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Abstract: A new method to process the vibration signal acquired by an accelerometer placed in a
planetary gearbox housing is proposed, which is useful to detect potential faults. The method is
based on the phenomenological model and consists of the projection of the healthy vibration signals
onto an orthonormal basis. Low pass components representation and Gram–Schmidt’s method are
conveniently used to obtain such a basis. Thus, the measured signals can be represented by a set
of scalars that provide information on the gear state. If these scalars are within a predefined range,
then the gear can be diagnosed as correct; in the opposite case, it will require further evaluation. The
method is validated using measured vibration signals obtained from a laboratory test bench.

Keywords: planetary gearbox; vibration signal processing; fault detection

1. Introduction

Planetary gear (PG) transmissions are widely used as mechanical elements in the
automotive industry [1], aeronautics [2], wind power generation [3], etc. Generally, these
mechanisms are responsible for using the necessary power supplied by the motors to
execute the functions associated with each application, so that the detection of faults in
predictive maintenance in these elements is crucial in terms of safety and cost. Research
of the vibrations for fault detection in gearboxes began in the late 1970s [4]. Since then,
researchers have worked on the definition of numerical indicators using, generally, exper-
imental vibration signals obtained from PG-scale models. Initially, simple time domain
parameters such as energy, amplitude, and statistical moments were taken into account
to verify the presence or the absence of failures. Later, in order to improve the behavior
of these indicators, signal preprocessing was introduced to enhance fault detection [5–7].
Subsequently, fault indicators were developed that analyze the signal behavior in the
frequency domain [8–10] and in time–frequency domains simultaneously [10–12]. This
way, more complete information of the vibration signal was obtained and, in the case
of time–frequency techniques, its variation over time. This allows a more robust fault
diagnosis and a better understanding of the temporal variability of the vibrations in a PG.
However, most of these techniques are based on a single parameter and strongly related to
the magnitude spectrum.

In recent years, there is a great interest in developing monitoring techniques for the
predictive maintenance of rotary elements such as PGs. However, there is not always
accessibility to test signals obtained from real machines, so many efforts have also been
made in modeling vibration signals, developing several methods. Initially, the problem was
addressed from a physical point of view through the dynamic model [13–15] which, using
concepts such as forces, inertia, damping and stiffness of the bodies, defines the dynamics
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in a PG through integro-differential equations. As a complementary approach, the finite el-
ement method (FEM) [16–18] has also been used to approximate these complex differential
equations and model the deformations of bodies in three dimensions. To achieve this, the
FEM method is based on dividing a solid into a set of finite elements and defining algebraic
equations for each element. This way, once the boundary conditions, initial conditions
and loads are defined, solving these algebraic equations gives an approximation to the
partial differential equations over the entire surface. More recently, the phenomenological
model [19–21] was proposed as a simpler and more intuitive alternative to the dynamic
model. The phenomenological model obtains the vibration signals through simpler alge-
braic equations based on empirical observations providing an intuitive understanding of
the characteristics of the vibration signal spectrum.

In this paper, a new processing method based on the phenomenological model is pro-
posed. The approach is based on a projection of the vibration signals onto an orthonormal
basis formed from the healthy signals. Thus, the measured signals can be represented as a
linear combination of the basis. If such combination is within a predefined range, the PG
can be diagnosed as correct; in the opposite case, the PG will require a preventive inter-
vention. The basis is obtained, first calculating the low pass (baseband) components of the
original healthy band pass signals and, subsequently, implementing the Gram–Schmidt’s
orthogonalization method.

2. Materials and Methods

A planetary gear set (see Figure 1) is a system consisting of one or more external gears
or planets that rotate on a central gear or sun. The planets are mounted on a structure
called carrier that can rotate relative to the planets and sun with an external, stationary
gear called the ring so the planets mesh with them.

