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Abstract: The most common form of mixed dementia (MixD) is constituted by abnormal protein
deposits associated with Alzheimer’s disease (AD) that coexist with vascular disease. Although
olfactory dysfunction is considered a clinical sign of AD-related dementias, little is known about
the impact of this sensorial impairment in MixD at the molecular level. To address this gap in
knowledge, we assessed olfactory bulb (OB) proteome-wide expression in MixD subjects (n = 6)
respect to neurologically intact controls (n = 7). Around 9% of the quantified proteins were differ-
entially expressed, pinpointing aberrant proteostasis involved in synaptic transmission, nucleoside
monophosphate and carbohydrate metabolism, and neuron projection regeneration. In addition,
network-driven proteomics revealed a modulation in cell-survival related pathways such as ERK,
AKT, and the PDK1-PKC axis. Part of the differential OB protein set was not specific of MixD,
also being deregulated across different tauopathies, synucleinopathies, and tardopathies. However,
the comparative functional analysis of OB proteome data between MixD and pure AD pathologies
deciphered commonalities and differences between both related phenotypes. Finally, olfactory pro-
teomics allowed to propose serum Prolow-density lipoprotein receptor-related protein 1 (LRP1) as a
candidate marker to differentiate AD from MixD phenotypes.

Keywords: mixed dementia; Alzheimer’s disease; vascular dementia; olfactory bulb; proteomics

1. Introduction

Alzheimer’s disease (AD) and vascular dementia (VaD) are the most common causes
of dementia in the elderly [1]. In medical practice, the term mixed dementia (MixD) is
mostly referred to cases where there are clinicopathological evidences of both AD and vas-
cular disease [2]. Around 25% of demented patients have pure AD pathology, while more
than 50% present different vascular lesions (such as micro/macroinfarcts, microhemor-
rhages, lacunar strokes, among others), either alone or associated with AD [3]. Furthermore,
atherosclerosis is evidenced in cerebral arteries in AD patients [4]. Vascular risk factors
(hypertension, obesity, and diabetes mellitus) are associated with an elevated dementia and
amyloid overproduction risks [5,6]. A frequent comorbidity of cerebrovascular and AD
pathologies is confirmed in aged subjects [7–9]. At the mechanistic level, a plethora of tissue
and molecular events have been proposed to interplay between the neurodegenerative
process and the cerebrovascular damage (blood–brain barrier leakage, inflammation, ox-
idative stress) [10,11], however, the complete knowledge of this potential cause-and-effect
relation is still lacking [10].
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Although AD can be frequently diagnosed with a considerable accuracy, the distinction
between MixD, isolated AD and VaD remains controversial, being a difficult diagnostic
challenge [11].

Particularly relevant to neurologists is the fact that olfactory dysfunction can be con-
sidered a clinical, or in some cases a preclinical, sign of different dementias like AD and
VaD [12,13]. Although a score below normal performance in olfactory test has been ob-
served in VaD patients [14], further sensorial studies with larger and longitudinal cohorts
are necessary to evaluate potential differences in the olfactory performance between AD
and VaD [14,15]. It is important to note that olfactory dysfunction has been associated
with increased mortality from neurodegenerative and cardiovascular diseases [16]. Several
studies point out that cardiovascular and cerebrovascular disease, subclinical atheroscle-
rosis, stroke, and diabetes are considered predictors of accelerated odor identification
decline [17–19]. Ischemic or structural damages in brain areas involved in olfaction have
been proposed as potential drivers of this olfactory decline [20].

Given the global prevalence of MixD-associated cognitive impairment and the lack of
therapeutic strategies, there is a clear unmet need for vascular therapies targeting mecha-
nisms that precipitate the neurodegenerative process. It is well known that the molecular
homeostasis of olfactory structures is deeply altered in the context of AD pathology [21–24].
However, the impact of MixD on olfactory areas remains to be clarified. In this study,
we have applied an olfactory proteotyping strategy [25] to partially reveal the missing
relationships in the pathobiochemical knowledge when AD and vascular damage coexist,
deciphering common and differential olfactory protein mediators between pure AD and
MixD. Moreover, we have used olfactory neuroproteomic data as a strategy to define
potential fluid biomarkers for the diagnosis and discrimination of patients affected by AD
and MixD.

