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ABSTRACT
The precise detection of pupil/iris center is key to estimate gaze
accurately. This fact becomes specially challenging in low cost
frameworks in which the algorithms employed for high perfor-
mance systems fail. In the last years an outstanding effort has been
made in order to apply training-based methods to low resolution
images. In this paper, Supervised Descent Method (SDM) is applied
to GI4E database. The 2D landmarks employed for training are
the corners of the eyes and the pupil centers. In order to validate
the algorithm proposed, a cross validation procedure is performed.
The strategy employed for the training allows us to affirm that our
method can potentially outperform the state of the art algorithms
applied to the same dataset in terms of 2D accuracy. The promis-
ing results encourage to carry on in the study of training-based
methods for eye tracking.
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• Computing methodologies → Tracking; Supervised learn-
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1 INTRODUCTION
In the last years the research about off-the-shelf eye tracking has
attracted the attention of a significant number of researchers. The
possibility of doing eye tracking using a frontal webcam or the
camera of a mobile gadget would potentially open the application
field of the technology. The knowledge regarding high resolution
and infrared eye tracking can be partially applied to the lower
resolution scenarios but it cannot overcome all the new challenges
showing up in the new working framework.
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When talking about eye tracking technology it is usual to differ-
entiate between the stages corresponding to the image processing
part, i.e. eye tracking and the method employed to connect the
image with the Point of Regard (PoR) or the Line of Sight (LoS)
named generally as gaze estimation. Basically, the eye tracking al-
gorithms have as input the image or images acquired by the vision
system and process the data in order to extract valid features, such
as pupil center among others. The gaze estimation stage calculates
gaze as a function of image features. This type of eye/gaze tracking
systems are named as feature based when they perform a mapping,
e.g. by means of a polynomial, to estimate the PoR. Model based
methods aim to extract a geometrical model of the setup including
the subject to achieve the estimation of gaze but in general they
employ features extracted from the image to estimate gaze too. In
contrast, appearance based methods do not extract features from
the image but they employ the whole image or a rasterized vector
of the image in order to estimate gaze as a result of a learning
procedure such as neural networks. In fact, they can be described
as methods based on learning or training processes. In other words,
they require a set of data considered as training data representing
the variability of the problem in order to get adapted to the solution.
Interesting reviews about the gaze estimation methodology can be
found in the literature focused in both, high and low resolutions
systems [Ferhat and Vilariño 2016; Hansen and Ji 2010].

An analysis of the works devoted to high resolution and infrared
gaze estimation shows that feature and model based eye tracking
systems have demonstrated to be the consensus solution [Cerro-
laza et al. 2012b; Guestrin and Eizenman 2006]. In general, these
methods have demonstrated to be simpler and more accurate ap-
proaches for high performance systems. The impact of training
based methods has not a big impact in high resolution systems
to date, except for remarkable works such as [Fuhl et al. 2016] in
which training based procedures are used for robust pupil detection
using high resolution images in wild working conditions. How-
ever, when moving to lower resolution systems the influence of
learning and training methodologies begins to be more relevant
and show up as a promising tool in many aspects related to gaze
estimation using off-the-shelf components. We still find relevant
works presenting features and model based approaches. One of
the first works regarding low resolution is the one presented by
Valenti et al. [Valenti et al. 2012]. An iterative process is carried out
in which “normalized” eye images are obtained from head position
and eye position is then employed to correct head information. The
paper clearly demonstrates that the combination of both elements
improves gaze estimation. In the work by Zhang et al. [Zhang et al.
2016] isophotes and gradient features are employed to estimate the
eye center locations. Gradient information is also used in the work
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by Timm and Barth [Timm and Barth 2011]. The fast radial sym-
metry transform takes advantage of the pupil shape assumed to be
circular in order to detect iris center [Skodras and Fakotakis 2015].
Image topography is also employed in [Villanueva et al. 2013].

In principle, training methodologies could be applied to both,
eye tracking and gaze estimation stages with a variable level of
overlapping between them. A clear example of total overlapping
between the two stages are those works employing deep learning in
which the input is the image and the output is gaze and no process-
ing of the image is performed. Those kind of systems are based on
large scale training procedures in which a huge number of images
representing the variability of the problem feed a Convolutional
Neural Network (CNN) that is adapted to the problem and ideally
should be able to find a solution successfully for a new image of
the same problem [Krafka et al. 2016]. Other approaches take ad-
vantage of the power of CNN based methods but they consider it
interesting to reinforce the method by employing knowledge based
information, such as head pose or facial landmarks [Zhang et al.
2015].