Sensors 2022, 22, x FOR PEER REVIEW 2 of 14 
 

 

using concepts such as forces, inertia, damping and stiffness of the bodies, defines the 
dynamics in a PG through integro-differential equations. As a complementary approach, 
the finite element method (FEM) [16–18] has also been used to approximate these complex 
differential equations and model the deformations of bodies in three dimensions. To 
achieve this, the FEM method is based on dividing a solid into a set of finite elements and 
defining algebraic equations for each element. This way, once the boundary conditions, 
initial conditions and loads are defined, solving these algebraic equations gives an ap-
proximation to the partial differential equations over the entire surface. More recently, the 
phenomenological model [19–21] was proposed as a simpler and more intuitive alterna-
tive to the dynamic model. The phenomenological model obtains the vibration signals 
through simpler algebraic equations based on empirical observations providing an intui-
tive understanding of the characteristics of the vibration signal spectrum. 

In this paper, a new processing method based on the phenomenological model is 
proposed. The approach is based on a projection of the vibration signals onto an orthonor-
mal basis formed from the healthy signals. Thus, the measured signals can be represented 
as a linear combination of the basis. If such combination is within a predefined range, the 
PG can be diagnosed as correct; in the opposite case, the PG will require a preventive 
intervention. The basis is obtained, first calculating the low pass (baseband) components 
of the original healthy band pass signals and, subsequently, implementing the Gram–
Schmidt’s orthogonalization method. 

2. Materials and Methods 
A planetary gear set (see Figure 1) is a system consisting of one or more external gears 

or planets that rotate on a central gear or sun. The planets are mounted on a structure 
called carrier that can rotate relative to the planets and sun with an external, stationary 
gear called the ring so the planets mesh with them. 

 
Figure 1. Schematic view of a PG [22]. 

The main components and characteristics of a PG are listed below: 
• Ring: it is fixed and contains 𝑍𝑅 teeth. Hence the rotation frequency is 𝑓𝑅 = 0. 
• Sun: input component (𝑍𝑆 teeth). Rotation frequency 𝑓𝑆. 
• Planets: 𝑍𝑃 teeth each planet. Rotation frequency 𝑓𝑃. 
• Carrier: output component. Rotation frequency 𝑓𝐶. 

The transducer used to measure vibrations in the gearbox is an accelerometer located 
at a fixed position as shown in Figure 1. In this way, all the information to be analyzed 
(the vibration signal) is obtained from the same record. The acquired vibration signal will 
be the combination of vibrations produced by the simultaneous gear meshing processes 
at different points of the PG. In addition, each of these vibrations will travel a different 

Figure 1. Schematic view of a PG [22].

The main components and characteristics of a PG are listed below:

• Ring: it is fixed and contains ZR teeth. Hence the rotation frequency is f R = 0.
• Sun: input component (ZS teeth). Rotation frequency f S.
• Planets: ZP teeth each planet. Rotation frequency f P.
• Carrier: output component. Rotation frequency f C.
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The transducer used to measure vibrations in the gearbox is an accelerometer located
at a fixed position as shown in Figure 1. In this way, all the information to be analyzed (the
vibration signal) is obtained from the same record. The acquired vibration signal will be
the combination of vibrations produced by the simultaneous gear meshing processes at
different points of the PG. In addition, each of these vibrations will travel a different path
to the sensor. When the gear system is in good condition, the sensor will detect a particular
and well-defined signal shape, which will be modified when a fault begins to manifest.

2.1. Modeling of the Vibration Signal

The phenomenological model (PM) [19,20] defines the vibration signal in a PG as the
sum of the vibrations produced by the planet–sun and planet–ring gear meshing processes,
modelled as periodic signals with a period equal to the gear mesh period (related to the
number of teeth and the rotation period of the carrier). Each of the vibrations will travel a
different path to the sensor in the ring, which generates a modulation of amplitude in the
resulting vibration signal.

Figure 1 shows the PG example on which the development of the PM will be based.
The PG is composed of 3 equally spaced planets, whose initial angular position is calculated
by the formula Ψi = (2π(i− 1))/NP, where NP is the number of planets and i = 1, 2, . . . ,
NP is the planet index.

The total vibration signal, v(t), is composed by the sum of the vibration signals produced
by the gear meshing process of planet i with the ring and the sun (vi(t) = vri(t) + vsi(t))
as would be appreciated by an observer located on the carrier. Each of these signals is an
amplitude modulated by Ai(t), i = 1, 2 . . . , NP due to the periodically variable transmission
path from the vibration sources to the sensor. That is, the amplitude of the vibration signal
will vary according to the distance to which the planet is located with respect to the sensor
attached to the ring.