2. Materials and Methods
2.1. Materials

The following reagents and materials were used: The antibodies for pMEK (#9154),
MEK (#9126), pERK (#4370), ERK (#9102), pPDK1 (#3061), PDK1 (#3062), pPKCpan (#9379),
pAKT (#4060), AKT (#4685), pSEK (#9156), SEK (#9152), pSAPK (#9255), SAPK (#9252),
pPKAc (#5661), PKAc (#4782), pP38 (#9211), P38 (#9212), pNFκB (#3033), NFκB (#8242)
were purchased from Cell Signaling. Antibody for PKCpan (SAB4502356) was purchased
from Sigma Aldrich. The antibody for pPI3K (PA5-104853) was purchased from Life
Technologies. Antibody for PI3K (ab86714) was purchased from abcam. Electrophoresis
reagents were purchased from Biorad and trypsin from Promega.

2.2. Human Samples

According to the Spanish Law 14/2007 of Biomedical Research, inform written consent
forms of the Brain Bank of IDIBAPS (Barcelona, Spain) were obtained for research purposes
from relatives of patients included in this study. Post-mortem fresh-frozen olfactory bulbs
of 6 Mixed dementia (MixD) patients, and 7 controls were obtained from the Brain Bank of
IDIBAPS (Barcelona, Spain) following the guidelines of Spanish legislation. The control
group was composed of elderly subjects with no histological findings of any neurological
disease. The study was conducted in accordance with the Declaration of Helsinki and
all assessments, post-mortem evaluations, and procedures were previously approved by
the Local Clinical Ethics Committee (PI_2019/108). All human brains considered in the
proteomics and follow-up phases had a post-mortem interval (PMI) lower than 19 h (Table
1). On the other hand, in order to check potential disease biomarkers, serum samples from
MixD (n = 19) and AD (n = 31) patients together with serum samples from healthy subjects
(n = 32) were collected (Supplementary Table S1). In all cases, neuropathological assessment
was performed according to standardized neuropathological guidelines [26–29].
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Table 1. OB samples from MixD patients and controls. F (female), M (male), PMI (post-mortem interval), WB (Western Blot).

Groups Sample Age (years) Sex PMI Neuropathological
Diagnosis Proteomics WB

Control

1218 65 F 3 h 45 m AD I/0 + -
1277 74 M 9 h 25 m AD I/0 + +
1368 45 M 18 h 30 m AD 0/0 + +
1403 51 F 4 h AD 0/0 + +

1438 67 M 5 h 50 m AD I/0, Amyloid
angiopathy + +

1563 59 F 5 h 30 m AD I/0, Metastatic
carcinoma + +

1576 60 F 12 h AD I/0 + +

MixD

DM4 81 F 9 h 40 m AD III/B, vascular
encephalopaty + +

DM5 89 M 11 h 30 m AD III/A, vascular
encephalopathy + +

DM6 85 M 12 h AD V/B, vascular
pathology - +

DM8 88 F 5 h AD V/B, vascular
pathology + +

DM1 83 M 2 h 30 m AD VI/C, infarcts + +
DM3 76 M 6 h 30 m AD VI/C, infarcts + +
DM7 81 M 15 h AD VI/C, infarcts + +

2.3. Olfactory Proteomics

Whole OB specimens (70–80 mg) derived from controls and MixD cases were homoge-
nized in lysis buffer containing 7 M urea, 2 M thiourea, 50 mM DTT. After ultracentrifuga-
tion, protein extracts were precipitated, pellets were dissolved in 6 M Urea and Tris 100 mM
pH 7.8 and Bradford assay kit (Bio-Rad) was used for protein quantitation. Whole pro-
teomes were concentrated in the stacking/resolving SDS-PAGE gel interface. After staining,
protein digestion (10 ug) was carried out with trypsin (Promega; 1:20, w/w) at 37 ◦C for 16 h
as previously described [30]. Prior to LC-MS/MS, peptides were purified and concentrated
using C18 Zip Tip Solid Phase Extraction (Millipore, Burlington, MA, USA). Label free
LC-MS/MS analyses were performed on an EASY-nLC 1200 liquid chromatography system
interfaced with a Q Exactive HF-X mass spectrometer (Thermo Scientific, Waltham, MA,
USA). Chromatographic/elution conditions and mass-spectrometry parameters were as
previously described [31]. Data were acquired using Xcalibur software (Thermo Scientific,
Waltham, MA, USA).

