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Abstract. In this paper, we focus on the calibration possibilities of a
deep learning based gaze estimation process applying transfer learning,
comparing its performance when using a general dataset versus when
using a gaze specific dataset in the pretrained model. Subject calibra-
tion has demonstrated to improve gaze accuracy in high performance
eye trackers. Hence, we wonder about the potential of a deep learning
gaze estimation model for subject calibration employing fine-tuning pro-
cedures. A pretrained Resnet-18 network, which has great performance
in many computer vision tasks, is fine-tuned using user’s specific data in
a few shot adaptive gaze estimation approach. We study the impact of
pretraining a model with a synthetic dataset, U2Eyes, before addressing
the gaze estimation calibration in a real dataset, I2Head. The results of
the work show that the success of the individual calibration largely de-
pends on the balance between fine-tuning and the standard supervised
learning procedures and that using a gaze specific dataset to pretrain
the model improves the accuracy when few images are available for cal-
ibration. This paper shows that calibration is feasible in low resolution
scenarios providing outstanding accuracies below 1.5◦ of error.

Keywords: Gaze Estimation · Calibration · Transfer Learning.

1 Introduction

In the 70’s one of the seminal papers about eye tracking was published [15].
This paper described a system based on the well-known pupil center-corneal
reflection vector (PR-CR) and assumed a highly focused image of the eye area,
i.e. a high resolution image of the eye region as is shown in figure 1 (left). Since
then, outstanding works have been published in the field most of them persisting
first, in the use of PC-CR technique and its variations and second, employing
high resolution eye area images [18] [10] [16]. As a result of these researches,
commercial solutions were developed.
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As far as it is known, all of them require a subject calibration procedure
consisting in asking the subject to gaze specific points in the screen. During the
calibration, the system is adapted to the subject position and eye physiology.
Depending of the type of system this adaptation process can be more or less
explicitly carried out. On the one hand, the calibration of system geometry-based
gaze estimation trackers permits to infer the value of different variables related
to the user such as the corneal radius among other subject specific characteristics
[6] [10]. On the other hand, the calibration of polynomial-based gaze estimation
trackers is used in order to estimate the unknown coefficients of a polynomial,
normally a second degree polynomial [2]. Regardless of the type of system, there
is an agreement about the fact that a calibrated system provides better subject
accuracies than the ones obtained by an average model. Outstanding accuracies
below 0.5◦ can be found in the literature and provided by systems manufacturers.

The hardware of those systems presents some requirements. First, the use
of an infrared light which provides better image quality and is responsible for
the corneal glint which is key for an accurate gaze estimation. Second, in order
to get a highly focused eye image, long focal lengths have to be used ∼ 35mm.
The necessity of this special optics, infrared lighting and filters are some of the
reasons that prevent high performance eye tracking from being a plug-and-play
technology.

In the last decade, a sustained effort has been made by the community in or-
der to provide a more versatile eye tracking technology that can be implemented
using webcams or the mobile phone cameras. The removal of the infrared light
sources and the lower focal lengths produces a drastically different subject’s im-
ages as system input (see figure 1, right). The techniques employed for high
resolution images are not longer valid in the new scenario. Thus, a new explo-
ration field is opened for deep learning in the gaze estimation field tackled as
a computer vision problem. To train a model from scratch using deep learning
approach, it is necessary to employ large datasets. Sadly, to create a high quality
dataset with enough number of images it’s a costly process. In order to address
this limitation, it is common to use a model pretrained over a large database as
an initial point, which improves training time and results. Int the case of gaze
estimation, works can be found in the literature showing the potential of deep
learning techniques [8] [12] [7]. Unfortunately, the reported accuracies are far
from being comparable to the ones obtained by high resolution systems, e.g. 3◦
to 5◦ [4] [3]. One of the potentials assumed for deep learning it its generalization
ability, that can be defined as the possibility of gaining knowledge from training
data in a learning process and apply the gained knowledge on new data. It is
agreed that model’s generalization capability is a pursued property of the net-
work also for gaze estimation. However, from the experience obtained for high
resolution systems it is a known fact that the adaptation of the system to the
specific user, i.e. calibration, results in better accuracies, which could enable the
use of gaze estimation for other applications were accuracy would be critical.
Hence, it is a relevant open issue how to introduce the calibration in the field
of deep learning gaze estimation. The few examples found in the literature ap-
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Fig. 1. Image obtained by a high resolution eye tracker using two corneal glints (left).
Image obtained by a standard webcam (right) [14].

proach the problem from a fine-tuning perspective employing a few-shot training
of an existing model [20] [13].

