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ABSTRACT
Availability of large scale tagged datasets is a must in the field of
deep learning applied to the eye tracking challenge. In this paper, the
potential of Supervised-Descent-Method (SDM) as a semiautomatic
labelling tool for eye tracking images is shown. The objective of
the paper is to evidence how the human effort needed for manually
labelling large eye tracking datasets can be radically reduced by the
use of cascaded regressors. Different applications are provided in
the fields of high and low resolution systems. An iris/pupil center
labelling is shown as example for low resolution images while a
pupil contour points detection is demonstrated in high resolution. In
both cases manual annotation requirements are drastically reduced.

CCS CONCEPTS
• Applied computing → Annotation; • Computing method-
ologies → Supervised learning by regression.
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1 INTRODUCTION
Typically, the problem of estimating gaze has been divided into two
issues, namely, eye tracking and gaze estimation. Eye tracking is
related to the algorithms focused on processing the acquired eye
image to obtain image features e.g. iris or pupil center, glints, eye-
lids, etc. while gaze estimation covers the challenge of finding gaze
from the image. As in many other computer vision problems deep
learning techniques can be used to solve both problems as demon-
strated in some of the works published in the last few years [Krafka
et al. 2016] [Zhang et al. 2018] [Park et al. 2018].
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One of the basic requirements for any deep learning procedure
is the availability of large scale labelled datasets to be used during
the training stage. The procedure to obtain these datasets is not
trivial, moreover the possibility of having the images labelled is
not completely solved yet. In the case of gaze estimation methods,
the labelling procedure consists in tagging each one of the images
with gaze data, e.g. 2D PoR value or 3D LoS. This operation can
be carried out by employing previously agreed gaze points or gaze
directions according to the case. Basically, the user is asked to gaze
known grids of points. It is assumed that the subject gazes the
corresponding point for a dwell time. In this manner, the images
are tagged automatically provided that a synchronization proce-
dure is established between the displayed points and the image
recording thread. In the case of eye tracking methods, labelling is
a broader problem since the required marks vary depending on
the algorithm, ranging from pupil or iris center to iris contour, eye
corners or eyelids among others. Moreover, the labelling procedure
is not straightforward. The most obvious but tedious way to solve
the labelling problem is to carry out a manual marking procedure
for which dedicated tools can be designed [Fuhl et al. 2017]. Con-
sidering the required size of the datasets for deep learning this is
not a practical solution. In fact, there are companies devoted to
image tagging tasks being this a business showed up as result of the
higher demand of labelled datasets to be employed in deep/machine
learning fields. In this manner, human effort is translated into dol-
lars. More practical proposals based on using synthesized images
are found in the bibliography [Sugano et al. 2014]. One of them
is data augmentation, properly defined as the process of increas-
ing the number of data/images of datasets by means, generally,
of artificial techniques. This can involve changes such as image
rotation, introducing lighting variations in the images, varying the
degree of noise conditions, etc., generating different sub-samples
from the same original image. Moreover simulators can be em-
ployed in which camera, user, gazed points and light sources are
simulated. Thus, the image is artificially generated and the labels
corresponding to image features are known by construction. Ex-
amples devoted to high and low resolution eye tracking can be
found in the literature [Świrski and Dodgson 2014] [Wood et al.
2016]. Finally, employing image processing techniques to partially
automatize the annotation process has also been proposed in the
bibliography [Tonsen et al. 2016].

In this paper a Semiautomatic Tool for Annotation of Eye Track-
ing images, SeTA, based on Supervised-Descent-Method (SDM) [Xiong
and la Torre 2014] is proposed. SDM can be used as feature detec-
tion algorithm based on a training stage and has demonstrated
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to provide highly accurate results in low resolution eye tracking
images [Larumbe et al. 2018]. In our work, we propose to use dedi-
cated SDMs for individual sessions. The SDM tracker is pre-trained
using a reduced number of selected images of a tracking session,
so that detection is adapted to the particular characteristics of that
session. Two possible applications are shown: first, the potential
of this technique to label iris center for low resolution images em-
ploying MPIIGaze [Zhang et al. 2018] and I2Head [Martinikorena
et al. 2018] datasets is shown. Second, a high resolution application
is demonstrated by labelling pupil contour and center in images ob-
tained from a head mounted eye tracker, such as the ones provided
in Labelled Pupils in the Wild (LPW) dataset [Tonsen et al. 2016].
We would like to make clear that the terms high and low resolution
refer to the number of pixels in the pupil area. In the next section,
the basics of SDM and the algorithm proposed are presented. To
follow, the databases and the implementations proposed in each
one of the cases are described. Finally, results and conclusions are
shown.

