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Abstract
We extend the Boltzmann’s ideas that describe the evolution to the equilibrium of many body systems to the multifractal
decomposition of the unitary interval I, in terms of sets Jα conformed by points with the same pointwise dimension, and
obtain the D(α) singularity spectrum.
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1 Introduction

The multifractal formalism introduced by Halsey et al [1] can be understood in a simple way by applying a
similar reasoning that was used by Boltzmann for obtaining the thermodynamics of an ideal gas using statistical
arguments instead of the microscopic description of a system conformed by 1023 particles. The central idea was
to introduce the relation between the entropy and the probability associated with a macrostate [2,3]. In the second
section recalls briefly the Boltzmann fundamental ideas for obtaining the statistical description of an ideal gas in
thermodynamic equilibrium. In the third section, we obtain the Eggleston’s theorem, which relates the Hausdorff
dimension with the Shannon entropy; this theorem plays a similar role in fractals like that the relation between
entropy and probability in the Boltzmann treatment. The theorem is showed using a multiplicative process to
decompose the unitary interval in fractals M(~ϕ), conformed by points with the same frequency of digits ~ϕ;
evaluate the Hausdorff dimension of M(~ϕ) and obtain that it is related to the Shannon entropy. In the fourth
section, we introduce a Bernoulli measure with a probability vector~p; make the multifractal decomposition in
terms of sets Jα , conformed by points with the same pointwise dimension α , and show that they are conformed
by an infinite number of sets M(~ϕ). Therefore, each Jα has a multifractal structure, to determine the Hausdorff
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dimension D(α), we use a basic property of the Hausdorff Dimension which plays the rule of the Boltzmann
principle of maximum entropy.
In the fifth section, the Boltzmann procedure is extended to determine the distribution ~P(q), which maximize
the Eggleston’s relation, given a value of α , D(α) is determined using ~P(q), and D(α) singularity spectrum is
obtained.
In the sixth section, we introduce a family of Bernoulli q-measures with a probability vector~P(q). We evaluate
the q-measure of the sets Jα , finding that for a particular value of q the measure is concentrated in the set Jα∗ , as a
consequence of the singular behaviour of the q-measure, we obtain that τ(q) and -D(α) are Legendre transform
of each other. The explicit values α∗ = α(q) and the Hausdorff dimension D(α(q)) are the functions obtained
in the Boltzmann procedure to determine the D(α) singularity spectrum.

2 Fundamental Boltzmann ideas

Boltzmann analyzed a system conformed by N particles which interact only through elastic collision. For
establishing a relation between the mechanics and thermodynamics, Boltzmann introduced a probabilistic de-
scription of this system dividing in K ≪ N cells the phase space of a particle, and described the state of the
system by the occupation number of particles of these cells:

{n1(t),n2(t), . . . ,nK(t)}= {~n(t)} (1)

The number of microstates corresponding with this distribution is given by:

W {~n(t)}= N!
K
∏
i=1

ni(t)!
=

[
K

∏
i=1

(
ni(t)

N

)ni(t)
]−1

=

[
K

∏
i=1

(pi(t))
ni(t)

]−1

with pi(t) =
ni(t)

N
(2)

Boltzmann postulated that W {~n(t)} is related to entropy, which is a macroscopic quantity of the system:

S(~n(t)) = k lnW (~n(t)) (3)

Using (2), he obtained the relation between entropy and probability:

S(~n(t))
N

=−k
K

∑
i=1

pi(t) ln pi(t) (4)

The time evolution of the probability distribution is governed by the Boltzmann’s equation. When it is introduced
in (4), it can be proved that the entropy increases until it obtains its maximum value for a stationary distribution,
which is the Maxwell-Boltzmann distribution. However, it is possible to obtain this result without invocating the
Boltzmann equation, using that in the equilibrium state the entropy of the system obtains its maximum value
under the restrictions:

K

∑
i=1

pi(t) = 1 and
E
N

=
K

∑
i=1

pi(t)εi (5)

Then maximizing (4) with the lateral conditions (5), it is found that the stationary distribution is given by:

p̃i =
1
Z

e−βεi ; with Z =
K

∑
i=1

e−βεi (6)

The value of parameter β = 1
kT is determined by the thermodynamic information that the internal energy of

the ideal gas is given by E = 3
2 NkT , and (6) reduces to the Maxwell-Boltzmann distribution.

