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Abstract. The general problem addressed in this work is the
development of a systematic study of the thresholding greedy al-
gorithm for general biorthogonal systems (also known as Marku-
shevich bases) in quasi-Banach spaces from a functional-analytic
point of view. We revisit the concepts of greedy, quasi-greedy, and
almost greedy bases in this comprehensive framework and provide
the (nontrivial) extensions of the corresponding characterizations
of those types of bases. As a by-product of our work, new proper-
ties arise, and the relations amongst them are carefully discussed.

Introduction

The subject of finding estimates for the rate of approximation of a
function by means of essentially nonlinear algorithms with respect to
biorthogonal systems and, in particular, the greedy approximation al-
gorithm using bases, has attracted much attention for the last twenty
years, on the one hand from researchers interested in the applied nature
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of non-linear approximation and, on the other hand from researchers
with a more classical Banach space theory background. Although the
basic idea behind the concept of a greedy basis had been around for
some time, the formal development of a theory of greedy bases was
initiated in 1999 by Konyagin and Temlyakov. In the seminal paper
[55] they introduced greedy and quasi-greedy bases and characterized
greedy bases in terms of the unconditionality and the democracy of
the bases. The theoretical simplicity of the greedy algorithm became
a model for a procedure widely used in numerical applications and the
subject was developed quite rapidly from the point of view of approx-
imation theory.

The convergence of the greedy algorithm also raises many interesting
questions in functional analysis. The idea of studying greedy bases and
related greedy algorithms from a more abstract point of view seems to
have originated with the work of Dilworth, Kutzarova, and Temlyakov
[36], and the work of Wojtaszczyk [73], who characterized quasi-greedy
bases for biorthogonal systems in the setting of quasi-Banach spaces.
From there, the theory of greedy bases and its derivates evolved very
fast as many fundamental results were discovered and new ramifications
branched out; but these advances were achieved solely for Schauder
bases in Banach spaces.

The neglect in the study of greedy-like bases in the setting of non-
locally convex spaces is easily understood. Even when they are com-
plete and metrizable, working with quasi-Banach spaces requires do-
ing without two of the most powerful tools in functional analysis: the
Hanh-Banach theorem (and the duality techniques that rely on it), and
Bochner integration (see the drawbacks of developing a satisfactory in-
tegration theory for quasi-Banach spaces in [1]). This difficulty in even
making the simplest initial steps has led some to regard quasi-Banach
spaces as too challenging and consequently they have been assigned a
secondary role in the theory.

However, greedy-like bases arise naturally in quasi-Banach spaces,
for instance in the study of wavelets (see, e.g. [45, 49, 72]), and the
unavailability of tools on the subject leaves the authors with two alter-
natives. The easiest one is to assume the validity of the results they
need without bothering to do the proofs. For instance, in [49, Proposi-
tion 8] it is stated that greedy bases in quasi-Banach spaces are char-
acterized by the properties of being unconditional and democratic, but
no further comment or proof is provided. This result is used in the
same paper in [49, Theorem 16] in a crucial way, thus the reader is left
to believe that the proof is trivial, without being made aware of the
idiosyncrasies involved. On the opposite end, in [72, Theorem 6.51],
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Triebel, in the same situation and in need of the very same result, uses
caution before relying on something that is not substantiated by a ref-
erence or a proof. Then, he settles for a weaker theorem by adding, in
hindsight, unnecessary hypotheses for the result to hold.

Taking into account that more and more analysts find that quasi-
Banach spaces have uses in their research, the task to learn about
greedy bases and its derivates in this framework seems to be urgent
and important. Our goal in this paper is to fill this gap in the theory
and encourage further research in this direction. Needless to say, since
Banach spaces are a special type of quasi-Banach spaces, proving new
results in p-Banach spaces for 0 < p < 1 often provides an alternative
proof even for the limit case p = 1. Hence, quasi-Banach spaces help
us appreciate better and also shed new light on regular Banach spaces.

The step from Schauder bases to Markushevich bases also deserves
a word. Most systems arising in mathematical analysis are first and
foremost biorthogonal systems, independently of whether one is able
to show that they are Schauder bases or not. Take for example the
trigonometric system in L1, which is a biorthogonal system and yet it is
not a Schauder basis. As far as the greedy algorithm is concerned, there
are authors who work in the frame of biorthogonal systems whereas
other authors prefer to remain within the safer conceptual framework of
Schauder bases. In fact, in the existing literature one finds fundamental
results in the theory, such as the characterization of almost greedy bases
[33], which were obtained for Schauder bases, whereas others, such as
the aforementioned characterization of quasi-greedy bases, which were
obtained for biorthogonal systems. This lack of consensus might (and
in fact, does) create some confusion about the validity of the theorems
that were obtained for Schauder bases, in the more general setting
of biorthogonal systems. By writing all our results under the unifying
approach of biorthogonal systems in quasi-Banach spaces, it is our hope
in this article to contribute to clarify this incertitude.

Let us next outline the contents of this paper. Section 1 has a pre-
liminary character. More specifically, §1.1 may work as a “first-aid
kit” to get around when trying to prove theorems in a space that lacks
local convexity. Indeed, local convexity plays, more or less implicitly, a
crucial role in the main results that have been obtained on the subject
so far. Here we will gather together some instrumental lemmas that
will help us proceed when local convexity is dropped. §1.2, §1.3, and
§1.4 contain the groundwork on bases in the context of quasi-Banach
spaces. One of our focuses of attention goes to making sure that the
two facets of unconditionality, suppression unconditionality and lattice
unconditionality, are equivalent notions in quasi-Banach spaces too.
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A property that has proved relevant in the study of greedy-like bases
is the unconditionality for constant coefficients. Section 2 is devoted
to its study, emphasizing the peculiarities that arise in the lack of local
convexity. Like for Banach spaces, we will see that working with the
greedy algorithm naturally leads to consider variations of the property
of unconditionality for constant coefficients, namely the lower uncondi-
tionality for constant coefficients (LUCC for short) and the suppression
unconditonality for constant coefficients (SUCC for short).

Section 3 is dedicated to quasi-greedy bases. Although this type
of bases was already considered for quasi-Banach spaces in [73], here
we make headway in the theory and show that a quasi-greedy basis is
strong Markushevich, a fact that seems to be unknown to the specialists
on the subject. It also contains a key lemma stating that quasi-greedy
bases are LUCC. The proof of the corresponding result for Banach
spaces relies heavily on the local convexity of the space, hence the
labor to make it work for quasi-Banach spaces entailed cooking up an
entirely different proof. In the last part of the section we study a non-
linear operator called the truncation operator, and analyse the relation
between its boundedness and the convergence of the greedy algorithm.

Section 4 deals with different variations on the property of democ-
racy of a basis. We determine the relations between democracy, su-
perdemocracy, bidemocracy, and symmetry for largest coefficients (also
known as Property (A)) taking into account the specific features of the
underlying quasi-Banach space.

In Section 5 we take advantage of the results obtained in Section 3 to
provide several (nontrivial) characterizations of almost greedy bases in
quasi-Banach spaces, including the extension to quasi-Banach spaces of
the well-known characterization of almost greedy bases by Dilworth et
al. [33] as those bases that are simultaneously quasi-greedy and demo-
cratic.

In Section 6 we substantiate the celebrated (and by now classical)
characterization by Konyagin and Temlyakov [55] of greedy bases for
general biorthogonal systems in quasi-Banach spaces in terms of uncon-
ditionality and democracy. With the equivalence between suppression
unconditionality and lattice unconditionality at hand, it must be con-
ceded that the proof of this fundamental fact is essentially the same as
for Banach spaces. Here, the novelty has to be judged in the achieve-
ment of optimal constants by means of a combination of classical meth-
ods with other specific techniques from quasi-Banach spaces that apply
to Banach spaces and permits to improve some of the estimates known
to date.
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In Section 7 we transfer to general biorthogonal systems in quasi-
Banach spaces the work initiated by Dilworth et al. in [32] on the
comparison between the “best greedy error” of the greedy algorithm
with its “best almost-greedy error.” In order to carry out this study
we previously analyse the different democracy functions associated to
the basis.

In Section 8 we strengthen the techniques from [2] (see also [43,73])
on linear embeddings of spaces in connection with the greedy algorithm.
We show that, even in the absence of local convexity, quasi-Banach
spaces with an almost greedy Markushevich basis can be sandwiched
between two suitable sequence Lorentz spaces, which permits to shed
iformation onto the nature of the basis of the space. Going further we
characterize the type of bases for which such embedding is possible.

When dealing with a quasi-Banach space X it is often convenient
to know which is the “smallest” Banach space containing X or, more
generally, given 0 < q ≤ 1, the smallest q-Banach space containing X,
known as the q-Banach envelope of X. In Section 9 we discuss how
certain properties of bases related to the greedy algorithm transfer to
envelopes.

In Section 10 we contextualize and illustrate with a selection of non-
trivial examples all the properties that we discuss in the article. To
mention a few, we include examples of bases that are SUCC and LUCC
but not quasi-greedy. We also construct new examples (valid both for
locally and non-locally convex spaces) of conditional almost greedy
bases, and examples of superdemocratic bases that fulfil neither the
LUCC condition nor Property (A). The greedy algorithm is thoroughly
examined for Besov spaces and Triebel-Lizorkin spaces.

In Section 11 we investigate a fundamental aspect of the theory that
has a long trajectory. The problem of renorming a Banach space in
order to improve the greedy-like properties of bases was initiated in
[17] and continued years later in [12, 37]. Here we see that for quasi-
Banach spaces the situation is entirely different. In fact, we can always
define a renorming (we should say “re-quasi-norming” to be precise) of
the space so that a greedy basis (respectively, quasi-greedy or almost
greedy) is 1-greedy (respectively, 1-quasi-greedy or 1-almost greedy).

Section 12, which concludes this article, contains a relatively long list
of open problems to encourage further research on the subject. Some of
this problems are of interest also outside the framework of the present
study.
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1. Preliminaries on bases and quasi-Banach spaces

Through this paper we use standard facts and notation from Banach
spaces and approximation theory (see [14]). For the necessary back-
ground in the general theory of quasi-Banach spaces we refer the reader
to [54]. Next we record the notation that is most heavily used.

We write F for the real or complex scalar field. As is customary, we
put δk,n = 1 if k = n and δk,n = 0 otherwise. The unit vector system
of FN will be denoted by Be = (en)∞n=1, where en = (δk,n)∞k=1 Also,
〈xj : j ∈ J〉 stands for the linear span of a family (xj)j∈J in a vector
space, [xj : j ∈ J ] denotes the closed linear span of a family (xj)j∈J in
a quasi-Banach space, and [xj : j ∈ J ]w∗ the w∗-closed linear span of
(xj)j∈J in a dual Banach space. We set c00 = 〈en : n ∈ N〉.

A sign will be a scalar of modulus one, and sign(·) will denote the
sign function, i.e., sign(0) = 1 and sign(a) = a/|a| if a ∈ F \ {0}.

The symbol αj . βj for j ∈ J means that there is a positive constant
C <∞ such that the families of non-negative real numbers (αj)j∈J and
(βj)j∈J are related by the inequality αj ≤ Cβj for all j ∈ J . If αj . βj
and βj . αj for j ∈ J we say (αj)j∈J are (βj)j∈J are equivalent, and
we write αj ≈ βj for j ∈ J .

We write X⊕Y for the Cartesian product of the quasi-Banach spaces
X and Y endowed with the quasi-norm

‖(x, y)‖ = max{‖x‖, ‖y‖}, x ∈ X, y ∈ Y.
Given a sequence (Xn)∞n=1 of quasi-Banach spaces and 0 ≤ p ≤ ∞,
(⊕∞k=1Xk)p denotes the quasi-Banach space consisting of all sequences
(fk)

∞
k=1 ∈ Π∞k=1Xk such that (‖fk‖)∞k=1 ∈ `p (c0 is p = 0). If Xk = X for

all k ∈ N we will put `p(X) := (⊕∞k=1Xk)p (c0(X) if p = 0).
We shall denote by L(X,Y) the quasi-Banach space of all bounded

linear maps from a quasi-Banach space X into a quasi-Banach space Y.
We write X ' Y if the quasi-Banach spaces X and Y are isomorphic.
BX will denote the closed unit ball of a quasi-Banach space X. We

say that a linear map T from a dense subspace V of X into X is well-
defined on X if it is continuous with respect to the topology on X. Of
course, T is well-defined on X if and only if T has a (unique) continuous
extension to a map, also denoted by T , from X to X.

An operator on X will be a (possibly non-linear nor bounded) map
T : X→ X such that T (tf) = tT (f) for all t ∈ F and f ∈ X.

Other more specific notation will be introduced in context when
needed.

1.1. Convexity-related properties of quasi-Banach spaces. A
quasi-norm on a vector space X is a map ‖ · ‖ : X→ [0,∞) satisfying
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(q1) ‖f‖ > 0 for all x 6= 0,
(q2) ‖tf‖ = |t|‖f‖ for all t ∈ F and all f ∈ X; and
(q3) there is a constant κ ≥ 1 so that for all f and g ∈ X we have

‖f + g‖ ≤ κ(‖f‖+ ‖g‖).

The collection of sets of the form®
x ∈ X : ‖x‖ < 1

n

´
, n ∈ N,

are a base of neighbourhoods of zero, so that the quasi-norm ‖·‖ induces
a metrizable linear topology on X. If X is complete for this topology
we say that (X, ‖ · ‖) is a quasi-Banach space.

Another quasi-norm ‖ · ‖0 on the same vector space X is said to be
a renorming of ‖ · ‖ if ‖ · ‖0 and ‖ · ‖ induce the same topology. It is
well known that ‖ · ‖0 is a renorming of ‖ · ‖ if and only if the functions
‖ · ‖0 and ‖ · ‖ are equivalent.

Given 0 < p ≤ 1, a p-norm is a map ‖ · ‖ : X → [0,∞) satisfying
(q1), (q2) and

(q4) ‖f + g‖p ≤ ‖f‖p + ‖g‖p for all f, g ∈ X.

Of course, (q4) implies (q3) with κ = 21/p−1. A quasi-Banach space
whose associated quasi-norm is a p-norm will be called a p-Banach
space. The Aoki-Rolewicz’s Theorem [19, 64] states that any quasi-
Banach space X is p-convex for some 0 < p ≤ 1, i.e., there is a constant
C such that∥∥∥∥∥∥

n∑
j=1

fj

∥∥∥∥∥∥ ≤ C

Ñ
n∑
j=1

‖fj‖p
é1/p

, n ∈ N, fj ∈ X.

This way, X becomes p-Banach under a suitable renorming. The term
locally convex designates a 1-convex quasi-Banach space.

Let us recall the following easy and well-known result.

Proposition 1.1. A quasi-Banach space (X, ‖·‖) is p-Banach for some
0 < p ≤ 1 if and only if∥∥∥∥∥∥∑j∈J ajfj

∥∥∥∥∥∥ ≤
Ñ∑
j∈J
|aj|p

é1/p

sup
j∈J
‖fj‖, J finite, aj ∈ F, fj ∈ X.

Despite the fact that a quasi-norm is not necessarily a continuous
map, the reverse triangle law

|‖f‖p − ‖g‖p| ≤ ‖f − g‖p, f, g ∈ X
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yields that a p-norm is a continuous map from X onto [0,∞). Hence,
the Aoki-Rolewicz Theorem yields, in particular, that any quasi-Banach
space can be equipped with an equivalent continuous quasi-norm.

Theorem 1.2 will play the role of a substitute of the Bochner integral
in the lack of local convexity. It will be heavily used throughout and it
will allow us to extend to quasi-Banach spaces certain results that are
valid in the Banach space setting. However, we would like to stress that
this result is not a fix for all the obstructions we meet when transferring
the greedy algorithm theory into quasi-Banach spaces.

Let us introduce two geometrical constants that are closely related
to the convexity properties of p-Banach spaces. Given 0 < p ≤ 1 we
put

Ap =
1

(2p − 1)1/p
(1.1)

and

Bp =

21/pAp if F = R,
41/pAp if F = C.

(1.2)

Theorem 1.2. Suppose X is a p-Banach space for some 0 < p ≤ 1.
Given any two families of functions (gj)j∈J , (hj)j∈J ∈ XJ with J finite,
we have ∥∥∥∥∥∥∑j∈J(1− bj)gj + bjhj

∥∥∥∥∥∥ ≤ Ap sup
A⊆J

∥∥∥∥∥∥ ∑
j∈J\A

gj +
∑
j∈A

hj

∥∥∥∥∥∥ ,
for all (bj)j=J ∈ [0, 1]J .

Proof. By approximation we can assume that 0 ≤ bj < 1 for all j ∈ J .
Let

A = {(βk)∞k=1 ∈ {0, 1}N : |{k ∈ N : βk = 0}| =∞}.
Note that for each 0 ≤ b < 1 there is a unique (βk)

∞
k=1 ∈ A such that

b =
∑∞
k=1 βk 2−k. Let us write

bj =
∞∑
k=1

βj,k2
−k, (βj,k)

∞
k=1 ∈ A,

and put

Ak = {j ∈ J : βj,k = 1}.
By Proposition 1.1,∥∥∥∥∥∥∑j∈J(1− bj)gj + bjhj

∥∥∥∥∥∥ =

∥∥∥∥∥∥∑j∈J
( ∞∑
k=1

(1− βj,k)2−kgj +
∞∑
k=1

βj,k2
−khj

)∥∥∥∥∥∥
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=

∥∥∥∥∥∥
∞∑
k=1

2−k

Ñ∑
j∈J

(1− βj,k)gj + βj,khj

é∥∥∥∥∥∥
=

∥∥∥∥∥∥
∞∑
k=1

2−k

Ñ ∑
j∈J\Ak

gj +
∑
j∈Ak

hj

é∥∥∥∥∥∥
≤
( ∞∑
k=1

2−kp
)1/p

sup
k∈N

∥∥∥∥∥∥ ∑
j∈J\Ak

gj +
∑
j∈Ak

hj

∥∥∥∥∥∥ .
Since

∑∞
k=1 2−kp = App, we are done. �

Corollary 1.3. Let X be a p-Banach space for some 0 < p ≤ 1. Let
(fj)j∈J be any collection of functions in X with J finite, and g ∈ X.
Then:

(i) For any scalars (aj)j∈J with 0 ≤ aj ≤ 1 we have∥∥∥∥∥∥g +
∑
j∈J

ajfj

∥∥∥∥∥∥ ≤ Ap sup


∥∥∥∥∥∥g +

∑
j∈A

fj

∥∥∥∥∥∥ : A ⊆ J

 .
(ii) For any scalars (aj)j∈J with |aj| ≤ 1 we have∥∥∥∥∥∥g +

∑
j∈J

ajfj

∥∥∥∥∥∥ ≤ Ap sup


∥∥∥∥∥∥g +

∑
j∈J

εjfj

∥∥∥∥∥∥ : |εj| = 1

 .
Proof. Pick a point 0 /∈ J and set J ′ = {0}∪ J . In order to prove both
(i) and (ii) we will apply Theorem 1.2 with suitable families (gj)j∈J ′ ,
(hj)j∈J ′ and (bj)j∈J ′ . In both cases we choose g0 = h0 = g and an
arbitrary scalar b0 ∈ [0, 1].

If we choose bj = aj, gj = 0, and hj = fj for j ∈ J we obtain (i).
To see (ii), for each j ∈ J we pick bj ∈ [0, 1] and a sign δj such that

aj = (1− bj)δj − bjδj.
Then, we choose gj = δjfj and hj = −δjfj for j ∈ J . �

Corollary 1.4. Suppose X is a p-Banach space for some 0 < p ≤ 1.
Then for any family (fj)j∈J in X with J finite we have∥∥∥∥∥∥∑j∈J ajfj

∥∥∥∥∥∥ ≤ Bp sup
A⊆J

∥∥∥∥∥∥∑j∈A fj
∥∥∥∥∥∥ ,

whenever (aj)j∈J are scalars with |aj| ≤ 1 for all j ∈ J .

Proof. If F = R, we have aj = a+
j − a−j , while if F = C we have

aj = <(aj)
+ −<(aj)

− + i=(aj)
+ − i=(aj)

−. Applying Corollary 1.3 (i)
(with g = 0) and using the p-subadditivity of the quasi-norm gives the
desired result. �
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1.2. Bases in quasi-Banach spaces. Throughout this paper a basis
in a quasi-Banach space X will be a complete Markushevich basis, i.e.,
a sequence B = (xn)∞n=1 such that

(i) [xn : n ∈ N] = X, and
(ii) there is a (unique) sequence (x∗n)∞n=1 of functionals, called co-

ordinate functionals (also biorthogonal functionals), such that
x∗n(xk) = δk,n for all k, n ∈ N.

The support of a vector f ∈ X with respect to a basis B is the set

supp(f) = {n ∈ N : x∗n(f) 6= 0}.
A basic sequence will be a basis of its closed linear span.
A basis B is said to be M -bounded if

sup
n
‖xn‖ ‖x∗n‖ <∞,

and is said to be semi-normalized if

0 < inf
n
‖xn‖ ≤ sup

n
‖xn‖ <∞.

Lemma 1.5. A basis (xn)∞n=1 of a quasi-Banach space X is semi-
normalized and M-bounded if and only if supn max{‖xn‖, ‖x∗n‖} <∞.

Proof. Assume that C−1
1 ‖xn‖ ≤ supn ‖xn‖ ≤ C2 and ‖xn‖‖x∗n‖ ≤ C3

for all n ∈ N. Then ‖x∗n‖ ≤ C1C3 for all n ∈ N. Conversely, assume
that ‖xn‖ ≤ C4 and ‖x∗n‖ ≤ C5 for all n ∈ N. Then, ‖xn‖‖x∗n‖ ≤
C4C5. Since 1 = x∗n(xn) ≤ ‖x∗n‖‖xn‖, we have ‖xn‖ ≥ C−1

5 . �

Note that an Auerbach basis, i.e., a basis (xn)∞n=1 with ‖xn‖ =
‖x∗n‖ = 1 for all n ∈ N, is a particular case of semi-normalized M -
bounded basis.

A very natural condition to expect from a basis B = (xn)∞n=1 is that
every f ∈ X be univocally determined by its coefficient sequence, i.e.,
the linear operator

F : X→ FN, f 7→ (x∗n(f))∞n=1, (1.3)

called the coefficient transform, is one-to-one. However, for reasons
that will be understood in hindsight, here we will not impose a pri-
ori this requirement to the basis. Note that the injectivity of F is
equivalent to demanding that

[x∗n : n ∈ N]w∗ = X∗. (1.4)

Using the standard terminology in biorthogonal systems, we say that
a subset V ⊆ X∗ is total if [V ]w∗ = X∗ and that a basis B of X is total
if its biorthogonal sequence B∗ = (x∗n)∞n=1 is total, i.e., (1.4) holds.
If the basis B is total we are allowed to use the “formal” expression
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f =
∑∞
n=1 an xn ∈ X to mean that f is a vector in X with x∗n(f) = an

for every n ∈ N. In any case, if we consider the space

Y = Y[B,X] =

{
(an)∞n=1 :

∞∑
n=1

anxn converges in X
}
,

and the linear map

I : Y ⊆ FN → X, (an)∞n=1 7→
∞∑
n=1

anxn. (1.5)

we have F ◦ I = IdY.
Two sequences B = (xn)∞n=1 and B′ = (x′n)∞n=1 in respective quasi-

Banach spaces X and X′ are said to be equivalent if there is a linear
isomorphism T : [B]→ [B′] such that T (xn) = x′n for n ∈ N, i.e., there
is a constant C so that

C−1

∥∥∥∥∥∥
N∑
n=1

aixn

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
N∑
n=1

anx
′
n

∥∥∥∥∥∥ ≤ C

∥∥∥∥∥∥
N∑
n=1

anxn

∥∥∥∥∥∥ ,
for any choice of scalars (an)Nn=1 and every N ∈ N. Of course, if B
is a basic sequence and B′ is equivalent to B, then B′ also is a basic
sequence.

1.3. Linear operators associated to bases. Suppose B = (xn)∞n=1

is basis for a quasi-Banach space X. For a fixed sequence γ = (cn)∞n=1 ∈
FN, let us consider the map

Mγ = Mγ[B,X] : 〈xn : n ∈ N〉 → X,
∞∑
n=1

an xn 7→
∞∑
n=1

cn an xn.

The basis B is said to be lattice unconditional if Mγ is well-defined on
X for every γ ∈ `∞ and

Ku = Ku[B,X] := sup
‖γ‖∞≤1

‖Mγ‖ <∞. (1.6)

If B is lattice unconditional, Ku is called the lattice unconditional con-
stant of the basis. Notice that Ku = 1 with respect to the renorming

‖f‖0 := sup
‖γ‖∞≤1

‖Mγ(f)‖, f ∈ X.

Now, given A ⊆ N, we define the coordinate projection onto A as

SA := MγA ,

where γA = (cn)∞n=1 is the sequence given by cn = 1 for n ∈ A and
cn = 0 otherwise. The basis B is said to be suppression unconditional
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if SA is well-defined on X for every A ⊆ N and

Ksu = Ksu[B,X] = sup
A⊆N
‖SA‖ <∞. (1.7)

If B is suppression unconditional, Ksu is called the suppression uncon-
ditional constant of the basis.