2.4. Data Analysis

Mass spectrometry raw data were processed using the MaxQuant software (v.1.6.3.3)
(Max Planck Institute, Munich, Germany) [32] following the next parameters: (1) Homo
Sapiens UniProtKB database (February 2019) containing contaminants and the reversed
version of all sequences, (2) main peptide search (4.5 ppm) and first search tolerance
(20 ppm), (3) trypsin digestion with a maximum of two missed cleavages, (4) variable
modifications (methionine oxidation and N-terminal acetylation), (5) fixed modification
(carbamidomethylation), (6) peptide length (7 amino acids), (7) fragment mass deviation
(40 ppm) and (8) false discovery rate (FDR) for peptide spectrum match (PSM), peptide
and protein identification (1%). The analysis of the Maxquant output file and subsequent
visualization was done by Perseus software [33]. Potential contaminants and proteins
identified as reverse were removed. The data were transformed into log2 values and
normalization was performed using a width adjustment strategy. Protein identification
and quantitation criteria was performed as previously described [31]. The protein identifi-
cation was considered valid with at least two unique or razor peptides whereas protein
quantification was calculated using at least two unique peptides. For differential analysis,
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a 1.3-fold change cut-off was used (two-way Student T-test; p < 0.05). Hence, proteins
with ratios below the low range of 0.77 were considered downregulated whereas those
with higher range than 1.33 were considered up-regulated. MS data and search results
files were deposited in the Proteome Xchange Consortium via the JPOST partner repos-
itory (https://repository.jpostdb.org, accessed on 13 April 2021) [34] with the identifier
PXD025368 for ProteomeXchange and JPST001128 for jPOST. Interactome and pathway
analysis were performed using BioGrid [35], Ingenuity (Qiagen), or Metascape [36] tools.

2.5. Western-Blotting

Equal amounts of OB protein (10 µg) were resolved in 4–15% stain free SDS-PAGE gels
(Bio-rad) and electrophoretically transferred using a Trans-blot Turbo transfer system (up to
25 V, 7 min) (Bio-rad). Membrane probing, immunoreactivity visualization, equal loading,
digitalization, and densitometric analysis was performed as previously described [31].

2.6. Enzyme-Linked Immunoabsorbent Assay

Serum Neurexin-3 (NRXN3), Tenascin-R (TNR) and Prolow-density lipoprotein receptor-
related protein 1 (LRP1) concentrations were measured using enzyme-linked immunoab-
sorbent assay (ELISA) kits according to the manufacturer’s instructions (MBS93337537;
MBS728632; MBS2021100-Mybiosource). The data were analyzed using Graphpad Prism
Software and Mann–Whitney U test was used to make group comparisons. A p-value less
than 0.05 was considered statistically significant.

3. Results and Discussion

Unbiased omics approaches have been proposed as essential tools to increase our
understanding of the AD pathogenesis subtype variety as well as the common presence of
vascular effects present in mixed pathologies [37]. Specifically, proteomics has already been
aimed to provide more insights into VaD at cortical level [38,39]. Although it is widely
known that patients suffering from AD and VaD experience olfactory dysfunction [12,13],
no studies have examined the impact of this sensorial impairment at molecular level.

3.1. Olfactory Bulb Proteome-Wide Characterization in Human MixD

Since olfactory system is considered a potential gateway for the access of environmen-
tal insults and a prion-like propagation site in different forms of dementia [40,41], we have
used OB label-free quantitative proteomics to deeply characterize the olfactory proteostatic
imbalance in MixD (Table 1).

Among 4572 identified proteins, 2440 proteins were quantified across all samples (Sup-
plementary Table S2), from which 215 proteins were differentially expressed (DEPs) in OBs
derived from MixD subjects compared to neurological intact controls (107 upregulated and
108 downregulated proteins in MixD) (Figure 1A, Supplementary Table S2, Supplementary
Figure S1). Based on the information stored in the BIOGRID repository [35], a subset of
DEPs were experimentally demonstrated to be components of the interactomes of typical
neuropathological substrates found in AD. As shown in Figure 1B, 25 DEPs belong to the
amyloid precursor protein (APP) interactome (SNAP25, PPP3CC, NDUFS4, GORASP2,
GFAP, SGIP1, COX5B, DMTN, CAMKV, EEF1B2, UQCRB, PSMC1, GNAZ, PLCD1, PSAT1,
APRT, AK1, SH3BGRL3, PLIN3, PPIA, MAT2B, CSRP1, MGST3, ARL8B, LRP1) whereas
6 DEPs (YBX1, FUS, PTK2B, EZR, DENR, S100B) corresponds to Tau interactors. Five
DEPs are part of the shared interactome between APP and Tau (SRC, PRKCG, SLC25A4,
MAPT, MAPRE1). Due to our olfactory proteotyping workflow is not able to differentiate
specific cell layers, we have performed cell-specific enrichment analysis across olfactory
DEPs using public single-cell RNA-seq data [42,43]. As shown in Figure 1C, 8 DEPs (GFAP,
EZR, GPT, ENTPD2, MLC1, FABP1, TNC, MACF1) are considered highly enriched genes
in astrocytes, PTK2B in microglia and COL1A2, ACAN, ITGB8, RCN1, DPP6, S100A1 in
oligodendrocytes. In addition, part of the differential proteome tend to be specifically en-
riched in OB mitral/tufted cell layers (SCG2, CNTNAP2, THY1, RCN2, FUS, PAM, VSNL1,

