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Imbalanced classification problems are attracting the attention of the research community
because they are prevalent in real-world problems and they impose extra difficulties for
learning methods. Fuzzy rule-based classification systems have been applied to cope with
these problems, mostly together with sampling techniques. In this paper, we define a new
fuzzy association rule-based classifier, named FARCI, to tackle directly imbalanced classifi-
cation problems. Our new proposal belongs to the algorithm modification category, since it
is constructed on the basis of the state-of-the-art fuzzy classifier FARC–HD. Specifically, we
modify its three learning stages, aiming at boosting the number of fuzzy rules of the minor-
ity class as well as simplifying them and, for the sake of handling unequal fuzzy rule
lengths, we also change the matching degree computation, which is a key step of the infer-
ence process and it is also involved in the learning process. In the experimental study, we
analyze the effectiveness of each one of the new components in terms of performance,
F � score, and rule base size. Moreover, we also show the superiority of the new method
when compared versus FARC–HD alongside sampling techniques, another algorithm mod-
ification approach, two cost-sensitive methods and an ensemble.
� 2021 The Authors. Published by Elsevier Inc. This is an open access article under theCCBY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Classification problems have been widely tackled using fuzzy techniques [1,2]. In the last years, imbalance classification
problems [3,4] have gained attention from the research community, since they are common in real-world problems [5,6].
There exist multi-class imbalanced classification problems [7] and binary ones, where the examples of one class (known
as majority or negative class) outnumber those of the other one (known as minority or positive class), which entails difficul-
ties for the learning of the classifiers [8]. In this paper, we focus on binary imbalanced classification problems as they are
frequent in real-world problems.

Techniques usually applied to tackle this problem can be grouped in four categories: 1) data preprocessing methods
[9,10], which are independent of the classifier because they are focused on sampling the dataset, either to balance it or easing
the subsequent learning of the classifier; 2) algorithm modification methods [11–13], which consist in modifying existing
algorithms or creating new ones to deal directly with imbalance problems; 3) cost-sensitive methods [14–16], where a larger
cost is assigned during the learning process to the misclassified examples of the minority class to enhance the classifier
adia s/n,
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performance and 4) ensemble approaches [17,18], which are composed of several classifiers usually combined with sampling
techniques to improve the performance of individual classifiers.

Fuzzy Rule-Based Classification Systems (FRBCSs) [19] are a type of fuzzy classifiers that have been widely used to cope
with classification problems [20]. FRBCSs usually obtain accurate results and interpretable models as a result of using lin-
guistic terms in the antecedent of IF-THEN rules. A state-of-the-art FRBCS is the Fuzzy Association Rule-based Classification
model for High-Dimensional problems (FARC–HD) [21], which has been used as the basis of many proposals to cope with
classification problems [22,23]. FARC–HD, like all the FRBCSs, can deal with uncertainty, ambiguity or vagueness in a very
effective way. These properties are interesting when tackling imbalanced problems, as uncertainty is inherent to them
and, consequently, FRBCSs have shown to perform well when they are combined with preprocessing methods [24] or with-
out them [25].

The aim of this paper is to design a new FRBCS that is able to deal directly with imbalanced classification problems. We
develop modifications in all the stages of FARC–HD and, therefore, our new method is embraced in the algorithm modifica-
tion category. We name our proposal FARCI as it is a Fuzzy Association Rule-based Classifier for Imbalanced classification
problems. Specifically, the novelties of FARCI are:

� The fuzzy association rule learning is no longer driven by the confidence [26] but the lift [27] to generate only fuzzy rules
with a positive relationship between the antecedent and the consequent.

� The philosophy of the usage of the pattern weighting scheme applied to select the most interesting fuzzy rules [28] as
well as the initialization of the hyper-parameters involved in this process are changed. As a consequence, the number
of the generated fuzzy rules for the minority class is boosted.

� The fitness function used in the evolutionary process is modified so that it uses a proper metric to measure the perfor-
mance in imbalanced scenarios.

� The computation of the matching degree is carried out by appropriate operations so that they are not affected by the
unequal number of antecedents on the fuzzy rules learned from different classes.

All these new components are aimed at making FARCI obtain accurate results without using preprocessing techniques,
which could lead to under or over fitting problems [9]. This enhancement is possible because FARCI is designed so that
the fuzzy rule base is better suited for these problems. Specifically, the number of fuzzy rules of the minority class is enlarged
and, additionally, the number of antecedents that compose the rules is reduced, making the fuzzy rules simpler.

To support the quality of our new method, we conduct an experimental study where: 1) we analyze the influence of each
one of the new components of FARCI in terms of performance and rule base size; 2) we study whether our new method,
when applying all the components, is able to improve the results of FARC–HD when it is used alongside preprocessing
approaches and 3) we compare the results of FARCI versus those obtained by GP-COACH-H [12] as a representative of algo-
rithm modification methods, C45CS [15] and C-SVMCS [14] as representatives of cost-sensitive methods and EUSBoost [18]
as a representative of ensemble approaches. To do so, we consider 66 imbalanced datasets selected from the KEEL dataset
repository [29], we measure the performance of the methods by means of the F � score and we conduct an appropriate sta-
tistical study as suggested in the specialized literature [30].

The remainder of the paper is organized as follows: in Section 2 we recall some preliminary concepts related to both
imbalanced classification problems and FRBCSs and, then, we describe in detail our newmethod in Section 3. The experimen-
tal framework and the obtained results with an analysis are presented in Sections 4 and 5, respectively. The main conclusions
are drawn in Section 6.
2. Preliminaries

In this section, we first recall some concepts about imbalanced classification problems (Section 2.1) and then we describe
FRBCSs focusing on the FARC–HD algorithm [21], since it is the basis of our new method (Section 2.2).

2.1. Imbalanced classification problems

A classification problem consists in learning a mapping function named classifier from a training set, which is a set of P
training examples, ðxp; ypÞ, where p 2 f1; . . . ; Pg. Each example xp is composed of n attributes, ðxp1; . . . ; xpnÞ being xpi the value
of the i-th attribute ði 2 f1;2; . . . ; ngÞ, and it belongs to a class yp 2 C ¼ f1;2; . . . ;mg, where m coincides with the number of
classes of the problem. The learned classifier allows to classify previously unknown examples.