https://www.sciendo.com


Boltzmann and the Statistical Multifractals 199

3 The geometric multifractal decomposition of the unitary interval I

In this section we discuss the multifractal decomposition of the unitary interval I. Any real number x ∈ I, is
expressed in s-base as:

x =
∞

∑
n=1

zn

sn ; zn = 0,1, . . . ,s−1 (7)

Let ni(x,K) denote the number of times the digit i ∈ (0,1, . . . ,s−1) occurs among the first K digits of x. Then,
the frequency in which this digit appears in x is given by:

lim
K→∞

ni(x,K)

K
= lim

K→∞
fi(x,K) = ϕi(x), i = 0,1, . . . ,s−1 (8)

where 0≤ ϕi ≤ 1,
s−1
∑

i=0
ϕi = 1; thus, x has associated a frequency vector:

~ϕ(x) = (ϕ0(x),ϕ1(x), . . . ,ϕs−1(x)) (9)

Let M(~ϕ) be the set of points in I with the same frequency vector. For obtaining the multifractal decomposition
of I, we separate the unitary interval in the different sets M(~ϕ), and using the Eggleston’s theorem [4], we
evaluate their Hausdorff Dimension. This can be done using a multiplicative process that consists of dividing I
in s-cylinders of first order:

Cz1 =

[
z1

s
,
z1

s
+

1
s

)
; z1 ∈ (0,1, . . . ,s−1) (10)

Then, we divide each Cz1 in s-cylinders of second order:

Cz1z2 =

[
z1

s
+

z2

s2 ,
z1

s
+

z2

s2 +
1
s2

)
; z1,z2 ∈ (0,1, . . . ,s−1) (11)

obtaining S2 of 2-cylinders. Repeating K times this procedure on each cylinder, we obtain SK cylinders:

Cz1z2...zK =

[
K

∑
n=1

zn

sn ,
K

∑
n=1

zn

sn +
1
sn

)
; z1,z2, . . . ,zK ∈ (0,1, . . . ,s−1) (12)

Each K-cylinder is characterized by the sequence σK = z1z2 . . .zK , we group them by the frequency vector

~f = ( f0, f1, . . . , fs−1)

where fr is the frequency that shows that digit r = (0,1, . . . ,s− 1) occurs in σK . The number of K-cylinders
with the same frequency vector~f is given by

W (~f) =
K!

n0(K)!n1(K)! . . .ns−1(K)!
=
[

f f0(K)
0 (K) f f1(K)

1 (K) . . . f fs−1(K)
s−1 (K)

]−K
(13)

On the other hand, each K-cylinder has a diameter:

Λ(Cz1z2...zK ) = ΛK = s−K (14)

due to the fact that when K→∞, each K-cylinder goes to a point x of the unitary interval with a frequency vector
given by (8). The Hausdorff dimension of M(~ϕ) is

DimH M(~ϕ) =− lim
K→∞

lnW (~f)
lnΛK

=− 1
lns

s−1

∑
j=0

ϕ j lnϕ j (15)
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This relation is the Eggleston’s theorem [4]. In the Appendix A, we show how (15), can be found using the
definition of Hausdorff measure applied for dyadic intervals [6]; we find the value D for which this measure is
non-singular, and it corresponds with the Hausdorff dimension of the set.

On the other hand, the relation (15) establishes a non-trivial connection between Hausdorff dimension and
the Shannon entropy, which is discussed in the Appendix B.

4 Statistical multifractal decomposition of the unitary interval I

When a statistical measure is assigned to each point of I, it is decomposed in subsets Jα conformed by points
with the same pointwise dimension. A simple case is when we introduce the Bernoulli measure µ on the unitary
interval with probability vector~p = (p0, p1, . . . , ps−1); assigning to each digit j belongs to x a probability p j, it
introduces a singular measure that can be characterized by the pointwise dimension of µ at x [5]:

dµ(x) = lim
r→0

ln µ(B(x,r))
lnr

(16)

where B(x,r) is a ball of radius r centered in x; this quantity can be expressed in terms of the K-cylinders as:

dµ(x) = lim
K→∞

ln µ(Cz1z2...zK )

lnΛ(Cz1z2...zK )
when x = lim

K→∞
Cz1z2...zK (17)

The µ measure of the K-cylinder is given by

µ(Cz1z2...zK ) = pz1 pz2 . . . pzK =
[

p f0(K)
0 p f1(K)