https://repository.jpostdb.org
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RTN3, ERC2, REEP5, NBEA, SV2A, MACF1), periglomerular cell layer (GAP43, LYH6,
HPCAL1, CD200, UQCRB, PDE2A, SLC25A4, ENO1, MPC2) and granular cell layer (BASP1,
YBX1, CALM2, SNAP25, OPCML, NRXN3, SGIP1, CAMKV, DYNC1I1, ATP6V1G2, NEGR1,
CADM3, PTK2B, VBP1, ICAM5, CACNA2D1, PHPT1, SH3BGRL3, PFN2, MGST3, SF3B1,
HMGB1) (Figure 1D). All these data shed new light about the molecular disturbances that
are involved in the olfactory neurodegeneration across each cell-type homeostasis in MixD.
Our analysis also revealed that part of the DEPs are not specific of MixD (Figure 1E), being
common OB deregulated proteins previously observed across different tauopathies, synu-
cleinopathies, and tardopathies [23,24,31,44,45]. Functional cluster analysis of the DEPs
found in MixD group reveal an enrichment in either neuron-specific or neuron-relevant
processes (Figure 1F).
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Figure 1. Olfactory proteome-wide analysis in MixD. (A) Volcano plot indicating the statistically significant DEPs rep-
resented in red (upregulation) and green (downregulation). (B) Venn diagram showing the overlap between OB DEPs
and experimentally demonstrated APP and Tau interactors. (C) Cluster-enriched genes in specific brain cells that are
differentially expressed in the OB from MixD subjects. (D) Cluster-enriched genes in specific OB cell layers that are
deregulated in MixD at the level of the OB. (E) Circos plot representing commonalities in DEPs (purple lines) between
MixD and different neurological phenotypes: AD, Parkinson’s disease (PD), Dementia with Lewy Bodies (DLB), Progressive
supranuclear palsy (PSP), Amyotrophic lateral sclerosis (ALS), frontotempral lobar degeneration TDP-43 proteinopathy
(FTLD-TDP43). (F) Top-20 statistically enriched terms from MixD DEPs generated by Metascape.
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3.2. MixD Induces Olfactory Disruption in Functional Tau/APP Interactomes and Specific
Survival Pathways