When the number of examples belonging to each of the classes is different, the classification problem suffers from the
problem of data imbalance [3,4]. Learning from this kind of problem has been identified as one of the main challenges in
data mining [8]. Binary imbalanced classification problems are very common in real-world applications [6], where one of
the classes is represented by a large number of examples (known as majority or negative class) and the other one is repre-
sented by only a few ones (known as minority or positive class). The Imbalance Ratio (IR) is equal to the number of examples
of the majority class divided by the number of examples of the minority class and it characterizes the imbalance degree of
the problem. In this scenario, classifiers tend to predict the examples as majority class, ignoring the minority class. However,
266
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the IR is not the only difficulty that should be taken into account during learning. These problems are also characterized by
small disjuncts [31], overlapping among classes and other problems that may provoke a degradation of the system’s perfor-
mance [8]. To cope with them, four different strategies are usually applied: 1) to preprocess the data using sampling methods
[9], which have been successfully applied to boost the performance of FRBCSs [24]; 2) to modify existing classifiers so that
they can internally take into account this problem [11,32], which has also applied to rule-based classifiers [13,15]; 3) to con-
sider cost-sensitive solutions [33] which were used to improve FRBCSs in imbalanced big data problems [16] and 4) to use
ensembles of classifiers designed for imbalanced scenarios [17], where the base classifier is usually a rule based one like a
decision tree.

When dealing with imbalanced datasets, a key point is the choice of an appropriate metric to measure the performance of
the classifiers, since the accuracy rate may lead to obtaining erroneous conclusions [34]. Consequently, different metrics,
derived from a confusion matrix (see Table 1), are usually applied in this framework, such as the geometric mean (Eq.
(1)), the balanced accuracy (Eq. (2)) or the F � score (Eq. (3)).
1 We
GM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPrate � TNrate

p
ð1Þ

Balacc ¼ TPrate þ TNrate

2
ð2Þ

F � score ¼ 2 � Precision � TPrate

Precisionþ TPrate
; ð3Þ
where TPrate and TNrate are the percentages of correctly classified examples belonging to the minority and majority classes,
respectively, and Precision is the percentage of correctly classified examples of the minority class from those predicted as the
minority class.

Both AUC and GM are common criteria to measure the performance of a classifier in a data imbalance framework. How-
ever, in this paper we consider the usage of the F � score as the performance metric as it does not consider the TNrate and,
consequently, it is less sensitive to the IR [35].

2.2. Fuzzy rule-based classification systems and FARC–HD

Among the many existing methods to tackle classification problems, FRBCSs are widely used because they provide accu-
rate results as well as an interpretable model [19]. Specifically, this interpretability is obtained from the usage of linguistic
terms in the antecedents of their rules as shown in Eq. (4).
Rule Rj : If x1 is Aj1 and . . . and xn is Ajn then Class ¼ Cj with RWj ð4Þ

where Rj is the label of the j-th rule, x ¼ ðx1; . . . ; xnÞ is an n-dimensional pattern vector representing the example, Aji is a fuzzy
set, Cj 2 C is the class label and RWj is the rule weight [26].

FARC–HD [21] is currently one of the most accurate and interpretable FRBCSs in the literature. Our new method is con-
structed on its basis and, consequently, we remind both its three learning stages and its inference process.

The first stage of the learning consists in applying the Apriori algorithm [36] to learn the initial fuzzy rules. In this stage,
triangular shaped membership functions are used to model the linguistic labels, which are obtained performing an homo-
geneous partition of the input space of each input attribute. In this case, each item is a linguistic label and the support
and confidence1 are computed using Eqs. (5) and (6), respectively:
SuppðAjÞ ¼ 1
P

XP
p¼1

lAj
ðxpÞ; ð5Þ

Conf ðAj ! CjÞ ¼
P

xp2ClassCj
lAj

ðxpÞPP
p¼1lAj

ðxpÞ
; ð6Þ
where lAj
ðxpÞ is the matching degree of the example xp to the antecedent part of the fuzzy rule Rj, which is computed using

Eq. (7):
lAj
ðxpÞ ¼ TðlAj1

ðxp1Þ; . . . ;lAjnj
ðxpnj ÞÞ; ð7Þ
where Aj is the antecedent of the fuzzy rule Rj;lAji
ðxpiÞ is the membership degree of the example with the i-th antecedent of

the rule Rj; T is a T-norm and nj is the number of antecedents of the rule.
In this stage, it is necessary to specify the minimum support, MinSupp, and confidence, MinConf. Specifically, the mini-

mum support is weighted by the distribution of the classes of the problem. In this manner, the minimum support value
must point out that the support and the confidence are computed for the items included in Ai and the fuzzy rule Aj ! Cj , respectively.
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Table 1
Confusion matrix for a two-class problem.

Minority prediction Majority prediction

Minority class True Positive (TP) False negative (FN)
Majority class False positive (FP) True negative (TN)
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can be different for each class: MinSuppCj
¼ MinSupp � f Cj

, where f Cj
is the proportion of examples belonging to class Cj in the

dataset. Consequently, it is suitable to deal with imbalanced classification problems.
The learning process of the original Apriori algorithm is adapted to deal with classification problems. Specifically, the

Apriori algorithm is applied as many times as the number of classes. For a specific class, the Apriori algorithm obtains a
set of frequent itemsets and we generate as many fuzzy rules as frequent itemsets by setting: 1) the antecedent to the lin-
guistic labels composing the itemset; 2) the consequent to the class under study and 3) the rule weight to the confidence of
the generated fuzzy rule. The process to obtain the itemsets for each class starts by initializing a search tree with an empty
node. Then, it creates the first level of the tree by listing all the possible itemsets composed of 1 item (nodes of the tree). For
each itemset the support of the itemset and the confidence of the fuzzy rule that would be generated are computed. An item-
set is called frequent itemset when its support is larger than MinSupp. Otherwise, the itemset does not need to be further
extended (its node) due to the anti-monotone property of the support. When the confidence is larger than MinConf, it does
not need to be extended as it has reached a satisfactory level of quality. In order to create the second (and subsequent) level
(s) of the tree, this method combines the itemset in a node with those of nodes that can be further extended as long as they
can be combined.2 Note that the depth of the tree is limited (parameter MaxDepth) to obtain short rules that are easy to under-
stand for the users.

