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Abstract
We consider the standard symmetric elliptic integral RF (x, y, z) for complex x , y, z. We
derive convergent expansions of RF (x, y, z) in terms of elementary functions that hold uni-
formly for one of the three variables x , y or z in closed subsets (possibly unbounded) of
C\(−∞, 0]. The expansions are accompanied by error bounds. The accuracy of the expan-
sions and their uniform features are illustrated by means of some numerical examples.

Keywords Symmetric standard elliptic integrals · Convergent expansions · Uniform
expansions · Error bounds

Mathematics Subject Classification 33E05 · 41A58

1 Introduction

The family of elliptic integrals are integrals of the form
∫
R(x, y)dx , where R(x, y) is a

rational function of the two variables x and y, and y2 is a polynomial of the third or fourth
degree in x . These functions cannot, in general, be expressed in terms of elementary functions
when the polynomial y2 has not a repeated factor and R(x, y) contains some odd power of y.
Nevertheless, Legendre showed that all the elliptic integrals can be written in terms of three
standard integrals, the so called Legendre’s normal elliptic integrals [23] (see [29] for further
details).
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The three standard elliptic integrals and the three complete elliptic integrals (that are
particular cases of the first ones) are special functions quite useful in several mathematical
and physical problems. For example, the first complete elliptic integral plays an important
role in the theory of iterated number sequences based on the arithmetic geometric mean [33,
Sect. 12.1.2]. The three standard elliptic integrals are connected to the Theta functions and
the Weierstrass’ elliptic function [33, Sect. 12.3]. They appear, in a natural way, in certain
geometrical and statistical problems [18,32]. The period of a simple pendulum in a constant
gravitational field can be computed in terms of the first complete elliptic integral [33, Sect.
12.1.1]; the zeros of these integrals can be used to determine an upper bound for the number
of limit cycles of certain hamiltonian systems [35]; elliptic integrals play also an important
role in certain problems of electromagnetism [37]. The inverse of the first symmetric standard
elliptic integral is just the electric capacity of a conductor with an ellipsoidal shape [31]. See
[22] for further applications.

In [4,12] and [33, Chap. 12] we may find a comprehensive list of properties of the stan-
dard elliptic integrals. However, Carlson showed that, for numerical purposes, symmetric
standard elliptic integrals are more appropriate than Legendre’s normal elliptic integrals
[7–11]. And Legendre’s normal elliptic integrals may be written in terms of symmetric stan-
dard elliptic integrals by means of simple formulas [33, Eq. 12.33]. In this paper we are
interested on the first symmetric standard elliptic integral, that is defined as follows [12,
Sect. 19.16, Eq. 19.16.1],

RF (x, y, z) := 1

2

∫ ∞

0

ds√
s + x

√
s + y

√
s + z

, x, y ∈ C\(−∞, 0]; z > 0, (1)

where, for simplicity in the exposition, we assume first that one of its variables, say z, is
positive. In Sect. 4 we extend the results derived in the paper to complex values of z.

It is also reasonable to assume that the three variables are different, because otherwise
this integral is an elementary function, for example RF (x, x, x) = 1/

√
x . The integral is

normalized in the form RF (1, 1, 1) = 1, and is a homogeneous function of degree −1/2 in
its three variables [12, Sect. 19.20, Eq. 19.20.1]. This means that

F(x, y) := √
zRF (z(1 + x), z(1 + y), z)

= 1

2

∫ ∞

0

ds√
s + x + 1

√
s + y + 1

√
s + 1

, x, y ∈ C\(−∞,−1],
(2)

is indeed a function of only two variables x and y. For convenience in the analysis, in the
remaining of the paper we consider the function F(x, y) instead of RF (x, y, z). All the
results that we are going to derive in this paper for F(x, y) can be translated to RF (x, y, z)
by means of the connection formula

RF (x, y, z) = 1√
z
F

(
x − z

z
,
y − z

z

)

, x, y ∈ C\(−∞, 0]; z > 0. (3)

In this paper we are interested on the approximation of RF (x, y, z) in terms of elementary
functions. Several attempts on this line can be found in the literature. Without the aim of
being exhaustive, we summarize below the most relevant ones (to our knowledge). First of
all, some results concerning approximations of elliptic integrals can be found for example in
[4,20]. Several bounds and inequalities may be found in [5,14,21,30].

About asymptotic approximations, the first results were obtained by Carlson, Gustafson
and Wong by using the method of regularization [38, Chap. 6, Sect. 7]. The first (and some-
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times the second too) term of the asymptotic expansion of RF when one of its variables tends
to zero or infinity, has been obtained by Gustafson [19]; these results were later improved by
Carlson and Gustafson when one of the variables goes to the infinity [14].

About convergent expansions, some of the first results were derived by Carlsonwho, using
Mellin transforms techniques, obtained a complete convergent expansions of RF [6]. This
expansion has an attractively simple structure, but the explicit computation of the terms of
the expansion is not straightforward (see [6, Sect. 5]). Later, Carlson and Gustafson solved
this problem in [13], where they computed the coefficients of the expansion of RF (x, y, z) in
terms of Legendre functions and their derivatives. More recently, although in the context of
the theory of asymptotic expansions of integrals, new convergent expansions of RF (x, y, z)
have been obtained in [17,24,25].