Proposition 1.6. Suppose B is a suppression unconditional basis in a
p-Banach space. Then for every γ ∈ [0, 1]N,

‖Mγ‖ ≤ ApKsu.

Proof. By Corollary 1.3 (i) we have ‖Mγ(f)‖ ≤ ApKsu‖f‖ for all f ∈
〈xn : n ∈ N〉. Hence, Mγ is well-defined and ‖Mγ‖ ≤ ApKsu. �

Proposition 1.7. A basis B for a quasi-Banach space X is suppression
unconditional if and only if B is lattice unconditional. Moreover Ksu ≤
Ku. If X is p-Banach then Ku ≤ BpKsu.

Proof. Use Corollary 1.4 and proceed as in the proof of Proposition 1.6.
�

Note that for n ∈ N and f ∈ X,

S{n}(f) = x∗n(f)xn,

and so
‖S{n}‖ = ‖xn‖‖x∗n‖.

Therefore, B is M -bounded if and only if supn ‖S{n}‖ <∞.
Let us write down some easy consequences of M -boundedness.

Lemma 1.8. Let B = (xn)∞n=1 be a M-bounded basis of a quasi-Banach
space X. Then:

(i) For every m ∈ N, sup|A|≤m ‖SA‖ <∞.
(ii) For every f ∈ X, every m ∈ N, and every ε > 0 there is A ⊆ N

finite such that ‖SB(f)‖ ≤ ε whenever A∩B = ∅ and |B| ≤ m.
(iii) If B is semi-normalized, the linear map F defined in (1.3) is

bounded from X into c0.

Proof. Without loss of generality we assume that X is p-convex for
some 0 < p ≤ 1. To show (i), put c := supn ‖xn‖ ‖x∗n‖ and pick A ⊆ N
with |A| ≤ m. Then,

‖SA‖p ≤
∑
n∈A
‖S{n}‖p ≤

∑
n∈A

cp ≤ cpm.

For (ii), let Pm(N) be the set of all non-empty subsets of N of cardi-
nality at most m. Consider the linear map

Tm : X→ XPm(N), f 7→ (SA(f))A∈Pm(N).
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By (i), the map Tm is bounded from X into Y := `∞(Pm(N),X). Let
Y0 be the set of all (xA)A∈Pm(N) in Y so that given ε > 0 there exists
B ⊆ N finite such that ‖xA‖ ≤ ε whenever B ∩ A = ∅. Since Y0 is a
closed subspace of Y, and T (xn) ∈ Y0 for all n ∈ N, we are done.

(iii) If we identify N with the set of singletons of N, the above ar-
gument in the case when m = 1 yields that the operator T : X → XN

given by T (f) = (x∗n(f)xn)∞n=1 is bounded from X into c0(X). Con-
sider the operator S : FN → XN given by (an)∞n=1 7→ (an xn)∞n=1. If B is
semi-normalized, S restricts to an isomorphic embedding from c0 into
c0(X). Since S ◦ F = T the proof is over. �

A sequence B = (xn)∞n=1 in a quasi-Banach space X is said to be a
Schauder basis if for every f ∈ X there is a unique sequence of scalars
(an)∞n=1 such that the series

∑∞
n=1 an xn converges to f . It is known

that a Schauder basis is a basis (see e.g. [14, Theorem 1.1.3]). The
partial-sum projections associated to a Schauder basis are the maps

Sm := S{1,...,m}, m ∈ N.

A basis B is a Schauder basis if and only if

K = K[B,X] := sup
m
‖Sm‖ <∞.

We will refer to K[B,X] as the basis constant of B in X. Since, if X is
p-Banach, supm ‖S{m}‖ ≤ 21/pK, we see that any Schauder basis is a
total M -bounded basis.

A series
∑∞
n=1 fn in a quasi-Banach space X is said to be uncondition-

ally convergent if
∑∞
n=1 fπ(n) converges for any permutation π of N. Like

for Banach spaces, the concept of unconditionally convergent series can
be restated in different ways which we summarize in Lemma 1.9. The
proof of this follows the same steps as in the locally convex case.

Lemma 1.9 (cf. [14, Lemma 2.4.2]). Let (fn)∞n=1 be a sequence in a
quasi-Banach space X. The following are equivalent:

(i)
∑∞
n=1 fn converges unconditionality.

(ii)
∑∞
n=1 fπ(n) converges for any increasing map π : N→ N.

(iii)
∑∞
n=1 anfn converges whenever |an| ≤ 1.

(iv) For any ε > 0 there is F ⊆ N finite such that whenever G ⊆ N
finite is such that F ∩G = ∅ we have ‖∑n∈G fn‖ ≤ ε.

Hence, if
∑∞
n=1 fn is unconditionally convergent, there is f ∈ X such

that
∑∞
n=1 fπ(n) = f for every permutation π of N. In this case we say

that f =
∑∞
n=1 fn unconditionally.

A sequence (xn)∞n=1 in a quasi-Banach space X is said to be an
unconditional basis if for every f ∈ X there is a unique sequence of
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scalars (an)∞n=1 such that f =
∑∞
n=1 an xn unconditionally. Since be-

ing unconditional is formally stronger than being a Schauder basis,
every unconditional basis is a total M -bounded basis. With the help
of Proposition 1.7, we readily realize that unconditional bases can be
characterized as in the locally convex case. That is:

Theorem 1.10 (cf. [14, Section 3.1]). Let B be a basis for a quasi-
Banach space X. The following are equivalent.

(i) B is unconditional.
(ii) B is suppression unconditional.
(iii) B is lattice unconditional.
(iv) SA is well-defined for every A ⊆ N.
(v) Mγ is well-defined por every γ ∈ `∞.

1.4. Bases and duality. The sequence of coordinate functionals as-
sociated to a basis B = (xn)∞n=1 of a quasi-Banach space X is a basic
sequence of X∗. Indeed, if hX : X 7→ X∗∗ denotes the bidual map and
qB : X∗∗ → [B∗]∗ is the natural quotient map given by f ∗∗ 7→ f ∗∗|[B∗]
then the composition map hB,X = qB ◦ hX : X→ [B∗]∗ is given by

hB,X(f)(f ∗) = f ∗(f), f ∈ X, f ∗ ∈ [B∗]. (1.8)

Whence the sequence (hB,X(xn))∞n=1 is biorthogonal to B, i.e.,

B∗∗ = (x∗∗n )∞n=1 = (hB,X(xn))∞n=1. (1.9)

The coordinate operator associated the the basic sequence B∗ is given
by

F∗(f ∗) = (f ∗(xn))∞n=1, f ∗ ∈ [B∗], (1.10)

and the map F∗ can be defined on the whole of X∗. The support of
f ∗ ∈ X∗ with respect to B is the set

supp(f ∗) = {n ∈ N : f ∗(xn) 6= 0}.

The mapping hB,X is linear and satisfies ‖hB,X‖ ≤ 1. By (1.8), hB,X
is an isomorphic embedding if and only if [B∗] is a norming set for
X. However, even in the case when X is locally convex, so that hX is
an isomorphic embedding, hB,X is not necessarily an isomorphic em-
bedding. Since we could not find any examples or explicit references
about the existence of such kind of bases, we next show that they exist.
We emphasize that if hB,X is an isomorphic embedding then the bidual
sequence B∗∗ of B is equivalent to B.

Proposition 1.11. There is an M-bounded total basis B of a Banach
space X such that hB,X is not an isomorphic embedding.
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Proof. Pick a Banach space X which has infinite codimension in X∗∗.
From [29] we know that there exists a separable total closed subspace
V ⊆ X∗ which is not norming. From Theorem 8.1 of [69, §III] we infer
that X has a basis B0 such that [B∗0] = V . Using Proposition 1 from
[62] we obtain that the space X ⊕ `2 has an M -bounded basis B such
that, if we identify (X ⊕ `2)∗ with X∗ ⊕ `2, then [B∗] = V ⊕ `2. We
deduce that B is a non-norming total basis. �

Let γ ∈ FN be so that Mγ = Mγ[B,X] is well-defined. We put

M∗
γ = M∗

γ [B,X] := (Mγ[B,X])∗.

From (1.10) we deduce that whenever Mγ is well-defined on X,

M∗
γ [B,X]|[B∗] = Mγ[B∗,X∗]. (1.11)

The next proposition gathers some familiar properties of dual bases
that we will need.

Proposition 1.12. Let B = (xn)∞n=1 be a basis of a quasi-Banach space
X with coordinate functionals B∗ = (x∗n)∞n=1. Then:

(i) B∗ is a total basic sequence.
(ii) If B is M-bounded so is B∗.
(iii) If B is an Schauder basis so is B∗.
(iv) If B is an unconditional basis so is B∗.
(v) If B is M-bounded and semi-normalized so is B∗.

Proof. (i) it is immediate from (1.10). We infer from (1.11) that

‖SA[B∗,X∗]‖ ≤ ‖SA[B,X]‖, A ⊆ N, |A| <∞.

Consequently, (ii), (iii) and (iv) hold.
Since ‖hB,X‖ ≤ 1,

sup
n
{‖x∗∗n ‖, ‖x∗n‖} = sup

n
{‖hB,X(x∗n)‖, ‖x∗n‖} ≤ sup

n
{‖x∗n‖, ‖xn‖}.

By Lemma 1.5, (v) holds. �

Next we see a result about the operator defined in (1.8).

Lemma 1.13. Let B be a basis of a locally convex quasi-Banach space
X. Suppose that there is a positive constant C <∞ such that for every
A ⊆ N finite and every f ∗ ∈ X∗ there is a subset B of N containing A
satisfying ‖S∗B(f ∗)‖ ≤ C‖f ∗‖. Then hB,X is an isomorphic embedding.
Thus, the bases B∗∗ and B are equivalent.
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Proof. Assume that X is a Banach space. Let f ∈ 〈xn : n ∈ N〉 and
f ∗ ∈ BX∗ . Pick B ⊇ supp(f) finite such that ‖S∗B(f ∗)‖ ≤ C‖f ∗‖. Since
S∗B(f ∗) ∈ [B∗] we have

|f ∗(f)| = |S∗B(f ∗)(f)|
= |hB,X(f)(S∗B(f ∗))|
≤ ‖hB,X(f)‖ ‖S∗B(f ∗)‖
≤ C‖hB,X(f)‖ ‖f ∗‖
≤ C‖hB,X(f)‖.

Taking the supremum on f ∗ we obtain ‖f‖ ≤ C‖hB,X(f)‖ for all f ∈
〈xn : n ∈ N〉. This inequality extends to all f ∈ X by density. �

We close this section by noticing that the following well-known result
about Schauder bases can be obtained as a consequence of Lemma 1.13.

Theorem 1.14 (see [14, Proposition 3.2.3 and Corollary 3.2.4]). Let B
be a Schauder basis of a locally convex quasi-Banach space. Then hB,X
is an isomorphic embedding. Thus, the bases B∗∗ and B are equivalent.

2. Unconditionality for constant coefficients

Given J ⊆ N, we shall denote the set {(εj)j∈J : |εj| = 1} by EJ . Let
B = (xn)∞n=1 be basis (or basic sequence) of a quasi-Banach space X.
If A ⊆ N finite and ε = (εn)n∈A ∈ EA, we set

1ε,A = 1ε,A[B,X] =
∑
n∈A

εnxn.

If εn = 1 for all n ∈ A we put 1A = 1ε,A. In the case when the basis
is the unit vector system Be of FN we use the notation 1ε,A[Be] and
1A[Be], respectively.

Definition 2.1. A basis B = (xn)∞n=1 of a quasi-Banach space X is said
to be suppression unconditional for constant coefficients (SUCC for
short) if there is a constant 1 ≤ C < ∞ such that for all B ⊆ A ⊆ N
and ε ∈ EA,

‖1ε,B‖ ≤ C ‖1ε,A‖ . (2.1)

The smallest constant C in (2.1) will be denoted by Ksc = Ksc[B,X].

Lemma 2.2. Let B = (xn)∞n=1 be an M-bounded semi-normalized basis
of a quasi-Banach space X. The following are equivalent:

(i) B is SUCC.
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(ii) There is a constant C such that for any A ⊆ N and ε ∈ EA we
have ∥∥∥∥∥∥∑n∈A an xn

∥∥∥∥∥∥ ≤ C ‖1ε,A‖ , (2.2)

whenever |an| ≤ 1.
(iii) There is a constant C such that for any A ⊆ N and any ε, δ ∈
EA,

‖1ε,A‖ ≤ C‖1δ,A‖. (2.3)

Moreover, if C2 is the optimal constant C in (2.2) and C3 is the optimal
constant C in (2.3) we have Ksc ≤ C2 ≤ BpKsc and C3 ≤ C2 ≤ ApC3.

Proof. (i) ⇒ (ii) follows Corollary 1.4, and (iii) ⇒ (ii) follows from
Corollary 1.3 (ii). (ii) ⇒ (i) and (ii) ⇒ (iii) are obvious. �

In some sense, (2.2) is an upper lattice-unconditionality condition
for constant coefficients. Next, we introduce two additional conditions
with a flavor of unconditionality.

Definition 2.3. Let B = (xn)∞n=1 be a basis for a quasi-Banach space
X.

(a) B is said to be lower unconditional for constant coefficients (for
short LUCC) if there is a constant 1 ≤ C such that for all A ⊆ N and
all ε = (εn)n∈A ∈ EA,

‖1ε,A‖ ≤ C

∥∥∥∥∥∥∑n∈A εn an xn
∥∥∥∥∥∥ , (2.4)

whenever an ≥ 1. The smallest constant C in (2.4) will be denoted by
Klc = Klc[B,X].

(b) B is said to be lattice partially unconditional (LPU for short) if
there is a constant 1 ≤ C such that for all A ⊆ N,∥∥∥∥∥∥∑n∈A an xn

∥∥∥∥∥∥ ≤ C

∥∥∥∥∥∥∑n∈A bn xn
∥∥∥∥∥∥ , (2.5)

whenever maxn∈A |an| ≤ minn∈A |bn|. The optimal constant C in (2.5)
will be denoted by Kpu = Kpu[B,X].

Proposition 2.4. A basis is LPU if and only if it is simultaneously
SUCC and LUCC. Moreover, if X is p-Banach, we have max{Ksc, Klc} ≤
Kpu and Kpu ≤ ApKscKlc.

Proof. Assume that B = (xn)∞n=1 is SUCC and LUCC. Let (an)n∈A
and (bn)n∈A be such that |an| ≤ t := mink∈A |bk| for all n ∈ A. Put
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εn = sign(bn). Lemma 2.2 yields∥∥∥∥∥∥∑n∈A an xn
∥∥∥∥∥∥ ≤ tApKsc‖1ε,A‖

≤ tApKscKlc

∥∥∥∥∥∥∑n∈A εn
bn
t
xn

∥∥∥∥∥∥
= ApKscKlc

∥∥∥∥∥∥∑n∈A bn xn
∥∥∥∥∥∥ .

The converse is obvious. �

Proposition 2.5. A basis of a quasi-Banach space X is LPU if and
only if there is a constant C such that for any A ⊆ N and any ε ∈ EA,

‖1ε,A‖ ≤ C

∥∥∥∥∥∥∑n∈A bn xn
∥∥∥∥∥∥ , (2.6)

whenever |bn| ≥ 1. Moreover, if X is p-Banach and C1 is the optimal
constant C in (2.6), then C1 ≤ Kpu ≤ ApC1.

Proof. Let B be a basis satisfying (2.6). Let (an)n∈A and (bn)n∈A be
such that |an| ≤ t ≤ |bn| for all n ∈ A and some t ∈ (0,∞). By dilation
we can assume without loss of generality that t = 1. Corollary 1.3 (ii)
yields ∥∥∥∥∥∥∑n∈A an xn

∥∥∥∥∥∥ ≤ Ap sup
ε∈EA
‖1ε,A‖ ≤ ApC

∥∥∥∥∥∥∑n∈A bn xn
∥∥∥∥∥∥ .

The converse is obvious. �

We close this section with a lemma which connects SUCC bases with
LUCC bases. Note, however, that the example from §10.6 shows that
SUCC does not implies LUCC!

Lemma 2.6. Let B = (xn)∞n=1 be a SUCC basis of a quasi-Banach
space X. Then there are constants 1 < s,C < ∞ such that for any
A ⊂ N finite and any ε = (εn)n∈A ∈ EA,

‖1ε,A‖ ≤ C

∥∥∥∥∥∥∑n∈A bn εn xn
∥∥∥∥∥∥ , (2.7)

whenever 1 ≤ bn ≤ s. If X is p-Banach, (2.7) is satisfied for each

1 < s < 1 + A−1
p K−1

sc ,

with
C = (1− AppKp

sc(s− 1)p)−1/p.
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Proof. Assume that X is p-Banach and that 1 ≤ bn ≤ s. By Corol-
lary 1.3 (i) we have∥∥∥∥∥∥∑n∈A(bn − 1) εn xn

∥∥∥∥∥∥ ≤ ApKsc(s− 1)

∥∥∥∥∥∥∑n∈A εn xn
∥∥∥∥∥∥ .

Using the reverse triangle law,∥∥∥∥∥∥∑n∈A bn εn xn
∥∥∥∥∥∥
p

≥
∥∥∥∥∥∥∑n∈A εn xn

∥∥∥∥∥∥
p

−
∥∥∥∥∥∥∑n∈A(bn − 1) εn xn

∥∥∥∥∥∥
p

≥
∥∥∥∥∥∥∑n∈A εn xn

∥∥∥∥∥∥
p

− AppKp
sc(s− 1)p

∥∥∥∥∥∥∑n∈A εnxn
∥∥∥∥∥∥
p

= C(s)

∥∥∥∥∥∥∑n∈A εnxn
∥∥∥∥∥∥
p

,

where C(s) = 1−AppKp
sc(s−1)p. Since C(s) > 0 if 1 < s < 1+A−1

p K−1
sc

we are done. �

3. Quasi-greedy bases

Let us first recall the main ingredients of the section. A greedy set of a
vector f ∈ X with respect to a basis B = (xn)∞n=1 of X is a set A ⊆ N
such that |x∗k(f)| ≤ |x∗n(f)| for all k ∈ N \ A and n ∈ A. Notice that
∅ is always a greedy set. By Lemma 1.8 (iii), if A is infinite, then A is
a greedy set of f if and only if supp(f) ⊆ A. A greedy sum of f is a
coordinate projection SA(f) onto a greedy set A.

Suppose that B is semi-normalized and M -bounded. If f ∈ X, by
Lemma 1.8 (iii), its coefficient sequence (an)∞n=1 := F(f) belongs to c0

and so for every m ∈ N ∪ {0} there is a unique (possibly empty) set
A = Am(f) ⊆ N of cardinality |A| = m such that whenever n ∈ A and
k ∈ N \ A, either |an| > |ak| or |an| = |ak| and n < k. Such greedy set
A will be called the mth greedy set of f .

A set A is said to be strictly greedy for f if |x∗k(f)| < |x∗n(f)| when-
ever n ∈ A and k ∈ N \ A. Note that if |A| = m < ∞ and A is a
strictly greedy set then A = Am(f).

The coordinate projection Gm(f) := SAm(f)(f) onto the mth greedy
set will be called the mth greedy approximation to f and the sequence
(Gm(f))∞m=1, the (thresholding) greedy algorithm of f . Note that given
an M -bounded semi-normalized basis B in X and f ∈ X we have
Am(f) ⊆ Am+1(f) for every m ∈ N and so there is unique (one-to-
one) map φf : N→ N such that Am(f) = {φf (j) : 1 ≤ j ≤ m} for every
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m ∈ N. We will we refer to the map φf as the greedy ordering of f ∈ X
with respect to B. The formal series

∞∑
j=1

x∗φf (j)(f)xφf (j) (3.1)

will be called the greedy series of f . Note that the mth partial sum of
the greedy series of f is Gm(f).

If A is a greedy set of f and |A| = m, then A is the mth greedy set
of the vector

fδ,A := f + δ
∑
n∈A

sign(x∗n(f))xn,

and limδ→0+ fδ,A = f . Hence, in many situations, provided that the
quasi-norm on X is continuous, if a statement holds for the mth greedy
set of every f ∈ X, by a perturbation technique the very same state-
ment also holds for every greedy set of cardinality m of every f ∈ X.

An M -bounded semi-normalized basis B for a quasi-Banach space X
is said to be quasi-greedy if there is a constant C <∞ such that for all
f ∈ X,

‖SA(f)‖ ≤ C‖f‖

whenever A is a finite greedy set of f . If a basis is quasi-greedy there
is a (possibly larger) constant C such that for all f ∈ X,

‖SA\B(f)‖ ≤ C‖f‖ (3.2)

whenever A and B are finite greedy sets of f with B ⊆ A. The smallest
constant C in (3.2) will be called the quasi-greedy constant of the basis,
and will be denoted by Cqg = Cqg[B,X].

Of course, any semi-normalized unconditional basis is quasi-greedy,
and

Cqg ≤ Ksu.

The convergence of greedy series is closely related to quasi-greedy
bases. In this direction, Theorem 3.1 rounds off Theorem 1 from [73]
and completely settles the question of characterizing quasi-greedy bases
in terms of the convergence of greedy series.

Theorem 3.1. Let B = (xn)∞n=1 be an M-bounded semi-normalized ba-
sis in a quasi-Banach space X. The following conditions are equivalent.

(i) B is quasi-greedy.
(ii) For every f ∈ X the greedy series of f converges.
(iii) For every f ∈ X the greedy algorithm (Gm(f))∞m=1 is bounded.
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Implicit in the proof of [73, Theorem 1] is the concept of strong
Markushevich basis. Following [65], we say that a basis is strong if for
every (infinite) subset A of N,

[xn : n ∈ A] = {f ∈ X : x∗n(f) = 0 for all n ∈ N \ A}. (3.3)

If the greedy series of f converges (to f) for every f ∈ X then the
basis must be strong. Therefore, Theorem 3.1 yields the following
consequence. In fact, the advance of Theorem 3.1 with respect to
[73, Theorem 1] must be understood in light of Corollary 3.2.

Corollary 3.2. If B is a quasi-greedy basis of a quasi-Banach space X
then it is strong.

We split the proof of Theorem 3.1 in several preparatory lemmas
which rely on original ideas from [73].

Lemma 3.3. Let B = (xn)∞n=1 be a quasi-greedy basis of a quasi-
Banach space X. Suppose that f and z are vectors in X and that D
is a greedy set of f − z such that supp(z) ⊆ D. Then ‖f − SD(f)‖ ≤
Cqg‖f − z‖.

Proof. Since z = SD(z) we have

‖f − SD(f)‖ = ‖f − z − SD(f − z)‖ ≤ Cqg‖f − z‖. �

Lemma 3.4. Let B be a basis of a quasi-Banach space X. If B is not
quasi-greedy then for every R > 0 and every finite set A ⊆ N there
exists f ∈ X of finite support disjoint with A and a strictly greedy set
B of f such that ‖SB(f)‖ > R‖f‖.

Proof. Without loss of generality we assume that ‖ · ‖ is a p-norm
for some p ∈ (0, 1]. Pick R0 = (Mp + Rp + MpRp)1/p, where M =
maxD⊆A ‖SD‖. Let us fix a vector g0 ∈ X and a greedy set B0 of
g0 such that ‖SB0(g0)‖ > R0‖g0‖. If we put g1 = g0 − SA(g0) then
‖g1‖p ≤ (1 +Mp)‖g0‖p. Let B = B0 \A and D = B0 ∩A, so that B is
a greedy set of g1. We have

‖SB(g1)‖p = ‖SB(g0)‖p

= ‖SB0(g0)− SD(g0)‖p

= ‖SB0(g0)‖p − ‖SD(g0)‖p

> (Rp
0 −Mp)‖g0‖p

≥ Rp
0 −Mp

1 +Mp
‖g1‖p

= Rp‖g1‖p.
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For each t > 0 we pick ft ∈ X with finite support such that∥∥∥∥∥∥ft − g1 − t
∑
n∈B

sign(x∗n(g1))xn

∥∥∥∥∥∥ < t

2β
.

It follows that B is a strictly greedy set of ft and limt→0+ ft = g1.
Then limt→0+ SB(ft) = SB(g1). Hence, for t small enough, ‖SB(ft)‖ >
R‖ft‖. �

Proof of Theorem 3.1. We start by proving that (i) implies (ii). Let
f ∈ X and ε > 0. We pick z =

∑
n∈B an xn with B finite such that

‖f − z‖ ≤ ε/C2
qg. Perturbing the vector z if necessary we can assume

that B is nonempty and that an 6= x∗n(f), i.e., x∗n(f − z) 6= 0, for every
n ∈ B. Set ν = minn∈B |x∗n(f − z)| > 0. We have

supp(z) ⊆ B ⊆ D := {n ∈ N : |x∗n(f − z)| ≥ ν}.
Since D is a strictly greedy set of f−z, applying Lemma 3.3 we obtain,

‖f − SD(f)‖ ≤ Cqg‖f − z‖ ≤
ε

Cqg
.