2 SUPERVISED DESCENT METHOD
Supervised-Descent-Method (SDM) is a minimization technique for
Nonlinear Least Squares (NLS) problems proposed by X. Xiong and
F. de la Torre [Xiong and la Torre 2014] in the field of computer
vision. Later, Z. Feng et al. [Feng et al. 2015] proposed amodification
of the SDM algorithm by means of including an adaptive scheme for
scale-invariant updates and a regularization term. During training,
SDM learns a cascaded regressor (CR) from a set of L images labeled
with a group of ground truth landmarks {xi∗}(i = 1, ···,L). A cascade
regressor CR is formed by K weak regressors rk in cascade. Each
weak regressor is represented by a descent map Rk and a bias
term bk which are computed in each iteration k by minimizing
the expected loss between the ground truth landmarks xi∗ and the
previous iteration predicted landmarks xik−1, given by

L∑
i=1

∥xi∗ − xik−1 + Rkh(d
i (xik−1)) − bk ∥

2
2 + λ∥Rk ∥

2
F , (1)

where d is the image, h is a nonlinear feature extraction function
(Histogram of Oriented Gradients in our case) and λ is the weight
of the regularization term. Once Rk and bk have been estimated,
each sample xik−1 is updated to its new location xik as follows:

xik = xik−1 − Rkh(d
i (xik−1)) + bk . (2)

After an update, we recompute a new descent map Rk+1 and a
new location xik+1. In testing, landmarks locations xik are updated
recursively using Equation 2, starting from a landmark initialization
xi0 and employing the learned CR [Larumbe et al. 2018].

3 SEMIAUTOMATIC LABELLING PROPOSALS
We decide to apply the annotation tool, SeTA, to two different
scenarios, namely, low and high resolution tracking frameworks.
An application for labelling pupil/iris center in low resolution is
shown while a pupil contour and center annotation algorithm is
presented for high resolution.

Figure 1: Samples extracted from I2Head (upper-left),
MPIIGaze (upper-right, https://bit.ly/1HO7MoR) and LPW
(lower, https://bit.ly/2TUqjYw) datasets.

3.1 Low resolution: MPIIGaze & I2Head
MPIIGaze and I2Head are two databases conceived, designed and
built under the paradigm of low resolution eye tracking and gaze
estimation. Both datasets contain images from several users (15
and 12 users, respectively). A large number of images per user
is available, so that the approach proposed in this case consists
in training independent SeTAs for each one of the users. To this
end, a bunch of labelled images from a solely user is assigned to
train that individual’s model, which is going to be used later to
detect pupil center in the remaining images from the same user.
The underlying assumption is that the SDM will get adapted to
the user’s own characteristics and it will be able to perform the
automatic annotation process on the non-trained images.

MPIIGaze contains about 200,000 images exhibiting a great vari-
ety of lighting, blurring and positioning conditions. The number of
images per user is variable, as it is the accuracy of the iris center
manual labels provided for a subset of 10,000 images. To overcome
the problems arisen from unreliable labels a random selection of 40
images per user was performed, and three different contributors
provided their six labels per image, namely, two corners and the
pupil center for both eyes. Mean values were considered to build a
subset of 40 annotated images for each user: 20 annotated images
devoted to training the respective model, and 20 devoted to estimat-
ing the model accuracy in the testing stage. A second subset of 100
alternative images (also randomly chosen but not annotated) per
user is constructed with the aim of providing a visual evaluation.

I2Head dataset contains images of 12 users, gazing at alterna-
tive points in a screen from varying spatial positions. Images were
recorded in four centered sessions using static and free head sce-
narios, plus four other sessions including user displacements. Only
the centered sessions are considered for this work at a rate of only
one image per gazed point (although 10 images per point were ac-
quired), up to 164 images per user. Though labels for gazed points
are provided, this dataset does not supply image landmarks so,
again, a team of three individuals generated six labels per image,
marking both eye corners and pupil centers, as it had been done
for the MPIIGaze annotated subset. Mean values were considered
to build this subset of 164 annotated images for each user. A subset
of 17 images per user is used for training while the remaining 147
images are employed in the testing stage (see figure 1 (top)).