1 . . . p fs−1(K)
s−1

]K
(18)

The x pointwise dimension is obtained introducing (18) and (14) into (17):

dµ(x) = lim
K→∞

− 1
lns

s−1

∑
j=0

f j(K) ln p j =−
1

lns

s−1

∑
j=0

ϕ j(x) ln p j (19)

We note that all the points that belong to M(~ϕ) have the same pointwise dimension. However, there are an
infinite number of sets M(~ϕ) with the same value of the pointwise dimension, because given a particular value

of dµ(x) = α and the normalization condition
s−1
∑
j=0

ϕ j(x) = 1, we cannot determine the s components of the

frequency vector.
As each M(~ϕ) is a fractal with the Hausdorff dimension given by Eggleston’s theorem, then Jα , the set of

points with dµ(x) = α , is a multifractal:

Jα =
{

x | dµ(x) = α

}
=
⋃

M(~ϕ) such that ~ϕ · ln~p = α (20)

where was defined: ~aaa · ln~bbb =
s−1
∑
j=0

a j lnb j as the Hausdorff dimension satisfies that [6]

if M =
⋃

Mn then DimH(M) = sup DimHMn (21)

Thus, the Hausdorff dimension of Jα is given by:

D(α) = DimH(Jα) = sup DimHM(~ϕ) with ~ϕ · ln~p = α (22)

The statistical multifractal decomposition of I consists of grouping the points x in subsets with the same
value of the pointwise dimension, and each subset Jα is characterized by its Hausdorff dimension D(α).
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5 Boltzmann scheme for Multifractals

We determine D(α) using the Eggleston’s theorem and the extremal principle given by (22); this procedure
is similar to the maximum entropy principle used by Boltzmann for obtaining the stationary distribution char-
acterizing the equilibrium state. The Hausdorff dimension D(α) is determined by the frequency distribution ~ϕ∗

that maximizes:

DimH M(~ϕ) =− 1
lns

s−1

∑
r=0

ϕr lnϕr

with lateral conditions:

α =− 1
lns

s−1

∑
j=0

ϕ j ln p j;
s−1

∑
j=0

ϕ j = 1 (23)

Following the usual maximizing procedure we find that:

ϕ∗r = Pr(q) =
pq

r

Zq
where Zq =

s−1

∑
r=0

pq
r (24)

The q parameter is determined by the equation:

α(q) =
s−1

∑
r=0

Pr(q)
[
− ln pr

lns

]
=~P(q) ·

(
− ln~p

lns

)
(25)

The Hausdorff dimension of Jα is found using (24) in (15):

D(q) = D(α(q)) =− 1
lns

s−1

∑
r=0

Pr(q) lnPr(q) (26)

The dimension spectra for the statistical multifractal decomposition of the unitary interval is found when the
q parameter is eliminated for (25) and (26). In thermodynamics, the entropy is one of the relevant functions,
but there are several functions that contain the same thermodynamic information, they are the thermodynamic
potentials, we show that in multifractals, a similar situation occurs. From (24) we have:

lnPr(q) = q ln pr(q)− lnZq (27)

Using this result in (26), we have:
D(q) = qα(q)− τ(q) (28)

where:
τ(q) =− 1

lns
lnZq (29)

We proceed to show that D(α) and τ(q) conform a Legendre transform pair. The derivative of (29) is given by:

dτ(q)
dq

=− 1
lns

1
Zq

s−1

∑
r=0

pq
r ln pr =

s−1

∑
r=0

Pr(q)
(
− ln pr

lns

)
= α(q) (30)

Considering that q = q(α), the derivative of (28) with respect to α is:

dD
dα

= q+α
dq
dα
− dτ

dq
dq
dα

= q (31)

This result infers that dD = qdα , therefore d(D−qα) =−dτ =−αdq, which implies (30) and hence τ(q) and
-D(α) are the Legendre transform of each other.
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6 Statistical q-measures of Jα

In the statistical multifractal decomposition of the unitary interval, we focused our attention to the Hausdorff
dimension of the sets Jα , which is a geometrical property of these sets. However, they also have statistical
properties, because they are the support of the q-measures, in such way that given a q value, this measure
is supported by only one of the Jα sets. Given a probability vector ~p, a set of probability vectors ~P(q) can
be constructed, these vectors have the ability to scan the structure of the multifractal decomposition [8]. We
obtained the escort probability vector ~P(q) in the Boltzmann scheme for multifractals, they are equivalent to
the Maxwell-Boltzmann distribution in statistical physics, where the q value plays the rule of the inverse of the
temperature. The statistical q-measures are Bernoulli measures in the unit interval generated by ~P(q), which is
defined by (24), i.e.