Set µ = minn∈D∩supp(f) |x∗n(f)| (with the convention that µ = ∞ if
D ∩ supp(f) = ∅) and let m ≥ |{n ∈ N : |x∗n(f)| ≥ µ}|. Since D ∩
supp(f) ⊆ Am(f), the set G := Am(f) \ (D ∩ supp(f)) is greedy for
g := f − SD(f), so that∥∥∥∥∥∥f − ∑

n∈Am(f)

x∗n(f)xn

∥∥∥∥∥∥ = ‖g − SG(g)‖ ≤ Cqg‖g‖ ≤ ε.

The implication (ii) ⇒ (iii) is trivial, so we complete the proof by
showing that if (i) does not hold then (iii) does not hold either. Under
the assumption that B is not quasi-greedy we recursively construct a
sequence (fk)

∞
k=1 in X and a sequence (Bk)

∞
k=1 of finite subsets of N

such that, if we set µ1 =∞, and for k ≥ 2 define

µk = min{|x∗n(fk−1)| : n ∈ supp(fk−1)},
then:

(a) Ak := supp(fk) is finite and disjoint with ∪k−1
i=1 supp(fi),

(b) Bk is a strictly greedy set of fk,
(c) ‖fk‖ ≤ 2−k,
(d) ‖SBk

(fk)‖ > 2k, and
(e) max{|x∗n(fk)| : n ∈ N} < µk

for every k ∈ N. Suppose we have manufactured fi and Bi for i < k.
Put β = maxn∈N ‖x∗n‖ <∞ and

γk = min{2−2k, (2β)−12−kµk}.
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By Lemma 3.4, there exists fk ∈ X whose support is finite and dis-
joint with ∪k−1

i=1 supp(fi) and a strictly greedy set Bk of fk such that
‖SBk

(fk)‖ > γ−1
k ‖fk‖. By homogeneity we can choose fk satisfying

‖fk‖ = 2kγk, so that (d) holds. Since γk ≤ 2−2k (c) also holds. For any
n ∈ N we have

|x∗n(fk)| ≤ ‖x∗n‖ ‖fk‖ ≤ ‖x∗n‖
µk
2β
≤ µk

2
,

and so (e) also holds.
Since

∑∞
k=1 ‖fk‖p < ∞ for every p ∈ (0, 1], the series

∑∞
k=1 fk con-

verges to some f ∈ X such that

x∗n(f) =

x∗n(fk) if n ∈ Ak,
0 if n /∈ ∪∞k=1Ak.

By (b) and (e), both Dk = ∪k−1
i=1Ai and Fk = Dk∪Bk are strictly greedy

sets of f . Thus, if mk = |Dk| and qk = |Fk|,
‖Gmk+qk(f)− Gmk

(f)‖ = ‖SFk
(f)− SDk

(f)‖ = ‖SBk
(fk)‖ > 2k

for every k ∈ N. We deduce that supm ‖Gm(f)‖ =∞. �

Before moving on, let us write down an immediate consequence of
Theorem 3.1.

Corollary 3.5. Suppose B = (xn)∞n=1 is a quasi-greedy basis of a quasi-
Banach space X. Then B is total.

Proof. Let f ∈ X be such that x∗n(f) = 0 for every n ∈ N. Then,
Gm(f) = 0 for every m ∈ N. By Theorem 3.1, f = limm Gm(f) = 0. �

Definition 3.6. A basis B of a quasi-Banach space X is said to be quasi-
greedy for largest coefficients (QGLC for short) if there is constant C
such that

‖1ε,A‖ ≤ C‖f + 1ε,A‖
for any A ⊆ N finite, any ε ∈ EA, and any f ∈ X such that supp f∩A =
∅ and |x∗n(f)| ≤ 1 for all n ∈ N.

If B is QGLC, then the smallest constant C such that (under the
same conditions as before)

max{‖f‖, ‖1ε,A‖} ≤ C‖f + 1ε,A‖ (3.4)

will be called the QGLC constant of the basis, and will be denoted by
Cql = Cql[B,X].

Of course, any quasi-greedy basis is QGLC, and

Cql ≤ Cqg.
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The following simple result was stated for quasi-greedy bases and
put to use in [73].

Lemma 3.7. Suppose B is a QGLC basis for a quasi-Banach space X.
Then B is SUCC. Quantitatively, Ksc[B,X] ≤ Cql[B,X].

For Banach spaces it is known that quasi-greedy bases are LUCC,
and attention must be drawn to the fact that all known proofs of this
result (see [33, Lemma 2.2] and [4, Lemma 3.5]) depend heavily on the
local convexity of the space. The LUCC property becomes a key tool,
for instance, in the study of conditional quasi-greedy bases, which calls
for the corresponding relation between quasi-greedy bases and LUCC in
the nonlocally convex setting. This is what the next result accomplishes
with a radically different approach in the techniques.

Theorem 3.8. If B is a quasi-greedy basis in a quasi-Banach space X
then B is LUCC. Quantitavely, if X is p-Banach then

Klc ≤ Cqgηp(Cqg),

where for u > 0,

ηp(u) = min
0<t<1

(1− tp)−1/p(1− (1 + A−1
p u−1t)−p)−1/p. (3.5)

Proof. Assume that X is p-Banach and let B = (xn)∞n=1 be quasi-greedy.
By Lemma 3.7, B is SUCC and so we can pick 1 < s,C < ∞ as in
Lemma 2.6. LetA ⊆ N finite, ε = (εn)n∈A ∈ EA, and (bn)n∈A ∈ [1,∞)A.
For j ∈ N ∪ {0} consider the sets

Bj = {n ∈ A : sj ≤ bn}
and

Aj = Bj \Bj+1 = {n ∈ A : sj ≤ bn < sj+1}.
Notice that (Aj)

∞
j=0 is a partition of A. Using Proposition 1.1 and

taking into account that Bj is a greedy set of f =
∑
n∈A bn xn, we

obtain ∥∥∥∥∥∥∑n∈A εnxn
∥∥∥∥∥∥ =

∥∥∥∥∥∥
∞∑
j=0

s−jsj
∑
n∈Aj

εnxn

∥∥∥∥∥∥
=

Ñ
∞∑
j=0

s−jp

é1/p

sup
j≥0

sj

∥∥∥∥∥∥ ∑n∈Aj

εnxn

∥∥∥∥∥∥
≤ C

Ñ
∞∑
j=0

s−jp

é1/p

sup
j≥0

sj

∥∥∥∥∥∥ ∑n∈Aj

εns
−jbnxn

∥∥∥∥∥∥
= C(1− s−p)−1/p sup

j≥0

∥∥∥SBj\Bj+1
(f)

∥∥∥
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≤ CqgC(1− s−p)−1/p‖f‖.

Hence, for any 1 < s < 1 + A−1
p C−1

qg ,

Klc ≤ CqgC(1− s−p)−1/p = Cqg(1− AppKp
sc(s− 1)p)−1/p(1− s−p)−1/p.

Minimizing over s puts an end to the proof. �

Remark 3.9. For p = 1 the best known estimate for Klc is

Klc ≤ Cqg

(see [33, Proof of Lemma 2.2] and [4, Lemma 3.5]). Notice that the
function ηp defined in (3.5) is increasing and that limu→0+ ηp(u) = 1.
Thus the upper bound for Klc provided by Theorem 3.8 is larger than
Cqg even when p = 1. Furthermore, since for a given p ∈ (0, 1] we have
the estimate

1− (1 + A−1
p x)−p ≈ x, 0 < x ≤ 1,

we obtain ηp(u) ≈ u1/p for u ≥ 1, which by Theorem 3.8 yields

Klc . C1+1/p
qg .

And, again, for p = 1 this gives an asymptotic estimate coarser than
the one already known.

Theorem 3.10. If B is a quasi-greedy basis in a quasi-Banach space
X then B is LPU. Quantitavely, if X is p-Banach then

Kpu ≤ ApC
2
qgηp(Cqg).

Proof. Just combine Theorem 3.8, Lemma 3.7, and Proposition 2.4. �

Theorem 3.8 is the tool we use to fix the following stability property
of quasi-greedy bases, whose original proof seemed to be garbled.

Theorem 3.11 (see [73, Proposition 3]). Let B = (xn)∞n=1 be a quasi-
greedy basis of a quasi-Banach space X and let (λn)∞n=1 be a sequence of
scalars such that infn |λn| > 0 and supn |λn| < ∞. Then the perturbed
basis B′ = (λn xn)∞n=1 is quasi-greedy.

Proof. By hypothesis,

E := sup
k,n

|λn|
|λk|

<∞.

Let A be a greedy set of f =
∑∞
n=1 an xn ∈ X with respect to B′. Put

t = minn∈A |an| and choose

A1 = {j ∈ N : |aj| > Et} and A2 = {j ∈ N : |aj| ≥ t}. (3.6)
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Note that A1 and A2 are greedy sets of f with respect to B, and that
A1 ⊆ A ⊆ A2. If j ∈ N \ A1 and k ∈ A2 we have |aj| ≤ Et ≤ E|ak|.
By Theorem 3.10,

‖SA\A1(f)‖ ≤ EKpu‖SA2\A1(f)‖.

In this estimate, if X is p-Banach and we denote the quasi-greedy con-
stant Cqg[B,X] of the basis simply by C, we have Kpu ≤ ApC

2ηp(C).
Let B ⊆ A be another greedy set of f with respect to B′ and define

B1 and B2 as in (3.6) by replacing A with B. We have B1 ⊆ A1. Then,

‖SA\B(f)‖p ≤ ‖SA1\B1(f)‖p + ‖SA\A1(f)‖p + ‖SB\B1(f)‖p

≤ ‖SA1\B1(f)‖p + EpKp
pu

Ä
‖SA2\A1(f)‖p + ‖SB2\B1(f)‖p

ä
.

Hence, B′ is quasi-greedy and

Cqg[B′,X] ≤ C(1 + 2AppE
pC2pηpp(C))1/p. �

3.1. Nonlinear operators related to the greedy algorithm. Let
B = (xn)∞n=1 be an M -bounded semi-normalized basis of a quasi-
Banach space X. With the convention that G∞(f) = f , let us put

Gr,m(f) = Gm(f)− Gr(f), 0 ≤ r ≤ m ≤ ∞

and

Hm = Gm,∞ = IdX − Gm.
If the quasi-norm is continuous, a standard perturbation technique
yields

sup
0≤r≤m≤∞

‖Gr,m‖ = sup
ß
‖SA\B(f)‖ : ‖f‖ ≤ 1, B ⊆ A greedy sets

™
,

sup
m
‖Gm‖ = sup

ß
‖SA(f)‖ : ‖f‖ ≤ 1, A greedy set

™
and

sup
m
‖Hm‖ = sup

ß
‖f − SA(f)‖ : ‖f‖ ≤ 1, A greedy set

™
.

Thus, a semi-normalized M -bounded basis is quasi-greedy if and only
if (Gr,m)r≤m (or (Gm)∞m=1, or (Hm)∞m=1) is a uniformly bounded family
of (non-linear) operators and, if the quasi-norm is continuous, Cqg =
supr≤m ‖Gr,m‖.

For each f ∈ X and each A ⊆ N finite, put

U(f, A) = min
n∈A
|x∗n(f)|

∑
n∈A

sign(x∗n(f))xn,

T (f, A) = U(f, A) + SAc(f).
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Note that this definition makes sense even if A = ∅, in which case
U(f, A) = 0 and T (f, A) = f . If A is an infinite set with supp(f) ⊆ A
we will use the convention U(f, A) = T (f, A) = 0.

Given m ∈ N∪{0}, the mth-restricted truncation operator Um : X→
X is defined as

Um(f) = U(f, Am(f)), f ∈ X.
In turn, the mth-truncation operator Tm : X→ X is defined as

Tm(f) = T (f, Am(f)), f ∈ X.
Notice that both Um and Tm are non-linear and that Tm = Um +Hm.

In the context of greedy-like bases the truncation operator was in-
troduced in [32] and studied in depth in [21]. It is also implicit within
the characterization of 1-almost greedy bases from [4].

We put

Λu = Λu[B,X] = sup{‖U(f, A)‖ : A greedy set of f, ‖f‖ ≤ 1}, (3.7)

and

Λt = Λt[B,X] = sup{‖T (f, A)‖ : A greedy set of f, ‖f‖ ≤ 1}. (3.8)

If the quasi-norm is continuous, applying a perturbation technique
yields

Λu = sup
m
‖Um‖

and
Λt = sup

m
‖Tm‖.

Thus, (Um)∞m=0 (resp. (Tm)∞m=0) is a uniformly bounded family of oper-
ators if and only if Λu <∞ (resp. Λt <∞).

Lemma 3.12. Suppose B is a quasi-greedy basis for a quasi-Banach
space X. Then:

(i) Λu ≤ CqgΛt

(ii) If X is p-Banach,

Λt ≤ (Cp
qg + Λp

u)
1/p and Λu ≤ (Cp

qg + Λp
t )

1/p.

Proof. (i) Let A be a greedy set of f ∈ X. Then A also is a greedy set
of T (f, A), and SA(T (f, A)) = U(f, A). Therefore

‖U(f, A)‖ ≤ Cqg‖T (f, A)‖.
(ii) If X is p-Banach,

‖T (f, A)‖ ≤ (‖U(f, A)‖p + ‖f − SA(f)‖p)1/p ≤ (Λp
u + Cp

qg)
1/p‖f‖.

This inequality also holds switching the roles of T and U , and this
completes the proof. �
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Given λ = (λn)∞n=1 consider, when well-defined, the non-linear oper-
ator

Tλ : X→ X, f =
∞∑
n=1

an xn 7→
∞∑
n=1

λn aφf (n) xφf (n).

Let J be the set of all non-decreasing sequences bounded below by
0 and bounded above by 1. Notice that the uniform boundedness of
the family (Tm)∞m=0 can be derived from the uniform boundedness of
(Tλ)λ∈J . In the case when X is a Banach space and the basis B is
quasi-greedy, then (Tλ)λ∈J is a uniformly bounded family of operators.
The proof of this fact from [4] relies heavily on the convexity of the
target space X, and it seems to be hopeless to try to generalize the
arguments there to quasi-Banach spaces. In spite of that constraint
we obtain a proof of the uniform boundedness of (Tm)∞m=0 based on
different techniques.

Theorem 3.13. Let B be a quasi-greedy basis of a quasi-Banach space
X. Then:

(i) (Um)∞m=0 is a uniformly bounded family of operators. If X is
p-Banach, Λu ≤ C2

qgηp(Cqg).
(ii) For every f ∈ X we have limm→∞ Um(f) = 0.

Proof. By Theorem 3.8, B is LUCC. Then, if A is a finite greedy set of
f ∈ X,

‖U(f, A)‖ = Klc‖SA(f)‖ ≤ CqgKlc‖f‖.
To show the convergence, note that for fixed k and f , since F(f) ∈

c0 we have ‖ limm→∞ Gk(Um(f))‖ = 0. Let us assume that there is
f ∈ X for which Um(f) does not converge to zero, and pick 0 < δ <
lim supm ‖Um(f)‖. We can recursively construct an increasing sequence
of integers (mj)

∞
j=0 with m0 = 0 and such that ‖gj‖ ≥ δ for all j ∈ N,

where, if we denote Amj
(f) by Bj,

gj = Umj
(f)− Gmj−1

(Umj
(f)) = min

n∈Bj

|x∗n(f)|
∑

n∈Bj\Bj−1

sign(x∗n(f))xn.

Using again that B is LUCC, we obtain

‖Gmj
(f)− Gmj−1

(f)‖ ≥ 1

Klc

‖gj‖ ≥
δ

Klc

for every j ∈ N. This implies that (Gm(f))∞m=1 does not converge,
which contradicts Theorem 3.1. �

Proposition 3.14. Let B be a semi-normalized M-bounded basis of
a quasi-Banach space X. Then B is quasi-greedy if and only if B is
QGLC and the truncation operators (Tm)∞m=0 are uniformly bounded.
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Moreover, if X is p-Banach, then Λt ≤ Cqg(1 + Cp
qgη

p
p(Cqg))

1/p and

Cqg ≤ 21/pCqlΛt.

Proof. The “only if part” follows from Lemma 3.12, the identity Tm =
Um + Hm, and Theorem 3.13. Assume that the truncation operator
is uniformly bounded and that B is QGLC. Let f ∈ X and let A be
a greedy set of f . Put t = minn∈A |x∗n(f)| and ε = (sign(x∗n(f))n∈A.
Then

‖f − SA(f)‖ ≤ Cql‖f − SA(f) + t1ε,A‖ = Cql‖T (f, A)‖ ≤ CqlΛt‖f‖.
Hence, if X is p-Banach, Cqg ≤ 21/pCqlΛt. �

From Theorems 3.1 and 3.13 we infier the following convergence
properties.

Corollary 3.15. Suppose B is a quasi-greedy basis in a quasi-Banach
space X. For f ∈ X,

lim
m→∞

Gm(f) = f

and
lim
m→∞

Um(f) = lim
m→∞

Tm(f) = lim
m→∞

Hm(f) = 0.

Proof. It is straightforward from the relations Hm = IdX − Gm and
Tm = Um +Hm. �

Proposition 3.16. Let B be an M-bounded semi-normalized basis of
a quasi-Banach space X. Suppose that (Um)∞m=0 are uniformly bounded.
Then B is QGLC and LPU. In case that X is p-Banach,

Cql ≤ (1 + Λp
u)

1/p and Kpu ≤ ApΛu(1 + Λp
u)

1/p.

Proof. Let f ∈ X and A ⊆ N finite be such that supp f ∩ A = ∅ and
|x∗n(f)| ≤ 1 for all n ∈ N, and let ε ∈ EA. Since A is a greedy set of
f + 1ε,A,

‖1ε,A‖ = ‖U(f + 1ε,A, A)‖ ≤ Λu‖f + 1ε,A‖.
Hence, B is QGLC.

Let (bn)n∈A ∈ [1,∞)A. It is clear that A is a greedy set of f =∑
n∈A bn εn xn, therefore

‖1ε,A‖ ≤ min
n∈A

bn‖1ε,A‖ = ‖U(f, A)‖ ≤ Λu‖f‖,

and B is LUCC.
The estimates for the constants Cql and Kpu follow from Proposi-

tion 2.4 and Lemma 3.7. �

We close this section exhibiting a new unconditionality-type property
enjoyed by quasi-greedy bases.
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Theorem 3.17. Let B = (xn)∞n=1 be a quasi-greedy basis of a quasi-
Banach space X. Then there is a positive constant C <∞ such that

‖1ε,A[B,X]‖ ≤ C‖1ε,A[B,X] + f‖ (3.9)

for every finite subset A of N, every ε ∈ EA and every f ∈ X with
supp(f) ∩ A = ∅.

Proof. Assume that X is p-Banach for some 0 < p ≤ 1. Set B =
{n ∈ N : |x∗n(f)| > 1}. Since both B and A ∪ B are greedy sets of
g = 1ε,A + f ,

‖1ε,A‖p ≤ ‖1ε,A + SB(f)‖p + ‖SB(f)‖p

= ‖SA∪B(g)‖p + ‖SB(g)‖p

≤ 2Cp
qg‖g‖p.

That is, (3.9) holds with C = 21/pCqg. �

Remark 3.18. Suppose B = (xn)∞n=1 is a basis of a quasi-Banach space
X. Given A ⊆ N finite, the quotient map

PA : [xn : n ∈ A]→ X/[xn : n /∈ A], f 7→ f + [xn : n /∈ A]

is an isomorphism. Note that the basis B is unconditional if and only
if sup{‖P−1

A ‖ : A finite} <∞, that is

‖f‖ ≈ ‖PA(f)‖, f ∈ [xn : n ∈ A].

Theorem 3.17 yields that if B is quasi-greedy (even in the case that is
conditional),

‖1ε,A‖ ≈ ‖PA(1ε,A)‖
for A ⊆ N finite and ε ∈ EA.

Corollary 3.19. Let B = (xn)∞n=1 be a quasi-greedy basis of a Banach
space X. Then, for A ⊆ N finite and ε ∈ EA,

‖1ε,A[B,X]‖ ≈ {max{f ∗(1ε,A[B,X]) : f ∗ ∈ BX∗ , supp(f ∗) ⊆ A}.

Proof. Let Y = [xn : n /∈ A] and V = {f ∗ ∈ X∗ : supp(f ∗) ⊆ A}. Since
the dual space of X/Y is naturally isometric to the set

{f ∗ ∈ X∗ : f ∗(xn) = 0 for all n ∈ N \ A} = V,

we have

‖1ε,A + Y‖ = sup{|f ∗(1ε,A)| : f ∗ ∈ V, ‖f ∗‖ ≤ 1},

and Remark 3.18 finishes the proof. �
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4. Democratic properties of bases

Let us consider the following condition

‖f + 1ε,A‖ ≤ C ‖f + 1δ,B‖ , (4.1)

which involves a basis B of a quasi-Banach space X, a constant C, two
finite subsets A, B of N, two collection of signs ε ∈ EA and δ ∈ EB, and
a vector f ∈ X.

A basis B of X is said to be democratic if there is 1 ≤ C < ∞ such
that (4.1) holds with f = 0 and ε = δ = 1 whenever |A| ≤ |B|. The
smallest constant C in (4.1) will be denoted by ∆ = ∆[B,X] . By
imposing the additional assumption A∩B = ∅ we obtain an equivalent
definition of democracy, and ∆d = ∆d[B,X] will denote the optimal
constant under the extra assumption on disjointness of sets.

In turn, a basis B is said to be super-democratic if there is 1 ≤ C <∞
such that (4.1) holds with f = 0 for every A and B with |A| ≤ |B|
and every choice of signs ε ∈ EA and δ ∈ EB. Again, by imposing
the extra assumption A ∩ B = ∅ we obtain an equivalent definition of
super-democracy, and ∆sd = ∆sd[B,X] will denote the optimal constant
under this extra assumption.

Finally, a basis B is said to be symmetric for largest coefficients (SLC
for short) if there is constant 1 ≤ C < ∞ such that (4.1) holds for all
A and B with |A| ≤ |B| and A∩B = ∅, all choices of signs ε ∈ EA and
δ ∈ EB, and all f ∈ X such that supp(f)∩ (A∪B) = ∅ and |x∗n(f)| ≤ 1
for n ∈ N. We will denote by Γ = Γ[B,X] the optimal constant C.

The following result is well-known in the Banach space setting (see
[4, Remark 2.6]).

Proposition 4.1. A basis is super-democratic if and only if it is demo-
cratic and suppression unconditional for constant coefficients. More-
over, max{Ksc,∆} ≤ ∆s and, if X is p-Banach, ∆s ≤ B2

p∆Ksc.

Proof. If a basis B is super-democratic, then by definition it is SUCC
and democratic. On the other hand if B is SUCC and democratic, then
for A and B subsets of N with |A| ≤ |B| <∞, Corollary 1.4 yields∥∥∥∥∥∥∑n∈A an xn

∥∥∥∥∥∥ ≤ Bp∆‖1B‖,

for any scalars (an)n∈A with |an| ≤ 1 for all n. Moreover, by Lemma 2.2,
for every ε ∈ EB we have

‖1B‖ ≤ BpKsc‖1ε,B‖.

Hence B is super-democratic with ∆s ≤ B2
p∆Ksc. �
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Next we shall pay close attention to the property of symmetry for
largest coefficients.

Lemma 4.2 (cf. [4, Proposition 3.7]). For a basis B of a quasi-Banach
space X the following are equivalent:

(i) B is symmetric for largest coefficients.
(ii) There is a constant 1 ≤ C <∞ such that

‖f‖ ≤ C ‖f − SA(f) + t1ε,B‖ (4.2)

for all sets A, B with 0 ≤ |A| ≤ |B| <∞ and supp(f)∩B = ∅,
all sings ε ∈ EB, and all t such that |x∗n(f)| ≤ t for every n ∈ N.

(iii) There is a constant 1 ≤ C <∞ such that (4.2) holds for all sets
A, B with 0 ≤ |A| ≤ |B| < ∞ and (supp(f) \ A) ∩ B = ∅, all
signs ε ∈ EB, and all t such that |x∗n(f)| ≤ t for every n ∈ N.

Moreover, if C2 is the optimal constant in (ii) and C3 is the optimal
constant in (iii), we have Γ ≤ C2 ≤ C3 and, in the case when X is
p-Banach, C2 ≤ ApΓ and C3 ≤ C2Γ.

Proof. In order to prove (ii) ⇒ (i), pick sets A,B ⊂ N with |A| ≤
|B| <∞, signs ε ∈ EA, δ ∈ EB, and a vector f ∈ X such that A ∩B =
supp(f)∩ (A∪B) = ∅ and |x∗n(f)| ≤ 1 for every n ∈ N. If g = f +1ε,A
we have

‖g‖ ≤ C‖g − SA(g) + 1δ,B‖ = C‖f + 1δ,B‖.
To show the implication (i) ⇒ (ii), assume that X is p-Banach and

let f , t, A, B and ε be as in (ii). If D ⊆ A and δ ∈ ED we have

‖f − SA(f) + t1δ,D‖ ≤ Γ‖f − SA(f) + t1ε,B‖.
By Corollary 1.3 (ii),∥∥∥∥∥∥f − SA(f) +

∑
n∈A

an xn

∥∥∥∥∥∥ ≤ ApΓ‖f − SA(f) + t1ε,B‖

whenever |an| ≤ t for every n ∈ A. Choosing an = x∗n(f) for n ∈ A we
are done.