Bearing in mind that the characterization of unexpected connections between seem-
ingly unrelated proteins and neuropathological substrates is a straightforward approach
for the identification of novel MixD related-targets, we explored whether Tau (MAPT) and
APP were functionally interconnected with DEPs in MixD OBs. Proteome-scale interac-
tome maps merging the OB DEPs were performed using the IPA software (Figure 2 and
Supplementary File S1). Interestingly, 20 differential functional interactors for Tau were
identified, suggesting the involvement in related biological functions. Specifically, olfactory
Tau is central to an interconnected molecular network between plasma membrane (CLTA,
SNAP25, DNAJC5, STX1B, AGRN, CLTB) and nucleocytoplasmic region (PRKCG, PPIA,
NDUFS4, TUBB6, BASP1, ENO1, ATP5F1D, GSTP1, S100B, TOP2B, VSNL1, GFAP, PRDX6,
SOD1). However, the deregulated olfactory APP interactome impacts across extracellu-
lar space (VWF, NES, OGN, NPTX1), plasma membrane (THY1, RAC1), and cytoplasm
(SERPINB6, DYNC1H, RTN3, AK1, CRYL1, PFN2) (Figure 2).
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In a wider scale, a whole proteome comparison revealed that signaling mediators like
the nuclear factor kappa B (NFκB) and PI3K complexes and cell-stress related such as PKA
appeared as principal hubs in functional interactome maps (Figure 3, Supplementary File
S1). As shown in Figure 3A, the deregulation of several mitochondrial-related proteins
(ATP5ME, ATP5F1D, ATP5MG, NDUFS4, COX5B, Cytochrome c oxidase, CYB5A, SOD1,
GSTP1) suggested an impairment in mitochondrial function in the OB of MixD subjects.
In accordance, mitochondrial dysfunction constitutes an early and well-known feature
of neurodegenerative processes [46] and our group has previously described alterations
in the mitochondrial sensor PHB complex across several-related neurological disorders,
including MixD [23]. On the other hand, although the NFκB constitutes a master regulator
of many essential signaling cascades when activated travelling from the cytoplasm to the
nucleus [47], the recently described presence of mitochondrial NFκB suggest its influence
on important mitochondrial processes [48]. Therefore, subsequent experiments were per-
formed in order to study the activated status on NFκB. As shown in Figure 4A,D, although
no significant changes were found when analyzing all the study samples at the same time,
a significant increase in the activated levels of NFκB was observed in subjects diagnosed
with the highest Braak stages (Braak VI). Of note, NFκB role on cell survival can be either
neuroprotective or induce neurotoxicity by proinflammatory mechanisms. Depending
on the pathological state, its overexpression can result in damage to the vessel walls and
impaired vascular cell function [49]. On the other hand, in order to enhance the analytical
outcome of our proteomic experiment, the activated status of the PI3K complex and the
cAMP-dependent protein kinase A (PKA) was also monitored (Figure 3B,C, respectively).
As shown in Figure 4B,D, although a slight upregulation of p110a (PI3K catalytic subunit)
protein levels was evidenced, more predominantly in Braak V stages, an AKT inactivation
was observed, suggesting a potential role of phosphatases such as PP2A, PTEN, or others
in this context [50]. Likewise, the PI3K/Akt signaling pathway mediates cell survival
and differentiation, and participates in learning and memory processes [51]. Interestingly,
significant changes in AKT levels were not detected in the OB of AD subjects [52], suggest-
ing that the vascular damage may be responsible for this deregulation at the level of the
OB. On the contrary, significant increased levels of the catalytical subunit of PKA (PKAc)
were found (Figure 4C), where the tendency was mainly observed in the Braak III stages
(Figure 4D), thus, indicating alterations in cAMP levels. In this sense, similar alterations in
AD subjects have been observed, suggesting common OB molecular mechanisms between
these two pathologies.
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3.3. Comparison of OB Deregulated Proteome in Pure AD and Mixed Dementia:
An Specificity Analysis

To further study in detail the OB metabolic modulation in MixD, the differential pro-
teome map was functionally characterized. As shown in Figure 1F, synaptic transmission,
nucleoside monophosphate metabolism, carbohydrate metabolism, response to metal ion,
aromatic catabolism, intracellular transport, neuron projection regeneration and VEGF
signaling were part of the most significantly overrepresented bioprocesses in MixD sub-
jects (Supplementary Table S2 and Supplementary Figure S2). Bioinformatic analysis also
revealed that a subset of OB proteins was linked to AD and/or vascular processes such as
blood vessel development, atherosclerosis, and coagulation (Table 2).
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Table 2. OB DEPs in MixD previously related with AD and/or vascular damage. FC; fold change. Unique peptides
correspond to the number of exclusive peptides that have been used for the protein quantitation of each protein. The
biological involvement information derived from the Metascape output files.

Protein Names Gene Name FC p Value Unique Peptides Biological Involvement

Collagen alpha-2(I) chain COL1A2 0.20 0.000 4 blood vessel development, interactions at
the vascular wall, coagulation

Cadherin-13 CDH13 0.32 0.006 3 cardiovascular & blood vessel
development

G protein-regulated inducer of neurite
outgrowth 1 GPRIN1 0.39 0.008 24 AD

Calmodulin CALM 0.45 0.006 12 AD, VEGFR2 mediated vascular
permeability, atherosclerosis

Disintegrin and metalloproteinase
domain-containing protein 10 ADAM10 0.48 0.022 10 AD, cardiovascular development

Synaptosomal-associated protein 25 SNAP25 0.48 0.000 16 Cognition, learning/memory

Secretogranin-2 SCG2 0.54 0.021 15 cardiovascular & blood vessel
development

Proto-oncogene tyrosine-protein
kinase Src SRC 0.54 0.017 5 interactions at the vascular wall,

atherosclerosis, coagulation
Serine/threonine-protein phosphatase

2B catalytic subunit gamma PPP3CC 0.54 0.015 4 AD

NADH dehydrogenase [ubiquinone]
iron-sulfur protein 4, mitochondrial NDUFS4 0.54 0.002 6 AD

Integrin beta-8 ITGB8 0.56 0.014 3 cardiovascular & blood vessel
development

Neurexin-3 NRXN3 0.58 0.000 18 Cognition, learning/memory
Contactin-associated protein-like 2 CNTNAP2 0.58 0.007 12 Cognition, learning/memory