Pursuing in the area of learning techniques, in the work by
Kacete et al. [Kacete et al. 2016b] random forest techniques are used
to estimate head pose and 2D pupil center [Kacete et al. 2016a].
Both outputs are them used to estimate gaze. Random forest-based
techniques [Breiman 2001] used randomized trees to be applied in
classification and regression problems. Cascaded regressors meth-
ods have demonstrated to be highly accurate and robust in facial
landmark tracking [Feng et al. 2015b; Xiong and De la Torre 2013].
In this manner, works applying cascaded regressors for pupil center
detection and eye tracking can be found in recent publications [Gou
et al. 2016, 2017].

We present an accurate iris center detectionmethod based on cas-
caded regressors for low resolution scenarios using GI4E database1
as evaluation framework. GI4E is a database containing images of
103 users gazing at different points on the screen in a standard
desktop scenario, i.e. twelve images per user have been recorded
[Villanueva et al. 2013]. One of the outstanding characteristics of
the database is the accuracy of the labelling procedure. The images
contain labels for the center of the iris and the eye corners. Each
image has been marked by three independent users, and the final
label has been calculated as the mean value among the three as-
suring high accurate data. GI4E has been selected as evaluation
framework not only because its accuracy but due to the fact that it
is a well-known standard in the field. In fact, many of the works
mentioned previously evaluate their results using GI4E.

In the next section the methods employed by our method are
presented in which the cascaded regressor is described. A two stage
procedure has been designed as it will be explained in the method.
The experiments carried out permit us to measure the robustness
and accuracy of our pupil center detection method to be compared
with state of the art works using GI4E. Finally, the conclusions and
further work are presented.

2 METHODS
The main idea is to train two cascaded regressors (CR) based on Su-
pervised Descent Method (SDM) and Random Cascaded-Regression

1http://gi4e.unavarra.es/databases/gi4e/

Copse (R-CR-C) by which to detect the pupil center. SDM was
proposed by X. Xiong and F. de la Torre [Xiong and De la Torre
2013] for minimizing Nonlinear Least Squares (NLS) problems in
the context of computer vision without using second order descent
methods which have some drawbacks in this field. On the one hand,
the function might not be analytically differentiable and numerical
approximations are impractical, on the other, the Hessian may be
large and not positive definite. R-CR-C was proposed by Z. Feng
et al. [Feng et al. 2015b] as a modification of the SDM algorithm,
improving it by proposing among others, an adaptive scheme for
scale-invariant updates and the addition of a regularization term.

Given an image d ∈ Rm×1 of m pixels, d(x) ∈ Rp×1 indexes p
landmarks in the image. h is a nonlinear feature extraction function,
h(d(x)) ∈ R128p×1 in the case of extracting Histogram of Oriented
Gradients (HOG) features. In this setting, during training SDM
learns a cascaded regressor (CR) from a set of L images labeled
with a group of ground-truth landmarks {xi∗}(i = 1, · · ·,L). A CR
is formed by K weak regressors in cascade as:

CR = r1 ◦ r2 ◦ · · · ◦ rK . (1)
Each weak regressor rk is represented by {Rk , bk } (k = 1, · · ·,K),

where Rk is the descent map and bk is the bias term of the kth

regressor. The bias term represents the average of Rkh(di (xi∗)),
where h(di (xi∗)) represents the HOG values computed on the local
patches extracted from the ground truth landmarks for the ith

image. The bias term is required because h(di (xi∗)) is parametrized
not only by x, but also by the images (i.e., di ) and the CR has to
learn to generalize detection for new images (e.g., different subjects).

In training, images are normalized by the inter-eye distance (IED)
in order to perform a scale-invariant strategy. For each iteration k ,
Rk and bk are computed by minimizing the expected loss between
the true state xi∗ and the previous iteration predicted state xik−1,
given by

L∑
i=1

∥xi∗ − xik−1 + Rkh(d
i (xik−1)) − bk ∥

2
2 + λ∥Rk ∥

2
F , (2)

where λ is the weight of the regularization term. Once Rk and
bk have been estimated, each sample xik−1 is updated to its new
location xik as follows:

xik = xik−1 − Rkh(d
i (xik−1)) + bk . (3)

After an update, we recompute a new descent map Rk+1 and a
new location xik+1.