(iii) ⇒ (ii) is trivial so let us prove (ii) ⇒ (iii). Assume that X is
p-Banach, and so the quasi-norm is continuous. Let f , t, A, B and ε
be as in (iii). Pick ε > 0. By Lemma 1.8 (ii), there is D ⊆ N such that
|D| = |B|, and ‖SE(f)‖ ≤ ε whenever E ⊆ D. Taking into account
the equivalence between (i) and (ii) we obtain

‖f − SD(f)‖ ≤ C‖f − SD(f)− SA(f − SD(f)) + t1D‖
= C‖f − SA∪D(f) + t1D‖
≤ CΓ‖f − SA∪D(f) + t1ε,B‖
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= CΓ‖f − SA(f) + t1ε,B − SD\A(f)‖.

Since ‖SD(f)‖ ≤ ε and ‖SD\A(f)‖ ≤ ε, letting ε tend to 0 yields

‖f‖ ≤ CΓ‖f − SA(f) + t1ε,B‖. �

Our next result conveys the idea that symmetry for largest coeffi-
cients evinces an appreciable flavour of quasi-greediness, hence of un-
conditionality.

Proposition 4.3. A basis B of a quasi-Banach space X is SLC if and
only if it is democratic and QGLC. Moreover, if X is p-Banach, we
have Cql ≤ ApΓ and Γ ≤ Cql(1 + AppB

p
pC

p
ql∆

p)1/p.

Proof. Assume that X is a p-Banach space and that B is a democratic
QGLC basis. By Lemma 3.7 and Proposition 4.1, B is super-democratic
with ∆s ≤ ApBpCql∆. Let A and B be subsets of N with |A| ≤ |B| <
∞, let ε ∈ EA and δ ∈ EB, and let f ∈ X be such that supp(f) ∩ (A ∪
B) = ∅ and |x∗n(f)| ≤ 1 for all n ∈ N. Then

‖f + 1ε,A‖p ≤ ‖f‖p + ‖1ε,A‖p

≤ ‖f‖p + ∆p
sd‖1δ,B‖p

≤ (1 + ∆p
sd)C

p
ql‖f + 1δ,B‖p.

Conversely, assume that B is SLC. By Lemma 4.2, we can use (4.2)
with A = ∅. This gives that B is QGLC. �

Every democratic basis is semi-normalized and the democratic con-
stants of a basis in a quasi-Banach space are related by the following
inequalities:

max{∆sd,∆} ≤ Γ,

∆d ≤ ∆ ≤ ∆2
d,

max{∆sd,∆} ≤ ∆s ≤ ∆2
sd.

This section ends with a new addition to these estimates.

Lemma 4.4. Let B be a SLC basis of a p-Banach space X. Then
∆s[B,X] ≤ Bp Γ[B,X].

Proof. Let B be a finite subset of N and let ε ∈ EB. We choose an arbi-
trary sequence of signs indexed by N containing ε which, for simplicity,
keep denoting by ε. If we apply the definition of SLC to f = 1ε,D∩B
we obtain

‖1ε,D‖ ≤ Γ‖1ε,B‖,
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for any subset D of N or cardinality |D| ≤ |B|. Hence, given A ⊆ N
with |A| ≤ |B| <∞, by Corollary 1.4,∥∥∥∥∥∥∑n∈A an εn xn

∥∥∥∥∥∥ ≤ Bp Γ‖1ε,B‖,

for all scalars (an)n∈A with |an| ≤ 1 for n ∈ A. In particular, we have
‖1δ,A‖ ≤ Bp Γ‖1ε,B‖ for every δ ∈ EA. �

4.1. Bidemocracy. Let us introduce now another property of bases
related to democracy. Following [33] we say that a basis B of a quasi-
Banach space X is bidemocratic if there is a positive constant C such
that

‖1A[B,X]‖ ‖1B[B∗,X∗]‖ ≤ C m, (4.3)

for all m ∈ N and all A, B ⊆ N with max{|A|, |B|} ≤ m.

Lemma 4.5. A basis B of a quasi-Banach space X is bidemocratic if
and only if there is a positive constant C such that

‖1ε,A[B,X]‖ ‖1δ,B[B∗,X∗]‖ ≤ Cm (4.4)

for all m ∈ N, all A, B ⊆ N with max{|A|, |B|} ≤ m, and all ε ∈ EA
and δ ∈ EB. Moreover if C1 is the optimal constant in (4.3) and C2 is
the optimal constant in (4.4) we have C1 ≤ C2 and, if X is p-Banach,
C2 ≤ B1BpC1.

Proof. Just apply Corollary 1.4. �

We will denote by ∆b[B,X] the optimal constant in (4.3) and by
∆sb[B,X] the optimal constant in (4.4). Using this notation, Lemma 4.5
for p-Banach spaces reads as

∆b[B,X] ≤ ∆sb[B,X] ≤ B1Bp ∆b[B,X].

Lemma 4.6. Suppose B is a bidemocratic basis of a quasi-Banach
space X. Then the dual basis B∗ is bidemocratic, and ∆sb[B,X] ≤
∆sb[B∗,X∗].

Proof. It is a ready consequence of the inequality

‖1ε,A[B∗∗, [B∗]∗]‖ ≤ ‖1ε,A[B,X]‖,

which follows from (1.9). �

The elementary identity

1ε,A[B∗,X∗]
Ç

1

m
1ε,A[B,X]

å
= 1, A ⊆ N, |A| = m, ε ∈ EA
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tells us that 1 ≤ ∆b and that, roughly speaking, bidemocracy is the
property that ensures that, up to a constant, the supremum defining
‖1ε,A[B∗,X∗]‖ is essentially attained on the vector 1ε,A[B,X].

Bidemocratic bases were introduced in [33] with the purpose to inves-
tigate duality properties of the greedy algorithm. Recently, the authors
of [6] took advantage of the bidemocracy to achieve new estimates for
the greedy constant of (greedy) bases. Bidemocracy will also play a
significant role here in this paper. For the time being, we clarify the
relation between bidemocracy and other democracy-like properties.

Proposition 4.7. Let B = (xn)∞n=1 be a bidemocratic basis of a quasi-
Banach space X. Then B and B∗ are M-bounded democratic bases for
which the restricted truncation operator is uniformly bounded. Quanti-
tatively we have

‖1δ,B[B,X]‖ ≤ ∆sb‖f‖ and ‖1δ,B[B∗,X∗]‖ ≤ ∆sb‖f ∗‖

for all B ⊆ N finite, all δ ∈ EB, all f ∈ X with |{n ∈ N : |x∗n(f)| ≥
1}| ≥ |B|, and all f ∗ ∈ X∗ with |{n ∈ N : |f ∗(xn)| ≥ 1}| ≥ |B|. In
particular,

max{∆s[B,X],∆s[B∗,X∗],Λu[B,X],Λu[B∗,X∗]} ≤ ∆sb.

Proof. Let A and B be finite subsets of N with |B| ≤ |A|, let δ ∈
EB, and let f ∈ X be such that |x∗n(f)| ≥ 1 for all n ∈ A. If ε =
(sign(x∗n(f)))n∈A we have

‖1δ,B[B,X]‖ ≤ ∆b
|A|

‖1ε,A[B∗,X∗]‖
≤ ∆b

1ε,A[B∗,X∗](f)

‖1ε,A[B∗,X∗]‖
≤ ∆b‖f‖.

Choosing f = 1ε,A we obtain that ∆s ≤ ∆sb. Switching the roles of B
and B∗ we obtain that ∆s[B∗,X∗] ≤ ∆sb. In particular, both B and B∗
are semi-normalized. Thus, B is M -bounded.

Now, if we choose B = A and δ = ε, we obtain that the restricted
truncation operator is bounded by ∆b. Switching again the roles of B
and B∗ we obtain the corresponding result for B∗. �

Corollary 4.8. If B is a bidemocratic basis then B is LPU and SLC.

Proof. Combine Proposition 4.7 with Proposition 3.16 and Proposi-
tion 4.3. �

Corollary 4.9. If B = (xn)∞n=1 is a bidemocratic basis then either B∗
is equivalent to the unit vector system of c0 or F∗(f ∗) ∈ c0 for all
f ∗ ∈ X∗.
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Proof. Suppose there is g∗ ∈ X∗ such that F∗(g∗) /∈ c0. Then the
set {n ∈ N : |g∗(xn)| ≥ c} is infinite for some c > 0. Therefore, by
Proposition 4.7,

‖1δ,B[B∗,X∗]‖ ≤ ∆sb
‖g∗‖
c

for all B ⊆ N finite and all δ ∈ EB. Hence, by Corollary 1.3 (ii),∥∥∥∥∥∥∑n∈B an x∗n
∥∥∥∥∥∥ ≤ Ap∆sb

‖g∗‖
c
,

for all B ⊆ N finite and all (an)n∈B with |an| ≤ 1 for n ∈ B. Thus,
the map I∗ defined as in (1.5) with respect to the basic sequence B∗,
restricts to a bounded linear map from c0 into [B∗]. We deduce that
I∗ is an isomorphism from c0 onto [B∗] whose inverse is F∗. �

5. Almost greedy bases

An M -bounded, semi-normalized basis B for a quasi-Banach space X
is said to be almost greedy if there is a constant 1 ≤ C such that

‖f − SA(f)‖ ≤ C‖f − SB(f)‖, (5.1)

whenever A is a finite greedy set of f ∈ X and B is another subset of
N with |B| ≤ |A|. The smallest constant C in (5.1) will be denoted
by Cag = Cag[B,X]. We draw attention to the fact our definition is
slightly different from the original definition of almost greedy basis
given by Dilworth et al. in [33], however it is equivalent.

Lemma 5.1 (cf. [4, Theorem 3.3]). An M-bounded semi-normalized
basis B of a quasi-Banach space X is almost greedy if only if there is a
constant C <∞ such that

‖f − Gm(f)‖ ≤ C‖f − SB(f)‖, |B| = m, f ∈ X. (5.2)

Moreover, if the quasi-norm is continuous, the optimal constant in (5.2)
is Cag.

Proof. The proof for the locally convex case from [4] works also in this
case, and so we leave it as an exercise for the reader. �

Lemma 5.2. An M-bounded semi-normalized basis B = (xn)∞n=1 of a
quasi-Banach space X is almost greedy if and only if there is a constant
C such that

‖f‖ ≤ C‖f − SB(f) + z‖ (5.3)

for all vectors f , z ∈ X and all subsets B ⊆ N finite such that supp(f)∩
supp(z) = ∅, |B| ≤ | supp(z)|, and maxn∈N |x∗n(f)| ≤ minn∈supp(z) |x∗n(z)|.
Moreover, the smallest constant C in (5.3) is the almost greedy constant
of the basis Cag.
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Proof. Let us first show the “only if” part. Suppose B is almost greedy.
Let f , B and z be as above. Without loss of generality we assume that
B ⊆ supp(f). Since z is a greedy sum of f + z,

‖f‖ = ‖f + z − z‖ ≤ Cag‖f + z − SB(f + z)‖ = Cag‖f − SB(f) + z‖.
To show the “if” part, we pick g ∈ X, a greedy set A of g, and a

subset B of N with |B| ≤ |A|. Assume, without loss of generality, that
A∩B = ∅. If we apply our hypothesis to f = g−SA(g) and z = SA(g)
we obtain

‖g − SA(g)‖ = ‖f‖ ≤ C‖f − SB(f) + z‖ = C‖g − SB(g)‖,
so that Cag ≤ C. �

The following theorem relates almost greedy bases to quasi-greedy
bases and democratic bases. We would like to point out that, although
the statement of Theorem 5.3 is similar to the corresponding result
for Schauder bases in Banach spaces by Dilworth et al. from [33], our
approach is substantially different. Indeed, the alternative route we
follow in the proof has to overcome, on the one hand, the obstructions
resulting from the non-uniform boundedness of the partial sum oper-
ators associated to the basis and the absence of local convexity of the
underlying space, on the other.

Theorem 5.3. Let B be an M-bounded semi-normalized basis B for a
quasi-Banach space X. The following are equivalent.

(i) B is almost greedy.
(ii) B is SLC and quasi-greedy.
(iii) B is super-democratic and quasi-greedy.
(iv) B is democratic and quasi-greedy.
(v) B is SLC and the truncation operator is uniformly bounded.

Moreover Γ ≤ Cag and, given f ∈ X and A a greedy set of f ,

‖f − SA(f)‖ ≤ Cag‖f‖. (5.4)

In the particular case that X is p-Banach we also have

Cag ≤ ApΓΛt and Cqg ≤ 21/pCag.

Proof. (i)⇒ (ii) Combining Lemma 4.2 and Lemma 5.2 gives Γ ≤ Cag.
Choosing B = ∅ in the definition of almost greedy basis we get (5.4).
Consequently, if X is p-Banach, Cqg ≤ 21/pCag.

(ii) ⇒ (iii) ⇒ (iv) are obvious, and (iv) ⇒ (v) follows from Propo-
sitions 4.3 and 3.14.

(v)⇒ (i) Let us pick a finite greedy set A ⊆ N of f ∈ X, and B ⊆ N
with |B| ≤ |A|. Without loss of generality we assume that A \ B 6= ∅.
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Let t = min{|x∗n(f)| : n ∈ A \ B} and ε = (sign(x∗n(f)))n∈A\B. Since
|x∗n(f)| ≤ t for all n ∈ N \ A, and A \ B is a greedy set of f − SB(f),
Lemma 4.2 gives

‖f − SA(f)‖ ≤ ApΓ
∥∥∥f − SA(f)− SB\A(f) + t1ε,A\B

∥∥∥
= ApΓ

∥∥∥f − SB(f)− SA\B(f) + t1ε,A\B
∥∥∥

= ApΓ‖T (f − SB(f), A \B)‖
≤ ApΓΛt ‖f − SB(f)‖ ,

as desired. �

Notice that, in light of Lemma 5.2, condition (ii) in Lemma 4.2 is sort
of an “almost greediness for largest coefficients” condition. Our next
Corollary provides an strengthening of the characterization of almost
greedy bases given in Lemma 5.2, and thus manifests that there is a
characterization of almost greedy bases similar to the characterization
of symmetry for largest coefficients stated in Lemma 4.2 (iii).

Corollary 5.4. Let B = (xn)∞n=1 be an M-bounded semi-normalized
basis of a quasi-Banach space X. If B is almost greedy then there is a
constant C such that (5.3) holds whenever f , z ∈ X and B ⊆ N finite
are such that

(supp(f) \B) ∩ supp(z) = ∅,
|B| ≤ | supp(z)|, and maxn∈N |x∗n(f)| ≤ minn∈supp(z) |x∗n(z)|. In case
that X is p-Banach, we can choose C = ApΓ

2Λt.

Proof. Assume that X is p-Banach. By hypothesis, D := supp(z) is
a greedy set of g := f − SB(f) + z. Let ε = (sign(x∗n(z))n∈D and
t = minn∈D |x∗n(z)|. By Lemma 4.2 and Theorem 5.3,

‖f‖ ≤ ApΓ
2‖f − SB(f) + t1ε,D‖ = ApΓ

2‖T (g,D)‖ ≤ ApΓ
2Λt‖g‖,

where both Γ and Λt are finite. �

Next we introduce a lemma that is of interest for the purposes of
Section 11. Note that its hyphotesis is precisely the condition obtained
in Corollary 5.4.

Lemma 5.5. Let B be an M-bounded semi-normalized basis of a quasi-
Banach space X. Suppose there is a constant C such that (5.2) holds
whenever f , z ∈ X, and A ⊆ N is a finite set such that (supp(f) \A)∩
supp(z) = ∅, |A| ≤ | supp(z)|, and maxn∈N |x∗n(f)| ≤ minn∈supp(z) |x∗n(z)|.
Then Λt ≤ C.
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Proof. Let f ∈ X and let B be a greedy set of f . Using the hypothesis
with f ′ = T (f,B), A′ = B and z′ = SB(f) gives

‖T (f,B)‖ ≤ C‖SBc(f) + SB(f)‖ = C‖f‖. �

Theorem 5.3 provides tight estimates for the almost greedy constant
Cag from estimates for the SLC constant and the truncation operator
constant. We complement this result with the following Proposition,
which provides estimates for Cag in terms of the quasi-greedy constant
of the basis and some constants related to its democracy.

Proposition 5.6. Let B be an M-bounded semi-normalized basis for a
p-Banach space X. Suppose that B is quasi-greedy.

(i) If B is democratic, then B is almost greedy with

Cag ≤ Cqg(1 + (ApBp∆dC
2
qgηp(Cqg))

p)1/p.

(ii) If B is super-democratic, then B is almost greedy with

Cag ≤ Cqg(1 + (Ap∆sdηp(Cqg))
p)1/p.

(iii) If B is SLC, then B is almost greedy with

Cag ≤ ApΓCqg(1 + Cp
qgη

p
p(Cqg))

1/p.

(iv) If B is bidemocratic, then B is almost greedy with

Cag ≤
Ä
Cp
qg + ∆p

sb

ä1/p
.

Proof. Pick f ∈ X, a greedy set A for f , and B ⊆ N with |B| = m.
Note that A \B is a greedy set of SBc(f) = f − SB(f). Therefore

max{‖S(A∪B)c(f)‖, ‖SA\B(f)‖} ≤ Cqg‖f − SB(f)‖. (5.5)

Since f − SA(f) = S(A∪B)c(f) + SB\A(f) we have

‖f − SA(f)‖p ≤ ‖S(A∪B)c(f)‖p + ‖SB\A(f)‖p. (5.6)

Using the democracy, Corollary 1.4, and Theorem 3.10 we obtain

‖SB\A(f)‖ ≤ Bp∆d max
n∈B\A

|x∗n(f)| ‖1A\B‖

≤ Bp∆d min
n∈A\B

|x∗n(f)|‖1A\B‖

≤ Bp∆dKpu‖SA\B(f)‖. (5.7)

Combining (5.5), (5.6) and (5.7) yields (i).
Let ε = (sign(x∗n(f)))n∈A\B. Using the super-democracy of the basis,

Corollary 1.3 (ii) and Theorem 3.8 we obtain

‖SB\A(f)‖ ≤ Ap∆sd max
n∈B\A

|x∗n(f)|‖1ε,A\B‖
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≤ Ap∆sd min
n∈A\B

|x∗n(f)|‖1ε,A\B‖

≤ Ap∆sdKlc‖SA\B(f)‖. (5.8)

Combining (5.5), (5.6) and (5.8) we obtain (ii).
(iii) follows from Theorem 5.3 and Proposition 3.14.
If B is bidemocratic, by Proposition 4.7,

‖SB\A(f)‖ ≤ ∆sb‖f‖. (5.9)

Putting together (5.6) with (5.5) and (5.9) yields (iv). �

5.1. Almost greediness and bidemocracy. Proposition 5.6 hints
at the fact that combining quasi-greediness with bidemocracy yields
better asymptotic estimates (i.e., estimates for large values of the con-
stants) than combining quasi-greediness with other democracy-related
properties. To be precise, the estimate achieved in Proposition 5.6 (iv)
grows linearly with Cqg and ∆sb. Next we show that bidemocracy plays
also an important role when aiming at qualitative results.

Let B = (xn)∞n=1 be an M -bounded semi-normalized basis of a quasi-
Banach space. Then, by Proposition 1.12 (v), the sequence B∗ is also
semi-normalized and M -bounded. Moreover, by (1.10), a set A ⊆ N is
a greedy set of f ∗ ∈ [B∗] if and only if

|f ∗(xn)| ≥ |f ∗(xk)|, n ∈ A, k ∈ N \ A. (5.10)

Since condition (5.10) makes sense for every functional f ∗ we can safely
extend the definition of greedy set and greedy projection to the whole
space X∗. We point out that greedy projections with respect to non-
complete biorthogonal systems have appeared in the literature before.
Important examples are the wavelet bases in the (highly non-separable)
space BV(Rd) for d ≥ 2 (see [28, 74]). In any case, we must be aware
that since we cannot guarantee that F∗(f ∗) ∈ c0, the existence of finite
greedy sets of f ∗ is not ensured either.

Theorem 5.7. Let B = (xn)∞n=1 be a bidemocratic quasi-greedy basis
of a quasi-Banach space X. Then there is a positive constant C such
that

‖S∗A(f ∗)‖ ≤ C‖f ∗‖ (5.11)

for all f ∗ ∈ X∗ and all finite greedy sets A of f ∗. In fact, (5.11) holds
with C = 2∆b[B,X] + Cqg[B,X].

Proof. The proof we present here is inspired by that of [33, Theorem
5.4]. Let f ∗ ∈ X∗ and let A be a greedy set of f ∗. For f ∈ X, pick
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a greedy set B of f with |A| = |B| = m. If ε = (sign(x∗n(f)))n∈B\A,
invoking Proposition 4.7 we have

|S∗B(f ∗)(SAc(f))| =
∣∣∣∣∣∣ ∑
n∈B\A

f ∗(xn)x∗n(f)

∣∣∣∣∣∣
≤ min

n∈A
|f ∗(xn)|

∑
n∈B\A

|x∗n(f)|

= min
n∈A
|f ∗(xn)| ‖1ε,B\A[B∗,X∗](f)‖

≤ min
n∈A
|f ∗(xn)| ‖1ε,B\A[B∗,X∗]‖ ‖f‖

≤ ∆b‖f ∗‖ ‖f‖.

Switching the roles of B and B∗ we obtain

|S∗A(f ∗)(SBc(f))| ≤ ∆b‖f ∗‖ ‖f‖.

A straightforward computation yields

S∗Ac(f ∗)(SB(f))− S∗A(f ∗)(SBc(f)) = S∗Ac(f ∗)(f)− f ∗(SBc(f))

= f ∗(SB(f))− S∗A(f ∗)(f).

Summing up we deduce that

max{|S∗Ac(f ∗)(f)|, |S∗A(f ∗)(f)|} ≤ (2∆b + Cqg)‖f ∗‖ ‖f‖,

Taking the supremum on f ∈ BX we obtain the desired inequality. �

Corollary 5.8. Let B be a bidemocratic quasi-greedy basis of a quasi-
Banach space. Then B∗ is an almost greedy basis.

Proof. Restricting the inequality (5.11) provided by Theorem 5.7 to
[B∗] yields that B∗ is quasi-greedy. By Proposition 4.7, B∗ is democratic
as well. An appeal to Theorem 5.3 puts an end to the proof. �

6. Greedy bases

An M -bounded semi-normalized basis B = (xn)∞n=1 for a quasi-Banach
space X is greedy if there is a constant 1 ≤ C such that for any f ∈ X,

‖f − SA(f)‖ ≤ C‖f − z‖ (6.1)

whenever A is a finite greedy set of f ∈ X, and z ∈ X satisfies
| supp(z)| ≤ |A|. The smallest admissible constant C in (6.1) will be
denoted by Cg[B,X] = Cg, and will be referred as the greedy constant
of the basis.
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As for quasi-greedy basis, a standard perturbation argument yields
that a basis is greedy if and only if

‖f − Gm(f)‖ ≤ C‖f − z‖, (6.2)

for all f and z in X and all m ∈ N such that | supp(z)| ≤ m. If the
quasi-norm in X is continuous, the optimal constant in (6.2) coincides
with Cg.

As we advertised in the Introduction, our goal in this section is to
corroborate the characterization by Konyagin and Temlyakov of greedy
bases in terms of the unconditionality and the democracy of the basis.
The doubts in that regard that made Tribel write (see [72, Proof of
Theorem 6.51]):

It is not immediately clear weather a greedy basis in a
quasi-Banach space is also unconditional

will dissipate now. With the aid of Theorem 1.10, the original proof
from [55] permits to adapt to the non-locally convex setting the stan-
dard techniques used in [55] for Banach spaces (see [73, Theorem 4]).
For the sake of completeness, here we shall revisit this characterization,
paying close attention to obtaining tight estimates for the constants
involved. As a matter of fact, the techniques we develop provide esti-
mates that extend the ones previously known for Banach spaces (see
[4, 6, 17, 21,35,37,55]).

Theorem 6.1. Suppose B is a semi-normalized M-bounded basis of a
quasi-Banach space X. Then, B is greedy if and only if it is uncondi-
tional and almost greedy, with

Cag ≤ Cg ≤ CagKsu.

Moreover, if the quasi-norm is continuous, Ksu ≤ Cg.

Proof. It is obvious that Cag ≤ Cg. To prove the right hand-side in-
equality, let A be a finite greedy set of f ∈ X and fix z ∈ X with
| supp(z)| ≤ |A|. Then, if the quasi-norm is continuous and we put
B = supp(z), we have

‖f − SA(f)‖ ≤ Cag‖f − SB(f)‖ = Cag‖SBc(f − z)‖ ≤ CagKsu‖f − z‖.
In order to prove the upper bound for Ksu, we take f ∈ X with

supp(f) = B finite and a subset A of N. To estimate ‖SA(f)‖ we as-
sume without loss of generality that A ⊆ B. Pick t ≥ supn∈A |x∗n(f)|+
supn∈B\A |x∗n(f)| and let g = t1B\A + f . The set B \ A is a greedy set
of g and so

‖SA(f)‖ = ‖g − SB\A(g)‖ ≤ Cg
∥∥∥g − t1B\A∥∥∥ = Cg‖f‖.
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If ‖ · ‖ is continuous, we extend by continuity this inequality to any
f ∈ X. �

Theorem 6.2. Let B be an unconditional semi-normalized basis for a
p-Banach space X.