In this paper, we carry out a thorough study about user calibration for deep
learning gaze estimation raised as a question between the balance required among
generalization and personalization abilities of the models. This balance is mea-
sured according to its impact in the accuracy obtained for the gaze estimation
system. We will study the impact of transfer learning over a model pretrained
with a computer vision general database, Imagenet [5], versus the results ob-
tained while pretraining over a gaze specialized synthetic database, U2Eyes [17],
analyzing the results over a real gaze database, I2Head [14].

This paper is organized as follows, in the next section a summary of re-
lated works is performed. In section 3, the working framework is presented, i.e.
datasets and the main methodological specifications are provided. Then, subject
calibration details are introduced in section 4. The experiments configuration
is explained in section 5. In section 6 the accuracies obtained by the different
experiments are shown. Finally, the conclusions of our work are addressed.

2 Related Works

Calibration is a well-known procedure in high resolution systems. During the
calibration process, the subject is asked to gaze specific points in the screen.
The images acquired during calibration are automatically labelled with gazed
point information and this permits to fit the gaze estimation function to the
subject playing with the eye tracking system. Deep learning gaze estimation is
a relatively new topic and the accuracies obtained are not comparable with the
ones achieved by high resolution system. Most of the works found are related
to compare the architectures to be used, labelled datasets to be used or the
evaluation of the alternative training strategies of the models and less attention
has been paid to personalization strategies for eye tracking systems. To follow
selected relevant works addressing gaze models personalization are presented.

In one of the first relevant works, Krafka et al. [11] point out the relevance
of using subject images during network training in order to improve the gaze
estimation accuracy and its variation according to the calibration points used



4 G. Garde et al.

achieving accuracy values about 1.34 cm. In the work [20],Yu et al. try to con-
struct the person-specific gaze estimation models by using few calibration points
(few-shot approach). They use a VGG16 achitecture trained with ColumbiaGaze
and MPIIGaze datasets. They use a more complex model using synthetic im-
ages for gaze prediction consistency. They perform the person adaptation using a
few-shot scheme in which 1-5-9 samples are employed to personalize a previously
pretrained model. They also confirm that the accuracy improves as the number
of calibration images are increased achieving accuracies in the range [2.68◦, 5◦].
In this work they point out one of the main facts of deep learning gaze estimation
which is the lack of labelled binocular data compared to other computer vision
problems in which wide datasets area available.

An interesting approach is also described by Linden et al. [13]. In this work
a complex model consisting in three ResNet-18 are used for three input images
(both eyes and face). The network outputs for each eye are concatenated with
“calibration parameters” as inputs to a fully connected module. The calibration
parameters are the ones to be adjusted during the calibration procedure. Again,
the improvement according to calibration points is achieved showing values about
2.76◦.

As shown in this summary more attention is paid to the number of points re-
quired for calibration than to the specific computer vision domain. If calibration
is required, the number of calibration points, although methodologically impor-
tant, does not involve practical problems for most of the applications since high
number of points can be acquired, e.g. by asking the subject to track a point in
the screen.

3 Working Framework

3.1 Image Databases

The proposed synthetic framework is based on U2Eyes dataset [17]. The choice
of a synthetic dataset to the detriment of a dataset with real images is mo-
tivated by the ability of synthetic datasets to provide with a large amount of
images while assuring that, in all cases, the labeling is consistent and correct. As
we are looking for high accuracies, we believe that this certainty is important.
However, one of the main drawbacks of synthetic dataset is that, by their own
nature, they have a more limited variability than the one that can be found
in real datasets. Twenty different simulated subjects are provided in the public
version of the dataset. The images have a resolution of 3840x2160 pixels (4K)
and were created using Unity. The provided images represent the eyes area of a
subject gazing at different points on a screen simulating a standard remote eye
tracking session. The images are annotated with head pose and observed points
information. Additionally, 2D and 3D landmarks information of both eyes is
provided. For each subject 125 head positions are simulated from which two
gazing grids containing 15 and 32 points are observed. Consequently, 5,875 im-
ages per user are provided resulting in a total of approximately 120K images.
U2Eyes represents a rich appearance variation environment. The authors claim
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Fig. 2. Samples extracted from U2Eyes dataset.
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Fig. 3. Simplified model of the eye.

that essential eyeball physiology elements and binocular vision dynamics have
been modelled. In figure 2 samples of the dataset are shown.