The expansions mentioned in the above paragraph are valid for real positive values of
the three variables x, y, z; and the expansions are accurate when one of the variables is
large compared to the other ones. They are not accurate (or they are not even convergent)
when two variables are of the same order. Therefore, they cannot be used when we need an
approximation uniformly valid for large and small values of one of the variables (and fixed
values of the other two).

On the other hand, in [36] we can find an expansion of RF (x, y, z) (written in the Legendre
form) that is uniformly convergent in one of the variables when the other two are restricted
to a certain bounded domain. It is derived for real positive values of the variables, and error
bounds are not given. In this paper we want to extend and generalize the expansion given in
[36]. To this end we use the theory of uniform convergent expansions of integral transforms
developed in [28], deriving a family of uniformly convergent expansions of F(x, y) in terms
of elementary functions that are uniformly valid in one of its variables, regardless of the value
of the other one. Moreover, we consider complex values of x and y and derive error bounds.
Because of the symmetry of this function, without loss of generality, we consider y as the
uniform variable.

As an illustration of the type of approximations that we are going to obtain in this paper
(see Theorems 1 and 2 below), we derive, for example, the following approximations that
are valid for 0 ≤ x < 1, �y > 0:

F(x, y) = (x + 4y)arcsh
√
y

4y3/2
− x

√
y + 1

4y
+ θ1(x), (4)

with |θ1(x)| ≤ 0.075x2 ≤ 0.075.

F(x, y) =
(
36x2y + 25x3 + 64xy2 + 256y3

)
arcsh

√
y

256y7/2

− x
√
y + 1

(
40x2y2 − 50x2y + 75x2 − 72xy2 + 108xy + 192y2

)

768y3
+ θ2(x),

(5)

with |θ2(x)| ≤ 0.031x4 ≤ 0.031. In these formulas, F(x, 0)must be understood in the limite
sense.

The paper is structured as follows. The next section contains some preliminary results
that we need in the later analysis. In Sect. 3 we give the main results of the paper: con-
vergent expansions of F(x, y) that are uniformly valid for y ∈ C\(−∞,−1] with fixed
x ∈ C\(−∞,−1]. Some numerical examples show the accuracy of these expansions in
Sect. 4. Also, in Sect. 4 we show that the condition z > 0 for RF (x, y, z) may be relaxed
and consider z ∈ C\(−∞, 0] if we restrict the variables x and y to smaller sectors inside
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C\(−∞, 0]. In all the paper, for any complex variable w, argw ∈ (−π, π] denotes its main
argument and square roots are assumed to take their principal value.

2 Preliminaries

Except the expansion derived in [36], all the other convergent and asymptotic expansions
mentioned in the introduction section are directly derived from the integral definition (1) of
the first symmetric standard elliptic integral RF (x, y, z). And they are derived using typi-
cal techniques of the theory of asymptotic expansions of integrals [26], [34, Chap 16], [38,
Chaps. 3 and 6]. This is why the expansions are accurate (regardless they are convergent or
only asymptotic) when one of the variables is large compared to the other two. In order to
avoid this restriction, we invoke the new ideas introduced in [2,3,15,16,27], where new con-
vergent expansions of several special functions are derived in terms of elementary functions,
expansions that are uniformly valid for large and small values of a certain selected variable.
Those ideas are summarized in [28]. Consider the integral transform of a function g(t) with
kernel h(t, y) of the form:

�(y) :=
∫ 1

0
h(t, y)g(t)dt y ∈ D ⊂ C, (6)

where D is a certain unbounded region of the complex plane that contains the point y = 0,
and with the following assumptions for the functions h and g:

(i) |h(t, y)| ≤ H(t) for y ∈ D with H integrable on [0, 1],
(ii) g(t) is analytic in a region � ⊂ C that contains the open set (0, 1) ⊂ �,
(iii) the moments of h, M[h(·, y); k] := ∫ 1

0 h(t, y)tkdt , are elementary functions of y.

It has been shown in [28] that, when we replace g(t) in (6) by its Taylor expansion at an
appropriate point w ∈ � and interchange sum and integral in (6), we obtain an expansion of
�(y) with the following three properties:

(a) The expansion is uniform for y ∈ D: for any order n of the approximations �n(y), the
absolute error |�(y) − �n(y)| ≤ Mn for any y ∈ D with Mn independent of y.

(b) The expansion is convergent.
(c) The terms of the expansions are elementary functions of y.

It has been proved in [28] (and we may intuitively assume) that a key point to derive
uniformly convergent expansions by interchanging sum and integral is that the integration
interval in (6) is bounded. And vice-versa, the price to pay when we derive expansions by
interchanging sum and integral in integrals defined on unbounded intervals is that, in general,
we lose convergence.1 And moreover, they are not uniform in the asymptotic variable, as the
very construction of the asymptotic expansion requires either a large or a small value of the
asymptotic variable.

Therefore, in order to derive uniformly convergent expansions of F(x, y) we first must
find an integral representation of F(x, y) on a bounded interval. This is straightforward from
(2) by introducing the change of variable s → t defined in the form 1 + s = 1/t . We obtain

F(x, y) = 1

2

∫ 1

0

dt√
t
√
1 + x t

√
1 + y t

. (7)

1 Fortunately, when it is done in a clever way by expanding the integrand at its asymptotically relevant points,
we obtain useful asymptotic expansions.
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Obviously, we can use the symmetry of RF (x, y, z) to derive other representations of the
form (7) by permuting the variables x, y, z. The integral representation (7) is the starting point
for our analysis based on the general idea introduced in [28] and summarized above. The
main results of the paper are given in Theorems 1 and 2 in the next section. In the remaining
of this section we give some preliminary results used in the proof of these theorems.