2.1.1. Transmission Paths of the Vibration Signal

In [20], the different transmission paths from the vibration source to the sensor are
described. However, only two of these paths modulate the vibration signal, since the rest
are time invariant and generate a constant energy loss with no crucial information. The
two paths taken into account are defined as:

1 Planet–ring mesh point Ô ring Ô transducer. Defined by a modulation function Ari(t).
2 Planet–sun mesh point Ô planet Ô ring Ô transducer. Defined by a modulation

function Asi(t).

In general, the shape of function Ari(t) will be the same as Asi(t) and only the am-
plitude will vary. This function contains the spectral information of the sidebands for a
particular PG, so it is necessary that its periodicity correspond to the frequency of the carrier
f C. There are different options to simulate the Ari(t) function. In [20], a raised cosine with
period f C is used, while in [19] a bell-shaped function with the same frequency is chosen.
In both cases, the function has a certain DC component, since, in reality, while the PG is
in motion, the vibration detected by the sensor will be higher or lower depending on the
distance at which the source of the vibration is, but it will never be null. From these two
options, in this work a raised bell function has been chosen to model the transmission paths
and derive the proposed method:

Ar(t) = DClev + Ae−2π fct2
(1)

where DClev corresponds to the DC level mentioned above and A is the amplitude of
the bell. The functions of the planets (Ari(t)) can be obtained, as well as the functions
corresponding to the path from the sun–planet mesh point (Asi(t)) as:

Ari(t) = Ar

(
t +

i− 1
Np

Tc

)
(2)
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Asi(t) = kAri(t) (3)

for i = 1, 2, . . . , Np. The transmission path defined by Asi(t) is considered the longest one
and, therefore, a greater energy loss is expected. Thus, k is a factor describing the energy
loss (k < 1) [20].

2.1.2. Vibration Signal

The vibration signals produced by the gear-meshing processes (see Figure 1) between
each planet and the sun (vspi(t)) and each planet and the ring vrpi(t) are periodic functions
with frequency equal to the gear mesh frequency wm = ZRwc

vrpi(t) = Vrp cos
(

wm

(
t +

Ψi + δpi

wc

))
(4)

vspi(t) = Vsp cos
(

wm

(
t +

Ψi + δpi

ws − wc

)
+ γi

)
(5)

where Ψi =
2π(i−1)

Np
is the angular position of each planet, γi the phase difference between

the sun–planet and the ring–planet gear-meshing processes and δpi the angular displace-
ment of the planet that can occur due to fabrication errors or a fault/crack in the carrier,
among other causes. In this case, these type of failures will not be taken into account
(i.e., δpi = 0).

By adding the modulation due to the transmission paths and taking into account that
the vibration detected in the sensor is the superposition of all the vibrations produced in
the PG, the final vibration signal is:

v(t) =
Np

∑
i=1

Ari(t)vrpi(t) + Asi(t)vspi(t) (6)

Substituting (1) to (5) in (6), it leads to:

v(t) =
Np

∑
i=1

[
DClev + Are

−2π fc(t− i−1
Np Tc)

2]
Vrp cos

(
wm

(
t− Ψi+δpi

wc

))
+k
[

DClev + Are
−2π fc(t− i−1

Np Tc)
2]

Vsp cos
(

wm

(
t− Ψi+δpi

ws−wc

)
+ γi

) (7)

The values of γi and δpi depend on the characteristics of the PG, which can be classified
in the following groups [19]:

• Group A: PGs with equally-spaced planet gears and in-phase gear meshing processes
(δpi = 0; γi = 0).

• Group B: PGs with equally-spaced planet gears and out-of-phase meshing processes
(δpi = 0; γi 6= 0).

• Group C: PGs with unequally-spaced planet gears and in-phase meshing processes
(δpi 6= 0; γi = 0).

• Group D: PGs with unequally-spaced planet gears and out-of-phase meshing processes
(δpi 6= 0; γi 6= 0).