The 3D eye model employed to generate eye images resembles the simplified
eye model for gaze estimation in the literature [1]. The Line of Sight (LoS) is
approximated by the visual axis that presents an angular offset, κ, with respect
to the optical axis, i.e. eyeball symmetry axis of the eye (see figure 3). The eyeball
presents individual’s specific characteristics, some of them such as the angle κ
cannot be inferred from the image and need to be calibrated.

I2Head dataset is employed as a real benchmark in order to validate the pro-
posed framework. I2Head is a public dataset providing images annotated with
gaze and head pose data. This dataset was constructed using a magnetic sensor
for pose detection and a careful setup calibration procedure. More details about
the design of this dataset can be found in [14]. The dataset contains information
about twelve individuals gazing two grids containing 17 and 65 points from eight
different head positions, in constrained and free head movement scenarios. For
each user, information about 232 (65× 2+17× 6) gazing points is provided rep-
resenting a total of 2,784 points data. The range of gaze angles is approximately
±20 ◦.

I2Head does not provides landmark information. Hence, a manual labelling
of the eye region bounding box has been performed for a reduced set of images
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Fig. 4. Samples extracted from I2Head dataset.

Fig. 5. Image preprocessing. The images (a) are rotated (b) so eyes are in the same
line, which makes the bounding box (c) contains as meaningful information as possible.
Then, a padding process (d) assures that all images have the same size before feeding
them to the network.

of the dataset. More specifically, the four central sessions have been selected for
each user containing 164 gazing points per user. In order to perform a realistic
comparison between the datasets, eye area is extracted from I2Head images. In
figure 4 samples of the dataset are shown.

U2Eyes resembles to a large extent I2Head dataset. This is a desired quality
as the importance of pretraining in a close domain for gaze estimation is studied.
However, although both databases represent standard eye tracking sessions in
a remote setup, some differences are found. While the camera is positioned on
the top of the screen in I2Head dataset a centered position with respect to the
gazing grid is selected in U2Eyes. Consequently, in U2Eyes subjects gaze points
above and below the camera while all the points are placed below the camera in
the I2Head dataset. In the same manner, the range of head poses is different in
both datasets when referring to vertical positions. All these aspects should be
taken into account when the alternative training strategies are proposed.

3.2 Image Conditioning

The preprocessing applied to U2Eyes and I2Head data is described: both synthet-
ical and real image preprocessing is equivalent, and it is shown in figure 5. First,
the original image, (a), is rotated (b) in order to normalize the roll component.
The rotation is done using the angle between the horizontal and the straight line
defined by the two outer eye corners. Then, a bounding box is created using the
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Table 1. Configurations of the different experiments according to the training mode,
U2Eyes or ImageNet, and the number of users and images in the training and testing
phase. The K parameter varies from 0 to 11, i.e. 0 indicates that none of the subjects
of I2Head dataset has been included to train the model, except for the subject to be
calibrated, and 11 indicates that all the additional subjects are present in the training
phase.

Model Train
# Users/Images

Calibration
# Users/Images

Total Train
# Images

Test
# Users/Images

ImageNet K/K*130 1/34 K*130+34 1/130
U2Eyes K/K*130 1/34 K*130+34 1/130

distance between the two outer eye corners and the image is cropped (c). The
rotation before cropping is necessary to prevent the gray pixels that would be
present in the U2Eyes images if we would just obtain the bounding box from the
original source. Finally, a black edge is added until the image size is 390x85 pix-
els (d). As the images from both datasets cover a range of well-known distances,
the black edge was added to make all images the same size. Thus, the farther to
the camera, the bigger the black edge, providing additional depth information
to the network.