In testing, images are normalized by the the IED and landmarks
locations xik are updated by Equation 3 starting from the initial-
ization (i.e., xi0) and using the learned CR. Figure 1 shows the
simplified flow diagram for training (left) and testing (right) SDM.
A more detailed description can be found in the original papers
[Feng et al. 2015b; Xiong and De la Torre 2013].

Regarding the two CR trained in this work, both have the same
architecture. Using a set of mean landmarks calculated from a
database ground-truth values and a bounding box, x0 is generated,
a HOG nonlinear feature extraction is performed (h(d(x0))) and
xk is updated recursively using Equation 3. The main difference
between the two regressors is the set of landmarks for which they

http://gi4e.unavarra.es/databases/gi4e/


SDM applied to accurate pupil detection in off-the-shelf eye tracking systems. ETRA ’18, June 14–17, 2018, Warsaw, Poland

Input

Output

Input

Output

Training images
i

d

iFor each train image d , 
iextract features at x k-1

Minimize the expected 
loss to obtain {R ,b } k k

(Equation 2)

Normalize images 
and calculate the initial 
landmarks estimation 

ix 0

Trained Cascaded Regressor 
(CR = r  ◦ r  ◦ … ◦ r )1 2 K

For 
each weak 
regressor rk

 k≤K?

Training parameters 
(K, λ, ...) Testing image d

Cascaded Regressor 
(CR = r  ◦ r  ◦ … ◦ r )1 2 K

Final landmark 
estimation 

xK

i
Update x k

(Equation 3)

Yes

No

Normalize image and 
calculate the initial 

landmarks estimation 
x0

For test image d, 
extract features at xk-1

For 
each weak 
regressor rk

 k≤K?

Update xk

(Equation 3)

Yes

No

TRAIN TEST

Figure 1: Flow diagram for training (left) and testing (right) SDM.

have been trained. The firstCR (named as Face Cascaded Regressor,
F-CR) is trained to detect a set of 32 landmarks which corresponds
to the facial points while the second one (named as Eye Cascaded
Regressor, E-CR) is trained to detect the inner and outer eye corners
and the pupil centers (6 landmarks).

The mean landmarks for each regressor have been calculated
aligning the ground-truth landmarks of all images into a com-
mon coordinate frame using the Generalized Procrustes Alignment
(GPA) [Cerrolaza et al. 2012a; Goodall 1991]. Figure 2 shows the
original data aligned using GPA (green) and the mean landmarks
(red).

Figure 3 shows an overview of the method proposed. Firstly, a
face bounding box is detected and the mean landmarks calculated
for F-CR (f0 := x0) are initialized (Figure 3a). Then, fk is updated
recursively as many times as the number of weak regressors com-
posing the F-CR according to Equation 3 (Figure 3b). Using the
landmarks detected by F-CR, the roll angle of the user in the im-
age can be estimated and, in order to get a nearly 0-roll pose and
prevent the tracker from getting lost, the image is rotated. In this
manner the eye bounding box is created and the mean landmarks
are calculated for E-CR (e0 := x0) as shown in Figure 3c. Finally ek

Aligned landmarks

Mean landmarks

Figure 2: Mean landmarks calculated from the alignment of
the original landmarks. Alignment has been performed us-
ing GPA.
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Figure 3: Method overview. Firstly, a face bounding box is detected and f0 is initialized (a). Then, fk is updated recursively (b).
Using the landmarks detected by F-CR, the image is rotated, the eye bounding box is created and e0 is initialized (c). Finally
ek is updated recursively (d) and the output is corrected according to the estimated rotation value.

Figure 4: Example of F-CR training data. On the left, a real
image from HELEN dataset and on the right, synthetic im-
age from UPNA Synthetic Head Pose Database. Both images
are represented with the 32 ground-truth landmarks used to
train F-CR.

is updated recursively as many times as the number of weak regres-
sors composing the E-CR (Figure 3d) and the output is corrected
according to the estimated rotation value.