Thy-1 membrane glycoprotein THY1 0.62 0.005 4 cardiovascular & blood vessel
development

Rap guanine nucleotide exchange
factor 2 RAPGEF2 0.63 0.043 11 cardiovascular & blood vessel

development
Cytochrome c oxidase subunit 5B,

mitochondrial COX5B 0.63 0.002 6 AD

Protein kinase C gamma type PRKCG 0.63 0.029 23 Cognition, learning/memory, coagulation
Dematin DMTN 0.65 0.023 10 coagulation

Glypican-1 GPC1 0.65 0.048 9 interactions at the vascular wall,
atherosclerosis

ATP synthase subunit delta,
mitochondrial ATP5D 0.67 0.025 5 AD

von Willebrand factor VWF 0.68 0.046 11 coagulation
Tyrosine-protein phosphatase
non-receptor type substrate 1 SIRPA 0.68 0.002 18 interactions at the vascular wall

Cytochrome b-c1 complex subunit 7 UQCRB 0.69 0.006 8 AD
Ras-related C3 botulinum toxin

substrate 1 RAC1 0.72 0.006 4 VEGFR2 mediated vascular permeability,
atherosclerosis, coagulation

cGMP-dependent 3,5-cyclic
phosphodiesterase PDE2A 0.73 0.001 26 cardiovascular & blood vessel

development
Reticulon-3 RTN3 0.73 0.000 7 AD

Protein-tyrosine kinase 2-beta PTK2B 0.74 0.049 19 cardiovascular & blood vessel
development

Microtubule-associated protein tau MAPT 1.39 0.048 8 AD, cognition, learning/memory
4F2 cell-surface antigen heavy chain SLC3A2 1.43 0.000 28 interactions at the vascular wall

Glutathione S-transferase P GSTP1 1.47 0.000 15 atherosclerosis
1-phosphatidylinositol

4,5-bisphosphate phosphodiesterase
delta-3

PLCD3 1.55 0.030 17 cardiovascular & blood vessel
development

Aquaporin-1 AQP1 1.56 0.006 3 cardiovascular & blood vessel
development

Peptidyl-prolyl cis-trans isomerase A PPIA 1.56 0.005 13 interactions at the vascular wall,
coagulation

Tenascin-R TNR 1.57 0.006 46 Cognition, learning/memory
Ectonucleoside triphosphate

diphosphohydrolase 2 ENTPD2 1.60 0.040 11 coagulation

Cysteine and glycine-rich protein 1 CSRP1 1.73 0.000 12 coagulation
BH3-interacting domain death agonist BID 1.74 0.040 5 AD

Microsomal glutathione
S-transferase 3 MGST3 2.03 0.000 7 atherosclerosis

AP-3 complex subunit beta-1 AP3B1 2.45 0.019 13 coagulation

Protein S100-A1 S100A1 2.65 0.014 4 cardiovascular & blood vessel
development

Cytochrome b-c1 complex subunit 9 UQCR10 2.72 0.000 2 AD
Prolow-density lipoprotein
receptor-related protein 1 LRP1 3.98 0.011 37 AD, cardiovascular & blood vessel

development

High mobility group protein B1 HMGB1 4.04 0.015 7 cardiovascular & blood vessel
development

Protein S100-B S100B 4.05 0.001 4 Cognition, learning/memory

In order to partially decipher unspecific and specific proteostatic alterations due
to the presence of concomitant AD, we interlocked our MixD differential dataset with
OB differential proteome data previously obtained from pure AD cases [23]. Due to the
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MixD samples used in our proteomics workflow derived from subjects with concomitant
AD (Braak stages III-VI), only differential proteins detected across these Braak stages in
our previous work were considered. As shown in Figure 5A, 32 protein mediators were
deregulated not only in MixD but also in pure AD. However, only the protein expression
profile corresponding to 6 proteins (BASP1, CALM, SOD1, ERP44, TPM4, ALAD) was
similar across AD and MixD OBs (Figure 5B). Interestingly, functional clustering unveiled
common and distinct imbalanced biological processes between MixD and AD (Figure 5C).
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tion, synaptic protein-protein interactions and neuron projection regeneration were exclu-
sively and significantly enriched in MixD (Figure 5 and Supplementary Tables S3 and S4).
These data indicate that the comparative analysis between omics outputs may be con-
sidered a useful tool to potentially distinguish pure AD and MixD pathologies through
the elucidation of specific biological process as well as the identification of potential dis-
criminatory biomarkers. On the other hand, other biological pathways were commonly
deregulated between the two correlated pathologies (Figure 5C). Among them, cell-stress
related pathways were potentially deregulated according to the differential proteomic
signature in both AD and MixD. Therefore, we decided to monitor a kinase panel gath-
ering essential biological pathways due to (i) previous findings showing alterations in
cell-survival and stress related pathways across different neurodegenerative disorders
at the level of the OB [24,44,45], and (ii) the absence of similar reports focused on MixD
contexts. First, regarding the MAPK pathway, a significant decrease in the activated levels
of ERK 1