Figure 2 shows as an example of the resulting modeled vibration signal of a healthy
PG belonging to group A with DClev = 10 mV, A = 50 mV, and unity value of Vrp and
Vsp. This group is the most common one and it will be used to demonstrate the proposed
technique with experimental results.
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2.2. Proposed Signal Processing Method

As mentioned above, the vibration signal is formed by a high frequency component,
i.e., the fundamental frequency, known as gear mesh frequency, corresponding to the
gear meshing processes of the different gears and a lower frequency envelope due to the
transmission path of the vibrations at each meshing point to the sensor. Moreover, when
failures occur in some tooth of the ring, sun, or planet, additional sidebands appear around
the gear mesh frequency at integer multiples of the characteristic frequencies of each failure.
Therefore, in the vibration signal of a PG the following components are differentiated:

1 High frequency component at gear mesh frequency ( fm = Zr fc). In this paper the
value of fm is 432 Hz (see [22]).

2 Low frequency components corresponding to the transmission path envelope
( fA(t) = Np fc) or faults at ring ( f f r = Np fc), sun ( f f s = Np

Zr
Zs

fc), and planet
( f f p = Zr

Zp
fc) gears.

Therefore, Equation (7) can be interpreted as a band pass signal centered around
frequency wm = 2π fm, where the side bands contain the information that is required to
diagnose the correct operation of the PG; thus, this signal can be represented using its low
pass equivalent form, namely, in-phase (I) and quadrature (Q) components, following the
canonical expression:

v(t) = vI(t) cos(wmt)− vQ(t) sin(wmt) (8)

Manipulating (7) based on (8) and using Ari(t) to refer to the modulation due to the
transmission path for simplicity, the vibration signal can be represented as

v(t) = cos(wmt)
[
Vrp + Vsp

] Np

∑
i=1

[
Ari(t) cos

(
wmΨi

wc

)
+ kAri(t) cos

(
wmΨi

ws−wc

)]
− sin(wmt)

[
Vrp + Vsp

] Np

∑
i=1

[
Ari(t) sin

(
wmΨi

wc

)
+ kAri(t) sin

(
wmΨi

ws−wc

)] (9)

Comparing (9) with (8) the I and Q components are:

vI(t) =
[
Vrp + Vsp

] Np

∑
i=1

[
Ari(t) cos

(
wmΨi

wc

)
+ kAri(t) cos

(
wmΨi

ws − wc

)]
(10)

vQ(t) =
[
Vrp + Vsp

] Np

∑
i=1

[
Ari(t) sin

(
wmΨi

wc

)
+ kAri(t) sin

(
wmΨi

ws − wc

)]
(11)

Note that knowing vI(t), vQ(t), and wm, the function v(t) is completely defined. Thus,
we can use this representation to elaborate the proposed method. A practical approach to
obtain the low pass components of measured signals is multiplying (9) by 2 cos(wmt) and
−2 sin(wmt), followed by a low pass filter, respectively.
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The detailed processing scheme used to analyze the vibration signal of a PG is shown
in Figure 3. First, the baseband in-phase (I) and quadrature (Q) components are obtained
from the vibration signal detected by the sensor (using appropriate band pass filtering; in
this case, around fm± 40 fc). To achieve this, it is necessary to multiply the signal by a cosine
and a sine at gear mesh frequency and subsequently low pass filter the resulting signals.
The cutoff frequency of the low pass filter must be set so that the low frequency components
of vI(t) and vQ(t) are preserved and the double frequency component (2 fm), is rejected.
For the experimental case described in this paper, the cutoff frequency of the Butterworth
low pass filter employed is fm/2. From there, the TC period of each baseband component
is divided in NP sections of duration TC/NP corresponding to each planet pIi(t) and pQi(t)
in Figure 3. Each of these sections is projected on N time basis functions, represented in
the diagram as ∅j, with j = 1, 2, . . . , N, through a multiplication and integration over its
duration TC/NP. In this proposal, the basis will be obtained using the Gram–Schmidt
method on a healthy PG. At the end of this process, 2(N × NP) scalars PI,ij and PQ,ij are
obtained, with i = 1, 2, . . . , NP the planet index, with NP = 3 in the PG analyzed in this
paper, and j = 1, 2, . . . , N the index of the basis functions.
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Figure 3. Block diagram of the process to obtain the geometric representation of the vibration signal
of a PG.