(i) If B is democratic, then B is greedy with

Cg ≤ (Kp
su + ∆p

dK
p
u min{Bp

p , K
p
u})1/p.

(ii) If B is super-democratic, then B is greedy with

Cg ≤ (Kp
su + ∆p

sd min{App, Kp
u}min{AppKp

su, K
p
u})1/p.

(iii) If B is symmetric for largest coefficients, then B is greedy with

Cg ≤ min{A2
pΓKsu, ApΓKu}.

(iv) If B is bidemocratic, then B is greedy with

Cg ≤ (Kp
su + ∆p

sb)
1/p .

Proof. Let A be a finite greedy set of f ∈ X and let z =
∑
n∈B an xn

with |B| = |A|. Notice that

max
n∈B\A

|x∗n(f)| ≤ min
n∈A\B

|x∗n(f)| = min
n∈A\B

|x∗n(f − z)|. (6.3)

Since

f − SA(f) = S(A∪B)c(f − z) + SB\A(f)

we have

‖f − SA(f)‖p ≤ ‖S(A∪B)c(f − z)‖p + ‖SB\A(f)‖p

≤ Kp
su‖f − z‖p + ‖SB\A(f)‖p. (6.4)

Using the unconditionality and the democracy of the basis we obtain

‖SB\A(f)‖ ≤ Ku max
n∈B\A

|x∗n(f)| ‖1B\A‖

≤ Ku∆d min
n∈A\B

|x∗n(f)|‖1A\B‖, (6.5)

while if we merely use the democracy of the basis, by Corollary 1.4 we
obtain

‖SB\A(f)‖ ≤ Bp∆d max
n∈B\A

|x∗n(f)| ‖1A\B‖. (6.6)

Since

min
n∈A\B

|x∗n(f − z)| ‖1A\B‖ ≤ Ku‖f − z‖,

combining (6.3), (6.4), (6.5) and (6.6) gives (i).
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Let ε = (sign(x∗j(f − z)))n∈A\B and δ = (sign(x∗j(f)))n∈B\A. Using
the unconditionality and the super-democracy of the basis we obtain

‖SB\A(f)‖ ≤ Ku max
n∈B\A

|x∗n(f)| ‖1δ,B\A‖

≤ Ku∆sd max
n∈B\A

|x∗n(f)|‖1ε,A\B‖, (6.7)

while if we only appeal to the super-democracy of the basis, using
Corollary 1.3 (i) we obtain

‖SB\A(f)‖ ≤ Ap∆sd max
n∈B\A

|x∗n(f)| ‖1ε,A\B‖. (6.8)

For n ∈ A \ B let λn ∈ [0, 1] be such that mink∈A\B |x∗k(f − z)| =
λn|x∗n(f − z)|. Proposition 1.6 yields

min
n∈A\B

|x∗n(f − z)| ‖1ε,A\B‖ =

∥∥∥∥∥∥ ∑
n∈A\B

λnx
∗
n(f − z)xn

∥∥∥∥∥∥ ≤ ApKsu‖f − z‖.

(6.9)
Combining inequalities (6.3), (6.4), (6.7), (6.8) and (6.9) gives (ii).

For (iii), let A, B and z be as before, δ = (sign(x∗n(f))n∈B and
t = minn∈B |x∗n(f)|. By Lemma 4.2,

‖f − SA(f)‖ ≤ ApΓ‖f − SA(f)− SB\A(f) + t1δ,A\B‖ = ApΓ‖g‖,

where g = f−SA∪B(f)+t1δ,A\B. Using that the basis is lattice uncondi-
tional we obtain ‖g‖ ≤ Ku‖f−z‖, while using that the basis is suppres-
sion unconditional and Proposition 1.6 we obtain ‖g‖ ≤ ApKsu‖f−z‖.

If B is bidemocratic we obtain inequality (5.9) as in the proof of
Proposition 5.6. Combining this estimate with (6.4) gives (iv). �

From Theorems 6.1 and 6.2, disregarding the constants, we get:

Corollary 6.3. Suppose B is a semi-normalized M-bounded basis of a
quasi-Banach space X. The following conditions are equivalent:

(i) B is greedy.
(ii) B is unconditional and democratic.

(iii) B is unconditional and super-democratic.
(iv) B is unconditional and symmetric for largest coefficients.
(v) B is unconditional and bidemocratic.
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7. The best greedy error versus the best almost greedy
error

Given a basis B of a quasi-Banach space, a vector f ∈ X and m ∈ N,
we put

σm(f) = inf


∥∥∥∥∥∥f −∑

n∈B
bn xn

∥∥∥∥∥∥ : |B| = m, bn ∈ F


and

σ̃m(f) = inf{‖f − SB(f)‖ : |B| ≤ m}.
An M -bounded semi-normalized basis is greedy if and only if there

is a constant C such that for every f ∈ X, every m ∈ N, and every
greedy set A of f of cardinality m,

‖f − SA(f)‖ ≤ Cσm(f).

The optimal contant C is Cg[B,X]. Similarly, a basis is almost greedy
if and only if there is a constant C such that, if m, f and A are as
above,

‖f − SA(f)‖ ≤ Cσ̃m(f).

The optimal constant C equals Cag[B,X]. Our first result in this section
quantifies the distance between these two approximation errors in terms
of the democracy functions of the basis.

The upper democracy function ϕu and the lower democracy function
ϕl of a basis B are typically used to quantify the lack of democracy of
B. For m ∈ N,

ϕu(m) = ϕu[B,X](m) = sup {‖1A‖ : |A| ≤ m} ,
ϕl(m) = ϕl[B,X](m) = inf {‖1A‖ : |A| ≥ m} .

We will also consider the upper super-democracy function (also known
as the fundamental function) and the lower super-democracy function
of B, respectively defined by

ϕEu(m) = ϕEu[B,X](m) = sup {‖1ε,A‖ : |A| ≤ m, ε ∈ EA} ,
ϕEl (m) = ϕEl [B,X](m) = inf {‖1ε,A‖ : |A| ≥ m, ε ∈ EA} .

All these sequences ϕl, ϕu, ϕ
E
l and ϕEu are non-decreasing and are

related by the inequalities

ϕEl ≤ ϕl ≤ ϕu ≤ ϕEu.

If X is a p-Banach, axiom (q4) in the definition of a p-norm yields

ϕEu(km) ≤ k1/pϕEu(m), k,m ∈ N. (7.1)
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Moreover, if we restrict ourselves to semi-normalized bases, we have

ϕEu(1) = sup
n
‖xn‖ <∞.

We infer that ϕEu takes only finite values, that ϕEu(m) is doubling and
that,

ϕEu(m) . m1/p, m ∈ N.
Recall that a sequence (sm)∞m=1 of positive numbers is doubling if there
exists a constant C such that s2m ≤ Csm for m ∈ N. This is equivalent
to sbλmc ≤ Cλsm for every λ > 1.

In the reverse direction, if B is semi-normalized and M -bounded, by
Lemma 1.5, c := supn ‖x∗n‖ <∞.Thus

ϕEl (1) ≥ 1

c
inf
A⊆N
ε∈EA

sup
n∈N
|x∗n(1ε,A)| = 1

c
> 0.

However, ϕEl (m) need not be doubling (see [75]).
By definition, B is democratic (resp. super-democratic) if and only

if ϕu . ϕl (resp. ϕEu . ϕEl ), and we have

∆ = sup
m

ϕu(m)

ϕl(m)
(resp. ∆s = sup

m

ϕEu(m)

ϕEl (m)
).

Also by definition, a basis is bidemocratic if and only if

ϕu[B,X](m)ϕu[B∗,X∗](m) ≈ m, m ∈ N, (7.2)

and we have

∆b[B,X] = sup
m

1

m
ϕu[B,X](m)ϕu[B∗,X∗](m),

∆sb[B,X] = sup
m

1

m
ϕEu[B,X](m)ϕEu[B∗,X∗](m).

If X is p-Banach, by Corollary 1.4,

ϕEu ≤ Bpϕu, (7.3)

that is, the sequence ϕEu is always equivalent to ϕu. By Corollary 1.3 (i),

ϕEu(m) ≤ Ap sup {‖1ε,A‖ : |A| = m, ε ∈ EA} ,
and so the supremum defining ϕEu is essentially attained on sets of
maximum cardinality.

If B is SUCC, so that democracy and super-democracy coincide,
the supremum defining the sequences ϕu, ϕl and ϕEl is also essentially
attained on sets of maximum cardinality. Indeed, if X is p-Banach,
Proposition 2.2 gives

ϕu(m) ≤ Ksc sup {‖1A‖ : |A| = m} , (7.4)
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inf {‖1A‖ : |A| = m} ≤ Kscϕl(m), (7.5)

inf {‖1ε,A‖ : |A| = m, ε ∈ EA} ≤ ApKscϕ
E
l (m). (7.6)

Moreover, in correspondence to (7.3) we have

ϕl ≤ BpKscϕ
E
l .

Note that (7.4), (7.5) and (7.6) trivially hold for Schauder bases
using just the basis constant.

Proposition 7.1. Given a quasi-greedy basis B of a quasi Banach space
X, there is 0 < C <∞ such that for all f ∈ X and all r > m,

σ̃r(f) ≤ C max

®
1,

ϕEu(m)

ϕEl (r −m)

´
σm(f). (7.7)

If X is p-Banach we can choose C = 21/pApCqgηp(Cqg) in (7.7).

Proof. Assume that X is p-Banach. Let f ∈ X and g = f −∑n∈B bn xn
with |B| = m. Pick a greedy set A of g with |A| = r − m. Since
SD(f) = SD(g) whenever D ∩B = ∅, we have

f − SA∪B(f) = S(A∪B)c(g) = SAc(g)− SB\A(g)

and, moreover, |A ∪B| ≤ r. Therefore

σ̃r(f) ≤ 21/p−1
Ä
‖SAc(g)‖+ ‖SB\A(g)‖

ä
.

Since |x∗k(g)| ≤ t := minn∈A |x∗n(g)| for all k ∈ B \ A, by Corol-
lary 1.3 (ii) and Theorem 3.8,

‖SB\A(g)‖ ≤ Aptϕ
E
u(m) ≤ ApKlc

ϕEu(m)

ϕEl (r −m)
‖SA(g)‖,

where Klc ≤ Cqgηp(Cqg). The proof is over by using that

max{‖SA(g)‖, ‖SAc(g)‖} ≤ Cqg‖g‖ =

∥∥∥∥∥∥f −∑
n∈B

bn xn

∥∥∥∥∥∥
and minimizing over B and (bn)n∈B. �

Theorem 7.2 (cf. [33, Theorem 3.3]). Suppose B is an M-bounded
semi-normalized basis of a quasi-Banach space X. Then B is almost-
greedy if and only if for every (respectively, for some) λ > 1 there is a
constant C > 0 such that for every m ∈ N and every greedy set A of
f ∈ X of cardinality dλme,

‖f − SA(f)‖ ≤ Cσm(f). (7.8)

Moreover, if X is p-Banach and we denote the optimal constant in (7.8)
by Cλ = Cλ[B,X], we have

Cλ ≤ 21/pApBpC
3
agηp(Cag)d(λ− 1)−1e1/p.
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Proof. Without loss of generality we assume that X is p-Banach for
some 0 < p ≤ 1. Let us suppose that B is almost greedy and fix λ > 1.
If kλ = d(λ− 1)−1e we have

dλme ≤ kλ(dλme −m)

for all m ∈ N. Therefore, if A is a greedy set of cardinality dλme, by
Proposition 7.1, inequality (7.1), Lemma 4.4 and Theorem 5.3,

‖f − SA(f)‖ ≤ CagCk
1/p
λ

ϕEu(dλme −m)

ϕEl (dλme −m)
σm(f) ≤ BpC

2
agCk

1/p
λ σm(f),

where C ≤ 21/pApCagηp(Cag).
Now suppose that (7.8) holds for some λ > 1. By Lemma 1.8 (i),

L := sup{‖SA‖ : |A| < λ} <∞.
Given r ∈ N ∪ {0}, pick m = m(r) ∈ N ∪ {0} such that

dλme ≤ r < dλ(m+ 1)e. (7.9)

Let A be a greedy set of cardinality r. Pick B a greedy set of f of
cardinality dλme such that B ⊆ A. Since

|A \B| = r − dλme < dλ(m+ 1)e − dλme ≤ λ

and
f − SA(f) = f − SB(f)− SA\B(f),

it follows that

‖f − SA(f)‖p ≤ Cp‖f − SB(f)‖p + ‖SA\B(f)‖p

≤ Cpσpm(f) + Lp‖f‖p

≤ (Cp + Lp)‖f‖p.
Hence B is quasi-greedy. In particular, by Lemma 3.7, B it is SUCC.
Let us prove that B is democratic. Let m ∈ N and A and B be subsets
of N with |A| = dλme and |B| ≤ m. Pick D ⊆ N with (A∪B)∩D = ∅
and |A∩B| = |D|. Since E := (A\B)∪D is a greedy set of f = 1A∪B∪D,
|E| = |A| = dλme, and |D ∪ (B \ A)| = |B| ≤ m, we have

‖1B‖ = ‖f − SE(f)‖ ≤ C‖f − SD∪(B\A)(f)‖ = C‖1A‖.
Maximizing over B, minimizing over A, and using (7.4) we obtain

ϕu(m) ≤ CKscϕl(dλme), m ∈ N.
Let r ≥ dλe and pick m as in (7.9). Since m ≥ 1 we guarantee that

dλ(m+ 1)e ≤ d2λem.
Therefore, using again (7.1),

ϕu(r) ≤ d2λe1/pϕu(m) ≤ CKscd2λe1/pϕl(dλme) ≤ CKscd2λe1/pϕl(r).
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Since 0 < ϕl(1) and ϕu(r − 1) <∞,

sup
r

ϕu(r)

ϕl(r)
<∞.

An appeal to Theorem 5.3 finishes the proof. �

8. Linear embeddings related to the greedy algorithm

8.1. Symmetric spaces and embeddings. A gauge on N will be
a map ‖ · ‖S : N → N verifying (q1) and (q2) in the definition of a
quasi-norm, and also:

(q5) ‖(bn)∞n=1‖S ≤ ‖(an)∞n=1‖S whenever |bn| ≤ |an| for every n ∈ N,
(q6) ‖∑n∈A en‖S <∞ for every A ⊆ N finite, and
(q7) if (an,k)n,k∈N in [0,∞) is non-decreasing in k, then∥∥∥∥Ålim

k
an,k

ã∞
n=1

∥∥∥∥
S

= lim
k
‖(an,k)∞n=1‖S.

Associated to a gauge ‖ · ‖S on N we have the space

S = {f ∈ FN : ‖f‖S <∞}.

If the following condition is fulfilled

(q8) ‖(aπ(n))
∞
n=1‖S = ‖(an)∞n=1‖S for every permutation π of N,

then the gauge and its associated space are said to be symmetric.
Given a symmetric gauge ‖ · ‖S : N→ N, we will refer to

ϕ[S] :=

(∥∥∥∥ m∑
n=1

en

∥∥∥∥
S

)∞
m=1

as the fundamental function of the gauge (and of the space).
If ‖ · ‖S verifies (q3) (respectively, (q4)) in the definition of a quasi-

norm (resp., a p-norm) we say that ‖·‖S is a function quasi-norm (resp.,
a function p-norm) on N.

As for locally convex spaces, if ‖ ·‖S is a quasi-norm then (S, ‖ ·‖S) is
a quasi-Banach space (see [25, Theorem 1.7]). In this case we will say
that (S, ‖ · ‖S) is a quasi-Banach function space on N. Thus, if ‖ · ‖S
is a p-norm then (S, ‖ · ‖S) is a p-Banach space. Note that the unit
vector system is an unconditional basic sequence of any quasi-Banach
function space on N.

Given two gauges ‖ · ‖S1 and ‖ · ‖S2 on N with associated spaces S1

and S2, respectively, we say that S1 is continuously contained in S2 and
write S1 ⊆ S2 if there is a constant C such that ‖f‖S2 ≤ C‖f‖S1 for all
f ∈ FN. We write S1 = S2 if S1 ⊆ S2 and S2 ⊆ S1. In the case when
‖f‖S2 = ‖f‖S1 for every f ∈ FN we say that S1 = S2 isometrically.
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The conjugate gauge ‖ · ‖S′ of a gauge ‖ · ‖S on N is defined for
f = (bn)∞n=1 ∈ FN by

‖f‖S′ = sup

{∣∣∣∣∣ m∑
n=1

anbn

∣∣∣∣∣ : ‖(an)∞n=1‖S ≤ 1,m ∈ N
}
.

It is straightforward to check that ‖ · ‖S′ is a function norm on N. The
conjugate space S′ of a function space S on N is

S′ = {f = (bn)∞n=1 ∈ FN : ‖f‖S′ <∞}.
If S is a quasi-Banach function space, we denote by S0 the space

generated by c00 in S.

Lemma 8.1. Let ‖ · ‖S be a function quasi-norm on N. Then, under
the natural dual mapping, S∗0 = S′ isometrically.

Proof. There is a natural bounded linear map T : S′ → S∗0 of norm
‖T‖ ≤ 1 defined by

T ((bn)∞n=1)((an)∞n=1) =
∞∑
n=1

anbn.

Let f ∗ ∈ S∗0, and set bn = f ∗(en) for n ∈ N. If ‖(an)∞n=1‖S ≤ 1 and
m ∈ N, ∣∣∣∣∣ m∑

n=1

anbn

∣∣∣∣∣ =

∣∣∣∣∣f ∗
(

m∑
n=1

anen

)∣∣∣∣∣ ≤ ‖f ∗‖
∥∥∥∥∥ m∑
n=1

anen

∥∥∥∥∥ ≤ ‖f ∗‖.
Hence, ‖(bn)∞n=1‖S′ ≤ ‖f ∗‖. Since T ((bn)∞n=1)(ek) = f ∗(ek) for every
k ∈ N, it follows that T ((bn)∞n=1) = f ∗. �

Let us introduce the following properties involving the mappings F
and I defined in (1.3) and (1.5), respectively.

Definition 8.2. Suppose that X is a quasi-Banach space and that B is
a basis for X.
(a) A function space (S, ‖ · ‖S) on N is said to embed in X via B, and
we denoted it by putting

S B
↪→ X,

if S ⊆ Y and there is a constant C such that ‖I(f)‖ ≤ C‖f‖S for all
f ∈ S.
(b) In the reverse direction, we say that X embeds in a function space
(S, ‖ · ‖S) on N via B, and put

X B
↪→ S,

if there is a constant C such that ‖F(f)‖S ≤ C‖f‖ for all f ∈ X.
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(c) We say that X can be sandwiched between symmetric spaces via B if
there are symmetric function spaces S1 and S2 on N with ϕ[S1] ≈ ϕ[S2]
such that

S1
B
↪→ X B

↪→ S2.

Lemma 8.3. Let X be a quasi-Banach space with a semi-normalized
M-bounded basis B. Suppose that S1 and S2 are symmetric function

spaces on N such that S1
B
↪→ X B

↪→ S2. Then, for m ∈ N,

(i) ϕEu(m) . ϕ[S1](m).
(ii) ϕ[S2](m) . ϕEl (m).

(iii) ‖Um‖ .
ϕ[S1](m)

ϕ[S2](m)
.

Proof. Assume that ‖I(f)‖ ≤ C1‖f‖S1 for all f ∈ S1 and that ‖F(f)‖S2 ≤
C2‖f‖ for all f ∈ X. Let m ∈ N, A ⊂ N with |A| ≤ m, and ε ∈ EA.
We have

‖1ε,A[B,X]‖ ≤ C1‖1ε,A[Be]‖S1 = C1ϕ[S1](|A|) ≤ C1ϕ[S1](m).

Taking the supremum on A and ε we get

ϕEu(m) ≤ C1ϕ[S1](m).

Next, pick B ⊆ N with |B| ≥ m, and δ ∈ EB. We have

ϕ[S2](m) ≤ ϕ[S2](|B|) = ‖1δ,B[Be]‖S2 ≤ C2‖1δ,B[B,X]‖.
Taking the infimum over B and δ we get

ϕ[S2](m) ≤ C2ϕ
E
l (m).

Finally, let f ∈ X. For m ∈ N, let A be the mth greedy set of f ,
t = minn∈A |x∗n(f)|, and ε = (sign(x∗n(f)))n∈A. We have

‖Um(f)‖ = t‖1ε,A[B,X]‖
≤ C1t‖1ε,A[Be]‖S1

= C1
ϕ[S1](m)

ϕ[S2](m)
t‖1ε,A[Be]‖S2

≤ C1
ϕ[S1](m)

ϕ[S2](m)
‖F(f)‖S2

≤ C1C2
ϕ[S1](m)

ϕ[S2](m)
‖f‖,

as desired. �

Proposition 8.4. Let B be an M-bounded semi-normalized basis of
a quasi-Banach space X. Supposse that X can be sandwiched between
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symmetric spaces via B. Then B is super-democratic and the restricted
truncation operator is uniformly bounded.

Proof. It is immediate from Lemma 8.3. �

Corollary 8.5. Let X be a quasi-Banach space that can be sandwiched
between symmetric spaces via a basis B. Then B is lattice partially
unconditional and symmetric for largest coefficients.

Proof. It is straightforward by combining Proposition 3.16, Proposi-
tion 4.3, and Proposition 8.4. �

The converse of Proposition 8.4 also holds, as we shall see below.
The proof of this requires the introduction of new techniques that have
Lorentz spaces as the main ingredient.

8.2. Embeddings via Lorentz spaces. Let w = (wn)∞n=1 be a weight,
i.e., a sequence of positive numbers. By the primitive weight of w we
mean the weight s = (sn)∞n=1 defined by sn =

∑n
j=1wj.

Given (an)∞n=1 ∈ c0, for 0 < p <∞ and 0 < q <∞ we put

‖(an)∞n=1‖p,q,w =

( ∞∑
n=1

a∗qn s
q/p−1
n wn

)1/q

,

and for for 0 < p <∞ and q =∞ we put

‖(an)∞n=1‖p,∞,w = sup
n∈N

a∗ns
1/p
n ,

where (a∗n)∞n=1 is the non-increasing rearrangement of (|an|)∞n=1.
Let Sm : FN → FN be the mth partial-sum projection associated to

the unit vector system Be. We extend ‖·‖p,q,w to FN via the (consistent)
equation

‖f‖p,q,w = sup
m
‖Sm(f)‖p,q,w.

It is routine to check that, if p, q and w are as above, then ‖ · ‖p,q,w is
a symmetric gauge on N.

The weighted Lorentz sequence space dp,q(w) is defined as the space
associated to the symmetric gauge ‖·‖p,q,w. We denote its fundamental
function by ϕp,q,w, i.e.,

ϕp,q,w(m) =

(
m∑
n=1

sq/p−1
n wn

)1/q

, m ∈ N.

Note that dp,q(w) ⊆ `∞ continuously, and that dp,q(w) ⊆ c0 unless( ∞∑
n=1

sq/p−1
n wn

)1/q

<∞, (8.1)



GREEDY-LIKE BASES IN QUASI-BANACH SPACES 53

in which case dp,q(w) = `∞.
For potential weights, this general definition recovers the classical

sequence Lorentz spaces. Explicitly, if for 0 < α ≤ 1 we consider the
sequence

uα = (nα−1)∞n=1 (8.2)

then we have
dp,q(uα) = `p/α,q,

for 0 < p <∞ and 0 < q ≤ ∞.
It is known (see e.g. [2, Lemma 2.11 (a)]) that dp,q(w1) ⊆ dp,q(w2)

continuously if and only s2 . s1, where s1 and s2 are the primitive
weights of w1 and w2, respectively.

Given a positive increasing sequence t = (tn)∞n=1, its discrete deriva-
tive ∆(t) will be the weight whose primitive weight is t, i.e., with the
convention that t0 = 0,

∆(t) = (tn − tn−1)∞n=1.

Observe that the very definition of the sequence Lorentz spaces yields
dp,∞(w) = d1,∞(∆(s1/p)) isometrically, and dp,q(w) = dq,q(s

q/p−1w)
isometrically for q <∞.

Thus, dealing with bi-parametric Lorentz sequence spaces is some-
how superfluous. Still, we use two parameters to emphasize that for
fixed p and w all the spaces dp,q(w) belong to the “same scale” of se-
quence Lorentz spaces and that, in some sense, the spaces are close to
each other. As a matter of fact,

dp,q0(w) ⊆ dp,q1(w), 0 < q0 < q1 ≤ ∞
(see [27]), and the spaces involved in this embedding share the funda-
mental function.

Indeed, the definition of the spaces gives

ϕp,p,w = ϕp,∞,w = s1/p.

Since for n ∈ N,

sq/pn − s
q/p
n−1 = sq/pn

(
1−

Ç
sn−1

sn

åq/p)
≈ sq/p−1

n (sn − sn−1) = sq/p−1
n wn,

we have
dp,q(w) = dq,q(∆(sq/p)), 0 < p, q <∞. (8.3)

We deduce that condition (8.1) is equivalent to w ∈ `1, and that
ϕp,q,w ≈ ϕq,q,∆(sp/q) for every 0 < q <∞. Hence

ϕp,q,w(m) ≈ s1/p
m , m ∈ N. (8.4)

for every 0 < q ≤ ∞.
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Next we put together some properties of Lorentz sequence spaces
that will be of interest to us.