After applying the Apriori algorithm, a lot of fuzzy rules are created. Consequently, the second stage of FARC–HD consists
in selecting the most interesting rules by means of the application of a pattern weighting scheme [28]. Specifically, the qual-
ity of each fuzzy rule, Rj : Aj ! Cj, is measured using (8), which considers both the weights of the examples, wp, and the
matching degrees of the examples with the fuzzy rule. The larger the value of this equation the better the quality of the fuzzy
rule. We have to point out that this scheme of weighted rules with moving example cover has also been used in other works
like [37].
2 Two
generat

3 Fuz
wWRAcc00ðRjÞ ¼ n00ðAj � CjÞ
n0ðCjÞ � n00ðAj � CjÞ

n00ðAjÞ � nðCjÞ
P

� �
; ð8Þ
where nðCjÞ is the number of examples of class Cj and
n00ðAjÞ ¼
XP
p¼1

wp � lAj
ðxpÞ;

n00ðAj � CjÞ ¼
X

xp2ClassCj

wp � lAj
ðxpÞ;

n0ðCjÞ ¼
X

xp2ClassCj

wp:
The key point of this method is the assignment of the weights. Initially, the weight of each example is set to 1. Then, the
best rule according to (8) is selected and the weights of the examples covered by that rule are decreased according to the
formula wp ¼ 1

cp
, where p 2 f1; . . . ; Pg and cp represents the number of times the p-th example has been covered by any of

the already selected rules. When an example has been covered kt times its weight is set to 0 (it is no longer considered).
Obviously, the selected fuzzy rule cannot be selected anymore. This process is repeated until one of the stopping criteria
is fulfilled: 1) all the examples have been covered more than kt times or 2) all the fuzzy rules have been selected. This
weighting scheme implies that examples with larger weights have a greater chance of being covered by the next fuzzy rules
and, consequently, difficult examples are also covered as the iterative process runs.

This second stage, like the Apriori algorithm, is repeated for each class. That is, first the Apriori algorithm learns fuzzy
rules for a specific class and then the most interesting ones are selected according to this procedure. In this manner, the sec-
ond stage does not take into account fuzzy rules from the remaining classes.

In the third stage, once fuzzy rules from all the classes are learned and selected, an evolutionary process is carried out in
order to optimize the lateral position of the membership functions [38] and to perform a rule selection process. The synergy
between tuning and rule selection enables to contextualize the membership functions to the problem and to obtain a com-
pact fuzzy rule set with a high cooperation degree among them.3. Eq. (9) is used as the fitness function to measure the quality
of each chromosome (solution), C.
itemsets cannot be combined when they share items (linguistic labels) belonging to the same attribute. Consequently, this process avoids the
ion of fuzzy rules where an attribute is used more than once.
zy rules that cooperate properly among them when used (combined) in the inference process are able to obtain a good classification performance.
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FitnessðCÞ ¼ #Hits
P

� d � NRinitial

NRinitial � NRþ 1
; ð9Þ
where #Hits
P is the accuracy rate, NRinitial is the number of fuzzy rules before applying the evolutionary process and NR is the

number of rules selected by solution C.
Finally, to classify a new example xp, FARC–HD applies the Fuzzy Reasoning Method (FRM) [39] known as additive com-

bination, which uses the information of all the fired fuzzy rules to predict the class of the example: First, the total vote
strength for each class is computed (Eq. (10)) and, then, the example xp is classified in the class yielding the largest value.
VClassk ðxpÞ ¼ f
Rj2RB and Cj¼k

lAj
ðxpÞ � RWj ð10Þ
where j 2 f1; . . . ; Lg; L is the number of fuzzy rules in the fuzzy rule base and f is an aggregation function like the maximum or
the normalized sum, which lead to the winning rule or the additive combination FRMs [39], respectively. The Choquet inte-
gral and its generalizations [22] can be also used as the aggregation function f.

3. A fuzzy association rule-based classifier for imbalanced classification problems

In this section we describe in detail our newmethod, FARCI, which consists in a modification of all the stages of FARC–HD
[21] to tackle imbalanced classification problems. First, we present the change in the matching degree computation (Sec-
tion 3.1), then we explain the modifications in the fuzzy rule generation process (Section 3.2) and in the selection of the gen-
erated fuzzy rules (Section 3.3). Finally, we describe the change in the fitness function for the evolutionary process
(Section 3.4).

3.1. Matching degree computation

The matching degree between an example and the antecedent of a fuzzy rule (Eq. (7)) is used in several components of the
method, namely, in the computation of the support and confidence in the fuzzy rule learning process, in the equation used to
measure the quality of fuzzy rules (Eq. (8)) as well as in the FRM of the method. Consequently, it plays a key role for the
success of this method.

However, the product is considered as the T-norm in FARC–HD, which may not be the best choice for imbalanced prob-
lems as it penalizes fuzzy rules having a larger number of antecedents. This is a key point because a specific feature of imbal-
anced classification problems is that examples of the minority class are usually gathered in small groups (known as small
disjuncts), which usually implies that the length of fuzzy rules of the minority class is larger than that of those of the major-
ity class. For example, we can think of two fuzzy rules composed by one (fuzzy rule A) and three (fuzzy rule B) linguistic
terms in their antecedents, respectively. If the membership degree of an example to the antecedent of fuzzy rule A is 0.5
and the membership degrees of that example to the three antecedents of fuzzy rule B are all 0.75, the resulting matching
degrees are 0.5 and 0.42 for fuzzy rules A and B, respectively. Consequently, one may be mislead to think that fuzzy rule
A is more suitable, when B is a better option.

To deal with this problem, in the last years, there have been contributions where the conjunction among fuzzy sets in
FRBCSs is modeled by means of different operators like overlap functions [40] and their usage even improves performance
of the system when they have an averaging behavior [23,41]. For this reason, we propose the usage of averaging aggregation
functions instead of T-norms to compute the matching degree. Specifically, we consider the usage of: 1) the geometric mean,
as a representative of n-dimensional overlap functions and 2) the arithmetic mean, since it is the classical mean operator,
with a modification: if any of the input membership degrees is 0, we set the result of the matching degree to 0 as well, since
it means that this example does not match all the antecedents of the fuzzy rule.

