that position if it fits. Once we have

collected this information, we can find a path. Figure 3.10: “Walkable areas, Unity. [10]

51

Path Finding Algorithm

To create movement, we give the agent two

points, point A and point B and processing the

data from the walkable areas it will create a path

using the A* Algorithm creating the shortest path.

If we encounter any object or obstacle in

the path, the agent will automatically

avoid it as it has already calculated a

route around that object vertices.

(We have obtained that data from the

walkable areas before)

In the case where the agent can not find

the route, it will go to the closest

available point and reset the path. In our

implementation the zombie stays in the

closest point to the player to avoid it

from scape when he is up in a tree or a

barrel, for example. Figure 3.11: “Walkable areas, Unity. [10]

Example

Here we can see a real example

during a testing simulation where

we can see how the zombie uses the

data from the walkable areas to

create a path using a palm vertex to

avoid collision with the object and

reach the final point.

 Figure 3.11: “Walkable areas”, The Cost of Lies.

52

State’s machine

 The final goal of having an enemy AI is to make the player feel oppressed and

challenged while feeling the enemies have conscience and they have some predicable

behaviors the player can learn through his experience in the game.

The best way to achieve such thing is to create a state’s machine for the enemies AI.

In this case I have created a state’s machine in which the zombie has 4 states: Idle,

Patrolling, Chasing, Attacking.

For the states Patrolling and Chasing we must calculate the path to set it to the agent:

 // Check for Sight and Attack range.
 playerInSightRange = Physics.CheckSphere(transform.position, sightRange, playerTag);
 PlayerInAttackRange = Physics.CheckSphere(transform.position, attackRange, playerTag);

 // States
 if (!playerInSightRange && !PlayerInAttackRange && !isWaitting)
 {
 // PATROLLING
 PatrolArea();
 }
 else if (playerInSightRange && !PlayerInAttackRange)
 {
 // CHASING
 ChasePlayer();
 }
 else if (playerInSightRange && PlayerInAttackRange)
 {
 // ATTACKING
 AttackPlayer();
 }

 private void SearchWalkPoint()
 {
 // Calculate random point in range
 float randomZ = Random.Range(-walkPointRange, walkPointRange);
 float randomX = Random.Range(-walkPointRange, walkPointRange);
 path = new NavMeshPath();

 // Set a posible walkPoint
 walkPoint = new Vector3(transform.position.x + randomX, transform.position.y,
 transform.position.z + randomZ);

 // Check if the path is complete
 if (NavMesh.CalculatePath(transform.position, walkPoint, NavMesh.AllAreas, path) &&
 path.status.Equals(NavMeshPathStatus.PathComplete))
 {
 walkPointSet = true;
 }
 }

53

Other systems

 There are other systems that are working simultaneous to those previously

mentioned, dialogue system, achievements system or the quest system. We are going

to go through all of them doing a brief summary.

Dialogue’s system

This system is in charge of the story and the interaction between the player and the

other characters in the worlds. It provides the player with some texts to read and

quest to complete as well as some other options and notifications.

 Figure 3.12: “Dialogue’s system”, The Cost of Lies.

Quest’s system

With this system we allow the player to complete a follow the track of some of the quests in

the game such as the main storyline and the collectibles around the map. In the case of the

last, it adds an indicator of whether the collectible is collected or not.

 Figure 3.13: “Quest’s system”, The Cost of Lies.

54

Results and comparative

Advantages and disadvantages

Here are the advantages and disadvantages of all methods and algorithms studied and

presented above:

RANDOM GENERATION

ADVANTAGES DISADVANTAGES

Easy Implementation. Unbalanced random number of rooms.

Avoid runtime problems. Uncontrollable generation.

Pre-built textures and decoration. Forced equal size rooms.

 Possible blocks and random errors.

 High computing cost. O(𝑛2)

BINARY SPACE PARTITIONING

ADVANTAGES DISADVANTAGES

Controllable size and number of rooms. Complex implementation.

Well-built random generation. Runtime problems.

Lower computing cost. O(𝑛 ∗ 𝑙𝑜𝑔(𝑛))

Customizable random decoration.

Avoid designing hundreds of rooms.

