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Abstract—In this work we propose a novel scalable Bayesian
modeling approach to smooth mortality risks borrowing infor-
mation from neighbouring regions in high-dimensional spatial
disease mapping contexts. The method is based on the well-known
“divide and conquer” approach, so that the spatial domain is
divided into D subregions where local spatial models can be fitted
simultaneously. Model fitting and inference has been carried out
using the integrated nested Laplace approximation (INLA) tech-
nique. Male colorectal cancer mortality data in the municipalities
of continental Spain have been analyzed using the new model
proposals. Results show that the new modeling approach is very
competitive in terms of model fitting criteria when compared
with a global spatial model, and it is computationally much more
efficient.

Index Terms—Disease mapping, High-dimensional data, INLA,
Parallel computing

I. INTRODUCTION

Disease mapping is the field of spatial epidemiology that
studies the link between geographic locations and the occur-
rence of diseases, focusing on the estimation of the spatial
and/or spatio-temporal distribution of disease incidence or
mortality patterns. The great variability inherent to classi-
cal risk estimation measures, such as standardized mortal-
ity/incidence ratios or crude rates, makes necessary the use
of statistical models to estimate smooth spatial risk sur-
faces borrowing information from neighbouring regions. The
information adquired from these analyses is invaluable for
health researchers and policy-makers as it helps to formulate
hypothesis about the etiology of a disease, to look for risk
factors and and also to allocate funds efficiently in hot spot
areas. However, scalability of the models, i. e. the usefulness
of the models when the number of small areas increases
considerably, is an aspect that has not been studied much.

II. SPATIAL MODELS IN DISEASE MAPPING

Let us assume that the spatial domain of interest is divided
into n contiguous small areas labeled as i = 1, . . . , n. For a
given area i, let Oi and Ei denote the observed and expected
number of disease cases, respectively. Using these quantities,
the standardized mortality/incidence ratio (SMR or SIR) is
defined as the ratio of observed and expected cases for the
corresponding areal unit. Although its interpretation is very
simple, these measures are extremely variable when analyzing
rare diseases or low-populated areas, as it is the case of high-
dimensional data. To cope with this situation, it is necessary to
use statistical models that stabilize the risks (rates) borrowing
information from neighbouring regions.

Generalized linear mixed models (GLMM) are typically
used for the analysis of count data within a hierarchical
Bayesian framework. Conditional to the relative risk ri, the
number of observed cases in the ith area is assumed to be
Poisson distributed with mean µi = Eiri. That is,

Oi|ri ∼ Poisson(µi = Eiri), i = 1, . . . , n
logµi = logEi + log ri,

where logEi is an offset. Depending on the specification of
the log-risks different models are defined. Here we assume
that

log ri = α+ ξi, (1)

where α is an intercept representing the overall log-risk and
ξ = (ξ1, . . . , ξn)

′
is a spatial random effect for which a con-

ditional autoregressive (CAR) prior is usually assumed. The
spatial correlation between CAR random effects is determined
by the neighbouring structure (represented as an undirected
graph) of the areal units. Let W = (wij) be a binary n × n
adjacency matrix, whose ijth element is equal to one if areas
j and k are defined as neighbours (usually if they share a
common border), and it is zero otherwise. Here, the prior
distribution proposed by Leroux et al. [1] has been considered,
which is given by

ξ ∼ N(0,Q−1
ξ ), where Qξ = τξ[λξ(DW−W)+(1−λξ)In]

and τξ = 1/σ2
ξ is the precision parameter, λξ ∈ [0, 1) is a

spatial smoothing parameter, DW = diag(w1+, . . . , wn+) and
wi+ =

∑
j wij is the ith row sum of W, and In is the n× n

identity matrix. We will refer to this model as the Global
model.

III. SCALABLE BAYESIAN MODEL PROPOSAL

Instead of considering a global spatial random effect whose
correlation structure is based on the whole neighbourhood
graph of the areal units, we propose to divide the main spatial
domain into D subregions so that local spatial models can be
simultaneously fitted in parallel reducing the computational
time substantially. Two different models are proposed based
on the partition of the geographical units.