2 was observed in the MixD cases diagnosed with Braak III staging (Figure 6A
and Supplementary Figure S3), interestingly opposite to the hyperactivation previously
observed in the OB of AD subjects [23]. Concerning the PDK1-PKC axis, a significant
increase in the activated levels of PDK1 was observed in the Braak V stages, just as an
increment in the total levels of the PKC family in the Braak III and VI staging (Figure 6B
and Supplementary Figure S3). Deregulations in the PKC signaling cascades are known
to be early features in the brain of patients with AD [53] and previous reports in olfactory
AD samples have also reported stage-specific deregulations in this axis [23]. However,
to our knowledge, this is the first report linking alterations in this route in MixD back-
grounds. On the other hand, since the p38 MAPK signaling has been extensively linked to
neurodegeneration and inflammatory processes [54,55], we further evaluated the activated
status of p38 MAPK in MixD OBs. As shown in Figure 6C and Supplementary Figure
S3, both activated and total levels of P38 were upregulated but only in Braak VI stages,
suggesting a neuroinflammatory environment at the level of the OB. In line with this
findings, recent studies have shown that the activation of this pathway may lead neuronal
apoptosis and functional deficits in vascular dementia [56]. In accordance, stage-specific
alterations were also found for both activated and total levels of SEK1, again demonstrating
altered cell-stress responses at olfactory level during MixD disorders.

3.4. Protein Serum Profile Across AD and MixD: A Pilot Study Targeted to the Analysis of
Neurexin-3 (NRXN3), Tenascin-R (TNR) and Prolow-Density Lipoprotein Receptor-Related
Protein 1 (LRP1)

More than half of the patients meeting clinicopathological AD diagnostic criteria
also have vascular lesions [3]. Based on the neuropathological co-existence and the con-
troversy regarding the differential diagnosis between AD and MixD, there is an urgent
need for a better clinical differentiation of these pathologies. Bearing in mind that fluid
proteomics is considered a valuable molecular repository for diagnosing/targeting the
neurodegenerative process and olfactory neurodegeneration is among the earliest fea-
tures, the application of olfactory proteomics is an ideal bridge to detect olfactory proteins
that might be tested in fluids as potential biomarkers [57]. Aiming to discover potential
biomarkers to differentiate neurological syndromes, we have focused our attention on
three proteins (NRXN3, TNR, LRP1) because they are tentatively present in biofluids and
are involved in exclusive altered biofunctions enriched in MixD (Supplementary Table S3).
Specifically, NRXN3 is related to cognition, learning/memory (Table 2) and protein–protein
interactions at synapses (R-HSA-6794362; Figure 5C); TNR is also related to cognition,
learning/memory (Table 2) and regulation of cell projection organization (GO: 0031345;
Figure 5C); and LRP1 is related to AD, blood vessel development (Table 2) and neuron
projection regeneration (GO:00311102; Figure 5C). For that, serum samples belonging to
AD and MixD phenotypes together with non-neurological controls were included in the
study (n = 32/control; n = 31/AD; n = 19/MixD; ~50/50 female/male) (Supplementary
Table S1). To our knowledge, no experimental evidence have linked NRXN3, TNR, and
LRP1 with MixD. Alterations in presynaptic adhesion NRXN3 protein levels have been
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linked with a major AD risk [58]. Interestingly, a significant decrease in NRXN3 serum
levels was observed between both AD and MixD samples (Figure 7A) and neurological
intact controls. However, although our data suggest a more prominent decrease in NXRN3
serum levels in AD, no significant changes were observed between both pathologies. On
the other hand, while serum TNR protein levels were unaltered between neurological
contexts and healthy controls (Figure 7B), a significant increase in LRP1 serum protein
levels was observed in MixD subjects maintaining normal levels in AD (Figure 7C). In this
sense, although an effort to find specific sex differences was performed analyzing our data
(Supplementary Figure S4), no significant changes were observed for any of the biomarkers.
In particular, LRP1 is an ApoE receptor that plays a role in clearance of Abeta and regulates
glucose uptake and insulin signaling in the brain, being a key regulator of Tau uptake and
spread [59–61]. In this sense, being aware of the limited cohort analyzed, our data indicate
that LRP1 may be a potential biomarker able to distinguish between both syndromes. Raw
quantifications are shown in Supplementary Table S5. These results should be further
evaluated in larger cohorts and in combination with other biochemical markers in order to
improve the current diagnostic assays.
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Figure 7. Monitoring of NRXN3 (A), TNR (B), and LRP1 (C) protein levels across serum samples
from AD and MixD subjects. Protein levels were measured in sera derived from 82 individuals
(30 controls; mean age: 70 years; 15 F/15 M), 30 patients with AD: mean age 75 years, 15 F/15 M, and
19 patients with MixD: mean age 79 years; 10 F/9 M). * p < 0.05; ** p < 0.01; **** p < 0.0001.