3.2. Generation of fuzzy association rules

The criteria for evaluating the quality of the fuzzy association rules by the Apriori algorithm, the support and confidence
(Eqs. (5)), have some well-known problems [27]. On the one hand, the support may discard useful fuzzy rules derived from
low support items. On the other hand, the confidence may generate spurious fuzzy rules and reject interesting ones as a
result of not taking into account the class distribution of examples. It is obvious that low support items would correspond
to those from minority class examples and we hypothesise that interesting fuzzy association rules from the minority class
may be rejected (or becoming complicated by adding more antecedents) because of the confidence.

The original FARC–HD method already takes into account the problem derived from the support by using a different Min-
Supp threshold for each class, which depends on the class distribution. However, it does not address problems derived from
the confidence and, to cope with them, we propose the usage of the lift [27] (Eq. (11)), which is also known as interest,
adapted to work in a fuzzy setting.
LiftðAj ! CjÞ ¼
P

xp2ClassCj
lAj

ðxpÞPP
p¼1lAj

ðxpÞ � f Cj

ð11Þ
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From an statistical point of view, the lift measures the deviance of the support of the fuzzy rule against its support under
the assumption of statistical independence. Consequently, we can interpret the result of Eq. (11) as follows:
LiftðAj ! CjÞ
< 1; if Aj and Cj are negatively related;
¼ 1; if Aj and Cj are independent;
> 1; if Aj and Cj are positively related:

8><
>:
Thus, in the fuzzy rule generation process, instead of checking whether the confidence is greater than MinConf to decide
that an itemset does not need to be extended, we check whether the lift is greater than 1 to obtain exclusively the rules with
a positive relationship between the antecedent and the consequent. In this case, we generate the corresponding fuzzy rule
and we assign the confidence of the itemset as the rule weight. Note that any of the confirmation measures studied in [42]
could be used for the rule generation process, by setting 0 instead of 1 as the value of the threshold, to obtain the same set of
rules.

We must point out that when computing the lift we use the matching degree and, consequently, the modification pro-
posed in Section 3.1 is also involved in the fuzzy association rule generation process. In [43], Burda points out that not every
T-norm is suitable for the fuzzy lift computation. However, in our case, as the itemset in the consequent of fuzzy rules is a
class, we have no restrictions.

3.3. Selection of fuzzy association rules

In the rule selection process, FARC–HD quantifies the interest of the rules of a specific class (locally to that class) by apply-
ing Eq. (8) and consequently, it does not take into account fuzzy rules form other classes. In our new proposal, we use Eq. (8)
as well but we do the selection globally, i.e., when the fuzzy rules of all classes have been learned by the Apriori algorithm.
This may seem like a small change, but it boosts and prioritizes the selection of fuzzy rules of the minority class because:

� The first term of the product is a sort of support of the fuzzy rule but focused on a specific class. Therefore, both classes are
under the same conditions as the class distribution does not affect the result.

� The penalizing factor of the second term of the product implies a larger penalization for the fuzzy rules of the majority
class and, consequently, fuzzy rules from the minority class have more chances of being selected (and earlier) than those
of the majority class.

Moreover, for the sake of boosting the selection of fuzzy rules of the minority class, we also propose the following mod-
ifications on the hyper-parameters of this stage:

� To use a different value for Kt for each class, which determines the number of times an example needs to be covered
before setting its weight to 0. Specifically, we set it to Kt;Cj

¼ bKt
f Cj
c, which implies a larger value for examples of the minor-

ity class. In this manner, examples of the minority class need to be covered more times than those of the majority class,
giving more chances to fuzzy rules of the minority class to be selected.

� To modify the updating of the counter that quantifies the number of times an example is covered (cp). We propose to
increase it only when the class of the example coincides with that of the fuzzy rule. Consequently, we assure that exam-
ples are covered by Kt;Cj

fuzzy rules of its class before setting their weights to 0. Consequently, the weights of the exam-
ples of the minority class will not be set to 0 because they are only covered by fuzzy rules of the majority class.

� To set the initial values of the weights of the examples depending on their class. We propose the initial weights to range
between the value of an example that has been covered by one fuzzy rule and the initial weight value in the original set-
ting, i.e., to be within ½0:5;1:0�. Specifically, we set the weights of examples of the minority class to 1:0 and that of those of
the majority class to the result of 1:0=IR translated to ½0:5;1:0� : 1

2�IR þ 0:5. As a result, the larger the IR the closer the weight
of examples of the majority class will be to 0:5, which implies that fuzzy rules of the minority class would have more
chances of being selected.

3.4. Fitness function of the evolutionary process

The quality of the chromosomes of the evolutionary process in the last stage of FACR-HD is measured by Eq. (9), which is
based on the accuracy rate (#Hits) and the ratio of selected fuzzy rules.

It is well-known that the accuracy rate is not a suitable metric for imbalanced problems and, therefore, we propose to use
the F � score (Eq. (3)))) to measure the performance of each solution. Furthermore, as the number of generated rules in this
setting is usually not as large as in standard classification problems, we propose to omit the ratio of selected fuzzy rules.
Consequently, the fitness function used in FARCI is
FitnessðCÞ ¼ F � score
270
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Different metrics for imbalanced problems [44] could be used to guide to optimization process by changing the F � score
by the desired metric in the fitness function.

4. Experimental framework

In this section, we present the set-up of the experimental framework for the experiments conducted in this paper. First,
we introduce the selected datasets for the experimental study and the considered statistical tests to support the quality of
our proposal (Section 4.1). Finally, we show the methods used in the comparative study and their set-up (Section 4.2).

4.1. Datasets and statistical tests

We have selected 66 datasets from the KEEL dataset repository [29]. Specifically, 22 of the datasets have an IR less than
9.0 and the remaining 44 datasets have an IR larger than 9.0, belonging to Part I and II of this repository. Features of these
datasets as well as the detailed results obtained from the approaches considered in this paper can be shown in https://
github.com/JoseanSanz/FARCI.

To carry out the different experiments we consider a stratified 5-fold cross-validation model, i.e., we take 5 random parti-
tions of the data (each with 20%) and, for each, consider the combination of 4 of them (80%) as training and the remaining
one as test. For each dataset we show the average results of the five partitions.

To give statistical support to the analysis of the results, we conduct a series of non-parametric tests as suggested in the
specialized literature [30]. Specifically, for pairwise and group comparisons we consider the Wilcoxon signed-ranks test and
the Aligned Friedman test besides the Holm post hoc test, respectively. Holm’s test is applied to detect the algorithms reject-
ing the null hypothesis of equivalence (we report the Adjusted P-Value, APV) against the control method determined by the
Aligned Friedman test.