Implementing image rotation before E-CR is very important to
compensate for the lack of databases that have the center of the eye
marked with the required precision. This normalization procedure
by means of a rotation reduces the variability of images and allows
E-CR to work better with fewer training images. In the case of the
F-CR, there are many more databases (no pupil center is required)
and the regressor can learn more variability.

2.1 Face Cascaded Regressor
The use of this regressor is based on the fact that, as we have already
said, to the best of our knowledge there is a lack of databases that
have the center of the eye marked with the required precision and
it is hard to perform a single step procedure which detects well in
a set of highly variable images. The F-CR training and tracking is
performed by using a tracking software written in C++ by Patrik
Huber and available on GitHub [Huber 2015; Huber et al. 2015]. The
specific details that have been implemented in the present work for
this first regressor are detailed below.

The face bounding box is detected using Viola-Jones algorithm
[Viola and Jones 2001] and the landmarks chosen to track are a
subset of 32 landmarks from the 68 points used by the Intelligent

123456 123456

Figure 5: Data augmentation example. On the left the origi-
nal image and on the right the flipped image. It is worth not-
ing that when flipping landmarks, the index numbers must
be changed to make them correspond to the opposite eye.

Behaviour Understanding Group (iBUG) [Sagonas et al. 2013b]. A
comparison using different subsets of landmarks is made and it will
be presented in evaluation section. Regarding the training process,
F-CR has been trained using both real and synthetic images: a total
of 3283 real and 1200 synthetic images have been used. The aim
of adding synthetic images to the regressor training process is to
increase the training data to make it more robust in high rotation sit-
uations with a set of images that shows high rotation values [Feng
et al. 2015a; Larumbe et al. 2017]. Real images has been chosen
from AFW [Zhu and Ramanan 2012], HELEN [Le et al. 2012], iBUG
[Sagonas et al. 2013a] and LFPW [Belhumeur et al. 2013] databases.
Nevertheless, landmarks used are re-annotated by using the iBUG
semi-automatic annotation methodology followed by an additional
manual correction [Sagonas et al. 2016, 2013b]. The synthetic im-
ages have been obtained by using the UPNA Synthetic Head Pose
Database [Larumbe et al. 2017]. Figure 4 shows an example of the
two types of images used, real (left) and synthetic (right). Both
images are represented with the 32 ground-truth landmarks used
to train F-CR.

2.2 Eye Cascaded Regressor
As regard the second regressor, E-CR training and tracking is per-
formed by using a tracking software written in MATLAB by Zhen-
hua Feng and available on GitHub [Feng 2016]. The specific details
of according to the present work this regressor are as follows:
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Figure 6: Accuracy comparison of all parameter combina-
tions with varying values of K . It can be observed that error
does not improve from K = 4.

The eye bounding box is generated using the output of the first
regressor (the obtained eye corners landmarks). Once the image is
rotated the IED is calculated and determines both eye bounding box
width and height (i.e. it is a square bounding box). Images have been
chosen fromGI4E database [Villanueva et al. 2013] which as it is said
before is a database for eye-tracking that consists of a set of more
than 1300 images acquired with a standard webcam, corresponding
to different subjects gazing at different points in the screen. In
order to improve the tracking and increase robustness, we decided
to perform a data augmentation in training by flipping images
horizontally. Figure 5 shows an example of the implementation
of this data augmentation, on the left the original image and on
the right the flipped image are presented. It is worth noting that
when flipping landmarks, the index must be changed to make them
correspond to the opposite eye. Tracking two landmarks (pupil
center ones) would be enough but it is decided to track six (inner
and outer eye corners and the pupil centers) because in the case of
having a video, these can replace the output of the first regressor
to rotate the next-frame image and generate the eye bounding box
saving computation time. However, there is no video database that
have the center of the eye marked to get results with.

Looking at equations 1 and 2, it can be observed that we can
set parameters as the regularization weight (λ) or depth (K ). Other
parameter that can be settled is the size of the local patch around
the landmarks where the HOG features are extracted. An analysis of
the optimal parameters will be discussed in the evaluation section.

3 EVALUATION
In order to apply the proposed method, we consider it important to
carry out a preliminary study of the algorithm and to evaluate its
behaviour according to the alternative parameters of the regressor.
The cascaded regressor as it has been previously described is based
on specific parameters such as the depth, i.e. the number of weak
regressors K , the regularization parameter λ and the radius of the
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Figure 7: HOGpatch size effect. It can be observed that P = 12
provides the best accuracy results and increasing P above 15
worsens results.