Although this study has uncovered many intricacies in the OB homeostasis in the
context of MixD, there are potential limitations that warrant discussion. Due to the tech-
nological approach used, we failed to accurately monitor many protein species with low
expression levels. Both AD pathology and cerebrovascular disease independently are
strongly related with cognitive decline and/or dementia. Frequently, they appear together,
showing an additive or even a synergistic effect and the weight of each component may be
different among patients. In those cases, it remains challenging to distinguish between AD
and MixD. This difficulty in diagnosis limits the number of MixD patients available in our
cohort. Furthermore, even in absence of cognitive impairment, it is difficult to find pure
age-matched controls without any sign of amyloid pathology or cerebrovascular disease
given the high incidence of these lesions in the elderly and the fact that both findings
increase with age. This factor is the reason why our control group has decreased age
compared with MixD group. Therefore, we could not exclude the possibility that part of
the differences found between both groups could be influenced by other age-related factors
apart from the MixD ocurrence. Regarding the vascular component of MixD, different
cerebrovascular lesions and locations induce different phenotypes of dementia. Given a big
enough cohort of subjects, OB proteomics may prove to be useful to discriminate different
types of dementia according to different cerebrovascular lesions.
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4. Conclusions

Overall, the present study provides new clues regarding the molecular mechanisms
concerning the olfactory dysfunction that occurs during MixD. Part of the differential OB
protein set was not specific of MixD, being also deregulated across different tauopathies,
synucleinopathies and tardopathies. However, functional analysis has unveiled OB com-
monalities and differences between pure AD and MixD. Based on olfactory proteomic data,
LRP1 may be considered a potential serum biomarker to differentiate AD and MixD phe-
notypes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jpm11060503/s1, Supplementary Table S1: Samples included in the potential biomarker
discovery phase monitoring serum protein levels of NXRN3, TNR and LRP1. Supplementary Table S2:
OB quantified proteome and differential expressed proteins across MixD phenotypes. Supplementary
Table S3: Functional analysis of OB DEPs in MixD subjects using Metascape. Supplementary Table S4:
Functional clustering comparing OB DEPs in AD stages III-IV, stages V-VI and MixD subjects using
Metascape. Supplementary Table S5: Raw quantification data from NXRN3, TNR and LRP1 ELISA
analysis. Supplementary Figure S1: Graphical representation of the fold-change and p-value variables
of the differential proteins. (a) Frequency histogram representation showing by means of bars the
numerical data distribution of the fold-change level and (b) p-value of the differential proteins.
Each bar represents the number of observations (frequency) on each variable in a given range.
(c) Visualization of the distribution of data over a continuous interval by means of a density plot
of the fold-change level and (d) p-value. The peaks of the density plot show where the values are
concentrated in the interval. (e) Combination of histogram and density plot of the fold-change
level and (f) the p-value. Supplementary Figure S2: Top 100 enriched ontology clusters across
MixD olfactory differential proteome by Metascape. Supplementary Figure S3: Signaling pathways
monitoring in the OB across MixD. Levels and residue-specific phosphorylation of MAP kinases (A),
PDK1-PKC (B), P38 (C), and SSEK1.SAPK (D) in the OB across MixD phenotypes. Equal loading
of the gels was assessed by total stain in each gel lane as previously described (REF) (* p < 0.05
versus control group; ** p < 0.01 versus control group). Supplementary Figure S4: Sex-specific
alterations of serum NXRN3 (A), TNR (B) and LRP1 (C) protein levels across AD and MixD patients,
Supplementary File S1: Legend associated to the Ingenuity Pathway Analysis software.
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