As mentioned before, in this case, the number of basis obtained is N = NP = 3. These
scalars can be graphically represented with the basis functions as the axes, obtaining points
in a space known as a constellation [23]. This way, with the scheme of Figure 3, the signal
under analysis can be compared with the signal of a healthy PG graphically, enabling faults
to be detected by means of changes with respect to the “healthy constellation”. This is
possible because the added frequency components due to faults displace the points in the
constellation from their ideal positions because of phase and/or magnitude variations. The
error or Euclidean distance between points of a healthy and faulty constellation can be
analyzed as well to quantify the variation.

One of the main advantages of this method, compared with other methods used in
the industry, is that it takes not only the magnitude into account, but also the phase of the
vibration signal. In fact, the in-phase (I) and quadrature (Q) components of a signal can be
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interpreted with module
√

I2 + Q2 and phase tan−1(Q/I) of (7). Due to this, there is an
extra source of information in the analysis of the vibration signal and detection of faults.

Next, the process depicted in Figure 3 will be explained systematically, based on the
model described above for a vibration signal of a healthy PG.

Step 1: Multiplication of the signal in (10) by 2 cos(2π fm) and −2 sin(2π fm) and
lowpass filtering to obtain the baseband I and Q components.

After the multiplication of the vibration signal v(t) by 2 cos(2π fm) and −2 sin(2π fm),
the frequency component at gear mesh frequency is moved to baseband and replicas of
said component appear at double gear mesh frequency. The resulting spectra have been
added to Figure 3 for a generic case. However, the absence or existence of a Q baseband
magnitude component will depend on whether the gear mesh processes are in phase or
not, respectively. Thus, it will depend on the group that PG belongs to, as described above.

In order to retrieve the information of vI(t), and vQ(t), components at double gear
mesh frequency must be filtered out by using a low pass filter with the adequate cut-off
frequency. Analyzing (10) and (11), it can be seen that baseband I and Q components
are composed of the transmission path amplitude modulation function multiplied by
the summation of cosine or sine terms of the angular position of each planet, for both
planet–ring and planet–sun mesh processes. However, when there is a fault in a gear,
the added frequency components are expected to alter (10) and (11) and, therefore, the
resulting constellation. In Figure 4a the spectrum of v(t) is shown for the particular PG
analyzed in this paper, which belongs to group A. Figure 4b shows the spectrum of vI(t) as
described in (10) and Figure 4c the spectrum of vQ(t) as described in (11). Note that the
resulting components of vI(t) are in phase and, therefore, are added; on the other hand,
the components of vQ(t) are in counterphase, so they nullify each other. Thus, ideally, the
baseband quadrature component of the vibration signal will be null for PG’s whose gear
mesh processes are in phase.
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Step 2: Division of vI(t) and vQ(t) in NP sections of duration TC/NP each. The set of
functions generated in this step from the vibration signal of a healthy PG will be used to
obtain the basis (set of basis functions).

Step 3: Calculation of the basis functions of the vibration signal v(t) using the Gram–
Schmidt method [23], which employs the set of signals obtained in Step 2 from a healthy
PG. The main theoretical concepts of this representation technique are summarized below.

The geometric representation of the signals is based on representing any set of NP
transmitted signals pi(t) as a linear combination of N orthonormal basis functions where
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N ≤ NP. That is, given a set of transmitted signals, p1(t), p2(t), . . . , pNP(t), each of them
of duration T = TC/NP, we define:

pi(t) =
N

∑
j=1

pij∅j(t)dt,
{

0 ≤ t ≤ T
i = 1, 2, . . . , NP

(12)

where the coefficients of the expansion are described as follows:

pij =
∫ T

0
pi(t)∅j(t)dt,

{
i = 1, 2, . . . , NP
j = 1, 2, . . . , N

(13)

The real-valued basis functions ∅1(t), ∅2(t), . . . , ∅N(t) form an orthonormal set,
therefore fulfilling the following conditions:

∫ T

0
∅i(t)∅j(t)dt =

{
1 i f i = j
0 i f i 6= j

(14)

The first condition of the above formula defines that each basis function is normalized.
The second condition means that the basis functions ∅1(t), ∅2(t), . . . , ∅N(t) are orthogonal
to each other along the interval 0 ≤ t ≤ T. The set of coefficients

{
pij
}N

j=1 can be seen as a
signal vector of N dimensions, known as pi.