3.3 Network Architecture

The architecture of our network consists on the Resnet-18 [9] as backbone,
followed by a Global Average Pooling layer and three Fully Connected Layers.
As the focus of this paper is not to provide a novel architecture but to study
the calibration and transfer learning process for gaze estimation, the Resnet-18
was chosen because of its performance over Imagenet [5] classification task while
being simple enough to make retraining steps feasible in both, time and hardware
requirements. The results obtained over Imagenet ensure that the network is able
to extract meaningful features from images. The three fully connected layers at
the top of the network make use of these features to compute the x and y
coordinates of the look-at-points.

3.4 Implementation Details

In this section, technical details for the sake of reproducibility are described.
The experiment is divided into two different phases:

– A first one where a model with the same architecture as the one shown in
section 3.3 is trained over the synthetic dataset U2Eyes, saving the trained
model, hereafter U2Eyes-model, to be used as the initial base for future steps.
The goal with this step is to bring closer the domain in which the model is
trained to the final environment.

– A second phase where the model is trained over real images obtained from the
I2Head dataset in a subject calibration fashion. In this phase, we distinguish
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Fig. 6. Architecture proposed. The backbone consist on a Resnet-18 to extract mean-
ingful characteristics from the image. Then, these characteristics are fed into fully
connected regressor network to obtain the final gaze components.

among two different situations: using the U2Eyes-model as initial point and
starting from the Imagenet [5] weights for the Resnet-18 backbone (see
section 3.3).

Independently of the training phase, the steps followed to train the model and
the training parameters were kept the same for all cases. The models are trained
over 240 epochs, using a batch size of 128 images. The loss function employed
is the euclidean distance between the estimated look-at-point and the real look-
at-point, represented by the following equation:

Loss :=
1

N

N∑
i=1

‖p− p̂‖2, (1)

where p is the real look-at-point, p̂ is the estimated look-at-point, and N is
the number of images per batch. Adam optimizer is used to optimize the loss
function. The learning rate schedule followed is based on the Cyclic learning rate
schedule [19] in a triangular manner for the first 200 epochs, fluctuating among
a maximum learning rate value of 0.002 and a minimum learning rate of 0.0002,
and then a linear decrease for the remaining 40 epochs where the learning rate
goes from 0.0002 to 0.00002. The main specifications of the computer where the
experiments were run are: CPU: Intel(R) Xeon(R) CPU E5-1650 v4 @3.60GHz,
128 GB of RAM and a Nvidia Titan X (Pascal) GPU.

For the sake of reproducibility, the weights of the pretrained model over
U2Eyes and a function for the model that is trained directly over the ImageNet
weights will be available at Github1. It is important to remark that we are not
training over U2Eyes neither over Imagenet images in this paper, we are using
1 https://github.com/GonzaloGardeL/Synthetic-gaze-data-augmentation-for-
improved-user-calibration
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pretrained models over these datasets and then retraining these models over
I2Head images.

4 Subject Calibration

The concept of calibration in gaze estimation refers to the process whereby a
model is tuned over a given number of images from an individual to adapt to
the specific parameters of that individual. This is especially crucial as there are
characteristics that cannot be learned in any other way at the moment and that
have a significant impact on the outcome of the regression model. Ideally, when
calibrating a system for a user, the fewer images that are necessary for calibration
the better, as a large number of images implicates longer calibration times and a
more complicated user-machine interaction. On the other side, the improvement
obtained is generally directly proportional to the number of images. As a result,
a trade-off exists among the number of images, the calibration time and the
final accuracy. In any case, the calibration processes work with few images if it
is compared with any other approach where deep learning is used. A common
strategy these days is to use few-shot training to adapt the parameters of the
networks. In this paper, we focus on the advantages of pretraining in a synthetic
environment where we are not limited by the number of images or the reliability
of the data.

5 Experiments

The final goal of the experiment is to observe the impact of pretraining over a
dataset whose domain is closer for gaze estimation before facing a real dataset
and the importance of the number of images while calibrating models for gaze
estimation. An approximation of the Leave-One-Out strategy is followed in order
to study subject calibration. 34 images of the user to be calibrated are included in
the training set together with a varying number of additional subjects extracted
from I2Head dataset ranging from 0 to 11 users. For each one of these subjects in
the training, 130 additional images are used. The condition of no-user-calibration
is not contemplated, as the user data is always used while training. A resume of
the experiments configuration is shown in table 1.