HOG feature P . It is important to evaluate the sensitivity of the
results according to these parameters. This study is carried out for
E-CR regressor for which the accuracy is highly relevant in this
work. In the case of F-CR is not the accuracy but the robustness that
is important in our study. The objective of the F-CR regressor is to
obtain a bounding box in which the eye area is contained hence, it
is decided to carry out a study about the robustness of the regressor
as a function of the number of landmarks employed in the detection
of the face.

This section is organized as follows, in subsections 3.1 and 3.2 the
study regarding E-CR parameters and F-CR robustness is carried out.
Once both regressors have been optimized, the results of themethod
applied to GI4E are presented and discussed in the subsection 3.3.

3.1 E-CR optimal parameters
As stated above, an analysis of the optimal parameters for E-CR has
been made. For this purpose, a data partition has been performed
splitting data into three groups: 60% for training, 20% for cross
validation and 20% for testing. It is worth noting that this splitting
has been performed by users and not by images because this ensures
independence between cross validation, test and train images. Thus,
since GI4E has 103 users, 61 are used for training, 21 for cross
validation and 21 for testing. The value ranges of the parameters
are as follows: depthK = {1, · · ·, 8}, HOG patch size P = {12, · · ·, 18}
and regularization weight λ = {1, 3, 5, 10, 30}, resulting in a total of
280 training combinations.

To evaluate the accuracy of the proposed algorithm and to com-
pare it with state of art, the relative error measure proposed by
[Jesorsky et al. 2001] is used. It first calculates the absolute error as
the Euclidean distance between pupil center estimates and ground-
truth values provided by the database and it is normalized relative
to the inter-pupillary distance (ground-truth). This is formulated
by Equation 4:
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Figure 8: Regularization weight λ analysis using cumulative
error distribution normalized by inter-pupillar distance. It
is observed that λ = 1, λ = 3 and λ = 5 present similar results.
Increasing λ above 10 worsens results.

emax =
max(dlef t ,dr iдht )

ω
, (4)

where dlef t and dr iдht are the absolute errors for the eye pair,
and ω is the inter-pupillary distance. The maximum of dlef t and
dr iдht after normalization is defined as maximum normalized error
emax . The accuracy is calculated as the percentage of images for
which the error is below specific emax values.

Firstly, a depth (K) analysis has been made on cross validation
subjects in order to determine a threshold value for K from which
the improvement is not significant. Depth is the first parameter
to be optimized because it affects the computation time, and it
is important to know if an increase of K (with its correspondent
decrease in frames per second) leads to an improvement in terms
of accuracy. Figure 6 shows a box-plot comparing the accuracy
emax ≤ 0.025 of all parameter combinations with varying values
of K . It can be observed that from K = 4 the accuracy emax ≤

0.025 does not improve significantly. Once K is set to 4, the next
parameter to optimize is the HOG patch size, i.e. P , which also has
an effect on the computation time of the algorithm. Figure 7 shows
a box-plot comparing the accuracy emax ≤ 0.025 of all parameter
combinations with varying values of P . It can be observed that
P equal to 12 provides the best accuracy results and increasing
P above 15 worsens results. The last parameter to optimize is the
regularization weight, i.e. λ. It is selected using the cumulative error
distribution of parameter combinations with K = 4 and P = 12 as
it is shown in Figure 8. It is observed that λ = 1, λ = 3 and λ = 5
present similar results, but λ = 1 is selected because it presents a
higher percentage of images with emax ≤ 0.025.

Finally, according to the previous analysis the E-CR with K = 4,
P = 12 and λ = 1 values is selected.
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Figure 9: Accuracy comparison of all training with varying
values of N . It can be observed that error does not improve
from N = 32.

3.2 F-CR robustness
In this section the effect of the number of landmarks detected by
the F-CR is studied. As well as the depth parameter, the number of
landmarks detected by the F-CR affects the computation time, and
it is important to know if an increase of the number of landmarks
detected leads to an improvement of final result. For this purpose a
different data partition is performed: data have been divided into
two groups, 80% for training and 20% for testing (split by users).
However to avoid the possible bias derived from the specific set
of training users in the result, a hundred random splits have been
performed and the accuracy of result has been calculated from the
average of all of them.