• Given the N elements of the vector pi as input, the scheme of Figure 5a can be used to
generate the signal pi(t).

• In the same way, given the signal pi(t), i = 1, 2, . . . , NP as input, the coefficients pi1,
pi2, . . . , piN can be calculated following the scheme of Figure 5b whose geometric
representation is known as constellation.
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Figure 5. (a) Synthesizer for generating the signal pi(t). (b) Analyzer for reconstructing the signal.

In this way, it can be stated that each signal in the set {pi(t)} is completely determined
by the signal vector pi = [pi1, pi2, · · · , piN ]

T , with i = 1, 2, . . . , NP. The set of vectors
{pi| i = 1, 2, . . . , NP} can be visualized as the definition of the corresponding set of NP
points in an Euclidean space of N dimensions, with N axes perpendicular to each other
named ∅1(t), ∅2(t), . . . , ∅N(t). This Euclidean space of N dimensions is known as signal
space. Figure 6 shows an illustration of the geometric representation of signals, also known
as a constellation, in a two-dimensional signal space (N = 2) with 3 signals (NP = 3).
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In order to find ∅i(t), the following procedure is employed:

∅1(t) =
p1(t)√∫ T

0 p2
1(t)dt

gi(t) = pi(t)−
i−1
∑

j=1
pij∅j(t)dt,

∅i(t) =
g1(t)√∫ T
0 g2

1(t)dt

f or i = 2, 3, . . . , N (15)

In the experimental case exposed in this paper, the number of resulting basis functions
orthogonal to each other is N = 3, rendering a three-dimensional signal space. In a constel-
lation, the Euclidean distance between points is a very useful metric, especially when they
are modified for external factors due to gears fault.

The Euclidean distance dik between the vector representations pi(t) and pk(t) can be
defined by:

dik = ||pi − pk||2 =
N

∑
j=1

(
pij − pkj

)2
=
∫ T

0
(pi(t)− pk(t))

2dt (16)

This magnitude can be used to detect faults on a PG. If pi(t) is the healthy signal and
pk(t) is the measured one, then dik ≈ 0 for a correct PG.

Step 4: Multiplication of the baseband I and Q components (pIi(t) and pQi(t) (re-
spectively) by their basis function and integration over the period of each planet. Thus,
with 3 planets, for planet 1 the integral will be performed over 0 to Tc/NP section, for
planet 2 over Tc/NP to 2Tc/NP, and for planet 3 over 2Tc/NP to Tc. This way, NP vectors
associated to each planet are obtained, which can be represented in a constellation in the
signal space diagram.

Following these steps using the vibration signal of a healthy PG, an ideal constellation
is obtained, which can be used as a reference in comparison with the constellation obtained
for a PG under analysis in order to detect faults. In the next section, some experimental
results are shown to demonstrate the proposed technique.

3. Results

The experimental measurements are taken in the test rig described in [22] as TR2,
which includes a single-stage spur-gear planetary gearbox, an asynchronous motor, a data
acquisition system, and a magnetic brake controlled by a current signal as the loading unit.

Three different vibration signals were analyzed for the conceptual validation of the
proposed fault detection method: the vibration signal obtained from a healthy PG (to be
used as a reference), the vibration signal of a PG with a fault in the ring gear, and the
vibration signal of a PG with a fault in the sun gear.
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As explained in Section 2, for the geometric representation of each signal under study,
two separate constellations were obtained, corresponding to the I and Q components of each
signal (see Figure 3). Each constellation is composed of points (vectors of NP dimensions)
representing each planet. Figures 7 and 8 show the I and Q constellations of the vibration
signals of a healthy PG (black), a PG with a fault in the ring (red), and a PG with a fault in
the sun (blue) in the same signal space, using the total duration of the signal and, therefore,
obtaining one point per planet. It can be observed in Figure 7 that when a fault exists, the
points move from their healthy positions. These movements have been represented with a
dashed arrow for planet one, dash-point arrows for planet two, and thick arrows for planet
three. Note that, in this case, gear-meshing processes are in-phase [19] so that the Q component
is expected to be almost zero as can be seen in Figure 7 where the points are distributed near
zero in all three axes. Thus, for the cases in which the gear-meshing processes are in-phase,
the Q constellation will not be representative to detect faults in the PG.
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As additional numerical information for fault detection, the Euclidean distance be-
tween points in the “faulty constellations” and their equivalent points in the “healthy
constellations” were obtained (see Table 1).