~P(q) =
(

P0(q),P1(q), . . . ,Ps−1(q)
)

; with Pr(q) =
pq

r

Zq
(32)

where q is any real, this vector is called the escort distribution of ~p = (p0, p1, . . . , ps−1) of q-order [8].
The q-measure µq assigns to each digit j belongs to x a probability P j(q) , then a K-cylinder has the q-

measure:

µq

(
Cz1z2...zK

)
= Pz1(q)Pz2(q) . . .PzK (q) =

µq
(

Cz1z2...zK

)
ZK

q
(33)

We define a Kα -cylinder by the following property:

lim
K→∞

ln µ

(
Cα

z1z2...zK

)
lnΛ

(
Cα

z1z2...zK

) =− 1
lns

lim
K→∞

ln µ

(
Cα

z1z2...zK

)
K

= α (34)

The set of all Kα -cylinders contains all the points of I with dµ(x) = α , therefore this set conforms the cover
CK(Jα) of the set Jα . For large values of K we have that:

µ

(
Cα

z1z2...zK

)
≈
[
Λ

(
Cα

z1z2...zK

)]α

= s−αK (35)

Using (35) and (29) in (33), we find that for large K, the q-measure of a Kα -cylinder is given by:

µq

(
Cα

z1z2...zK

)
≈ s−K(qα−τ(q)) (36)

On the other hand, for large K, the number of Kα -cylinders goes as:

N
(

Cα
z1z2...zK

)
≈
[
Λz1z2...zK

]−D(α)
= sKD(α) (37)

Then, the q-measure of the cover CK(Jα) for large K is given by

µq

[
CK(Jα)

]
≈
[
s−K
]qα−τ(q)−D(α)

(38)

As 0≤ µq

[
CK(Jα)

]
≤ 1 and s−K < 1, for all values of α is satisfied the inequality:

τ(q)≤ qα−D(α) (39)

The q-measure of the set Jα is given by:

µq(Jα) = lim
K→∞

[
s−K
]qα−τ(q)−D(α)

= δ (α−α
∗) (40)
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Thus, the q-measure of Jα is null for all values of α 6= α∗ and is one for α = α∗, which is defined by the
relation:

τ(q) = qα
∗−D(α∗) (41)

Then, the set Jα∗ is the support of the q-measure. From (39) and (41), we conclude that:

τ(q) = inf
[
qα−D(α)

]
(42)

where the infimum is taken with respect to α; thus, (42) defines τ(q) as the Legendre transform of −D(α). We
note that this result is obtained from (40), which is the generalization of the random weighted curdling proposed
by Mandelbrot [9] and [10].

The relations (41) and (42) imply that α∗, satisfies the following conditions:

∂

∂α

[
qα−D(α)

]∣∣∣∣
α∗

= q− dD(α)

dα

∣∣∣∣
α∗

= 0⇒ dD(α)

dα

∣∣∣∣
α∗

= q (43)

d2D(α)

dα2

∣∣∣∣
α∗

< 0 (44)

Taking the derivative of (41) and using (43) and (29), we obtain that

α
∗ =

dτ(q)
dq

=− 1
lns

d lnZq

dq
= α(q) (45)

Therefore, the q-measure is concentrated in the set Jα(q) with α(q), which is given by (45), and it can be
rewritten as the following average on~P(q):

α(q) =
s−1

∑
i=0

Pi(q)
(
− ln pi

lns

)
=
〈
− ln pi

lns

〉
q
=−

~P(q) · ln~p
lns

(46)

The Hausdorff dimension of Jα(q) is obtained by using (46) into (41):

D(α(q)) = qα(q)− τ(q) =− 1
lns

~P(q) · ln~P(q) (47)

7 Conclusions

When a Bernoulli statistical measure characterized by a probability vector~p is introduced in a fractal, it is
decomposed into sets Jα , which are multifractal. The determination of their Hausdorff dimension D(α) requires
to use an extremal property of the Hausdoff dimension, similar to the maximum entropy principle. D(α) is
determined in terms of a probability distribution~P(q), we find that each set Jα is an statistical attractor set where
the q-measure defined in terms of~P(q) is concentrated.
As a consequence of the singular behaviour of the q-measure on the sets Jα , given by (40), we obtain the
following:

(1) τ(q) and −D(α) are Legendre transform of each other and,

(2) the information on the set Jα where the q-measure is supported, and its Hausdorff dimension, are given
by (25) and (26), respectively.
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An important case of (40) is when q = 1. The 1-measure is generated by the probability vector ~p, the
statistical attractor or the curdling set is conformed by the points with their pointwise dimension is identical
with the Hausdorff dimension of the set, and it is given by Shannon entropy of~p, i.e.

α(q = 1) = D(q = 1) =− 1
lns

s−1

∑
j=0

p j ln p j =−
~p · ln~p

lns
(48)

Then, D(q = 1) is the Hausdorff dimension of the measure theoretical support of ~p, which was found by
Billingsley [6] in his work about the Hausdorff dimension in probability theory. Chhabra and Jensen [11] applied
this result to ~P(q) and found (47), after using heuristic arguments introduces (46), and with these expressions
they found an alternative method for obtaining the singularity spectrum. On the other hand, Mandelbrot [10]
introduced the curdling set for explaining the energy dissipation in fully developed turbulence using a multiplica-
tive cascade process and identified this set with the Besicovitch fractal [9] extended the Mandelbrot suggestions,
Feder [7] obtained and showed that (48) characterizes the set where the 1-measure is concentrated. The result
(40) can be showed for a singular measure, and obtain an unified description of the multifractal decomposition
can be obtained, which relates the Halsey et al [2] and Chhabra and Jensen [11] methods for obtaining the
spectral singularity (see sections 5 to 7 of reference [12]).

Appendix A

In this work, was used the alternative definition of Hausdorff dimension given by Billingsley [13] was used
where the covering to sets M on the unitary interval is conformed by s-adic intervals:

vi =

[
j

sK ,
j+1
sK

)
,K = 1,2, . . . , j = 0,1, . . . ,s−1 (A-1)

instead of arbitrary intervals sK of length |sK |, Billingsley considers the measure of M in the unitary interval as:

Λα(M,ρ) = inf∑
K
|CK |α (A-2)

where |CK | denotes the length of the K-cylinder, the infimum extends only over coverings of M by cylinders
of length less than ρ , then Λ(M,ρ) differs from the Hausdorff measure Hα(M,ρ) but not in any way that is
significant for the computation of dimensions. Defining Λα(M) = lim

ρ→0
Λα(M,ρ) is possible redefine dimHM as

that D such that Λα(M) = ∞ if α < D and Λα(M) = 0 if α > D. This definition is useful for problems involving
s-dyadic expansions.

We use the Billingsley definition of the Hausdorff dimension to obtain the Eggleston’s theorem.
Let M( f0, f1, . . . , fs−1) be the set of numbers in s-base, that belongs to the unitary interval and that in their first
K digits have the same frequency fi =

Ni
K of the digits i = 0,1, . . . ,s− 1. This set covers W (~f) cylinders with

length s−K which is given by (13), then

Λα(M,ρ = s−K) =W (~f)s−Kα =
[

f f0(K)
0 (K) f f1(K)

1 (K) . . . f fs−1(K)
s−1 (K)sα

]−K
(A-3)

Taking the limit when K→ ∞ we obtain the function Λα(M(~ϕ)):

Λα(M(~ϕ)) = lim
K→∞

[
ϕϕ0

0 ϕϕ1
1 . . .ϕ

ϕs−1
s−1 sα

]−K (A-4)

where

ϕi = lim
K→∞

Ni(K)

K
= lim

K→∞
fi(K) (A-5)
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This function is different for zero or infinite, only for the value α = D, which satisfies:

ϕϕ0
0 ϕϕ1

1 . . .ϕ
ϕs−1
s−1 sD = 1 (A-6)

Therefore

DimH M(~ϕ) =− 1
lns

s−1

∑
j=0

ϕ j lnϕ j (A-7)

This result is the Eggleston’s theorem.