4.2. Methods and set-up for comparison

The base set-up of our new method is shown in Table 2.4 Linguistic labels are modeled using uniformly distributed trian-
gular membership functions, which form a strong partition. In our experiments, we study the influence of the operation used to
compute the matching degree (product, arithmetic mean and geometric mean) as well as the criterion used in the fuzzy asso-
ciation rule generation process (confidence and lift).

We confront our proposal versus the original FARC–HD fuzzy classifier [21] after processing the data by sampling meth-
ods. The set-up of FARC–HD is the one shown in Table 2 in order to make a fair comparison. Specifically, we used:

� Under-sampling methods: Random Under-Sampling (RUS) [9], Tomek’s Links (TL) [45], Condensed Nearest Neighbor
(CNN) [46], One Sided Selection (OSS) [47] and Neighborhood Cleaning Rule (NCL) [48].

� Over-sampling methods: Random over-sampling (ROS) [9] and Synthetic Minority Over-sampling TEchnique (SMOTE)
[49].

� Hybrid methods: SMOTE besides TL (SMOTE-TL) [9] and SMOTE besides Edited Nearest Neighbor (SMOTE-ENN) [9].

We will only show the results of those sampling methods that help FARC–HD enhance its results with respect to those
obtained without applying any sampling method.

Furthermore, we compare our method to all internal approaches and ensembles provided in the KEEL software tool [50]:

� Genetic Programming-based learning of COmpact and ACcurate fuzzy rule-based classification systems for High-
dimensional problems Hierarchical [12], GP-COACH-H: it is a genetic programming approach that creates a hierarchical
knowledge base, which is subsequently optimized by an evolutionary process that performs both a fuzzy rule selection
process and a tuning of the lateral position of the membership functions. This process is carried out after preprocessing
the data by means of SMOTE.

� C4.5 Cost-Sensitive [15], C45CS: it is a generalization of the standard C4.5 decision tree induction algorithm where an
instance-weighting method is used to change the class distribution, which implies to learn trees in favour to the class
associated with larger costs (weights).

� C-SVM Cost-Sensitive [14], C-SVMCS: it is a modification of support vector machines, where a guided repetitive under-
sampling strategy is implemented to ‘‘rebalance” the dataset at hand. It allows both to extract informative examples
and to remove redundant and noisy ones.
4 We have to point out that the minimum confidence hyper-parameter is not used in the versions of FARCI using the lift in the fuzzy association rules
learning stage.
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Table 2
Setup of FARCI.

Parameters

Num. of linguistic labels per variable: 5
Minimum Support: 0.05
Minimum Confidence: 0.8
Maximum depth: 3
Parameter k: 2
Evaluations: 20000
Number of individuals: 50
a parameter: 0.02
Bits per gen: 30
Rule weight: confidence
Inference: additive combination
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� Ensemble learning classifier with under-sampling preprocessing with C4.5 Decision Tree as Base Classifier [18], EUSBoost:
this approach combines the Boosting algorithm with the evolutionary under-sampling technique to construct an ensem-
ble of C4.5 decision trees. Furthermore, it promotes diversity by favoring the usage of different subsets of majority class
instances to train each base classifier, which makes it outperform state-of-the-art ensemble methods in imbalanced
domains.

The configuration of the previous methods is the default one provided in the KEEL software tool according to the sugges-
tion of the authors of the different techniques [50].
5. Experimental results and analysis

This section is aimed at showing the results of our new approach with a triple objective:

� To analyze the influence of the different components and the hyper-parameters of the fuzzy association rule learning
stage of FARCI in terms of performance as well as rule base size (Section 5.1).

� To study whether our new method (when applying all the components) is able to enhance the results of the FARC–HD
fuzzy classifier, since it is the basis of FARCI, alongside sampling methods (Section 5.2).

� To check whether it provides competitive results versus well-known methods developed to avoid the usage of sampling
techniques (Section 5.2).

5.1. Analyzing the influence of the components of FARCI

Though our final proposal makes usage of all the modifications described in Section 3, in this section we study the suit-
ability of each one by showing the results of FARCI in an incremental way. That is, we start showing the results of the original
FARC–HD, which is the basis of our new method, and then we include each component one by one. First, we only include the
modification of the Fitness function (FARCIF), then, we include the modification of the fuzzy association rule learning stage by
using the Lift (FARCIFL) and, finally, we add the changes made in the fuzzy rules Selection stage (FARCIFLS). For each compo-
nent, we also show the influence of the matching degree computation, namely, when using the product, the arithmetic mean
and the geometric mean (they are identified using P;AM and GM as superscripts, respectively).

In Table 3 we show the results obtained in testing by the different versions of FARCI, which are measured in terms of the
F � score. We only show the mean result of each version (and the standard deviation �), that is, for each dataset we compute
the mean of the 5 folds and we average the result of the 66 datasets.5 This table is horizontally split in groups according to the
components of the new approach. Specifically, we show the global mean (in the 66 datasets), MeanG, besides the averaged
results in datasets whose IR is less, MeanIR<9, and larger or equal, MeanIRP9, than 9. In each scenario, we highlight in
bold-face the best result.

To study how the different components affect the rule base size, we consider the average number of: 1) fuzzy rules for
each class (nR+ and nR- for the positive and negative classes, respectively) and 2) antecedents by fuzzy rule for each class
(nA+ and nA-) for each component. We show these results in Table 4.

According to the results shown in Table 3 we can observe a leap in the performance of the system each time a new com-
ponent is introduced. This improvement is clearly shown both in the global behaviour of the method as well as for datasets
whose IR is larger or equal than 9. For low imbalanced datasets (IR < 9), the main contribution is provided by the inclusion of
the fitness function, another leap can be observed when introducing the modification in the fuzzy rules selection (FARCIFLS)
5 The results obtained for each dataset and fold by each version can be found in https://github.com/JoseanSanz/FARCI
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Table 3
Averaged testing results (F � score) obtained by the different versions of FARCI
(and the standard deviation �).