6 Results

The outputs from the experiments were arranged together based on the training
user configuration, and the figures and tables that are shown in this section are an
average from the experiments of all users. The angular offset (in degrees) between
the estimated gaze direction and subject’s visual axis is used as comparison
metric. This angular offset is calculated by computing the distance between the
estimated point and the real point in the grid and the known distance between
the real point and the user. For the sake of readability, the results from the
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Fig. 7. Experiments when training from 1 user to 4 users. In this figure we observe
that the performance of the ImageNet models change drastically when the number of
users included in the training dataset gets reduced from a specific number. The models
trained over the U2Eyes strategy are more robust when working with a reduced dataset.

experiments have been plotted in two different figures, figure 7 and figure 8,
using both figures the results from training with 4 users as common anchor
point. We highlight two cases of interest:

– Correlation between the number of training images and regressor estimation.
– Comparison of U2Eyes and ImageNet Methods.

6.1 Number of Training Images and Regressor Estimation

The regressor estimations are worse as the number of training images decreased.
This is the expected behavior for this problem as by reducing the number of
available images for training, it is more difficult for the network to learn the op-
timal parameters for the problem. In table 2, the mean and median for each case
are shown. The results are consistent for both U2Eyes and ImageNet training
modes. When the number of training images is maximum (12 users in training,
the calibration user + 11 additional users), outstanding results with degrees of
error lower than 1.5º are obtained for the median.

6.2 U2Eyes and ImageNet Methods

At figure 8, we observe that the results obtained from U2Eyes and ImageNet are
similar but slightly better for ImageNet method when the number of additional
users goes from 4 to 11. One possible explanation for this behaviour could be
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Fig. 8. Experiments when training from 4 users to 12 users. The performance of the
models tends to improve as the number of training images increases. Both ImageNet
and U2Eyes models have a similar behavior for each one of the cases.

that, if enough images are used to train the ImageNet model over the specific
user, the model benefits from the more variability presented in real images rather
than the more limited variability of synthetic ones. Attending to table II, the
biggest difference in mean is under 0.17º. As we increase the number of training
users, the obtained results from both models are better. However, when adding 3
or fewer additional users to the training, we observe in figure 7 that the behavior
is different. The U2Eyes models are more robust to the lack of training images
than the ImageNet models. The hypothesis is that, when the number of training
images is low enough, the models that were pretrained in a similar domain
(synthetic dataset U2Eyes in this case) are more capable to continue learning
than the ones trained in a more general domain. If we compare the results in
table 2, we can observe that this difference is up to 10.16º for the median value
in the case of training using only the calibration user.

7 Conclusions

In this paper, subject calibration based in transfer learning for low resolution
systems is studied. To this end, a deep learning model and two gaze data datasets,
i.e. I2Head and U2Eyes, are used containing real and synthetic images. Two
experimental setups have been employed in order to validate our hypothesis. The
first setup uses Imagenet as start-point while a dataset containing eye synthetic
images is employed in the second one. The results presented in this paper show
that a calibration strategy is possible for low resolution, achieving first-class
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Table 2. Results from the different experiments configurations. The mean and median
angular errors in degrees are shown for each. The number of users in training includes
the user for which the system has been calibrated. The maximum and minimum values
for each one of the columns are emphasized.

Mean (◦) Median (◦)Users in
training Imagenet U2Eyes Imagenet U2Eyes

1 13.615 3.891 13.401 3.243
2 14.812 2.967 14.880 2.522
3 14.069 2.861 14.255 2.404
4 2.867 2.488 2.567 2.149
5 2.004 2.149 1.631 1.867
6 2.028 1.965 1.675 1.667
7 1.987 2.039 1.617 1.746
8 1.877 1.968 1.639 1.724
9 1.758 1.860 1.471 1.611

10 1.681 1.818 1.412 1.588
11 1.615 1.777 1.334 1.485
12 1.559 1.714 1.344 1.486

performance when adapting a gaze estimation regressor for an specific user,
yielding results close to the ones achieved in high resolution, i.e. ∼ 1.5◦ which
is one of the main contributions of our work. Furthermore, the importance of
providing domain images during the training process has been confirmed and
also the benefits of pretraining the regressor in a closer domain instead of in
a more general dataset to compensate the lack of useful gaze data images, due
to the difficulties in both acquiring and labeling them, that characterize gaze
estimation problem.
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