The SeTA proposed for these datasets trains a personalized SDM
tracker using the subset of annotated images where the eye corners
are accurately known. The adjusted model is then applied upon

https://bit.ly/1HO7MoR
https://bit.ly/2TUqjYw


SeTA: Semiautomatic Tool for Annotation of Eye Tracking Images ETRA ’19, June 25–28, 2019, Denver , CO, USA

the user’s remainder images to detect pupil centers. Some smart
strategies are added in the annotation stage for both datasets:

• A well known data augmentation procedure is implemented
by flipping the images contained in the training subset [Krizhevsky
et al. 2012].

• The initial shape xi0 is set according to the ground truth labels
of eye corners attached to images included in the training
subset.

• Robustness against inaccurate initialization is achieved gen-
erating from each original image a 100 copies where random
noise in the eye landmarks is introduced. In this way the
SDM learns the minimization strategy in a higher number
of starting conditions.

• The hyperparameters are tuned resulting in five weak re-
gressors (K = 5) and a regularization term of 5 (λ = 5).

3.2 High resolution: LPW
Eye tracking using head mounted systems in everyday and outdoor
activities is still a challenge. Labelled Pupils in the Wild (LPW)
dataset [Tonsen et al. 2016] is a high resolution dataset contain-
ing 66 videos recorded from 22 participants in everyday situations
employing a dark-pupil head-mounted eye tracker in which la-
bels are provided for the pupil center. LPW includes subjects with
different ethnicities, varying illumination, strong reflections oc-
cluding the pupil and moved images. In figure 1 (bottom) samples
extracted from LPW are shown. Detecting pupil contour points is
key for accurate eye tracking in order to refine pupil center detec-
tion or for those gaze estimation methods based on the shape of the
pupil. The SeTA proposed in this scenario is to train independent
SDM trackers for each one of the videos to detect pupil contour
points. The high degree of variation between videos strengthen
the idea of creating dedicated trackers for each one of the sessions.
In other words, the SDM tracker is trained to detect 20 homoge-
neously distributed points in the pupil contour. Given a video of
2000 frames, 10 uniformly distributed frames are selected to be
annotated manually. The annotator is asked to mark 8 points in
the pupil contour to which an ellipse is adjusted and 20 landmarks
are extracted. Using this subset of images the model is constructed.
Once the SDM-tracker is trained for the specific session it is applied
to the whole video to get the frames automatically labelled. The
annotation strategy presents the following characteristics:

• The initial shape, xi0 for a frame, is set according to the
landmarks detected on the previous frame (the first frame is
assumed to be always manually annotated).

• The 20 landmarks are geometrically coherent with respect
to the image, i.e. the first point is always the one with the
highest vertical coordinate.

• In order to increment the robustness against an inaccurate
initialization, systematic noise is introduced in the contour
points during the training. For each one of the training
frames 50 samples are created by introducing a controlled
perturbation in the pupil ellipse, allowing SeTA to learn the
minimization strategy in a higher number of initialization
conditions. Instead of perturbing each tracked point indepen-
dently the parameters of the ellipse are perturbed trying to
simulate potential movements of the pupil between frames.

• The annotation procedure needs to be supervised by an oper-
ator as the labelling progresses throughout the video. When
the operator detects a bad annotation, the process can be
interrupted and the non correctly annotated image is la-
belled manually. The new labelled image is used to update
the model in an online fashion. A higher number of initial-
izations (200) is set for the image the first time the sample is
included into the model to increment its weight. Once the
model is updated, the annotation procedure continues.

• Every time the contour points are detected, an ellipse is fitted
in order to eliminate possible outliers and 20 landmarks are
re-calculated according to the equation of the ellipse as the
final labels for that image.

• The selected CR is formed by two weak regressors (K = 2)
and the regularization term used is unity (λ = 1).

• Data augmentation is not performed in this case.