Method MeanG MeanIR<9 MeanIRP9

FARC–HD 0.6073 � 0.1157 0.7404 � 0.0562 0.5407 � 0.1448

FARCIPF 0.6377 � 0.1207 0.7760 � 0.0524 0.5685 � 0.1542

FARCIAMF 0.6392 � 0.1160 0.7836 � 0.0430 0.5670 � 0.1517

FARCIGMF 0.6425 � 0.1181 0.7832 � 0.0502 0.5722 � 0.1513

FARCIPFL 0.6600 � 0.1271 0.7826 � 0.0486 0.5986 � 0.1655

FARCIAMFL 0.6608 � 0.1299 0.7828 � 0.0522 0.5997 � 0.1679

FARCIGMFL 0.6576 � 0.1313 0.7775 � 0.0513 0.5977 � 0.1704

FARCIPFLS 0.6666 � 0.1210 0.7876 � 0.0479 0.6062 � 0.1569

FARCIAMFLS 0.6708 � 0.1150 0.7886 � 0.0475 0.6119 � 0.1480

FARCIGMFLS 0.6768 � 0.1205 0.7917 � 0.0452 0.6194 � 0.1573

Table 4
Average rule base sizes of the different versions of
FARCI. nR+ and nR- are the number of rules of the
minority and majority classes whereas nA+ and nA-
are their average number of antecedents.

Method nR+ nR- nA+ nA-

FARC–HD 4.04 4.22 2.14 1.16

FARCIPF 4.68 5.09 2.14 1.18

FARCIAMF 4.64 5.43 2.15 1.14

FARCIGMF 4.73 5.40 2.14 1.14

FARCIPFL 4.47 5.14 1.04 1.07

FARCIAMFL 4.47 5.02 1.04 1.06

FARCIGMFL 4.44 5.01 1.04 1.06

FARCIPFLS 8.17 4.66 1.06 1.05

FARCIAMFLS 8.70 4.80 1.11 1.07

FARCIGMFLS 8.59 4.74 1.10 1.06
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and the remainder components do not provide a significant improvement. Therefore, the analysis made in this section is
focused in the behavior of FARCI at global level, that is, we will use only the results shown in the second column of Table 3
(MeanG).

The first component we analyze is the modification of the fitness function FARCIF . We can observe in Table 3 that, when

using the product (FARCIPF ) as it is the operation used in FARC–HD to compute the matching degree, it produces and impor-
tant leap in the performance. We show, in the second row of Table 5, the results of Wilcoxon’s test to compare both
approaches, where the superiority of using the modified fitness function is statistically confirmed.

Looking at the results shown in Table 4, we can observe that this component increases the number of fuzzy rules of both
classes, which seem to allow FARCI to improve the results of FARC–HD. On the other hand, this component does not have an
impact the number of antecedents. However, we can see that the average number of antecedents on the fuzzy rules from
both classes is different, which is the main motivation of the change developed in the matching degree computation. Con-

sequently, if we analyze the behavior in this component of the three operations (FARCIPF ; FARCI
AM
F and FARCIGMF ) we can see

that the two averaging aggregation functions allow to improve the results of the product because they do not penalize fuzzy
rules having a larger number of antecedents, which is the case of those of the minority class. To study whether there are
statistical differences among these three approaches, in the second column of Table 6 we show the results of the Aligned
Friedman test, where we report both the obtained rank (the less the better) obtained and the APV provided by the Holm’s
post hoc test (value in parenthesis) when comparing the control method (the one associated with the less rank) versus the
approach in the row. From these results we can see that the best option is to use the geometric mean but there are no sta-
tistical differences among them.

Then, we analyze the results of the usage of the lift in the fuzzy rule learning stage, FARCIFL. According to the results in
Table 3 (third group of results) we can observe that this component produces a rise of between 1.5% and 2.0% depending on
the operation used for the matching degree computation regarding the results of the first modification (FARCIF). This increase
is even more accentuated in the highly imbalanced datasets. In order to support the quality of this component, we have made
three Wilcoxon’s tests (one for each matching degree option) to compare it versus the previous modification. These results
can be seen in second group of results (third, fourth and fifth rows) of Table 5, where we can find statistical differences when
using the product and the arithmetic mean and a relatively low p-value when using the geometric mean. Therefore, the suit-
ability of this component is proved. In the third column of Table 6 we can find the statistical comparison of the three options
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Table 5
Wilcoxon’s tests to compare the different FARCI versions. R+
and R- represent the ranks for the first and the second method
of the comparison, respectively.

Comparison R+ R- p-value

FARC–HD vs. FARCIPF 721.5 1489.5 0.02

FARCIPF vs. FARCIPFL 783 1428 0.04

FARCIAMF vs. FARCIAMFL 826.5 1384.5 0.07

FARCIGMF vs. FARCIGMFL 889 132 0.16

FARCIPFL vs. FARCIPFLS 935 1276 0.27

FARCIAMFL vs. FARCIAMFLS 946 1265 0.30

FARCIGMFL vs. FARCIGMFLS 677.5 1533.5 < 0:01

Table 6
Ranks obtained by the Aligned Friedman ranks test and APVs computed with the
Holm’s post hoc test (in parenthesis). The different matching degrees operations
are compared for each component of FARCI.

Operation/ Version FARCIF FARCIFL FARCIFLS

P 107.53 (0.33) 95.11 104.80 (0.09)
AM 97.33 (0.71) 99.61 (0.65) 106.92 (0.09)
GM 93.64 103.79 (0.65) 86.78

J. Sanz, M. Sesma-Sara and H. Bustince Information Sciences 577 (2021) 265–279
for the matching degree computation in this component, FARCIFL, where we observe that they do not have statistical differ-
ences among themselves. An important fact implied by the modification of the fuzzy rule learning stage is that the generated
fuzzy rules are simpler as can be observed in Table 4. The number of fuzzy rules is not boosted because of the usage of the lift
but they have been simplified as the average number of antecedents is nearly one. Consequently, our hypothesis to develop
this change is corroborated by the experimental results.

Next, we study the influence of the fuzzy rule selection stage, FARCIFLS. This component produces an increase of up to 2%
as can be observed in the last group of results of Table 3 and this superiority is confirmed by the Wilcoxon’s test as observed
in the three last rows of Table 5. The reason behind the notable enhancement of this component can be explained by the final
number of fuzzy rules of the minority class, which is almost twice as that of the remainder approaches (see the last three
rows of Table 4 versus the remainder ones). From these results, we highlight the behavior of the geometric mean to compute
the matching degree as its results excel those of the remainder approaches, which is supported in the group statistical test
shown in the last column of Table 6.