Proposition 8.6 (see [26, Theorem 2.2.13]). Suppose 0 < p <∞ and
0 < q ≤ ∞. Then ‖ · ‖p,q,w is a function quasi-norm (so that dp,q(w)
is a quasi-Banach space) if and only if the primitive weight s of w is
doubling.

If dp,q(w) is a quasi-Banach space, the unit vector system is a basis
for the space d0

p,q(w) generated by c00 in dp,q(w). This definition is
convenient since in some cases c00 is not dense in dp,q(w).

Proposition 8.7. Suppose that for some 0 < p <∞, 0 < q ≤ ∞ and
some weight w, the space dp,q(w) is quasi-Banach. Then c00 is dense
in dp,q(w) if and only if q <∞.

Proof. Given f = (an)∞n=1, for m ∈ N we have

‖Hm(f)‖p,q,w =

( ∞∑
n=1

a∗qn+ms
q/p−1
n wn

)1/q

with the usual modification if q =∞.
If q <∞ and f ∈ dp,q(w), by the Dominated Convergence Theorem

limm ‖Hm(f)‖p,q,w = 0. If q = ∞ we pick f = s−1/p, where s =
(sm)∞m=1 is the primitive weight of w. We have

inf
m
‖Hm(f)‖p,q,w = inf

m
sup
n

s1/p
n

s
1/p
n+m

≥ inf
m

s1/p
m

s
1/p
2m

.

Then f ∈ dp,q,w and, by Proposition 8.6, infm ‖Hm(f)‖p,q,w > 0. �

Following [33], we say that a weight (sm)∞m=1 has the upper regularity
property (URP for short) if there is an integer b ≥ 3 such that

sbm ≤
b

2
sm, m ∈ N. (8.5)

We will also need the so-called lower regularity property (LRP for
short). We say that (sm)∞m=1 has the LRP if there an integer b ≥ 2
such

2sm ≤ sbm, m ∈ N. (8.6)

Note that (sm)∞m=1 has the LRP if and only if (m/sm)∞n=1 has the URP.
A weight v = (vn)∞n=1 is said to be regular if it satisfies the Dini

condition

sup
n

1

nvn

n∑
k=1

vk <∞.
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We say that a sequence (sn)∞n=1 of positive numbers is essentially
increasing (respectively essentially decreasing) if there is a constant
C ≥ 1 with

sk ≤ Csn (resp. sk ≥ Csn) whenever k ≤ n.

Lemma 8.8 ([2, Lemma 2.12]). Let s = (sm)∞m=1 be a non-decreasing
weight such that (sm/m)∞m=1 is essentially decreasing. The following
are equivalent:

(i) s has the URP.
(ii) 1/s is a regular weight.
(iii) (sm/m

r)∞m=1 is essentially decreasing for some 0 < r < 1.

Proposition 8.9 (cf. [26, §2.2]). Let 1 < q ≤ ∞ and 0 < r < 1.
Suppose that w is a weight with primitive weight s = (sm)∞m=1.

(i) d1,q(w) is locally convex if and only if the primitive weight of
1/s is a regular weight.

(ii) If s−r is a regular weight then d1,q(w) is r-convex.
(iii) If (m−1/rsm)∞m=1 is essentially decreasing, d1,q(w) is s-convex

for every 0 < s < r.

Proof. (i) follows from [26, Theorem 2.5.10 and Theorem 2.5.11].
Assume that s−r is a regular weight. Then, by part (i) and (8.3),

the space d1/r,rq,w is locally convex. Since for f ∈ FN,

‖f‖1,q,w = ‖|f |r‖1/r
1/r,rq,w,

d1,q(w) verifies the lattice convexity estimate∥∥∥∥∥∥∥
Ñ∑

j

|fj|r
é1/r

∥∥∥∥∥∥∥
1,q,w

≤ C

Ñ∑
j

‖fj‖r1,q,w

é1/r

, fj ∈ FN,

for some C < ∞. We infer that d1,q(w) is an r-convex quasi-Banach
space, and so (ii) holds.

To show (iii), assume that (m−1/rsm)∞m=1 is essentially decreasing
and that s < r. By Lemma 8.8, s−s is a regular weight, and so (ii)
yields that d1,q(w) is an s-convex quasi-Banach space. �

The discrete Hardy operator Ad : FN → FN is defined by

Ad ((an)∞n=1) =

(
1

n

n∑
k=1

ak

)∞
n=1

.

Theorem 8.10 (see [26, Theorems 1.3.7 and 1.3.8]). Suppose 1 < q ≤
∞ and let w be a non-increasing weight with primitive weight s. Then
the discrete Hardy operator is bounded from d1,q(w) into d1,∞(w) if and
only if s−1 is a regular weight.
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The duals of Lorentz sequence spaces can be described in terms of
Marcinkiewicz spaces. Given a weight w = (wn)∞n=1 the Marcinkiewicz
sequence space m(w) is the Banach function space on N associated to
the function norm

‖f‖m(w) = sup
A⊆N
A finite

∑
n∈A |an|∑|A|
n=1 wn

, f = (an)∞n=1.

We denote by m0(w) the separable part of m(w).

Proposition 8.11 (cf. [26, §2]). Let 0 < p < ∞ and 0 < q < 1.
Suppose that w is a weight, and that the space dp,q(w) is quasi-Banach.
Then, under the natural dual mapping,

(i) dp,q(w))∗ = m(∆(s1/p)), and
(ii) (d0

p,∞(w))∗ = d1,1(s−1/p),

where s is the primitive weight of w.

Proof. Just combine [26, Theorem 2.4.14] with Proposition 8.7 and
Lemma 8.1. �

The following result is crucial in our study of embeddings.

Theorem 8.12. Suppose B is a semi-normalized M-bounded basis of
a p-Banach space X. Let wl = ∆(ϕEl ) and wu = ∆(ϕEu). Then:

(i) d1,p(wu)
B
↪→ X, and,

(ii) X B
↪→ d1,∞(wl) if the restricted truncation operator is uniformly

bounded.

Proof. (i) By Corollary 1.3 (ii), if |A| ≤ m and (bn)n∈A are scalars with
|bn| ≤ 1, ∥∥∥∥∥∥∑n∈A bn xn

∥∥∥∥∥∥ ≤ Apϕ
E
u(m). (8.7)

Let (an)∞n=1 ∈ c00 be such that (|an|)∞n=1 is decreasing. Put t = |a1| and
for each k ∈ N consider the set

Jk = {n ∈ N : t2−k < |an| ≤ t2−k+1}.
Notice that (Jk)

∞
k=1 is a partition of {n ∈ N : an 6= 0}. Set nk = |Jk|

(n0 = 0) and mk =
∑k
j=1 nj, so that Jk = {n ∈ N : mk−1+1 ≤ n ≤ mk}.

For n ∈ N, let sn = ϕEu(n) and wn = spn − s
p
n−1. Combining (8.7) with

Abel’s summation formula gives∥∥∥∥∥ ∞∑
n=1

an xn

∥∥∥∥∥
p

=

∥∥∥∥∥∥
∞∑
k=1

∑
n∈Jk

an xn

∥∥∥∥∥∥
p
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≤
∞∑
k=1

∥∥∥∥∥∥∑n∈Jk an xn
∥∥∥∥∥∥
p

≤ App

∞∑
k=1

(t2−k+1smk
)p

= App(2t)
p
∞∑
k=1

2−kp
k∑
j=1

∑
n∈Jj

wn

=
App(2t)

p

1− 2−p

∞∑
j=1

2−jp
∑
n∈Jj

wn

≤ 4pA2p
p

∞∑
n=1

|an|pwn.

Then for every f = (an)∞n=1 ∈ c00,∥∥∥∥∥ ∞∑
n=1

an xn

∥∥∥∥∥ ≤ 4A2
p‖f‖p,p,w,

where w = (wn)∞n=1. Since, by (8.3), dp,p(w) = d1,p(wu) and c00 is

dense in d1,p(wu), it follows that d1,p(wu)
B
↪→ X.

(ii) Let f ∈ X and denote by (a∗m)∞m=1 the non-increasing rearrange-
ment of F(f). Given m ∈ N, pick a greedy set A of f with |A| = m.
We have minn∈A |x∗n(f)| = a∗m so that

a∗mϕ
E
l (m) ≤ a∗m

∥∥∥∥∥∥∑n∈A sign(x∗n(f))xn

∥∥∥∥∥∥ = ‖U(f, A)‖ ≤ Λu‖f‖.

Consequently, ‖F(f)‖1,∞,wl
≤ Λu‖f‖. �

Combining Theorem 8.12 and equation (8.4) with Lemma 8.3 yields
the following result.

Corollary 8.13. Suppose B is a semi-normalized M-bounded basis of
a quasi-Banach space X. Let w be weight whose primitive weight is s.
Then:

(i) d1,p(w)
B
↪→ X for some p if and only if ϕEu[B,X] . s.

(ii) If the restricted truncation operator is uniformly bounded, then

X B
↪→ d1,∞(w) if and only if s . ϕEl [B,X].

Theorem 8.14. Let X be a p-convex quasi-Banach space with an M-
bounded semi-normalized basis B.

(i) Suppose that B is super-democratic, that the restricted trun-
cation operator is uniformly bounded, and that the primitive
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weight of w is equivalent to ϕEu. Then

d1,p(w)
B
↪→ X B

↪→ d1,∞(w), (8.8)

where d1,p(w) are d1,∞(w) are quasi-Banach function spaces on
N with equivalent fundamental functions.

(ii) Conversely, if (8.8) holds for some p and some weight w with
primitive weight s, then ϕEl ≈ s ≈ ϕEu.

Proof. (i) By Theorem 8.12,

d1,p(w) ⊆ d1,p(wu)
B
↪→ X B

↪→ d1,∞(wl) ⊆ d1,∞(w).

Since the weight s is doubling, Proposition 8.6 gives that the two
Lorentz spaces involved are quasi-Banach. Finally, by (8.4),

ϕ1,p,w ≈ ϕ1,∞,w ≈ s.

(ii) If (8.8) holds, Corollary 8.13 gives ϕEu . s . ϕEl . �

We emphasize that (8.8) is considered by some authors as a condition
which ensures in a certain sense the optimality of the compression
algorithms with respect to the basis (see [39]). We refer the reader to
[9, 20, 32] for the uses of this type of embeddings within the study of
non-linear approximation in Banach spaces with respect to bases.

We are now in a position to state the aforementioned converse of
Proposition 8.4.

Corollary 8.15. Let B be an M-bounded super-democratic basis of a
quasi-Banach space X. Supposse that the restricted truncation operator
is uniformly bounded. Then X can be sandwiched between symmetric
spaces via B. Moreover, the enclosing symmetric spaces we obtain are
quasi-Banach.

Proof. It follows from Theorem 8.14, Proposition 8.6 and (7.1). �

Notice that Proposition 8.4 together with Corollary 8.15 give a char-
acterization of those super-democratic bases for which the restricted
truncation operator is uniformly bounded. Combining this characteri-
zation with Theorems 5.3 and 6.1 yields the following:

Theorem 8.16. Let B be a M-bounded semi-normalized basis of a
quasi-Banach space X. Then:

(i) B is almost greedy if and only if it is quasi-greedy and X can be
sandwiched between symmetric spaces via B.

(ii) B is greedy if and only if it is unconditional and X can be sand-
wiched between symmetric spaces via B.
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9. Banach envelopes

The concept of Banach envelope of a quasi-Banach space, or more
generally r-Banach envelope for 0 < r ≤ 1, lies in the following result
in the spirit of category theory. The objects are the quasi-Banach
spaces and the morphisms are the linear contractions.

Theorem 9.1 (see [7, §2.2]). Let X be a quasi-Banach space. For each
0 < r ≤ 1 there is an r-Banach space V and a linear map J : X → V
with ‖J‖ ≤ 1 satisfying the following property:

(P) For every r-Banach space Y and every bounded linear map
T : X→ Y there is a unique map S : V→ Y such that S◦J = T .
Moreover ‖S‖ ≤ ‖T‖.

Since (P) is a universal property, given a quasi-Banach space X, the
pair (V, J) satisfying (P) is unique up to an isometry. So we can safely
say that the pair (V, J) in Theorem 9.1 is the r-Banach envelope of X,
or that V is the r-Banach envelope of X under the mapping J . We will
put V = Xc,r and J = JX,r.

We say that a quasi-Banach space V′ is isomorphic to the r-Banach
envelope of X under a mapping J ′ if there is an ismorphism T : Xc,r →
V′ such that J ′ = T ◦ JX,r. Note that if X is r-convex then X is
isomorphic to Xc,r under the identity map.

If r = 1 we simply put Xc = Xc,1 and JX = JX,1, and we say that
(Xc, JX) is the Banach envelope of X.

The universal property of r-Banach envelopes readily gives the fol-
lowing result.

Lemma 9.2. Let X be a quasi-Banach space and 0 < r ≤ 1. Given
an r-Banach space Y, the map S 7→ S ◦ JX,r defines an isometry from
L(Xc,r,Y) onto L(X,Y). In particular, the map f ∗ 7→ f ∗ ◦ JX,r defines
an isometry from (Xc,r)

∗ onto X∗.

We also infer from the universal property the following.

Lemma 9.3. Let X be a quasi-Banach space and 0 < r ≤ 1. Then
JX,r(X) is a dense subspace of Xc,r.

Remark 9.4. The proof of Theorem 9.1 uses the Minkowski functional of
the smallest r-convex set containing the unit ball of X. In the case when
r = 1, a less constructive and more functional approach is possible: JX
is the bidual map and Xc is the closed subspace of X∗∗ generated by
the range of the bidual map. Thus,

‖JX(f)‖ = sup
f∗∈BX∗

|f ∗(f)|, f ∈ X.
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Remark 9.5. Given a quasi-Banach space X, the family of spaces Xc,r

for 0 < r ≤ 1 constitutes a “scale” of quasi-Banach spaces. In fact, the
universal property yields the existence of bounded linear maps

Jr,s : Xc,r → Xc,s, 0 < r ≤ s ≤ 1

such that Js,t ◦ Jr,s = Jr,t for every 0 < r ≤ s ≤ t ≤ 1. Morever, Xc,s is
the s-Banach envelope of Xc,r under Jr,s.

Let us record a result about r-Banach envelopes that will be useful
below. Given 0 ≤ p ≤ ∞ we define p̂ r by

p̂ r =

p if p ∈ [r,∞] ∪ {0},
r if p ∈ (0, r).

Proposition 9.6. Let (Xi)i∈I be a family of quasi-Banach spaces and
0 ≤ p ≤ ∞. Then for any 0 < r ≤ 1 the r-Banach envelope of
(⊕i∈IXi)p is (⊕i∈I(Xi)c,r)p̂ r under the map

(fi)i∈I 7→ (JXi,r(fi))i∈I .

The proof of Proposition 9.6 is rather straightforward. For further
reference, in the next Corollary we write down some consequences that
spring from it.

Corollary 9.7. Let 0 < r ≤ 1 and p, q ∈ [0,∞].

(i) If X and Y are quasi-Banach spaces, the r-Banach envelope of
X⊕ Y is, under the natural mapping, Xc,r ⊕ Yc,r.

(ii) With the usual modification if p = 0, the r-Banach envelope of
`p is `p̂ r (under the inclusion map).

(iii) With the usual modifications if p or q are 0, the r-Banach en-
velope of `q(`p) is `q̂ r(`p̂ r) (under the inclusion map).

(iv) With the usual modifications if p or q are 0, the r-Banach en-
velope of `p ⊕ `q is `p̂ r ⊕ `q̂ r (under the inclusion map).

(v) The r-Banach envelope of (⊕∞n=1`
n
p )q is (⊕∞n=1`

n
p̂ r)q̂ r (under the

inclusion map).

The next result discusses how certain properties of bases transfer to
envelopes.

Definition 9.8. Given a basis B = (xn)∞n=1 of a quasi-Banach space X,
the Banach envelope of the basis B is the sequence Bc,r = (JX,r(xn))∞n=1

in the Banach envelope Xc,r of X.

Proposition 9.9. Let B = (xn)∞n=1 be a basis of a quasi-Banach space
X with coordinate functionals (x∗n)∞n=1, and let 0 < r ≤ 1. Then:
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(i) Bc,r is a basis of Xc,r. Moreover, if (y∗n)∞n=1 are the coordinate
functionals of Bc,r we have y∗n ◦ JX,r = x∗n for all n ∈ N.

(ii) If B is M-bounded so is Bc,r.
(iii) If B is a Schauder basis so is Bc,r.
(iv) If B is an unconditional basis so is Bc,r.
(v) If B is M-bounded and semi-normalized so is Bc,r.

Proof. Since 〈xn : n ∈ N〉 is dense in X, by Lemma 9.3, 〈JX,r(xn) : n ∈
N〉 is dense in Xc,r. We use Theorem 9.1 to pick functionals y∗n ∈ Xc,r

satisfying y∗n ◦ JX,r = x∗n. For n, k ∈ N we then have

y∗n(JX,r(xk)) = x∗n(xk) = δn,k

so that (i) holds.
For every A ⊆ N finite we have

JX,r ◦ SA[B,X] = SA[Xc,r,Bc,r] ◦ JX,r
therefore, by Lemma 9.2,

‖SA[Xc,r,Bc,r]‖ ≤ ‖SA[B,X]‖.

From here (ii), (iii) and (iv) hold.
Since ‖y∗n‖ = ‖x∗n‖ for all n ∈ N, we have

sup
n
{‖JX,r(xn)‖, ‖y∗n‖} ≤ sup

n
{‖xn‖, ‖x∗n‖}.

Lemma 1.5, yields (v). �

Corollary 9.10. Let B = (xn)∞n=1 be a basis of a quasi-Banach space
X and 0 < r ≤ 1. Then the dual basis of Bc,r is isometrically equivalent
to the dual basis of B.

Proof. Just combine Proposition 9.9 (i) with Lemma 9.2. �

In the case when JX,r is one-to-one we can assume that X ⊆ Xc,r and
that JX,r is the inclusion map. However, in general the map JX,r need
not be one-to-one. For instance, we have JLp,r = 0 for 0 < p < r ≤ 1
(see, e.g., [7, Theorem 4.13 and Proposition 4.20]). The existence of a
basis for X is a guarantee that this will not occur.

Lemma 9.11. Let X be a quasi-Banach space equipped with a total
basis B = (xn)∞n=1 . Then for 0 < r ≤ 1, the map JX,r is one-to-one

Proof. Assume that JX,r(f) = 0 for some f ∈ X. Then, if (y∗n)∞n=1 are
the coordinate functionals of Bc,r, y∗n(JX,r(f)) = 0 for every n ∈ N.
Therefore, by Proposition 9.9 (i), x∗n(f) = 0 for every n ∈ N. Since B
is total, we have f = 0. �
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The proof of Proposition 9.9 shows that transferring properties of
bases that are defined in terms of bounded linear operators such as
unconditionality, from X to Xc,r is an easy task. However, trying to
transfer “nonlinear” properties such as democracy or quasi-greediness
is a more subtle issue. Since the universal property that permits these
transferrings is highly linear, one may argue that it is hopeless to try
to obtain positive answers for those questions. For instance, in general
Bc,r does not inherit democracy from B (see §10.7 below). Wether or
not Bc,r inherits quasi-greediness from B seems to be more challenging
(see the Problems section). As far as quasi-greediness is concerned,
one can also argue in the opposite direction: since quasi-greediness
is a substitute of unconditionality, and unconditionality transfers to
envelopes, quasi-greediness is expected to behave accordingly. Below
we give some partial results on this issue. These results along with the
examples in §10.7 exhibit that the obstructions to transfer properties
to envelopes appear when the basis is close to the unit vector basis of
`1, in the sense that its fundamental function is close to the sequence
(m)∞m=1.

Proposition 9.12. Let X be a quasi-Banach space endowed with a
semi-normalized M-bounded basis B for which the restricted truncation
operator is uniformly bounded. Suppose that for some 0 < r ≤ 1,

∞∑
m=1

1

(ϕEl [B,X](m))r
<∞.

Then Bc,r is equivalent to the unit vector system of `r, and Xc,r is
isomorphic to `r.

Proof. Let wl = ∆(ϕEl ). By Theorem 8.12, X B
↪→ d1,∞(wl). Our as-

sumption gives d1,∞(wl) ⊆ `r continuously. Therefore the universal
property of the r-Banach envelopes gives

Xc,r

Bc,r
↪→ `r.

Since Bc,r is a bounded sequence and Xc,r is a r-Banach space,

`r
Bc,r
↪→ Xc,r.

Combining gives that the unit vector system of `r is equivalent to Bc,r.
Therefore the coordinate transform is an isomorphism from Xc,r onto
`r. �

Lemma 9.13. Let B = (xn)∞n=1 be a bidemocratic basis of a quasi-
Banach space X. Then Bc,r is a bidemocratic basis for all 0 < r ≤ 1.
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Moreover

ϕEu[B,X](m) ≈ ϕEu[Bc,r,Xc,r](m) ≈ m

ϕEu[B∗,X∗](m)
, m ∈ N. (9.1)

Proof. By definition ϕEu[Bc,r,Xc,r] ≤ ϕEu[B,X]. Since B∗ is (naturally
isometric to) the dual basis of Bc,r we have ϕEu[B∗c,r,X∗c,r] = ϕEu[B∗,X∗].
Thus Bc,r is bidemocratic with ∆sb[Bc,r,Xc,r] ≤ ∆sb[B,X]. Finally, (9.1)
follows from (7.2) and (7.3). �

Theorem 9.14. Let B be a bidemocratic quasi-greedy basis of a quasi-
Banach space X. Then hBc,Xc is an isomorphic embedding. Thus, the
bases B∗∗ and Bc are equivalent.

Proof. The identification of X∗c with X∗ provided by Lemma 9.2, to-
gether with the identification of B∗c with B∗ provided by Corollary 9.10,
yield hBc,Xc ◦ JX = hB,X.

Suppose that B∗ is equivalent to the unit vector system of c0. Since
Xc is locally convex and Bc is a bounded sequence we have

`1
Bc
↪→ Xc,

i.e., the linear operator Ic defined in (1.5) with respect to Bc is bounded
from `1 into Xc. Since, by duality, B∗∗ is equivalent to the unit vector
system of `1, the coefficient transform F∗∗ with respect to the bidual
basis B∗∗ is an isomorphism from [B∗]∗ into `1. Using (1.9) we deduce
that for n ∈ N,

en
Ic7→ JX(xn)

hBc,Xc7→ hB,X(xn) = x∗∗n
F∗∗7→ en.

Therefore F∗∗ ◦ hBc,Xc ◦ Ic is the identity map. It follows that Ic is an
isomorphism from `1 onto Xc and that hBc,Xc is an isomorphism from
Xc onto [B∗]∗.

In the case when B∗ is non-equivalent to the unit vector system of c0,
our proof relies on Lemma 1.13 and Corollary 4.9. Let A ⊆ N be finite
and let f ∗ ∈ X∗ = X∗c. Set A0 = A ∩ supp(f ∗) and A1 = A \ supp(f ∗).
Since F∗(f ∗) ∈ c0, there is a finite greedy set B0 of f ∗ such that
A0 ⊆ B0. Then, if B = B0 ∪A1, we have A ⊆ B and, by Theorem 5.7,

‖S∗B(f ∗)‖ = ‖S∗B0
(f ∗) + SA1(f

∗)‖ = ‖S∗B0
(f ∗)‖ ≤ C‖f ∗‖. �

Our next result is an easy consequence of Theorem 9.14.

Theorem 9.15. Let B = (xn)∞n=1 be a bidemocratic quasi-greedy ba-
sis of a locally convex quasi-Banach space X. Then B and B∗∗ are
equivalent bases.

Proof. Just notice that, since X is locally convex, B is equivalent to
Bc. �
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Theorem 9.16. Let B be a bidemocratic quasi-greedy basis of a quasi-
Banach space X. Then Bc is an almost greedy basis.

Proof. Lemma 4.6 and Corolary 5.8 yield that B∗ is a bidemocratic
quasi-greedy basic sequence. Then, applying Corolary 5.8 to B∗ we
obtain that B∗∗ is an almost greedy basis. An appeal to Theorem 9.14
finishes the proof. �

Proposition 9.17. Let X be a quasi-Banach space equipped with a
semi-normalized M-bounded basis B for which the restricted truncation
operator is uniformly bounded. Suppose that (ϕEl [B,X])−r is a regular
weight for some 0 < r ≤ 1. Then

(i) ϕEl [Bc,r,Xc,r] ≈ ϕEl [B,X].
(ii) If B is democratic then Bc,r is a democratic basis for which the

restricted truncation operator is uniformly bounded.
(iii) If B is democratic and r = 1 then B is a bidemocratic basis.

Proof. Let s = ϕEl [B,X]. By Proposition 8.9 (ii), d1,∞(∆(s)) is an r-
convex quasi-Banach space. Therefore, combining Theorem 8.12 (ii)
with the universal property of r-Banach envelopes yields

Xc,r

Bc,r
↪→ d1,∞(∆(s)). (9.2)

Using Corollary 8.13 (ii) we obtain (i).