Appendix B

The Eggleston’s theorem was originally shown and used in number theory, for obtaining a measure of how
to compare different non-normal set numbers; which have a null value of Lebesgue measure. The solution
proposed by Eggleston was used to evaluate the Hausdorff dimension of these sets. The original version of
Eggleston’s theorem [4] is the following:
Theorem. For any real number x (0 ≤ x ≤ 1) is expressed as a decimal in the scale s (i.e. involving digits
0,1,2, . . . ,s− 1), let Ni(K) denote the number of times the digit i occurs amongst the first K digits of this
decimal.

The set M(ϕ0,ϕ1, . . . ,ϕs−1) of these x (0≤ x≤ 1) for which

lim
K→∞

Ni(K)

K
=ϕi (B-1)

where 0≤ϕi ≤ 1 ,
s−1
∑

i=0
ϕi = 1 has a fractional dimension α , given by

s−α =
s−1

∏
i=0

ϕϕi
i (B-2)

Eggleston used this theorem to characterize the “length” of non-normal sets of numbers. However, when it
is rewritten in the form:

DimH M(ϕ0,ϕ1, . . . ,ϕs−1) =−
1

lns

s−1

∑
j=0

ϕ j lnϕ j (B-3)

This result suggests a connection with probability theory, because the r.h.s recalls the entropy of a stochastic
process, but here {ϕi} is a frequency vector instead of a probability vector.

Billingsley [13] was the first to show that the Eggleston’s theorem can be interpreted as a relation between
dimension and entropy for the stochastic process; after he showed an important theorem [14] where he found
the relationship between the Hausdorff dimensions taking with the statistical measures µ and ν of a special set
M, DimµM and DimνM. He selected one of them as Λ Lebesgue measure, and like other as a special stochastic
measure. He generalized the Eggleston’s theorem, in such a way that he showed the relation between Hausdorff
dimension and entropy.

In the next sections, we present the original arguments written by Billingsley in reference [14] for obtaining
a generalization of Eggleston’s theorem, and how considering a particular case, he found the Eggleston’s
theorem. A more detailed discussion can be found in [6] and [13].

Generalization of the Hausdorff dimension to statistical measure
Let {x1,x2, . . .} be a stochastic process, with a finite state space σ , defined on a probabilistic measure space
(Ω,B,µ), a Hausdorff dimension with µ-measure DimµM is defined for each set M ⊂Ω in the following way:
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A cylinder of rank K is defined to be a set of the form {ω | xk(ω)= ak,k = 1,2, . . . ,K}where ak ∈σ If M⊂Ω

and ρ > 0, a µ−ρ covering of M is a finite collection {vi} of cylinders such that M ⊂
⋃

vi and µ(vi) < ρ for
each i. If ρ,α > 0, put Lµ(M,α,ρ) = inf∑

i
µ(vi)

α , where the infimum extends over all µ−ρ coverings {vi} of

M, and let Lµ(M,α) = lim
ρ→0

Lµ(M,α,ρ). If Lµ(M,α)< ∞, then Lµ(M,α + ε) = 0 for all ε > 0; hence, we can

define
Dimµ M = sup{α : Lµ(M,α) = ∞}= inf{α : Lµ(M,α) = 0} (B-4)

It was shown in [13] that if Ω is the unit interval (0,1], if µ is a Lebesgue measure, and if
∞

∑
n=1

xn(ω)s−n is

for each ω , the nonterminating base s expansion of ω , then this definition reduces to the classical one due to
Hausdorff. The dimension of M depends both on the measure µ and the process {xn}. Note that if M is in the
Borel field, generating by {xn} then Lµ(M,α = 1)≥ µ(M), so that µ(M)> 0 implies DimM = 1 [13].

On an especial Billinsley’s theorem
In reference [14] Billingsley investigates how Dimµ M varies as µ varies. For ω ∈Ω and K = 1,2, . . ., put

CK(ω) =
{

ω
′ | xi(ω

′) = xi(ω), i = 1,2, . . . ,K
}

(B-5)

In other words, CK(ω) is that cylinder of range K which contains ω . In section 2 of the reference [14], Billingsley
proved that if µ and ν are probability measures on B and if

M ⊂

{
ω

 lim
K→∞

lnν

(
CK(ω)

)
ln µ

(
CK(ω)

) = δ

}
(B-6)

then
Dimµ M = δ Dimν M (B-7)

The essential Billingsley’s idea is to compute Dimµ M for certain sets M by constructing a measure ν such
that (B-6) holds and such that Dimν M = 1. It then follows from (B-7) that Dimµ M = δ . Applying this result
Billingsley obtained the Eggleston’s theorem.