All in all, we have proved the appropriateness of each component, where the best configuration of FARCI is achieved using

all the new components and the geometric mean to perform the matching degree computation: FARCIGMFLS .
We must point out that in https://github.com/JoseanSanz/FARCI we also show the same statistical study carried out in the

two remainder scenarios (IR < 9 and IR P 9), where similar results are found for the latter scenario whereas for low imbal-
anced datasets there are not statistical differences among the different components, except when including the modification
of the fitness function and the usage of the whole system applying the geometric mean. This is the expected behaviour as the
new method is developed to face imbalanced problems and consequently, the larger the IR the better the expected enhance-
ment of the results is.

Finally, once we have determined the best configuration of FARCI, we want to study the influence of the hyper-
parameters of the fuzzy rule association learning process in the results of the new approach. On the one hand our new
method does not use the confidence, which implies that we do not have to set the value of the minimum confidence thresh-
old,MinConf. On the other hand, the hyper-parameters that could have a potential influence on the generated fuzzy rules are
the minimum support,MinSupp, and the maximum depth of the search tree,MaxDepth. For this reason, we are going to study

their impact on the performance results and the rule base size using the best configuration of FARCI, FARCIGMFLS .
We start by studying the effect of theMinSupp hyper-parameter by changing the default value (0.05) to 0.03 and 0.07. The

testing results and the rule base sizes of these three approaches are introduced in Tables 7 and 8, respectively. The effect of
this hyper-parameter in the rule base size is the expected one because the larger it gets the less the number of generated
fuzzy rules becomes. Looking at the testing results, we can observe a notable impact because setting 0.05 as the value is
the best option in the three scenarios. This fact is confirmed in the statistical study carried out by means of the aligned Fried-
man test comparing these three approaches using all the datasets, whose results are shown in Table 9. Therefore, we can
conclude that the default value was appropriate.

In order to study the effect of the maximum depth of the trees,MaxDepth, we use the best configuration found so far, that

is, FARCIGMFLS using 0.05 as MinSupp. In this part of the study, we have considered the values 2, 3, 4 and 5 as value of the hyper-
parameter under study. The testing performance and the size of the rule bases are reported in Tables 10 and 11, respectively.
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Table 7
Averaged testing results (F � score), and the standard deviation �, obtained by
the different values of MinSupp in FARCIGMFLS .

MinSupp MeanG MeanIR<9 MeanIRP9

0.03 0.6697 � 0.1197 0.7868 � 0.0470 0.6112 � 0.1552
0.05 0.6768 � 0.1205 0.7917 � 0.0452 0.6194 � 0.1573
0.07 0.6628 � 0.1215 0.7860 � 0.0470 0.6011 � 0.1579

Table 8
Average rule base sizes using the different different
values of MinSupp in FARCIGMFLS .

MinSupp nR+ nR- nA+ nA-

0.03 9.58 4.96 1.16 1.08
0.05 8.59 4.74 1.10 1.06
0.07 8.24 4.52 1.09 1.05

Table 9
Ranks obtained by the Aligned
Friedman ranks test and APVs
computed with the Holm’s post
hoc test (in parenthesis). The dif-
ferent values of MinSupp in
FARCIGMFLS .

MinSupp Rank (APV)

0.05 83.39
0.03 101.98 (0.06)
0.07 113.12 (<0.01)

Table 10
Averaged testing results (F � score), and the standard deviation �, obtained by the
different values of MaxDepth in FARCIGMFLS .

MaxDepth MeanG MeanIR<9 MeanIRP9

2 0.6773 � 0.1157 0.7893 � 0.0458 0.6212 � 0.1499
3 0.6768 � 0.1205 0.7917 � 0.0452 0.6194 � 0.1573
4 0.6767 � 0.1185 0.7932 � 0.0453 0.6184 � 0.1543
5 0.6769 � 0.1185 0.7935 � 0.0442 0.6186 � 0.1548

Table 11
Average rule base sizes using the different different
values of MaxDepth in FARCIGMFLS .

MaxDepth nR+ nR- nA+ nA-

2 8.44 4.74 1.06 1.04
3 8.59 4.74 1.10 1.06
4 8.74 4.74 1.12 1.07
5 8.77 4.75 1.14 1.07
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Looking at these results, we can observe that the performance of the system is not influenced to a large degree by this hyper-
parameter. Regarding the impact on the rule base size, it is again the expected one because we can observe a slight increase
on the number of antecedents when the maximum depth of the trees is also increased. The results of the statistical study
reported in Table 12 confirm that all these results are equivalent.
5.2. Comparative study versus sampling techniques and related methods

In this section, we conduct an experimental study to determine the quality of our new method using the combination of

all the proposals and the default values for MinSupp and MaxDepth; FARCIGMFLS , which is shown to be the best option in the
previous section. Specifically, first, we compare the performance of FARCI versus that obtained by the original FARC–HD
[21] applied using the data preprocessed by well-known sampling algorithms such as TL, NCL, ROS, SMOTE, SMOTE-TL
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Table 12
Ranks obtained by the Aligned Friedman ranks test
and APVs computed with the Holm’s post hoc test
(in parenthesis). The different values of MaxDepth in
FARCIGMFLS .

MaxDepth Rank (APV)

5 130.55
4 130.96 (1.00)
2 131.26 (1.00)
3 137.23 (1.00)
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and SMOTE-ENN. The results of FARC–HD alongside these six sampling methods are reported in Table 13, which has the
same structure of Table 3. From these results, we can observe that our new method achieves a notable enhancement versus
the results provided by all sampling methods, being ROS the one allowing FARC–HD to achieve the best results. We have
conducted an statistical test among these seven methods, whose results are shown in Table 14. This table is sorted according
to the ranks, obtained in the Aligned Friedman ranks test, from the best to the worst one. From these results, we can see

statistical differences in favour to FARCIGMFLS with respect to all approaches except ROS. In this case, we have carried out a Wil-
coxon test to compare both methods (Table 15), where we observe statistical differences in favour to our new method.

We have also obtained the rule base sizes (Table 16) obtained by FARC–HD applied besides these sampling techniques.
From these results we can observe the following facts:

� Under-sampling methods (TL and NCL) make FARC–HD obtain a low number of fuzzy rules (and balanced among the two
classes). However, the average number of antecedents of fuzzy rules from each class is not equal, which can imply that
fuzzy rules of the minority class are in an inferiority position with respect to those of the majority class, since FARC–HD
uses the product to compute the matching degree.