Lemma 1 Let f (t, y) := 1√
1 + y t

, with t ∈ [0, 1] and y ∈ C\(−∞,−1]. Then, for any
fixed angle θ , with π/2 ≤ θ < π , we define the extended sector S(θ) := {y ∈ C; | arg(y)| ≤
θ}∪({y ∈ C; | arg(y)| > θ}⋂{y ∈ C; |y + 1| ≥ sin θ}⋂{y ∈ C; |y + 1/2| ≤ 1/2}) (green
region in Fig. 1). Then, for any y ∈ S(θ), f (t, y) is uniformly bounded in the form

| f (t, y)| ≤ 1√
sin θ

. (8)

Proof The absolute maximum of the function | f (t, y)| in the interval t ∈ [0, 1] depends on
the value of �(y). We divide the region C\(−∞,−1] in three different regions R1, R2 and
R3, that are depicted in Fig. 1:

• When y ∈ R1 := {y ∈ C; �(y) ≥ 0}, the maximum is attained at t = 0 and its value is
1.

• When y ∈ R2 := {y ∈ C; �(y) < −|y|2}, the maximum is attained at t = 1 and its value
is |1 + y|−1/2. The region R2 is an open disk of center y = −1/2 and radius r = 1/2.

• When y ∈ R3 := {y ∈ C;−|y|2 ≤ �(y) < 0}\(−∞,−1], the maximum is attained at
t = −�(y)/|y|2 and its value is | sin(arg y)|−1/2. The region R3 is the left half complex
plane �(y) < 0, with both, the straight (−∞,−1], and the disk R2, removed.

We fix an angle θ ∈ [π/2, π). The rays arg(y) = ±θ cut the boundary of the disk R2 at
the points P± = (− cos2 θ,± sin θ cos θ). At the portions of the rays arg(y) = ±θ that are
inside the region R3 (that is a portion of the boundary of S(θ)) we have that

| f (t, y)| ≤ 1
√| sin(arg y)| ≤ 1√

sin θ
.

On the other hand, at the portion of the circle |1 + y| = sin θ that is inside the disk R2, that
is, the remaining portion of the boundary of S(θ), we have that

| f (t, y)| ≤ 1√|1 + y| ≤ 1√
sin θ

,

and the thesis of the lemma follows. ��

Lemma 2 For any x ∈ C\(−∞,−1], define the multivalued function

w(x) := 1

2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if | arg(x + 1)| < π/2,

1 + i
u − √

u2 + v2

v
if 0 < | arg(x + 1)| < π,

0 if |x | < 1,

(9)

with u := �(x + 1), v := (x + 1). We have that

|x w(x)| < |1 + x w(x)|, |x(1 − w(x))| < |1 + x w(x)|. (10)

For arg(x + 1) = π , the two inequalities |x w| < |1 + x w| and |x(1 − w)| < |1 + x w|
cannot be simultaneously satisfied for any value of w.

123



    4 Page 6 of 17 B. Bujanda et al.

Fig. 1 The region S(θ) defined in Lemma 2.1 is the green area. Its boundary is the portion of the rays
arg y = ±θ exterior to the open disk R2 = D1/2(−1/2), and also the portion of the circle |y + 1| = sin θ

interior to R2 (color figure online)

Proof We write w(x) = w in order to simplify the notation. Divide the second inequality in
(10) by |x + 1| to get the equivalent inequalities:

|x w| < |1 + x w| ,
∣
∣
∣
∣

x

x + 1
(w − 1)

∣
∣
∣
∣ <

∣
∣
∣
∣1 + x

x + 1
(w − 1)

∣
∣
∣
∣ .

These two inequalities mean that the distance from both points, x w and x
x+1 (w − 1), to the

point −1, must be larger than the distance to the point 0. This is equivalent to the following
two inequalities:

� (x w) > −1

2
, �

(
x

x + 1
(w − 1)

)

> −1

2
.

Write w = (a + 1/2) + ib with a ∈ {0,−1/2}, b ∈ R, and define θ := arg(x + 1) and
r := |x + 1|. Then, the above two inequalities are equivalent to the following two ones:

(

cos θ − 1

r

)

a − b sin θ + 1

2
cos θ > 0,

(r − cos θ) a − b sin θ + 1

2
cos θ > 0.

(11)

For θ = π these inequalities read

1

2(r + 1)
< a < − r

2(r + 1)

and therefore, when arg(x + 1) = π , inequalities (11) do not hold for any w ∈ C.
For |θ | < π/2 the two inequalities (11) hold for a = b = 0 (w = 1/2, first line in (9)).
For θ �= 0, π , the two inequalities (11) hold for a = 0 and b < cot(θ)/2 if 0 < θ < π

and b > cot(θ)/2 if −π < θ < 0. In particular, for the value of w given in the second line
of (9).