55

Results

Here are the results of the algorithms and methods studied above after

implementation:

Binary Partitioning Algorithm (Runtime baked areas)

56

Enemy Navigation system (A* Algorithm)

57

Future Work

 The project could be considered to be finished as it is because as mentioned

above this is a demo to show some skills and algorithms on the field. The whole

purpose of this demo is to develop a showcase of those algorithms recreating a real

videogame and its implementations and problems while coding them.

Finish the development

 However, if we would like to continue with the development and finally create

a real videogame out of this demo, we could. There are some features which I could

not implement on time for this project that could be good possible additions such as

more weapons available to try, more worlds to explore and more challenging levels.

New game modes and fields to study

 Multiplier would be a good addition to the game too. While designing the

project in the early days I have considered to create a multiplier game mode to it but

due to the little time I had to develop it I rejected the idea. It is interesting how

connections between multiple clients works and I think this would be an incredible

field to study to create a good infrastructure for a multiplier game mode.

Improvements and additions

 With the decision to continue with the project comes the obligation to make

some improvements to the game and some additions too. Right now, the demo has

very little and simple sound effects and low poly graphics, these would be two fields to

improve if we would like to improve the final quality of the product. Ambient music,

dialogue voices, OST (Original Soundtrack), SFX (Special Effects) are other aspect to

take into consideration as well.

58

59

Credits

Here are some of the assets I have used in the creation of the technical demo and its authors:

David Stenfors
o 3D Weapons

License: Standard Unity Asset Store EULA.

Kenny
o Nature Kit

License: CC0 1.0 Universal (CC0 1.0).

o Platformer Kit
License: CC0 1.0 Universal (CC0 1.0).

o Animated Characters 1
License: CC0 1.0 Universal (CC0 1.0).

o Animated Characters 2
License: CC0 1.0 Universal (CC0 1.0).

o Onscreen controls
License: CC0 1.0 Universal (CC0 1.0).

https://assetstore.unity.com/packages/3d/props/weapons/low-poly-fps-pack-free-sample-144839

60

Acronyms

▪ AAA (Videogame) Videogame high development budget.

▪ API Application Programming Interface.

▪ AR Augmented Reality.

▪ CPU Central Processing Unit.

▪ FPS (Refresh frequency) Frames per second.

▪ FPS (Videogame Genre) First Person Shooter.

▪ OS Operative System.

▪ OST Original Soundtrack.

▪ SFX Special Effects.

▪ UI User Interface.

▪ UWP Universal Windows Platform.

▪ VR Virtual Reality.

61

Bibliography

[1] Renck J. (Director), Mazin C. (Writer). (June 3, 2019). “1:23:45” (Episode 1)

HBO, Chernobyl [TV Miniseries].

[2] “Pong” by user Bumm13, en.wikipedia.org, Public domain,
Available: https://commons.wikimedia.org/w/index.php?curid=799667

[3] Gris (Videogame), Nomada Studio. (2019)

https://twitter.com/nomadastudiobcn

[4] Valve Index, Valve (2021).

https://store.steampowered.com/valveindex

[5] Bioshock (Videogame), Irrational Games, 2K Games.

[6] Path of Exile (Videogame), Grinding Gear Games.

[7] “Dolphin triangle mesh” by user Chrschn, Public Domain,

Available: https://commons.wikimedia.org/w/index.php?curid=10626667

[8] “How Much of a Genius-Level Move Was Using Binary Space Partitioning in Doom?” by

Two-Bit History, 06 Nov 2019. [Article about BSP algorithm]
Available: https://twobithistory.org/2019/11/06/doom-bsp.html.

[Accessed: 29-August-2021]

[9] “Binary Space Partitioning”, en.wikimedia.org, Public domain,

Available: https://commons.wikimedia.org/w/index.php?curid=641368

[10] “Inner Workings of the Navigation System”, Unity, Unity Docs,

Available: https://docs.unity3d.com/Manual/nav-InnerWorkings.html

https://commons.wikimedia.org/w/index.php?curid=799667
https://twitter.com/nomadastudiobcn
https://store.steampowered.com/valveindex
https://commons.wikimedia.org/w/index.php?curid=10626667
https://twobithistory.org/2019/11/06/doom-bsp.html
https://commons.wikimedia.org/w/index.php?curid=641368
https://docs.unity3d.com/Manual/nav-InnerWorkings.html