� Over-sampling (ROS and SMOTE) and hybrid (SMOTE-TL and SMOTE-ENN) methods allow FARC–HD to obtain fuzzy rules
whose average number of antecedents depending on the class is similar. However, in this case, the number of fuzzy rules
belonging to the majority class is larger than that of the minority class, which can make the prediction of the minority
class less probable.

Finally, we have also compared the performance of FARCI versus some related methods. Specifically, we consider another
algorithm modification method like GP-COACH-H, two cost-sensitive approaches as C45CS and C-SVMCS and an ensemble
Table 13
Averaged testing results (F � score) obtained by FARC–HD alongside sampling techniques (and the standard deviation �).

Method MeanG MeanIR<9 MeanIRP9

TL 0.6355 � 0.1187 0.7783 � 0.0521 0.5641 � 0.1513
NCL 0.6442 � 0.1164 0.7730 � 0.0503 0.5798 � 0.1486
ROS 0.6603 � 0.1083 0.7749 � 0.0455 0.6029 � 0.1390
SMOTE 0.6304 � 0.0780 0.7690 � 0.0395 0.5611 � 0.1000
SMOTE-TL 0.6138 � 0.0805 0.7570 � 0.0446 0.5422 � 0.0981
SMOTE-ENN 0.6126 � 0.0914 0.7606 � 0.0486 0.5386 � 0.1123

FARCIGMFLS 0.6768 � 0.1205 0.7917 � 0.0452 0.6194 � 0.1573

Table 14
Aligned Friedman ranks test and Holm’s post hoc test to
compare FARCI versus FARC–HD alongside sampling methods.

Method Rank (APV)

FARCIGMFLS 151.86

ROS 183.28 (0.18)
TL 213.25 (0.02)
NCL 217.76 (0.01)
SMOTE 267.14 (< 0:01)
SMOTE-ENN 292.40 (< 0:01)
SMOTE-TL 294.83 (< 0:01)
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Table 15
Wilcoxon’s test to compare FARCI versus FARC–HD alongside ROS.

Comparison R+ R- p-value

FARCIGMFLS vs. FARC–HD + ROS 1424.5 786.5 0.04

Table 16
Rule base size of FARC–HD when applied alongside
sampling techniques.

Method nR+ nR- nA+ nA-

TL 4.11 3.85 2.17 1.15
NCL 4.00 3.95 2.15 1.17
ROS 4.34 7.87 1.90 1.84
SMOTE 5.66 8.52 2.07 1.87
SMOTE-TL 5.48 8.00 1.96 1.86
SMOTE-ENN 5.57 7.62 1.98 1.82

Table 17
Averaged testing results (F � score) obtained by the related methods (and the standard deviation �).

Method MeanG MeanIR<9 MeanIRP9

GP-COACH-H 0.6338 � 0.0876 0.7710 � 0.0402 0.5652 � 0.1107
C45CS 0.6417 � 0.1042 0.7729 � 0.0450 0.5762 � 0.1331
C-SVMCS 0.6165 � 0.0759 0.7740 � 0.0379 0.5377 � 0.0944
EUSBoost 0.6062 � 0.0886 0.7719 � 0.0537 0.5233 � 0.1057

FARCIGMFLS 0.6768 � 0.1205 0.7917 � 0.0452 0.6194 � 0.1573

Table 18
Aligned Friedman ranks test and Holm’s
post hoc test to compare FARCI versus
the related methods.

Method Rank (APV)

GP-COACH-H 164.11 (< 0:01)
C45CS 157.38 (< 0:01)
C-SVMCS 193.76 (< 0:01)
EUSBoost 204.11 (< 0:01)

FARCIGMFLS 108.14
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such as EUSBoost. The performance of these four methods and that of FARCIGMFLS is reported in Table 17 and the statistical test
to compare these five approaches can be seen in Table 18. From these results, the quality of our new method is clearly
supported.

6. Conclusions

In this paper we have proposed a Fuzzy Association Rule-based Classifier for Imbalanced classification problems, FARCI.
The new method belongs to the algorithm modification methods category, since it is constructed on the basis of the FARC–
HD classifier. Specifically, we have modified all the stages of this classifier so that it can cope directly with imbalance clas-
sification problems. In the fuzzy rule generation step, we have proposed to use the lift as the criterion to evaluate the quality
of fuzzy rules. We have also changed the philosophy and the initialization of the hyper-parameters of the fuzzy rule selection
component as well as the fitness function of the evolutionary process. Furthermore, we have proposed the usage of averaging
aggregation functions to compute the matching degree, which is an operation used in all the components of the classifier.

The suitability of each modification has been empirically proved in the experimental study. We can stress the following
facts:

1. The usage of a proper metric to measure the quality of the solutions in the evolutionary process leads to a notable
enhancement of the obtained results.

2. Averaging aggregation functions allow fuzzy rules with variable antecedent lengths to be equally taken into account,
which positively affects the performance of the system.

3. The lift makes possible to not only improve the system’s performance but to simplify the fuzzy rules.
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4. The new philosophy behind the fuzzy rule selection stage allows FARCI to boost the number of fuzzy rules of the minority
class, which implies a better discrimination capability of the classifier.

5. When combining all the modifications we obtain the final classifier, FARCIGMFLS , which provides better results than those of
the original FARC–HD classifier combined with sampling techniques because both the rule structure as well as the num-
ber of rules of the majority class are more suitable for this type of problems.

6. FARCIGMFLS also achieves a more accurate performance than that of four related methods that do not make usage of sampling
techniques to tackle imbalanced classification problems.

All in all, our new method provides a competitive performance as well as a simple and interpretable rule base due to the
new design of the components of the classifier.

As future research lines, we intend to study the behavior of different generalizations of the Choquet integral [22] in order
to fuse the local information given by the fired fuzzy rules, since they have been shown to be competitive in standard clas-
sification problems. We are also interested in studying the usage of interval-valued fuzzy sets in this framework as they have
been successfully applied in classification problems [32]. Moreover, it would be also interesting to study other pattern
weighting schemes to select the most interesting fuzzy rules as well as analyzing different data properties in order to try
to improve the performance of the system under specific circumstances.
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