Suppose that B is democratic. By Corollary 8.13 (i), d1,p(∆(s))
B
↪→ X

for some p ≤ 1 so that

d1,p(∆(s))
Bc,r
↪→ Xc,r.

Using Corollary 8.15 finishes the proof of (ii).
Assume that r = 1 and that B is democratic. Set t = (m/sm)∞m=1.

Dualizing in (9.2) and taking into consideration Proposition 8.11 (ii)
and the regularity of s−1, we obtain

d1,1(∆(t)) ⊆ d1,1(1/s)
B∗
↪→ X∗.

Corollary 8.13 (i) puts an end to the proof. �

Corollary 9.18. Let B be an almost greedy basis of a quasi-Banach
space X. Suppose that 1/ϕEu[B,X] is a regular weight. Then B∗ and Bc
are almost greedy bases.

Proof. Just combine Proposition 9.17 (iii) with Corollary 5.8 and The-
orem 9.16. �



GREEDY-LIKE BASES IN QUASI-BANACH SPACES 65

10. Examples

10.1. Symmetric and subsymmetric bases. Let us denote by O
the set of all increasing functions from N to N. A basis B = (xn)∞n=1 of
a quasi-Banach space X is said to be subsymmetric if it is unconditional
and equivalent to all its subsequences. If for some constant C ≥ 1 the
basis satisfies

1

C
‖f‖ ≤

∥∥∥∥∥ ∞∑
n=1

εn an xφ(n)

∥∥∥∥∥ ≤ C‖f‖

for all f =
∑∞
n=1 an xn ∈ X, all (εn)∞n=1 ∈ EN and all φ ∈ O, then B

is said to be C-subsymmetric. Mimicking the proof from the locally
convex case we obtain the following result, which uses some linear op-
erators related to subsymmetric bases.

Given a basis B of a quasi-Banach space X, an increasing function
φ : A ⊆ N→ N and ε = (εn)n∈A ∈ EA we consider the linear map

Uφ,ε : 〈xn : n ∈ N〉 → X,
∞∑
n=1

an xn 7→
∞∑
n=1

an εn xφ(n).

Theorem 10.1 (cf. [18, Theorem 3.5, Theorem 3.7 and Corollary 3.9]).
Let B be a basis of a quasi-Banach space X.

(i) B is C-subsymmetric if and only if Uφ,ε is well-defined on X
and ‖Uφ,ε‖ ≤ C for all increasing maps φ : A ⊆ N→ N and all
ε = (εn)n∈A ∈ EA.

(ii) B is subsymmetric if and only if it is C-subsymmetric for some
1 ≤ C <∞.

(iii) If X is p-convex and B is subsymmetric there is an equiva-
lent subsymmetric p-norm for X with respect to which B is 1-
subsymmetric.

Corollary 10.2. Let B be a C-subsymmetric basis of a quasi-Banach
space X. Then Bc,r is a C-subsymmetric basis of Xc,r for 0 < r ≤ 1
and B∗ is a C-subsymmetric basis of X∗.

Proof. The result about Xc,r follows from Theorem 10.1 (i) and the
universal property of r-Banach envelopes. The result about X∗ follows
from Theorem 10.1 (i) and duality. �

Clearly, a 1-subsymmetric basis is 1-unconditional and 1-democratic.
Thus, by Theorem 10.1, subsymmetric bases are greedy. Quantita-
tively, applyling Theorem 6.2 yields that every 1-subsymmetric basis
of a p-Banach space is 21/p-greedy. The following example exhibits that
this estimate is optimal.
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Example 10.3. Set

W := {(wn)∞n=1 ∈ c0 \ `1 : 1 = w1 ≥ w2 > · · ·wn ≥ wn+1 ≥ · · · > 0} .
Given 0 < p < ∞ and w = (wn)∞n=1 ∈ W , the Garling sequence
space g(w, p) is the function quasi-Banach space on N associated to
the function quasi-norm

‖f‖g(w,p) = sup
φ∈O

( ∞∑
n=1

|aφ(n)|pwn
)1/p

, f = (an)∞n=1 ∈ FN.

It is straightforward to check that g(w, p) is a min{p, 1}-Banach space.
Garling sequence spaces were studied in depth for p ≥ 1 in [11]. We

shall extend to the case p < 1 a couple of results that are of interest
for us.

Theorem 10.4. The unit vector system Be is a 1-subsymmetric basis
of g(w, p) for every 0 < p <∞ and w = (wn)∞n=1 ∈ W.

Proof. It is clear that Be is a 1-subsymmetric basic sequence, so we
need only prove that its closed linear span is the entire space g(w, p).
Let f = (an)∞n=1 ∈ g(w, p). Then |f |p ∈ g(w, 1). Since the result holds
in the case when p = 1 (see [11, Theorem 3.1]) we have

lim
m
‖f − Sm(f)‖g(w,p) = lim

m

∥∥∥∥|f |p − Sm(|f |p)
∥∥∥∥1/p

g(w,1)
= 0. �

Given a tuple f = (aj)
m
j=1 in a quasi-Banach sequence space (X, ‖ ·‖)

we put ‖f‖ := ‖∑m
j=1 an en‖. If f and g are a pair of tuples in X we

denote its concatenation by f a g.

Lemma 10.5 (cf. [10, Lemma 2.3]). Let 0 < p < ∞ and w ∈ W.
Given 0 < ε < 1 and tuples f and g with ‖f‖g(w,p) ≤ 1, there is a tuple

h such that ‖h a f‖g(w,p) ≤ 1 and ‖g a h‖ ≥ (‖g‖pg(w,p) + 1 − ε)1/p.
Moreover, h can be chosen to be a positive constant-coefficient k-tuple
with k as large as wished.

Proof. The proof for p ≥ 1 from [10] can be reproduced for p < 1 with
no issues. �

Now, with the help of Lemma 10.5, we proceed to estimate the greedy
constant of Garling sequence spaces. Given ε > 0 there are 0 < a < 1
and n ∈ N such that, if A = {2, . . . , n+ 1},

‖en+2 + a1A‖ = 1 and ‖e1 + a1A‖ ≥ (2− ε)1/p.

Consequently,

Cg[Be, g(w, p)] ≥ Γ[Be, g(w, p)] ≥ 21/p.
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The concept of a subsymmetric basis is closely related to that of a
symmetric basis. A basis is said to be symmetric if it is equivalent to
all its permutations. A basis is said to be C-symmetric if∥∥∥∥∥ ∞∑

n=1

εn an xσ(n)

∥∥∥∥∥ ≤ C‖f‖

for all f =
∑∞
n=1 an xn ∈ X, all (εn)∞n=1 ∈ EN, and all permutations σ of

N.
Theorem 10.1 has its symmetric counterpart, which can also be

proved as in the locally convex setting.

Theorem 10.6 (cf. [67, 68]). Let B be a basis of a of a quasi-Banach
space X. Then:

(i) B is symmetric if and only if it is C-symmetric for some 1 ≤
C <∞.

(ii) If B is C-symmetric then B is C-subsymmetric.
(iii) If X is p-convex and B is symmetric, there is an equivalent

symmetric p-norm for X with respect to which B is 1-symmetric.

We record a result showing that the greedy algorithm provides better
approximations for symmetric bases than for subsymmetric ones.

Proposition 10.7 (cf. [17, Theorem 2.5]). Every 1-symmetric basis
in a quasi-Banach space is 1-greedy.

Proof. The proof of this result for Banach spaces from [17] can be
adapted to quasi-Banach spaces in a straightforward way. �

10.2. Direct sums of bases. Let X1, X2 be quasi-Banach spaces.
Given bases Bi = (xn,i)

∞
n=1 of Xi, i = 1, 2, B1 ⊕ B2, denotes the basis

of X1 ⊕ X2 given by

B1 ⊕ B2 = ((x1,1, 0), (0,x1,2), . . . , (xn,1, 0), (0,xn,2), . . . ).

Direct sums of bases in quasi-Banach spaces inherit from their compo-
nents all the unconditionality-type conditions we have defined, namely,
SUCC, LUCC, boundedness of the restricted truncation operator, quasi-
greediness, QGLC, and unconditionality. The relation between the
democracy of a direct sum of bases and that of its components is also
well-known (see e.g. [44, Proposition 6.1]), and the lack of local convex-
ity does not alter the state of affairs. Thus, we can easily characterize
when a direct sum of bases possesses a property which has a democratic
component and an unconditionality-type component.

Proposition 10.8. Let B1 and B2 be two democratic bases (respectively
super-democratic bases, SLC bases, almost greedy bases, greedy bases,
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and bases sandwiched between symmetric spaces) of two quasi-Banach
spaces X1 and X2. Then B1⊕B2 is democratic (resp., super-democratic,
SLC, almost-greedy, greedy and sandwiched between symmetric spaces)
if and only if ϕu[B1,X1] ≈ ϕu[B2,X2].

Proposition 10.8 tells us how to easily build examples of bases in
direct sums in such a way that we break the democracy while main-
taining the starting unconditionality-type condition. For instance, the
unit vector system of `p⊕ `q, 0 < p 6= q ≤ ∞, is an unconditional basis
which is not greedy despite the fact that the unit verctor system in
each component is greedy. In fact, as we next show, the space `p ⊕ `q
has no greedy basis.

Theorem 10.9 (cf. [61, Corollary 2.8]). Let 0 < p1 < · · · < pn ≤ ∞,
with n ≥ 2. Then the space ⊕nj=1`pj has no greedy basis (we replace `∞
with c0 if pn =∞).

Before seeing the proof Theorem 10.9 we give two auxiliary results.

Lemma 10.10. Let X be a quasi-Banach space. Suppose that every
semi-normalized unconditional basis B of the Banach envelope Xc of X
verifies one of the two following conditions:

(1) Either B has subbases B1 and B2 with

sup
m

ϕEu[B2,Xc](m)

ϕEl [B1,Xc](m)
=∞,

and B1 generates a space with non-trivial type, or
(2) B has a subbasis B1 equivalent to the unit vector system of c0,

and another subbasis which is not equivalent to the unit vector
system of c0.

Then X has no greedy basis.

Proof. Assume, by contradiction, that B is a greedy basis of X. By
Theorem 6.1, B is unconditional in X and so, by Proposition 9.9, is
semi-normalized and unconditional as a basis of Xc. Let Y1 (respec-
tively, X1) denote the space generated by B1 in Xc (respectively, X)
either under condition (1) or (2). Corollary 9.7 (i) yields that Y1 is
isomorphic to the Banach envelope of X1 under the map JX|X1 . If
condition (1) holds, [50, Theorem 2.8] yields that X1 ' Y1. Therefore,

ϕEu[B2,Xc] ≤ ϕEu[B,Xc] ≤ ϕEu[B,X] ≈ ϕEl [B,X] ≤ ϕEl [B1,X] ≈ ϕEl [B1,Xc].

If condition (2) holds, by [51, Theorem 6.2], there is a subsequence
B3 of B1 which, when regarded in X, is equivalent to the unit vector
system of c0. Consequently,

ϕEu[B,X](m) ≈ ϕEu[B3,X](m) ≈ 1, for m ∈ N.
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We infer that B, when regarded in X, is equivalent to the unit vector
system of c0. Therefore Xc = X and so every subbasis of B when
regarded in Xc is equivalent to the unit vector system of c0.

That is, in both cases we reach an absurdity and so X has no greedy
basis. �

Corollary 10.11. Let X be a quasi-Banach space. Suppose that every
semi-normalized unconditional basis of the Banach envelope Xc of X
has subbases B1 and B2 which, for some 1 ≤ s2 < s1 ≤ ∞, generate
spaces X1 and X2 respectively isomorphic to `s1 and `s2(c0 if s1 =∞).
Then X has no greedy basis.

Proof. Given 1 ≤ s ≤ ∞, every semi-normalized unconditional basic
sequence of `s has a subbasis equivalent to the unit vector system of
`s. Consequently, if B1 and B2 are as in the hypothesis,

ϕEu[B2,X2](m)

ϕEl [B1,X1](m)
& m1/s2−1/s1 , m ∈ N.

Moreover, if s1 < ∞, the space `s1 has non-trivial type. So the result
follows from Lemma 10.10. �

Proof of Theorem 10.9. Set X = ⊕nj=1`pj and put q = pn. Suppose
first that q ≤ 1 and let r = pn−1. Let us assume that X has a greedy
basis that we call B. Then, the r-Banach envelope Xc,r of X is `r ⊕ `q
under the inclusion map, and Bc,r is in particular a semi-normalized
unconditional basis of Xc,r. The uniqueness of unconditional basis of
`r ⊕ `q (see [15, 53]) yields

ϕEl [B,X](m) & ϕEu[B,X](m) & ϕEu[Bc,r,Xc,r](m) ≈ m1/r, m ∈ N.
Pick r < s < q. Since

∞∑
m=1

1

(ϕEl [B,X](m))s
<∞,

Proposition 9.12 yields that Xc,s ' `s, which is absurd because Xc,s =
`s ⊕ `q.

Suppose now that q > 1 and put r = max{1, pn−1}. In this case the
Banach envelope Xc of X is (under the inclusion map) `r ⊕ `q. Then,
by [40, Theorem 4.11], every unconditional basis of Xc splits into two
subbases B1 and B2 which generate subspaces isomorphic to `r and `q,
respectively. Since 1 ≤ r < q ≤ ∞, an appeal to Corollary 10.11 puts
and end to the proof. �

Infinite direct sums of bases will also be of interest for us. Given a
sequence (Bk)∞k=1 of (finite or infinite) bases for Banach spaces (Xk)

∞
k=1

we define its infinite direct sum in the following way: if Bk = (xk,n)n∈Jk
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we set J = {(k, n) : n ∈ Jk, k ∈ N} and define ⊕∞k=1Bk = (yj)j∈J in
Π∞k=1Xk by

yk,n = (fk)
∞
k=1, fj =

xn if j = k

0 otherwise.

The following elementary lemma is the corresonding result to Propo-
sition 10.8 for infinite sums of bases.

Lemma 10.12. Suppose p ∈ (0,∞]. For k ∈ N let Bk be a basis of
a quasi-Banach space Xk. Assume that there are constants C1 and C2

such that for all A ⊆ N finite and all k ∈ N,

C1|A|1/p ≤ ‖1A[Bk,Xk]‖ ≤ C2|A|1/p.
Then B = ⊕∞k=1Bk is a democratic basis (basic sequence if p = ∞) of
X = (⊕∞k=1Xk)p with

C1m
1/p ≤ ϕl[B,X](m) ≤ ϕu[B,X](m) ≤ C2m

1/p, m ∈ N.

10.3. Greedy bases in Triebel-Lizorkin and Besov spaces. Given
a dimension d ∈ N we denote Θd = {0, 1}d \ {0} and we consider the
set of indices

Λd = Z× Zd ×Θd.

The homogeneous Besov (respectively Triebel-Lizorkin) sequence space

b̊s,dp,q (resp. f̊ s,dp,q ) of indeces and p and q ∈ (0,∞] and smoothness s ∈ R
consists of all scalar sequences f = (aλ)λ∈Λ for which

‖f‖bsp,q =

Ö
∞∑

j=−∞
2jq(s+d(1/2−1/p))

∑
δ∈Θd

Ñ∑
n∈Zd

|aj,n,δ|p
éq/p

è1/q

(resp. ‖f‖fs
p,q

=

∥∥∥∥∥∥∥
Ñ

∞∑
j=−∞

∑
δ∈Θd

∑
n∈Zd

2jq(s+d/2)|aj,n,δ|qχQ(j,n)

é1/q
∥∥∥∥∥∥∥
p

),

were Q(j, n) denotes the cube of length 2−j whose lower vertex is 2−jn.
If we restrict ourselves to non-negative “levels” j and we add `p as a
component we obtain the inhomegeneous Besov and Triebel-Lizorkin
sequence spaces. To be precise, set

Λ+
d = {(j, n, δ) ∈ Λd : j ≥ 0},

and define

bs,dp,q = `p(Zd)⊕ {f = (aλ)λ∈Λ+
d

: ‖f‖bsp,q <∞},

f s,dp,q = `p(Zd)⊕ {f = (aλ)λ∈Λ+
d

: ‖f‖fs
p,q
<∞}.
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It is known that the wavelet transforms associated to certain wavelet
bases normalized in the L2-norm are isomorphisms from F s

p,q(Rd) (re-

spectively F̊ s
p,q(Rd), Bs

p,q(Rd) and B̊s
p,q(Rd)) onto f sp,q(Rd) (resp., f̊ s,dp,q ,

bs,dp,q and b̊s.dp,q). See [41, Theorem 7.20] for the homegeneous case and

[71, Theorem 3.5] for the inhomogenous case, the spaces F∞,q(Rd) must
be excluded. Thus, Triebel-Lizorkin and Besov spaces are isomorphic
to the corresponding sequence spaces, and the aforementioned wavelet
bases (regarded as distributions on Triebel-Lizorkin or Besov spaces)
are equivalent to the unit vector systems of the corresponding sequence
spaces.

A similar technique to the one used by Temlyakov in [70] to prove
that the Haar system is a greedy basis for Lp when 1 < p <∞ allows
us to prove that Triebel-Lizorkin spaces have a greedy basis.

Proposition 10.13 (cf. [49, Theorem 16]). Let d ∈ Rd, 0 < p < ∞,
0 < q ≤ ∞ and s ∈ R. The normalized unit vector system of the
spaces f s,dp,q and f̊ s,dp,q is a greedy basis (basic sequence if q = ∞) with

fundamental function equivalent to (m1/p)∞m=1.

Proof. It suffices to prove that the unit vector system of the homoge-
neous space f̊ s,dp,q is democratic in the case when s + d(1/2) = d/p, so
that it is normalized.

For every finite set A ⊆ Λ and every x ∈ Rd, the nonzero terms of
the `q-norm

F (x) :=

Ñ ∑
(j,n,δ)∈A

2jd/pχQ(j,n)(x)

é1/q

belong to the geometric sequence (2jd/p)∞j=−∞, and a given term of this

geometric sequence appears at most 2d − 1 times in the expression
defining F (x). Hence, for x ∈ Rd,

F (x) ≈

Ñ ∑
(j,n,δ)∈A

2jdχQ(j,n)(x)

é1/p

.

Raising to the pth-power and integrating on Rd finishes the proof. �

The behavior of Besov spaces is quite different. Indeed, every se-
quence Besov space of indeces p and q is naturally isomorphic to the
mixed-norm space `q(`p) and so if p 6= q its unit vector system cannot
be greedy because it is not democratic. Here we take one step forward
and extend the main result from [66] to the whole range of indices p,
q ∈ (0,∞].
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Proposition 10.14. Let 0 < p 6= q ≤ ∞. Then `q(`p) has no greedy
basis (we replace `∞ with c0 if some of the indices is ∞) .

Proof. The case when s := max{p, q} ≤ 1 follows as a consequence of
the uniqueness of unconditional basis of the space X := `p(`q) proved
in [15,53].

Assume that s > 1 and set r = max{1,min{p, q}}. The Banach
envelope Xc of X is, with the usual modifications if s = ∞, either
`s(`r) or `r(`s) under the inclusion map. Therefore, by [66, Theorem
1], every unconditional basis of Xc has two subbases B1 and B2 which
are equivalent to the unit vector system of `r and `s, respectively. Since
1 ≤ r < s ≤ ∞, appealing to Corollary 10.11 the proof is over. �

10.4. Almost greedy bases in Besov spaces. Now we introduce a
different family of Besov sequence spaces. Set

Bp,q = (⊕∞n=1`
n
p )q, 0 < p ≤ ∞, 0 ≤ q <∞.

These spaces are isomorphic to Besov spaces over [0, 1]d (see [5, 30]),
and are mutually non-isomorphic, with the only exception of the case
Bq,q ' B2,q for 1 < q < ∞ (see [5]). In the locally convex setting,
the existence of greedy bases in these spaces was studied in [37]. Since
greedy bases are in particular almost greedy, in this section we go
further and provide a couple of results on the existence of almost greedy
bases in nonlocally convex spaces Bp,q.

Proposition 10.15 (cf. [9, Proposition 4.21]). Let (Xn)∞n=1 be a se-
quence of finite-dimensional quasi-Banach spaces, and let q ∈ [0,∞).
If B is a super-democratic basic sequence in X = (⊕∞n=1Xn)q, then:

(i) If q > 0, ϕEu[B,X] ≈ m1/q for m ∈ N.
(ii) If q = 0, B is equivalent to the unit vector system of c0.

Proof. The proof for locally convex spaces from [9] works for 0 < q < 1
and Xn quasi-Banach. �

Lemma 10.16. Let 0 < q < 1 and (Xn)∞n=1 be a sequence of finite
dimensional Banach quasi-Banach spaces. If the space X := (⊕∞n=1Xn)q
has an almost greedy basis, then for q < r ≤ 1 we have

(⊕∞n=1(Xn)c,r)r ' `r.

Proof. If B is an almost greedy basis of X, by Proposition 10.15 (i),
ϕEu[B,X] ≈ m1/q for m ∈ N and so, by Proposition 9.12, the r-Banach
envelope of X is isomorphic to `r. The proof is over by Proposition 9.6.

�
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Proposition 10.17. The space Bp,q has no almost greedy basis for
0 < q < 1 and q < p ≤ ∞.

Proof. Assume by contradiction that B is an almost greedy basis ofBp,q.
Pick q < r < min{p, 1}. Then, by Lemma 10.16 and Corollary 9.7,
Bp,r ' `r. By [5, Theorem 1.2], this an absurdity. �

Proposition 10.18. The space Bp,0, 0 < p <∞, has no almost greedy
basis.

Proof. Just combine Proposition 10.15 (ii) with Theorem 1.2 from [5].
�

10.5. Democratic bases that fail to be SUCC.

Example 10.19. Given 0 < p < ∞ we consider the James-type quasi-
norm

‖f‖(p) = sup
φ∈O

( ∞∑
k=1

|aφ(k) − aφ(k−1)|p
)1/p

, f = (an)∞n=1 ∈ FN.

Here we are using the convention φ(0) = 0 and a0 = 0. If 1 < p < ∞
the space

X(p) = {f ∈ FN : ‖f‖ <∞}
is the James quasi-reflexive space J (p).

For 0 < p ≤ 1, the space X(p) behaves quite differently. In fact, since

|an − ak| ≤

Ñ
n∑

j=k+1

|aj − aj−1|p
é1/p

we have

‖f‖(p) =

( ∞∑
n=1

|an − an−1|p
)1/p

, f = (an)∞n=1 ∈ FN, 0 ≤ p ≤ 1.

Hence X(1) is the space consisting of all sequences of bounded variation,
usually denoted by v1. By analogy, we will denote X(p) by vp for p ≤ 1.
Since the mapping P : vp → `p defined by (an)∞n=1 7→ (an − an−1)∞n=1 is
an isometry, the space vp is nothing but `p in a rotated position. Since
|an| ≤ ‖f‖(p) for every f = (an)∞n=1 ∈ FN, we readily infer that the unit

vector system is a Schauder basis of vp with basis constant 21/p.
Consider the “alternating basis” B = (xn)∞n=1 of vp given by xn =

(−1)n−1 en for every n ∈ N. Notice that for f =
∑∞
n=1 an xn ∈ vp,

‖f‖(p) =

( ∞∑
n=1

|an + an−1|p
)1/p

, 0 < p ≤ 1.
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Then, if F denotes the coefficient transform with respect to B defined
as in (1.3), in the case when F(f) ≥ 0 we have

‖f‖(p) ≤ 21/p‖F(f)‖p, f ∈ vp,

and

2‖F(f)‖p ≤ ‖f‖(p), f ∈ vp.
We deduce that B is a 21/p-democratic basis of vp with

ϕEu[B, vp](m) ≈ m1/p, m ∈ N.

However, since ‖∑m
n=1(−1)n−1en‖(p) = 2 for every m ∈ N,

ϕEl [B, vp](m) ≈ 1, m ∈ N.

Therefore, for any 0 < p ≤ 1, B is not a superdemocratic basis of vp.

Another example of a democratic basis that is not superdemocratic
is the summing basis of c0. Next, in order to clear up the fact that the
geometry of the space has no effect on the existence of such bases, we
construct an M -bounded total basis in a Hilbert space.

Our construction relies on the following elementary lemma.