Table 1. Normalized Euclidean distance to constellation of a healthy PG and a faulty PG.

Fault Location I Constellation Q Constellation

Ring gear
dP1 = 1.53 dP1 = 0.211

dP2 = 1 dP2 = 0.69
dP3 = 1.2 dP3 = 0.148

Sun gear
dP1 = 0.733 dP1 = 0.14
dP2 = 1.066 dP2 = 0.72
dP3 = 0.779 dP3 = 0.51

Since the vibration signals are susceptible to changes due to external interferences,
noise, PG state variations, etc., that change over time, the signals have been analyzed over
various cycles obtaining a constellation for each cycle.

This way, each planet is defined by a cloud of points instead of a single point. In
Figure 9, these clouds are delimited by a dashed-line circle for planet one, a dash-point
line circle for planet two, and a thick line circle for planet three. The shifts of points inside
the clouds in the case of a healthy PG will be due to the changes mentioned before, while
larger shifts, resulting in points outside the clouds, will be caused by faults in the ring or
the sun gears. Figures 9 and 10 show the I and Q constellations obtained for this analysis,
corresponding to five cycles of each signal. As expected, in Figure 9 it can be observed
that the points of each planet form a compact cloud when there is no fault in the PG under
analysis. However, when there is a fault in the ring or sun gear, this can be detected as the
points of the resulting constellations fall outside of the clouds.
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4. Discussion

A novel vibration based PG fault detection method is proposed, which provides
additional information about the behavior of, not only the magnitude, but also the phase of
the vibration signal detected by the sensor depending on the state of the PG.

To validate the method, experimental PG vibration signals under different faulty
conditions were analyzed. Comparing experimental vibration signal on healthy and faulty
conditions, the displacement of points in the constellation and the resulting Euclidean error
values indicate the existence of faults.

Condition monitoring of PG’s for fault detection is currently a prominent field of
research. The vibration signal processing method developed in this paper is a versatile
method that can contribute to said field, since it provides suitable fault indicators for
different needs. On the one hand, the constellation of the baseband I and Q components of
the vibration signal allows observing the displacements of the points with respect to their
ideal positions. This permits an online monitoring of the status of the PG throughout its
operation. On the other hand, the error or Euclidean distance between the constellation
points of the analyzed PG and their ideal positions provides a quantitative assessment of
the status of the PG.

Note that due to the filtering carried out to extract the I and Q components (see
Figure 3), out-of-band noise is rejected. Hence only in-band noise is relevant. Due to the
sideband features, the required filter bandwidth and hence the influence of noise on the
signal relies on the particular PG, specifically on the number of planets and the carrier
rotation frequency. Besides, the scheme of Figure 3 relies on correlators to process the I
and Q signals, which is a rather robust technique against noise in the same manner as
correlation receivers in communications [23].

Future research directions include the extension to progressive damage detection and
nonstationary vibration signals. Progressive damage [24–26] of the PG could be potentially
detected using the proposed technique by monitoring the evolution with time of the
Euclidean distance between the points of the constellation that correspond to a healthy PG
and those of the PG that are experiencing progressive damage. This idea assumes that such
progressive damage is causing a variation on the I and Q signal components expressed in
Equations (10) and (11). This assumption is reasonable since the progressive pitting on the
gear tooth surface leads to an increase in the vibration [24].

Concerning nonstationary vibration signals, they may arise from variations in the
rotation speed. In this case, a technique should be included in Figure 3 that allows tracking
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phase and frequency variations of the carrier in the generation of the tones applied to the
input multipliers. The situation is similar to that of a communication receiver based on
synchronous detection. For this purpose, a phase locked loop (PLL) can be used in Figure 3
that would be in charge of generating the synchronous signals 2cos(2πfmt) and−2sin(2πfmt)
from the vibration signal v(t).

Finally, the inclusion of data-driven techniques can also be explored [27].

5. Patents

A Spanish patent was submitted by the authors on 28 September 2018 (number
P201830943) protecting the technique described in this paper.
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