For r < 2 cos θ the two inequalities (11) hold for a = −1/2 and b = 0 (w = 0). Inequality
r < 2 cos θ is equivalent to inequality |x | < 1 (last line in (9)). ��
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Lemma 3 For y ∈ C\(−∞,−1], define

Ak(y) :=
∫ 1

0

tk−1/2

√
1 + yt

dt . (12)

Then,

Ak(y) = 2√
π

(−1)k

yk+1/2

�(k + 1/2)

k! arcsh(
√
y)−√

1 + y
k∑

j=1

(−y)− j

k − j + 1

(1/2 − k) j−1

(−k) j−1
, (13)

where (a)m = a(a + 1)(a + 2) · . . . · (a + m − 1) = �(a+m)
�(a)

denotes de Pochhammer’s
symbol and empty sums must be understood as zero. The elementary functions Ak(y) may
also be computed by using the recurrence relation

Ak(y) = 2k − 1

2k y

(
2
√
1 + y

2k − 1
− Ak−1(y)

)

, k = 1, 2, 3, ..., (14)

A0(y) = 2√
y
arcsh(

√
y). (15)

Proof Write

Ak+1(y) =
∫ 1

0

tk+1/2

√
1 + yt

dt = 1

y

∫ 1

0

tk−1/2(t y + 1 − 1)√
1 + yt

dt

= 1

y

∫ 1

0
tk−1/2

√
1 + yt dt − 1

y
Ak(y).

Integrating by parts the integral in the right hand side above we find
∫ 1

0
tk−1/2

√
1 + yt dt =

√
1 + y

n + 1/2
− y

2n + 1
Ak+1(y).

The recurrence in thefirst line of (14) follows after straightforward computations. The integral
A0(y) is immediate. Recurrence (14)–(15) has a unique solution, and it may be checked that
(13) is a solution of the recurrence.

3 Uniformly convergent expansions of F(x, y)

In order to apply the general theory introduced in [28] (and summarized in the Introduction),
we first select the uniform variable, which, without loss of generality due to the symmetry
of the function F(x, y), we choose to be y. Then, by comparing (6) and (7), we identify

h(t, y) = 1√
t
√
1 + y t

, g(t) = 1√
1 + x t

.

The function g(t) is analytic in � = {t ∈ C; 1 + x t /∈ (−∞, 0]}. A possible point t =
w(x) ∈ � for the Taylor expansion of g(t) is given in Lemma 2 and depends on arg(x + 1).
The point t = w(x) indicated in Lemma 2 is not the unique possible election, but, as we will
see in Theorem 1 below, it is the appropriate value tominimize the error of the approximation.
In Theorem 2 we consider the case w = 0. Although the election w = 0 imposes a more
demanding restriction on x (|x | < 1) than other possible choices, we highlight this case
because it gives the simplest possible expansion for F(x, y) and sharper error bounds.
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Theorem 1 Fix an angle θ ∈ [π/2, π) and consider the region S(θ) ⊂ C\(−∞,−1] defined
in Lemma 1. Then, for any x ∈ C\(−∞,−1], y ∈ S(θ), and n = 1, 2, 3, ...,

F(x, y) = 1

2
√
1 + x w(x)

n−1∑

k=0

(1/2)k
k!

( −x

1 + x w(x)

)k

Ak (y;w(x)) + Rn(x, y), (16)

with w(x) given in the first or second line of formula (9) in Lemma 2,

Ak(y;w) :=
k∑

j=0

(
k
j

)

(−w)k− j A j (y), (17)

and Ak(y) given Lemma 3. The remainder term is bounded in the form

|Rn(x, y)| ≤ 1√
sin θ

(1/2)n
n!

|x w(x)|n
|x w(x) + 1|n+1/2 2F1

⎛

⎝
1, n + 1

2

n + 1

∣
∣
∣
∣
∣
∣

|x w(x)|
|x w(x) + 1|

⎞

⎠ . (18)

Proof Consider the Taylor expansion of g(t) = 1√
1 + xt

at t = w ∈ C, with w = w(x)

defined in Lemma 2,

g(t) = 1√
1 + x w

n−1∑

k=0

(−x)k (1/2)k
k!

(
t − w

1 + x w

)k

+ rn(t; x), (19)

where the Taylor remainder is given by

rn(t; x) := 1√
1 + x w

∞∑

k=n

(−x)k (1/2)k
k!

(
t − w

1 + x w

)k

= 1√
1 + x w

(1/2)n (−x)n

n!
(

t − w

1 + x w

)n

2F1

⎛

⎝
1, n + 1

2

n + 1

∣
∣
∣
∣
∣
∣

x(w − t)

1 + x w

⎞

⎠ .

(20)

The valuew = w(x) given in Lemma 2 assures that inequalities (10) hold and then, |t−w| <

|w + 1/x | for any t ∈ [0, 1]. This means that the branch point t = −1/x of g(t) is located
outside the disk of convergence of (19): |t−w| < |w+1/x |, and expansion (19) is convergent
for any t ∈ [0, 1].

Replacing g(t) = (1 + t x)−1/2 in the integrand in (7) by the right hand side of (19) and
interchanging sum and integral, we obtain (16), with Ak(y;w) given in (17) and

Rn(x, y) := 1

2

∫ 1

0

rn (t; x)√
t
√
1 + y t

dt . (21)

From (20) we have that

|rn(t; x)| ≤ 1√|x w + 1|
(1/2)n
n!