Heuristic proof of Billingsley’s theorem
Billingsley gave a heuristic proof of the fact that (B-6) implies (B-7). He assumes that for each ω ∈M, not only
lnν(CK(ω))
ln µ(CK(ω)) approaches δ , but is also equal to δ for all K. If {vi} is any covering of M, each element of which

intersects M, then any element v of the covering has the form v = CK(ω) with ω ∈ M, so that ν(v) = µ(v)δ .
Then

∑ν(vi)
α = ∑µ(vi)

αδ

for any covering {vi} of M. It follows that Lν(M,α) = Lµ(M,αδ ); using (B-4), we obtained (B-7):

Dimµ M = δ Dimν M

In the third section of [14], Billlingsley applies his theorem for obtaining the generalization of Eggleston’s
theorem that is used in the present work.

The generalization of Eggleston’ theorem
Suppose that the state space σ is finite, say σ = {0,1, . . . ,s−1}. Suppose further that under µ the process {xn}
is independent of

µ {ω : xn(ω) = i}= pi > 0, i = 0,1, . . . ,s−1 (B-8)
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Suppose finally that if ~ϕ = (ϕ0,ϕ1, . . . ,ϕs−1) is any set of nonnegative numbers, which sums to 1, then there
is a measure ν = νϕ such that {xn} is independent under ν and ν {ω : xn(ω) = i} = ϕi. This last assumption

holds, if Ω is the unit interval and
∞

∑
n=1

xn(ω)
sn is the base s expansion of ω .

Let A be the set of vectors ~ϕ = (ϕ0,ϕ1, . . . ,ϕs−1) of s-space such that ϕi ≥ 0 and
s−1
∑

i=0
ϕi = 1. For each

ω ∈ Ω, n ≥ 1, and i = 0, . . . ,s− 1, let fi(ω,K) = Ni(ω,K)
K be where Ni(ω,K) denotes the number of times the

digit i occurs amongst the first K digits of ω , and let be~f(ω,K) = ( f0(ω,K), f1(ω,K), . . . , fs−1(ω,K)) be a
vector that belongs to A.
We are interested in evaluating Dimµ M(~ϕ) where M(~ϕ) = {ω | lim

K→∞

~f(ω,K) = ~ϕ}. To do this, let ν be that

measure on B under which {xn} is independent of ν {ω : xn(ω) = i}=ϕi. Since

µ(CK(ω)) = pN0(ω,K)
0 pN1(ω,K)

1 . . . pNs−1(ω,K)
s−1

ν(CK(ω)) =ϕ
N0(ω,K)
0 ϕ

N1(ω,K)
1 . . .ϕ

Ns−1(ω,K)
s−1

(B-9)

Thus, we have:

lnν(CK(ω))

ln µ(CK(ω))
=

s−1
∑

i=0
fi(ω,K) lnϕi

s−1
∑

i=0
fi(ω,K) ln pi

and therefore,

lim
K→∞

lnν(CK(ω))

ln µ(CK(ω))
=

s−1
∑

i=0
ϕi lnϕi

s−1
∑

i=0
ϕi ln pi

= H(~ϕ,~p) (B-10)

Using (B-7), we have:

Dimµ M(~ϕ) = H(~ϕ,~p)Dimν M(~ϕ) (B-11)

However, since ν(M(~ϕ)) = 1 by the strong law of large numbers, then Dimν M(~ϕ) = 1, and therefore,

Dimµ M(~ϕ) = H(~ϕ,~p) (B-12)

The Eggleston’s theorem
We consider the special case when under µ the process {xn} is independent with µ {ω : xn(ω) = i}= 1

s , so the
function H(~ϕ,~p) takes the form:

H(~ϕ,~p) =− 1
lns

s−1

∑
i=0

ϕi lnϕi (B-13)

which implies that

Dimµ M(~ϕ) =− 1
lns

s−1

∑
i=0

ϕi lnϕi (B-14)

as µ(CK(ω)) =
(1

s

)K , the µ measure of the K-cylinder is identical with its Lebesgue measure Λ(CK); therefore
Dimµ M(~ϕ) = DimH M(~ϕ). Thus, in the r.h.s. of (B-14) we have the entropy of the stochastic process νϕ, and
it is precisely the Eggleston’s theorem used in (15).
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