4 RESULTS
In this section SeTA results are evaluated according to the low res-
olution and high resolution tests carried out. In the experiments
regarding MPIIGaze and I2Head datasets quantitative and qual-
itative results are shown. Quantitative values can be extracted
comparing the centers provided by the manual annotation and the
ones obtained by SeTA. To evaluate accuracy the absolute error is
calculated as the Euclidean distance between pupil center estimates
and ground truth values provided, then it is normalized relative to
the inter-pupillary distance (ground truth). This is formulated by
emax =

max (dle f t ,dr iдht )
ω where dlef t and dr iдht are the absolute

errors for the eye pair, and ω is the inter-pupillary distance. The
maximum between dlef t and dr iдht after normalization is defined
as maximum normalized error emax . Accuracy is calculated as the
percentage of images for which the error is below specific emax . In
figure 2 the distributions of the error considering subjects belong-
ing to each one of the datasets are shown. The variability between
annotators is provided in green for both datasets as representative
of the best accuracy potentially achievable. The closeness between
both curves resembles the good performance of SeTA.

Regarding qualitative evaluation, 100 random images per user
are annotated using SeTA. Three different observers evaluate the
results and decide whether the center was accurately estimated or
not. For MPIIGaze they estimate that 7.26±7.36 (average ± standard
deviation) of labels per user are inaccurately calculated, meaning
that less than 5% of the cases would need to be relabelled. We would
like to emphasize that even in non correctly initialized images, SeTA
is able to retrieve an accurate annotation in the majority of the
cases demonstrating its robustness to initial conditions. For I2Head
the qualitative evaluation shows that only 3.66±3.91 of labels can be
considered to be inaccurately annotated. The remarkable improve-
ment with respect to MPIIGaze is due to the fact that the variability
among the images belonging to the same user in I2Head is con-
siderably lower compared to MPIIGaze. A sample of the results
regarding MPIIGaze and I2Head is available in our webpage.

Four eye tracking experts select 15 random sessions from LPW
dataset to be annotated employing SeTA according to the procedure
explained in section 3.2. In figure 3 the average difference resulting
from the Euclidean distance (pixels) between SeTA results and the
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Figure 2: Cumulative error for MPIIGaze (top) and I2Head
(bottom) datasets.

labels provided in the dataset is shown for the selected sessions.
Results shown in figure 3 should be further discussed if we take
into account that the authors stated in the original paper that the
labels for the pupil center were calculated employing semiauto-
matic image processing techniques. From the results obtained in
our experiments it can be concluded that setting the pupil center as
the center of the ellipse presents higher robustness and precision
than those resulting from the solely pupil center annotation. In
figure 4 we select some of the samples showing significant differ-
ences between SeTA annotation and the labels provided with LPW,
leading us to reach the conclusion that the pupil center can be more
accurately annotated if the corresponding ellipse is considered.
Additional videos can be checked in our webpage. The accuracy
values in figure 3 improve the ones found in the literature [Santini
et al. 2018]. However, this comparison, although promising, is not
completely fair since not all the videos have been annotated by
SeTA yet.

Regarding the annotation requirements for LPW, the number
of extra frames manually labelled in the online procedure is vari-
able according to the session but the average, including the initial
requirement of labelling 10 frames for a session containing 2000
images, is 23.36±13.13 manually annotated frames. Apart from ac-
curacy values, the resulting numbers clearly show the significant
human effort reduction. The annotation effort is converted into a
supervision task requiring considerably less time. Supervising the
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Figure 3: Cumulative difference for LPW dataset.

Figure 4: Samples comparing the center provided by LPW
(red, https://bit.ly/2TUqjYw) and from SeTA (green).

annotation of an LPW image requires approximately 1 sec while it
raises to 12-14 secs if a manual annotation is carried out, i.e. the
spent time reduction is closer to 92%. Regarding low resolution task
6-8 secs are needed to annotate pupil centers, saving 83% of the
time employed for manual annotation.

5 CONCLUSIONS
SeTA is a semiautomatic annotation tool for eye tracking images. In
this work we have demonstrated the potential of SDM to be used for
automated labelling processes. Two applications have been shown
related to pupil contour points detection in high resolution systems
and pupil center annotation in low resolution images. SeTA has
demonstrated to reduce drastically the human effort requirements
in order to get annotated datasets. We consider that the lack of large
scale annotated databases prevent researchers to apply machine
learning methods to eye tracking and gaze estimation fields in a
proper way. Our work has tried to contribute to the challenge of
moving the technology closer to this goal.
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