A. Disjoint models

Let consider a partition of the spatial domain D into D
subregions, that is D =

⋃D
d=1 Dd where Di ∩ Dj = ∅

for all i 6= j. In our disease mapping context, this means
that each geographical unit belongs to a single subregion. A
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Fig. 1. Maps of posterior median estimates for ri of male colorectal cancer mortality data in Spanish municipalities during the period 2006-2015.

natural choice for this partition could be the administrative
subdivisions of the area of interest (such as for example,
provinces or states). Then, for d = 1, . . . , D the log-risks of
the Disjoint models are expressed in matrix form as

log rd = αd + ξd,

ξd ∼ N
(
0, [τξd(λξd(DWd

−Wd) + (1− λξd)Ind
)]−1

)
where αd is an intercept, ξd = (ξd1 , . . . , ξ

d
nd
)
′

is the vector
of spatial random effects within each subregion with a LCAR
prior distribution, Wd is the neighbourhood subgraph of the
areas belonging to Dd, and Ind

is the identity matrix of
dimension nd, with

∑D
d=1 nd = n. Since we have defined

a partition of the spatial domain D, the log-risk surface
log r = (log r1, . . . , log rD)

′
is just the union of the posterior

estimates of each submodel.

B. K-order neighborhood models

Assuming independence between areas belonging to dif-
ferent subregions could be very restrictive and may lead to
border effects in the disease risk estimates. To avoid this un-
desirable issue, we also propose a second modeling approach
where k-order neighbours are added to each subregion of
the spatial domain. Notice that doing this, the main spatial
domain D is now divided into overlapping set of regions,
that is, D =

⋃D
d=1 Dd but Di ∩ Dj 6= ∅ for neighbouring

subregions. In consequence, for some areal units multiple
relative risk estimates will be obtained. To obtain a unique
posterior distribution of ri for each areal unit i, we propose
to compute a mixture distribution of the estimated posterior
probability density functions obtained from different models.

IV. DATA ANALYSIS: COLORECTAL CANCER IN SPAIN

We illustrate the models’s behaviour by estimating colorec-
tal cancer mortality risks in Spanish municipalities during
the period 2006-2015, where the D = 15 Autonomous
Regions of Spain are used as a partition of the spatial domain.
Model fitting has been carried out using the well-known inte-
grated nested Laplace approximation (INLA) [2] technique for
Bayesian inference through the R-INLA package. The results
are shown in Table I. The computational time for the scalable
model proposals are divided into: 1) running time, which
corresponds to the maximum time of the D = 15 submodels
(that is, assuming that all models have been simultaneously

TABLE I
MODEL SELECTION CRITERIA AND COMPUTATIONAL TIME.

Model DIC WAIC T.run T.merge T.total

Global 27216.1 27237.9 1929 − 1929
Disjoint 27167.5 27166.7 110 26 136
1st order neighbourhood 27167.6 27170.5 132 63 195
2nd order neighbourhood 27174.3 27183.3 166 83 249

fitted), and 2) merging time, corresponding to the computation
of the mixture distribution of the risks and the approximate
DIC and WAIC values. As expected, the complexity and
computational time of the models increases as higher values
of neighbourhood order are considered. Besides the significant
reduction in the computational time required to fit the models
in INLA, the model selection criteria suggest that the new
model proposals outperform the Global model in this real data
analysis. The maps with posterior median estimates of ri are
shown in Fig. 1.

V. CONCLUSIONS

Similar spatial patterns are observed for all the models, but
2nd order neighbourhood models seem to be the most similar
to the Global model.

The scalable model proposal described in this work has been
implemented in the bigDM package. The main potential of this
methodology is its extension to the spatio-temporal domain.
The complexity inherent to spatio-temporal interaction models
and the even higher dimensionality associated to this type
of data, makes necessary the use of scalable techniques for
Bayesian inference. We are currently investigating this issue.
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