∣
∣
∣
∣
x(t − w)

x w + 1

∣
∣
∣
∣

n

2F1

⎛

⎝
1, n + 1

2

n + 1

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
x(t − w)

x w + 1

∣
∣
∣
∣

⎞

⎠ .

123



Uniform approximations of the first symmetric. . . Page 9 of 17     4 

From this bound and (8) in Lemma 1 we find

|Rn(x, y)| ≤ 1√
sin θ

(1/2)n
2n!√|1 + x w|

×
∫ 1

0

∣
∣
∣
∣
x(t − w)

1 + x w

∣
∣
∣
∣

n

2F1

⎛

⎝
1, n + 1

2

n + 1

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
x(t − w)

1 + xw

∣
∣
∣
∣

⎞

⎠ dt√
t
.

Using the series representation of the Gauss hypergeometric function and interchanging
sum and integral we obtain

|Rn(x, y)| ≤ 1√
sin θ

(1/2)n
2n!

1√|1 + xw|

×
∞∑

k=0

(n + 1/2)k
(n + 1)k

∣
∣
∣
∣

x

1 + w x

∣
∣
∣
∣

n+k ∫ 1

0

|t − w|n+k

√
t

dt .

Using that |t − w| ≤ |w| for t ∈ [0, 1] we find

|Rn(x, y)| ≤ 1√
sin θ

(1/2)n
n!

1√|1 + w x |
∞∑

k=0

(n + 1/2)k |x w|n+k

(n + 1)k |1 + w x |n+k
.

Equation (18) follows by using again the series representation of the Gauss hypergeometric
function. ��
Observation 1 The convergence of expansion (16) only requires for the expansion pointw in
the proof of Theorem 1 to satisfy the inequalities (10). The value w = w(x) given in Lemma
2 assures that inequalities (10) hold (indeed there may be more than one possible value for
w as the function w(x) in (9) is multivalued). But moreover, the value w = w(x) given in
the second line of (9) in Lemma 2 for 0 < | arg(x + 1)| < π and the value w = 1/2 given
in the first line for arg(x + 1) = 0 minimize the value of the factor |xw/(xw + 1)|n in (18).
For values of arg(x + 1) close to zero, although the best choice w(x) is given in the second
line of (9), its value is close to 1/2, and then w = 1/2 is also a good choice.

Theorem 2 Fix an angle θ ∈ [π/2, π) and consider the region S(θ) ⊂ C\(−∞,−1] defined
in Lemma 1. Then, for any y ∈ S(θ), |x | < 1, and n = 1, 2, 3, ...,

F(x, y) = 1

2

n−1∑

k=0

(1/2)k
k! (−x)k Ak (y) + Rn(x, y), (22)

where the coefficients Ak(y) are given in formula (13) in Lemma 3, and satisfy recurrence
(14). The remainder term is bounded in the form

|Rn(x, y)| ≤ 1√
sin θ

(1/2)n |x |n
(2n + 1)n! 3F2

⎛

⎝
1, n + 1

2 , n + 1
2

n + 1, n + 3
2

∣
∣
∣
∣
∣
∣
|x |

⎞

⎠

≤ 2√
sin θ

|x |n (1/2)n
(n − 1)!(2n − 1)

, (23)

where 3F2 is a hypergeometric function. When x ≥ 0 we have the sharper bound:

|Rn(x, y)| ≤ (1/2)n
n!(2n + 1)

xn√
sin θ

. (24)
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When x ≥ 0 and �(y) > 0, we have the alternative bound:

|Rn(x, y)| ≤ (1/2)n
n!(2n)

xn√|y| . (25)

Proof Set w = 0 in the proof of Theorem 1 and repeat that proof step by step to derive
expansion (22) with

Rn(x, y) := 1

2

∫ 1

0

rn(t; x)√
t
√
1 + y t

dt, (26)

where now, rn(t; x) is the Taylor remainder in expansion (19) with w = 0; expansion that is
convergent for |x | < 1 for any t ∈ [0, 1]. We have that

rn(t; x) =
∞∑

k=n

(−x)k tk (1/2)k
k! . (27)

Replacing rn(t; x) in (26) by the above expansion and interchanging sum and integral we
obtain

Rn(x, y) = 1

2

∞∑

k=n

(1/2)k
k! (−x)k Ak (y) .

Thus,

|Rn(x, y)| ≤ 1

2

∞∑

k=n

(1/2)k
k! |x |k |Ak (y)| ≤ 1√

sin θ

∞∑

k=n

(1/2)k
k!(2k + 1)

|x |k

= 1√
sin θ

(1/2)n |x |n
(2n + 1)n! 3F2

⎛

⎝
1, n + 1

2 , n + 1
2

n + 1, n + 3
2

∣
∣
∣
∣
∣
∣
|x |

⎞

⎠ ,

and the first bound in (23) follows. In the second inequality above we have used the bound:

|Ak (y)| ≤
∫ 1

0

tk− 1
2√|1 + y t | dt ≤ 1√

sin θ

∫ 1

0
tk−

1
2 dt = 2

2k + 1

1√
sin θ

.