The number of landmarks N selected for the study are {4, 6, 8,
12, 24, 32, 68} and results are shown in Figure 9. It can be observed
that error does not improve from N = 32.

3.3 Results and discussion
Using the optimal parameters of E-CR and the optimal number of
points detected by F-CR obtained in previous sections, i.e. N = 32
for F-CR andK = 4, P = 12, λ = 1 for E-CR, a new thousand random
splits have been performed (80% for training and 20% for testing)
and the final result has been calculated from the average of all of
them. The evaluation of the proposed method on the GI4E database
and his comparison with state of the art methods are summarized
in Table 1. In order to compare the results, three accuracy levels
have been defined: emax ≤ 0.05, emax ≤ 0.1 and emax ≤ 0.25.

The proposed method gains the best results for all accuracy mea-
sures emax ≤ 0.05, emax ≤ 0.1 and emax ≤ 0.25. Most of the
methods in the comparison do not use training strategies but they
employ alternative ad-hoc designed algorithms. More specifically,
the second best emax ≤ 0.05 of them [Gou et al. 2016] is based on
a similar cascaded regression strategy trying to use eye synthetic
images in order to augment the training data. This method presents
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Table 1: Accuracy comparison for pupil center localization on the GI4E Database

Method emax ≤ 0.05 emax ≤ 0.1 emax ≤ 0.25

Timm2011[Timm and Barth 2011] 92.40% 96.00% 97.50%
Baek2013[Baek et al. 2013] 79.50% 88.00% -

Villanueva2013[Villanueva et al. 2013] 93.90% 97.30% 98.50%
Zhang2016[Zhang et al. 2016] 97.90% 99.60% 99.99%
Gou2016[Gou et al. 2016] 98.20% 99.80% 99.80%
Gou2017[Gou et al. 2017] 94.20% 99.10% 99.80%

Ours 99.14% 99.99% 100%
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Figure 10: Accuracy curves of the proposed and the state
of the art methods on the GI4E database. Box-plots repre-
senting the distribution of the thousand splits used in our
method are included.

the second best results for emax ≤ 0.05 in their first version how-
ever the accuracy decreases for a later work of the same authors
[Gou et al. 2017]. The third best emax ≤ 0.05 method [Zhang et al.
2016] consists in calculating the isophote curves, i.e. curves of equal
intensity, of the gradient image assuming that the large contrast in
the pupil or iris area will permit a rough estimation of the center
by using a voting procedure. Additional stages are required in the
method in order to achieve a more accurate detection of the center
for the GI4E such as a selective oriented gradient filter, i.e. SOG fil-
ter, energy maps post processing and iris radius constraints among
others.

However, a further accuracy analysis is made as shown in Fig-
ure 10 in which accuracy curves of the proposed and the state of
the art methods are compared on the GI4E database. Gou2016[Gou
et al. 2016] and Gou2017[Gou et al. 2017] results are not shown
because the data are not publicly available. Furthermore, box-plots
representing the distribution of the thousand splits used in our
method are included, showing that our method has an outstanding
improvement capability. The curve ours(*) shows the case in which

E-CR with K = 4, P = 12 and λ = 1 is selected and the eye cor-
ners are ideally detected, i.e. F-CR is obviated and ground-truth is
used instead. From the graph the potential benefits of the proposed
method in terms of accuracy can be easily appreciated.

4 CONCLUSIONS
We have presented a two stage procedure based on SDM and R-
CR-C methods by which to detect the pupil center. Two cascaded
regressors have been trained, tested and optimized. The first one, F-
CR is optimized to detect a set of 32 landmarks which corresponds
to the facial points while the second one, E-CR is optimized to
detect the inner and outer eye corners and the pupil centers. The
proposed method is successfully applied to one of the state of art
databases such as GI4E.

The results achieved by our method using SDM show promising
outcomes as well as great capacity for improvement as it has been
shown in our preliminary results. Since it is based on training, our
method presents a significant adaptability power to alternative
databases and robustness. As future work we propose to pursue
in alternative training ways in order to improve the accuracy and
robustness of the face detection stage. More specifically, a careful
study of different face detectors used to initialize the first cascaded
regressor is proposed.
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