From the power series definition of the hypergeometric functions [1, Sect. 16.2, Eq. 16.2.1]
we have

3F2

⎛

⎝
n + 1

2 , 1, n + 1
2

n + 1, n + 3
2

∣
∣
∣
∣
∣
∣
|x |

⎞

⎠ ≤ 3F2

⎛

⎝
n + 1

2 , 1, n + 1
2

n + 1, n + 3
2

∣
∣
∣
∣
∣
∣
1

⎞

⎠ . (28)

In [3] the authors have proved that, for n > b − a and a, b > 0,

3F2

⎛

⎝
n + 1 + a − b, 1, a + n

n + 1, 1 + a + n

∣
∣
∣
∣
∣
∣
1

⎞

⎠ ≤ n(a + n)

(b − a)(n + a − b)
.

Setting a = 1/2 and b = 1 in this formula we find

|Rn(x, y)| ≤ 1√
sin θ

|x |n (1/2)n
n!

2n

2n − 1
,

and the second inequality in (23) follows. When x > 0, we have that the terms of the
convergent series expansion (27) alternate sign and their modulus constitute a decreasing
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sequence. Then, applying the Leibniz criterion we find that |rn(t; x)| is bounded by the
absolute value of the first neglected term in expansion (27):

|rn(t; x)| ≤ (1/2)n(x t)n

n! .

Using this bound in (26) and Lemma 1 we find (24). When �y > 0 we may use this bound
in (26) and also |√1 + t y| ≥ |√t y|, and we find (25). ��
Observation 2 All the bounds shown in Theorems 1 and 2, except bound (25), show that the
expansions given in the Theorems 1 and 2 are uniformly valid for y ∈ S(θ) ⊂ C\(−∞,−1],
with S(θ) defined in Lemma 1. On the other hand, they are not uniform in the variable x ; error
bounds (18) and (23) become worse when x approaches the boundary of the convergence
region: |x | → ∞ or | arg(x + 1)| → π in formula (18) and |x | → 1 in formula (23).
Although it is not a uniform bound, for x,�y > 0, bound (25) is sharper than the other ones
for large |y|.
Observation 3 Approximations (4) and (5) are the particular cases n = 2 and n = 4 of
formula (22), with the error bound (24) setting θ = π/2 (see Lemma 1 for �y ≥ 0).

4 Final remarks and numerical experiments

Formula (2) is derived from (1) after the change of variable s → zs and under the assumption
z > 0. If, instead of z > 0, we let z ∈ C\(−∞, 0] then, instead of the second inequality in
(2) we obtain

RF (x, y, z) = z

2

∫ ∞e−i arg z

0

ds√
z(s + x/z)

√
z(s + y/z)

√
z(s + 1)

.

When arg(−u/z) /∈ [0,− arg z], u = x, y, wemay invoke Cauchy’s residue theorem to rotate
the integration contour [0,∞e−i arg z) to the contour [0,∞). We have that arg(−u/z) =
arg(u/z)−π sign(arg(u/z)). Therefore, the condition arg(−u/z) /∈ [0,− arg z] is equivalent
to the condition | arg(u/z) + arg z| < π . Now, using that

| arg(u/z) + arg z| =
{

| arg u|(< π) if | arg u − arg z| < π,

| arg u ± 2π |(≥ π) if | arg u − arg z| ≥ π,

we deduce that | arg(u/z) + arg z| < π ⇐⇒ | arg u − arg z| < π , and then, the condition
arg(−u/z) /∈ [0,− arg z] is equivalent to the condition | arg u − arg z| < π .

But moreover, when | arg(u/z)+arg z| < π we have that
√
z(u/z) = √

z
√
u/z, and using

that | arg(s + u/z)| ≤ | arg(u/z)| ∀ s ≥ 0, we also have that
√
z(s + u/z) = √

z
√
s + u/z ∀

s ≥ 0. Therefore, when | arg x − arg z| < π and | arg y − arg z| < π ,

RF (x, y, z) = 1

2
√
z

∫ ∞

0

ds√
s + x/z

√
s + y/z

√
s + 1

. (29)

Then, the connection formula (3), and the expansions for RF (x, y, z) that we obtain when
we combine (3) with the expansions derived for F(x, y) in Sect. 3 hold, not only for z > 0
and x, y ∈ C\(−∞, 0], but in the bigger domain:

(x, y, z) ∈ � := {(x, y, z) ∈ (C\(−∞, 0])3; | arg x − arg z| < π, | arg y − arg z| < π}.
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Fig. 2 The argument of the variable x is restricted to the sector arg x ∈ (arg z − π, arg z + π)
⋂

(−π, π ].
Different shapes of the x−section of the region� for different arguments of z (green region in all the pictures)
(color figure online)

Figure 2 illustrates the shape of the x−domain � for fixed z (the y−domain for fixed z is
analogous). By using the symmetry of RF (x, y, z), we may interchange the rolls of x and z
or y and z.

Finally, we give some numerical experiments that illustrate the accuracy and uniform
character of the expansions derived in Theorems 1 and 2. In the numerical tables of this
subsection we have computed the Relative Error, En

Rel(x, y), and compared to the relative
error bound Bn

Rel(x, y). They are defined in the form:

En
Rel := |Fn(x, y) − F(x, y)|

|F(x, y)| , Bn
Rel := |Rn(x, y)|

|F(x, y)| ,

where Fn(x, y) represents the sum of the first n terms of the series in the right hand side of
(16) or (22). The term Rn(x, y) represents the error bound given in the right hand side of
(18), (23) or (24). In Tables 1 and 2 we compute En

Rel(x, y) and Bn
Rel(x, y) for several fixed

values of x and along some rays y = |y|ei arg y for several values of arg y.
In Fig. 3 we plot the function F(x, y) and several orders of the approximations Fn(x, y)

given in Theorems 1 and 2 for fixed values of the variable x in different rays of the y−complex
plane. The uniform and convergent character of the expansions are exhibited. On the other
hand, in Fig. 4 we compare the approximation of RF (x, y, z) derived from (22) and (3) to the
convergent and asymptotic approximations of RF (x, y, z) given in [24, Corollary 1, Eq. (26)]
for large and small values of y > 0, with fixed positive values of x and z. The expansion
given in [24, Corollary 1, Eq. (26)] is only valid for x < y < z; but using the symmetry of
the symmetric standard elliptic integral, we may use the approximation of RF (x, y, z) for
small values of y, and the approximation of RF (x, z, y) for large values of y. The picture
illustrates the uniform character of expansion given in Theorem 2 above, in contrast to the
expansions given in [24, Corollary 1, Eq. (26)].
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Table 1 Relative error (with Fn(x, y) evaluated by using (16)) and relative error bound (18) for x = 2ei π/5;
several values of y = |y| ei arg y and order n of the approximation

n En
Rel Bn

Rel En
Rel Bn

Rel En
Rel Bn

Rel

y = 1 y = 1 y = 4 y = 4 y = 8 y = 8

2 0.060972 0.175509 0.066642 0.20955 0.070677 0.239381

6 0.001749 0.008143 0.002018 0.009723 0.002218 0.011107

10 0.000079 0.000466 0.000093 0.000557 0.000103 0.000636

14 4.260·10−6 0.000028 5.006·10−6 0.000034 5.595·10−6 0.000039

y = eiπ/4 y = eiπ/4 y = 4eiπ/4 y = 4eiπ/4 y = 8eiπ/4 y = 8eiπ/4

2 0.060909 0.173239 0.066738 0.206904 0.070903 0.236929

6 0.001744 0.008038 0.002020 0.009600 0.002227 0.010993

10 0.000077 0.000460 0.000092 0.000549 0.000103 0.000629

14 4.188·10−6 0.000028 4.936·10−6 0.000034 5.547·10−6 0.000038

y = e−iπ/4 y = e−iπ/4 y = 4e−iπ/4 y = 4e−iπ/4 y = 8e−iπ/4 y = 8e−iπ/4

2 0.059979 0.171874 0.065828 0.204162 0.070291 0.233537

6 0.001707 0.007975 0.001979 0.009473 0.002195 0.010836

10 0.000077 0.000457 0.000091 0.000542 0.000102 0.000620

14 4.205·10−6 0.000028 4.949·10−6 0.000033 5.564·10−6 0.000038

y = eiπ/2 y = eiπ/2 y = 4eiπ/2 y = 4eiπ/2 y = 8eiπ/2 y = 8eiπ/2

2 0.059727 0.164779 0.066103 0.196256 0.071036 0.226463

6 0.001690 0.007645 0.001986 0.009106 0.002223 0.010508

10 0.000074 0.000438 0.000089 0.000521 0.000102 0.000601

14 3.973·10−6 0.000027 4.734·10−6 0.000032 5.423·10−6 0.000037

y = e−iπ/2 y = e−iπ/2 y = 4e−iπ/2 y = 4e−iπ/2 y = 8e−iπ/2 y = 8eiπ/2

2 0.057679 0.162243 0.064128 0.190745 0.069888 0.219665

6 0.001611 0.007528 0.001898 0.008850 0.002161 0.010192

10 0.000073 0.0004309 0.000088 0.000507 0.000101 0.000583

14 4.014·10−6 0.000026 4.749·10−6 0.000031 5.443·10−6 0.000036

y = ei3π/4 y = ei3π/4 y = 4ei3π/4 y = 4ei3π/4 y = 8ei3π/4 y = 8ei3π/4

2 0.057030 0.148933 0.064583 0.097001 0.071479 0.077238

6 0.001571 0.006910 0.001907 0.004501 0.002215 0.003583

10 0.000067 0.000395 0.000084 0.000258 0.000099 0.000205

14 3.562·10−6 0.000024 4.381·10−6 0.000016 5.225·10−6 0.000012

y = e−i3π/4 y = e−i3π/4 y = 4e−i3π/4 y = 4e−i3π/4 y = 8e−i3π/4 y = 8e−i3π/4

2 0.053422 0.145783 0.061343 0.092408 0.070239 0.073451

6 0.001434 0.006764 0.001760 0.004288 0.002128 0.003408

10 0.000065 0.000387 0.000081 0.000245 0.000098 0.000195

14 3.655·10−6 0.000024 4.364·10−6 0.000015 5.211·10−6 0.000012

The value of w(x) is given in the second line of (9)
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Table 2 Relative error (with Fn(x, y) evaluated by using (22)) and relative error bound (23) for x = 1/3ei π/5;
several values of y = |y| ei arg y and order n of the approximation

n En
Rel Bn

Rel En
Rel Bn

Rel En
Rel Bn

Rel

y = 1 y = 1 y = 4 y = 4 y = 8 y = 8

2 0.006510 0.012367 0.005381 0.015025 0.004762 0.017349

6 0.000017 0.000039 0.000013 0.000047 0.000011 0.000054

10 9.731·10−8 2.366·10−7 7.593·10−8 2.874·10−7 6.566·10−8 3.319·10−7

14 7.275·10−10 1.821·10−9 5.651·10−10 2.212·10−9 4.880·10−10 2.5547·10−9

y = eiπ/4 y = eiπ/4 y = 4eiπ/4 y = 4eiπ/4 y = 8eiπ/4 y = 8eiπ/4

2 0.006626 0.012157 0.005439 0.014758 0.004785 0.017085

6 0.000017 0.000037 0.000013 0.000045 0.000011 0.000053

10 9.949·10−8 2.326·10−7 7.655·10−8 2.823·10−7 6.572·10−8 3.269·10−7

14 7.439·10−10 1.790·10−9 5.696·10−10 2.173·10−9 4.881·10−10 2.515·10−9

y = e−iπ/4 y = e−iπ/4 y = 4e−iπ/4 y = 4e−iπ/4 y = 8e−iπ/4 y = 8e−iπ/4

2 0.006621 0.012124 0.005427 0.014694 0.004772 0.017008

6 0.000017 0.000038 0.000013 0.000046 0.000011 0.000053

10 9.923·10−8 2.319·10−7 7.623·10−8 2.811·10−7 6.543·10−8 3.254·10−7

14 7.419·10−10 1.785·10−9 5.671·10−10 2.163·10−9 4.857·10−10 2.504·10−9

y = eiπ/2 y = eiπ/2 y = 4eiπ/2 y = 4eiπ/2 y = 8eiπ/2 y = 8eiπ/2

2 0.007028 0.011474 0.005612 0.013898 0.004830 0.016243

6 0.000018 0.000035 0.000013 0.000043 0.000011 0.000051

10 1.071·10−7 2.195·10−7 7.789·10−8 2.659·10−7 6.529·10−8 3.108·10−7

14 8.019·10−10 1.689·10−9 5.785·10−10 2.046·10−9 4.845·10−10 2.391·10−9

y = e−iπ/2 y = e−iπ/2 y = 4e−iπ/2 y = 4e−iπ/2 y = 8e−iπ/2 y = 8eiπ/2

2 0.007019 0.011410 0.005587 0.013769 0.004801 0.016090

6 0.000018 0.000035 0.000013 0.000042 0.000011 0.000050

10 1.066·10−7 2.183·10−7 7.719·10−8 2.634·10−7 6.468·10−8 3.078·10−7

14 7.977·10−10 1.680·10−9 5.733·10−10 2.027·10−9 4.799·10−10 2.369·10−9

y = ei3π/4 y = ei3π/4 y = 4ei3π/4 y = 4ei3π/4 y = 8ei3π/4 y = 8ei3π/4

2 0.008022 0.010225 0.005895 0.006802 0.004844 0.005511

6 0.000022 0.000032 0.000014 0.000021 0.000011 0.000017

10 1.289·10−7 1.956·10−7 7.838·10−8 1.301·10−7 6.326·10−8 1.054·10−7

14 9.679·10−10 1.505·10−9 5.800·10−10 1.001·10−9 4.686·10−10 8.114·10−10

y = e−i3π/4 y = e−i3π/4 y = 4e−i3π/4 y = 4e−i3π/4 y = 8e−i3π/4 y = 8e−i3π/4

2 0.008015 0.010143 0.005852 0.006694 0.004795 0.005426

6 0.000022 0.000032 0.000013 0.000021 0.000011 0.000017

10 1.280·10−7 1.941·10−7 7.716·10−8 1.280·10−7 6.2301·10−8 1.038·10−7

14 9.607·10−10 1.493·10−9 5.709·10−10 9.856·10−10 4.614·10−10 7.990·10−10

The value of w(x) is given in the third line of (9)
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Fig. 3 Graphics of F(x, y) (black, dashed) and the approximations given by theorems 2 and 1 with n = 1
(blue), n = 2 (red) and n = 3 (green) for different values of the fixed variable x and different intervals of
the uniform variable y, with w(x) taken according to Lemma 2. We have taken x = 0.7 and y ∈ (−1, 15)
(top, left); x = 2.3 and y ∈ (−1, 15) (top right); and x = 2eπ i/3 and y ∈ (−10eiπ/4, 10eiπ/4) (bottom).
The graphic on the bottom left corresponds to the real part of the functions whereas the picture on the bottom
right represents the imaginary part. The graphics are similar for others values of x and y. The graphics show
the uniform and the convergent character of the expansions (color figure online)

Fig. 4 Relative errors in the approximation of RF (1, y, 2) for y ∈ [0, 6]. The blue line represents the relative
error provided by the series expansion (22), using the connection formula (3). The red line represents the
relative error provided by the series expansion given in [24, Corollary 1, Eq. (26)] for small values of y. The
green line represents the relative error provided by the series expansion given in [24, Corollary 1, Eq. (26)] for
large values of y. We have taken the same number of terms n = 5 for the three approximations (color figure
online)
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All the computations of this section have been carried out by using the symbolic manip-
ulation program Wolfram Mathematica 12.2. In particular, the “exact” value of F(x, y) or
RF (x, y, z) is computed by means of numerical integration with the command “NIntegrate”.
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