Lemma 10.20. Let X be the space R2 endowed with the standard Eu-
clidean norm. For each n ∈ N there exist vectors a1,a2 ∈ X such
that

‖a1‖ = ‖a2‖ =
√
n with ‖a1 − a2‖ = 1 (10.1)

and

‖α1a1 + α2a2‖ ≥
√
n
»
α2

1 + α2
2 (10.2)

whenever α1ᾱ2 ≥ 0. Moreover the vectors a∗1, a∗2 given by 〈a∗j ,as〉 =
δj,s satisfy

‖a∗1‖ = ‖a∗2‖ =

√
n

n− 1
4

. (10.3)

Proof. In the canonical system in R2 we take a1 = (
»
n− 1

4
, 1

2
) and

a2 = (
»
n− 1

4
,−1

2
). The rest is a straightforward calculation. �

Example 10.21. Consider the Euclidean space Fn with the unit vector
basis (ej)

n
j=1. Put a =

∑n
j=1 ej. Let Hn be the (2n)-dimensional Eu-

clidean space X1 ⊕ X ⊕ X2 where X1 and X2 are (n − 1)-dimensional
euclidean spaces. Let H1

n = X1⊕[a1] and H2
n = [a2]⊕X2. For s ∈ {1, 2}

let Ts : Fn → Hs
n be an isometry with Ts(a) = as. Since Hn = H1

n⊕H2
n

algebraically, the sequence

Bn := (Ts(ej) : s = 1, 2, j = 1, . . . , n).
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is a basis of Hn. Let esj = Ts(ej) for (s, j) ∈ Θn := {1, 2} × {1, . . . , n}.
Note that, by construction,

n∑
j=1

esj = as, s = 1, 2. (10.4)

For s ∈ {1, 2} let πs be the canonical projection of Hn onto Xs, and
let π be the canonical projection of Hn onto X. Since the orthogonal
projection of Fn onto [a] = Fa is given by

n∑
j=1

aj ej 7→
1

n

Ñ
n∑
j=1

aj

é
a,

and esj ∈ Hs
n ⊆ Xs ⊕ X it follows that for j = 1, . . . , n and s ∈ {1, 2},

πt(e
s
j) = 0, t ∈ {1, 2}, t 6= s (10.5)

π(esj) =
as
n
. (10.6)

Let us analyse the coordinate functionals B∗n = (ψsj )(s,j)∈Θn of Bn.
Note that for every ψ ∈ H∗n,

‖ψ‖2 = ‖ψ|X1‖2 + ‖ψ|X‖2 + ‖ψ|X2‖2

≤ ‖ψ|H1‖2 + ‖ψ|X‖2 + ‖ψ|H2‖2

= ‖ψ(a1)a∗1 + ψ(a2)a∗2‖2 +
∑

(s,j)Θn

|ψ(esj)|2.

By (10.4), ψsj (at) = δs,t for s, t ∈ {1, 2} and j = 1,. . . , n. Using (10.1)
we obtain

1 ≤ ‖ψsj‖2 ≤ n

n− 1
4

+ 1 ≤ 3. (10.7)

Let also analyse the basis constant Kn := K[Bn,Xn] with respect to
an arbitrary ordering of Bn. For A ⊆ Θn and s ∈ {1, 2}, consider

As = {(t, j) ∈ A : t = s}.

Given 0 ≤ k ≤ n there is 0 ≤ m ≤ 2n for which the partial-sum
projection Sm coincides with the coordinate projection on a set A such
that the cardinality of A1 is k. If R = π1 ◦ SA|X we have

‖R‖ = ‖π1 ◦ Sm|X‖ ≤ ‖Sm‖ ≤ Kn.

By (10.5),

R(a2) = 0 and R(a1) = π1(SA1(a1)),

and also

π2(SA1(a1)) = 0.
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From 10.6 we get

π(SA1(a1)) =
|A1|
n

a1,

and from 10.4 we obtain

‖SA1(a1)‖ =
»
|A1|.

This yields

‖R‖ ≥ ‖R(a1 − a2)‖
‖a1 − a2‖

= ‖π1(SA1(a1))‖

=
»
‖SA1(a1)‖2 − ‖π(SA1(a1))‖2

=

√
|A1| −

|A1|2
n2

n.

Choosing k = bn/2c gives

Kn ≥
√

2

3

√
n. (10.8)

Finally, we estimate the democracy functions of Bn. Let A ⊆ Θn.
By (10.5), (10.6) and (10.2) we have

‖1A‖2 = ‖π1(1A)‖2 + ‖π(1A)‖2 + ‖π2(1A)‖2

= ‖π1(1A1)‖2 +

∥∥∥∥∥ |A1|
n

a1 +
|A2|
n

a2

∥∥∥∥∥
2

+ ‖π2(1A2)‖2

≥ ‖π1(1A1)‖2 +
1

n

Ä
|A1|2 + |A2|2

ä
+ ‖π2(1A2)‖2

= ‖π1(1A1)‖2 + ‖π(1A1)‖
2 + ‖π(1A2)‖

2 + ‖π2(1A2)‖2

= ‖1A1‖
2 + ‖1A2‖

2

= |A1|+ |A2|
= |A|.

Conversely, by the triangle law,

‖1A‖ = ‖1A1 + 1A2‖
≤ ‖1A1‖+ ‖1A2‖

=
»
|A1|+

»
|A2|

=
√

2
»
|A1|+ |A2|.
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Now, let ε = (εs,j)(j,s)∈Θn ∈ EΘ be the sequence of signs given by
εs,j = (−1)j. By (10.4) and (10.1) we have

‖1ε,Θn‖ =

∥∥∥∥∥∥−
n∑
j=1

e1
j +

n∑
j=1

e2
j

∥∥∥∥∥∥ = ‖a2 − a1‖ = 1.

By (10.7), the direct sum B of the bases (Bn)n∈N, is anM -bounded basis
of the the Hilbert space H := (⊕∞n=2Hn)2. From (10.8) we deduce that
there is no ordering of B with respect to which B becomes a Schauder
basis. Putting together all the above estimates and taking into account
Lemma 10.12 we obtain

m1/2 ≤ ϕl[B,H](m) ≤ ϕu[B,H](m) ≤
√

2m1/2,

and

ϕEl [B,H](m) ≤ 1

for every m ∈ N. Thus B is democratic but not superdemocratic.

10.6. Superdemocratic bases that fail to be SLC and LUCC.
Our source of inspiration in this Section is Example 4.8 from [24], which
we generalize in the following Example.

Example 10.22. Let X be the direct sum `p ⊕ `q for 0 < p < q ≤ ∞,
with the understanding that X = `p ⊕ c0 when q = ∞. The sequence
B = (xn)∞n=1 given by

x2k−1 = (ek, ek), x2k =

Ç
1

2
ek, ek

å
, k ∈ N.

is clearly a normalized Schauder basis of X.
For A ⊆ N let

B = {k ∈ N : {2k − 1, 2k} ⊆ A},

Bo = {k ∈ N : 2k − 1 ∈ A, 2k /∈ A}
and

Be = {k ∈ N : 2k − 1 /∈ A, 2k ∈ A}.
If π1 and π2 denote respectively the projections of X onto `p and `q, we
have

N1 :=

∥∥∥∥∥∥π1

(∑
n∈A

1ε,A

)∥∥∥∥∥∥
p

p

=
∑
k∈B

∣∣∣∣ε2k−1 +
1

2
εk

∣∣∣∣p + |Bo|+
Ç

1

2

åp
|Be|

and

N2 :=

∥∥∥∥∥∥π2

(∑
n∈A

1ε,A

)∥∥∥∥∥∥
q

q

=
∑
k∈B
|ε2k−1 + εk|q + |Bo|+ |Be|.
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HenceÇ
1

2

åp
|B|+ |Bo|+

Ç
1

2

åp
|Be| ≤ N1 ≤

Ç
3

2

åp
|B|+ |Bo|+

Ç
1

2

åp
|Be|

and
N2 ≤ 2q|B|+ |Bo|+ |Be|.

Since |A| = 2|B|+ |Bo|+ |Be|, it follows that

1

2p+1
|A| ≤ N1 ≤ max

®
1,

3p

2p+1

´
|A|,

and
N2 ≤ max{2q−1, 1}|A|.

Hence,

1

21+1/p
|A|1/p ≤

∥∥∥∥∥∥∑n∈A1ε,A
∥∥∥∥∥∥ ≤ max

®
1, 21−1/q,

3

21+1/p

´
|A|1/p.

and so B is superdemocratic (thus SUCC).
Set

fm = −
m∑
k=1

x2k−1 + 2
m∑
k=1

x2k =

(
0,

m∑
k=1

ek

)
,

gm = −
m∑
k=1

x2k−1 +
m∑
k=1

x2k.

hm = −
m∑
k=1

x2k−1.

Since ‖fm‖ = m1/q and ‖gm‖ ≈ ‖hm‖ ≈ m1/p for m ∈ N, we have

lim
m

‖gm‖
‖fm‖

= lim
m

‖hm‖
‖fm‖

=∞.

So, B is neither LUCC nor QGLC.

10.7. Democracy does not transfer to the Banach envelope.
The aim of this section is to build an example of a democratic basis
in a quasi-Banach space X which is not democratic as a basis of the
Banach envelope Xc of X. Our construction relies on the following
lemma.

Lemma 10.23. Let X ⊆ FN be a quasi-Banach space for which the
unit vector system Be is a subsymmetric basis.

(i) Suppose that X is locally convex and ϕu[Be,X](m) ≈ m for m ∈
N. Then X = `1 (up to an equivalent norm).

(ii) Suppose that ϕu[Be,Xc](m) ≈ m for m ∈ N. Then X ⊆ `1.
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Proof. (i) By [58, Proposition 3.a.6], Be is a subsymmetric basis of X∗
with bounded fundamental function. Hence Be is equivalent to the unit
vector system of c0 as a basis of X∗ and so Be is equivalent to the unit
vector system of `1 as a basis of X.

(ii) By Corollary 10.2, Be is a subsymmetric basis of Xc. Therefore,
using part (i), we obtain X ⊆ Xc = `1. �

Example 10.24. Let X ⊆ FN be a quasi-Banach space such that `1 6⊂
X and the unit vector system Be is a subsymmetric basis of X with
fundamental function equivalent to (m)∞m=1. Then, by Proposition 10.8,
Be⊕Be is a greedy basis of `1⊕X with fundamental function equivalent
to (m)∞m=1. By Corollary 9.7, the Banach envelope of Be ⊕ Be, as
a basis of `1 ⊕ X, is the very Be ⊕ Be regarded as a basis of `1 ⊕
Xc. By Lemma 10.23, ϕu[Be,Xc] 6≈ m for m ∈ N. Therefore, by
Proposition 10.8, the Banach envelope of the canonical basis of `1 ⊕X
is not greedy since it is not democratic.

Example 10.25. Taking into consieration Proposition 8.9 (i), as a par-
ticular case of Example 10.24 we can pick X = `1,q, 1 < q < ∞, and
X = `0

1,∞. Note that by Proposition 8.11, if u0 = (1/n)∞n=1,

(`0
1,∞)∗∗ = m(u0)

under the inclusion map. Therefore

(`0
1,∞)c = m0(u0)

under the inclusion map. Therefore the fundamental function of Be as
a basis of (`0

1,∞)c is equivalent to (m/ log(1 +m))∞m=1.

Example 10.26. In order to obtain quasi-Banach spaces X such that
ϕu[Be,Xc] 6≈ ϕu[Be,X] ≈ m for m ∈ N we can also apply Lemma 10.23
to some Garling sequence spaces. For 0 < α ≤ 1, let uα be the potential
weight defined in (8.2). Note that uα ∈ W and that for every 0 < p <
∞ the fundamental function of the unit vector system of g(uα, p) is

ϕEu[Be, g(uα, p)](m) =

(
m∑
n=1

nα−1

)1/p

, m ∈ N.

Consequently,

ϕEu[Be, g(uα, p)](m) ≈ mα/p, m ∈ N. (10.9)

Proposition 10.27. Suppose 0 < p < 1. Then g(up, p) 6⊂ `1.

Proof. By Lemma 10.5, for each N ∈ N there exist positive constant-
coefficient tuples (fj)

N
j=1 such that λj := ‖fj‖g(up,p) ≥ 1/2 and

‖fN a · · · a fj a · · · a f1‖g(up,p)
= 1.
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For each m ∈ N let hm denote the positive constant coefficient m-tuple
of sum one, that is,

hm =

Ü
1

m
, . . . ,

1

m
, . . . ,

1

m︸ ︷︷ ︸
m times

ê
.

If mj denotes the length of fj and we let ϕ = ϕEu[Be, g(up, p)] we have

hmj
=
ϕ(mj)

λjmj

fj, j = 1, . . . , N.

By (10.9) there is a constant C depending only on p such that φ(mj)/(λjmj) ≤
C for all j = 1, . . . , N . Thus, if we put

h = hmN
a · · · a hmj

a · · · a hm1 ,

we have ‖h‖g(up,p) ≤ C. Since ‖h‖1 = N we are done. �

Remark 10.28. Proposition 10.27 brings forward an important struc-
tural difference between g(up, p) and its symmetric counterpart, the
space `1,p. Notice that, since ‖f‖g(up,p) = ‖f‖`p(up) = ‖f‖`1,p for f
positive and non-increasing, we also have `1 6⊂ g(up, p) for 0 < p < 1.

Example 10.29. The behavior of nonlocally convex Garling sequence
spaces g(uα, p) for α 6= p is quite different. If 0 < p < α ≤ 1, combining
Proposition 9.12 with equation (10.9) yields that the Banach envelope
of g(uα, p) is `1. If 0 < α < p < 1, by equation (10.9), ϕEu[Be, g(uα, p)]
is a regular weight. Proposition 9.17 now yields that

ϕEu[Be, g(uα, p)] ≈ ϕEu[Be, (g(uα, p))c]

and that the unit vector system of g(uα, p) is bidemocratic.

10.8. LPU and democratic bases that fail to be quasi-greedy.
Our examples in this section are modeled after a method for construct-
ing quasi-Banach spaces that goes back to Konyagin and Temlyakov’s
article [55].

Let w = (wn)∞n=1 be a non-increasing weight. Given f = (an)∞n=1 ∈
FN we put

‖f‖w = sup
m

∣∣∣∣∣ m∑
n=1

anwn

∣∣∣∣∣ ,
and then define the Banach space sw as

sw = {f ∈ FN : ‖f‖w <∞}.
Of course, the mapping (an)∞n=1 7→ (

∑m
n=1 anwn)∞m=1 restricts to an

isometry from sw onto `∞.
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Let X be a p-Banach space with a greedy basis B whose fundamen-
tal function is equivalent to the primitive weight s of w. Then, by
Theorem 8.14, X is sandwiched between d1,p(w) and d1,∞(w) via B.
Assume without loss of generality that B is the unit vector system and
that X ⊆ FN. Then d1,p(w) ⊆ X ⊆ d1,∞(w) continuously. Merging
those two ingredients we consider the space

KT[X,w] = X ∩ sw = {f ∈ X : ‖f‖KT[X,w] <∞},
where for f ∈ X,

‖f‖KT[X,w] = max {‖f‖X, ‖f‖w} .
The convexity of the space KT[X,w] is at least the same as the con-
vexity of X; in particular KT[X,w] is a p-Banach space.

If sm = ϕu[Be,X](m) for every m ∈ N we simply write KT[X,w] =
KT[X]. The example in [55, §3.3] is the case KT[`2], while KT[`p],
1 < p < ∞, was later considered in [44]. The case in which X is a
Lorentz space was studied in [22]. We will refer to this method for
building quasi-Banach spaces as the KT-method.

Let us gather together some properties of the spaces sw that will
be required in our study of the spaces KT[X,w]. It is easy to check
that the unit vector system is a monotone basic sequence of sw. It is
satisfied that

‖f‖w ≤ ‖f‖1,1,w for all f ∈ FN. (10.10)

If (an)∞n=1 ∈ FN is non-negative and non-increasing, the quasi-norm
‖((−1)n−1an)∞n=1‖w is the supremum of the partial sums of the “alter-
nating” series

∑∞
n=1(−1)n−1an. Then,

‖((−1)n−1an)∞n=1‖w = a1w1, an ↘ 0. (10.11)

Let us return to the KT[X,w] spaces. From (10.10) we deduce that
we always have

d1,p(w) ⊆ X ⊆ KT[X,w] ⊆ d1,∞(w). (10.12)

We also infer from (10.10) that d1,1(w) ⊆ KT[X,w] if and only if
d1,1(w) ⊆ X.

The definition of KT[X,w] yields that the unit vector system Be is
a basic sequence of KT[X,w] with basis constant no larger than that
of Be seen as a basis of X. The inclusions in (10.12) combined with
Corollary 8.15 show that the unit vector system of KT[X,w] is demo-
cratic and that the truncation operator with respect to it is bounded.
Therefore the unit vector system of KT[X,w] is SLC and LUCC.

If X ⊆ d1,1(w) then KT[X,w] = X, and so the unit vector system
is an unconditional basis of X. The converse also holds under a mild
condition on X and w.
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Lemma 10.30. Let let w be a non-increasing weight such that 1/w
is doubling and let X ⊆ FN be a quasi-Banach space for which the unit
vector system Be is a basis with fundamental function equivalent to the
primitive weight of w.

(i) If Be, regarded as basis of X, is a greedy basis equivalent to its
square and Be, regarded a basis of KT[X,w], is unconditional,
then X ⊆ `1(w).

(ii) Assume that Be, regarded as basis of X, is symmetric. Then Be,
regarded as a basis of KT[X,w], is unconditional if and only if
X ⊆ d1,1(w).

Proof. (i) Let C1 <∞ be such that

wn ≤ C1w2n−1, n ∈ N.

Let C2 <∞ be such that

‖f ⊕ g‖ ≤ C2 max{‖f‖, ‖g‖}, f, g ∈ X.

Here, if f = (an,1)∞n=1 and g = (an,0)∞n=1,

f ⊕ g = (adne,dne−n)∞n=1.

Let C3 <∞ be such that

|an| ≤ C3‖f‖X, f = (an)∞n=1 ∈ X.

Suppose Be is C-lattice unconditional when regarded as a basis of
KT[X,w]. Then for every f = (an)∞n=1 ∈ X we have

‖f‖`1(w) = ‖ |f | ‖w
≤ C1‖ |f | ⊕ 0 ‖w
≤ C1‖ |f | ⊕ 0 ‖KT[X,w]

≤ CC1‖f ⊕ (−f)‖KT[X,w]

≤ CC1 max

{
C2‖f‖X, sup

n
|an|w2n−1 +

n−1∑
k=1

|ak|(w2k−1 − w2k)

}

≤ CC1 max

{
C2, C3w1 + C3

∞∑
k=1

(w2k−1 − w2k)

}
‖f‖X.

Since
∞∑
k=1

(w2k−1 − w2k) ≤
∞∑
k=1

(wk − wk+1) = w1 − lim
n
wn

we are done.
(ii) is immediate from (i). �
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Lemma 10.30 puts the focus of attention on symmetric quasi-Banach
spaces X such that X 6⊂ d1,1(w) or, as a particular case, in symmetric
quasi-Banach spaces such that d1,1(w) ( X. Of course, if X is lo-
cally convex then d1,1(w) ⊆ X, but there are non-locally convex quasi-
Banach spaces for which the embedding d1,1(w) ⊆ X still holds. For
instance, certain sequence Lorentz spaces d1,q(w) for 1 < q ≤ ∞ are
non-locally convex quasi-Banach spaces. We will characterize when
the spaces d1,q(w) and KT(d1,q(w),w] are locally convex in Proposi-
tion 10.32. To that end we need to see an auxiliary result.

Lemma 10.31. Let X ⊆ FN be a quasi-Banach space whose unit vector
system Be is a greedy basis with fundamental function equivalent to the
primitive weight of a non-increasing weight w = (wn)∞n=1. Suppose that
d1,q(w) ⊆ X for some some 1 < q ≤ ∞. If the space KT[X,w] is locally
convex then s has the URP.

Proof. Our assumptions yield a constant C < ∞ such that for every
m ∈ N and (fj)

m
j=1 in KT[d1,q(w),w],∥∥∥∥∥∥
m∑
j=1

fj

∥∥∥∥∥∥
1,∞,w

≤ C
m∑
j=1

max {‖fj‖1,q,w, ‖fj‖w} .

Let g = (an)∞n=1 be a non-decreasing sequence of non-negative numbers.
For m ∈ N, let (gj)

m−1
k=0 consist of all cyclic rearrangements of

g0 =
m−1∑
n=1

(−1)n−1an en.

For every j = 0, . . . , m− 1 we have the estimates

‖gj‖1,q,w ≤ ‖g‖1,q,w,

and, by (10.11),

‖gj‖w ≤ max
1≤k≤m

aj+1w1 + a1wm−j+1 ≤ 2a1w1 ≤ 2‖g‖1,q,w.

We also have∥∥∥∥∥∥
m−1∑
k=0

(−1)kgk

∥∥∥∥∥∥
1,∞,w

=

∥∥∥∥∥∥
m∑
k=1

(−1)k−1ek

∥∥∥∥∥∥
1,∞,w

m∑
n=1

an = sm
m∑
n=1

an.

Hence,

‖Ad(g)‖1,∞,w ≤ 3C‖g‖1,q,w.

By Theorem 8.10, the sequence (1/sn)∞n=1 is a regular weight. Then,
by Lemma 8.8, the weight s has the URP. �
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Proposition 10.32. Let w = (wn)∞n=1 be a non-increasing weight with
primitive weight s = (sn)∞n=1, and let 1 < q ≤ ∞. The following are
equivalent.

(i) d1,q(w) is locally convex.
(ii) KT[d1,q(w),w] is locally convex.
(ii) s has the URP.

Proof. (i)⇒ (ii) is obvious. (ii)⇒ (iii) is a straightforward consequence
of Lemma 10.31. (iii) ⇒ (i) follows from combining Lemma 8.8 with
Proposition 8.9 (i). �

Example 10.33. Since for 1 < q ≤ ∞ the fundamental function of
`1,q is (m)∞m=1, we can safely define KT[`1,q,u], where u = (un)∞n=1

is the weight defined by un = 1 for every n ∈ N. Since KT[`1,q,u]
inherits its convexity from `1,q, by Proposition 8.9 (iii) it is r-convex
for every r < 1 but, by Proposition 10.32, it is not locally convex. By
Lemma 10.30 the unit vector system Be of KT[`1,q,u] is a conditional
basis. By construction we have

`1 ⊆ KT[`1,q,u] ⊆ `1,∞.

Thus the unit vector system of KT[`1,q,u] is a conditional democratic
basis for which the restricted truncation operator is uniformly bounded.

Delving deeper into the construction of the space, the authors of
[22] proved that Be is not a quasi-greedy basis for KT[`1,q,u]. This
result can also be derived from our next general theorem. We need to
introduce some terminology.

Given an increasing sequence η = (mk)
∞
k=1 of positive integers we

put

Ik(η) =

n ∈ N :
k−1∑
j=1

mj < n ≤
k∑
j=1

mj


and define the map

Tη : FN → FN, (ak)
∞
k=1 7→

∞∑
k=1

ak
mk

1Ik(η).

Theorem 10.34. Let X ⊆ FN a quasi-Banach space for which the unit
vector system is a subsymmetric basis with fundamental function of the
same order as (m)∞m=1. Assume that X 6⊂ `1 and that Tη is bounded for
some increasing sequence η of positive integers. Then the unit vector
system of KT[X,u] is not a quasi-greedy basis.

Proof. Without loss of generality we assume that (X, ‖·‖X) is p-Banach
and that Be is a 1-subsymmetric basis of X. Set ‖Pη‖ = C. Let R <∞
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and pick f = (an)∞n=1 ∈ X with finite support such that an ≥ 0 for
every n ∈ N and ‖f‖1 > (1 + Cp)1/pR‖f‖X. Let τ = (mk)

∞
k=1 be a

subsequence of η such that ak/mk ≤ minn∈supp(f) an for every k ∈ N.
Put

g = (
a1

m1

, . . . ,
a1

m1︸ ︷︷ ︸
m1 times

,−a1, . . . ,
ak
mk

, . . . ,
ak
mk︸ ︷︷ ︸

mk times

,−ak, . . . )

and

h = (0 . . . , 0︸ ︷︷ ︸
m1 times

,−a1, . . . , 0 . . . , 0︸ ︷︷ ︸
mk times

,−ak, . . . , ).

We have

‖g‖u = max
n

an ≤ ‖f‖X
and

‖g‖pX ≤ ‖f‖
p
X + ‖Pτ (f)‖pX ≤ ‖f‖

p
X + Cp‖f‖pX = (1 + Cp)‖f‖pX.

Consequently

‖g‖KT[X,u] ≤ (1 + Cp)1/p‖f‖X.
We also have

‖h‖KT[X,u] ≥ ‖h‖u = ‖f‖1 > (1 + Cp)1/pR.

Thus,

‖h‖KT[X,u] > R‖g‖KT[X,u].

Since h is a greedy sum of f , we are done. �

We claim that if Be is a subsymmetric basis of X ⊆ FN and X is
locally convex (i.e., a Banach space) then Tη is a bounded operator
from X to X for every η. Indeed, this can be readily deduced from the
boundedness of the averaging projections (see [58, Proposition 3.a.4]).
However, in light of Lemma 10.23, Theorem 10.34 can only be applied
to non-locally convex spaces, and this result does not carry over to
quasi-Banach spaces. We note that, despite this fact, there are non-
locally convex spaces with a symmetric basis such that the operators
Tη are bounded, as we next show.

Proposition 10.35. Let 0 < q ≤ ∞ and η = (mk)
∞
k=1 be an incrasing

sequence of positive integers.

(i) Tη is bounded from `1,q into `1,q if and only if q ≥ 1.
(ii) Tη is unbounded from g(up, p) into g(up, p) for every 0 < p < 1.

Proof. (i) If Mk =
∑k
j=1mj we have Mk ≤ kmk. Let f = (ak)

∞
k=1 ∈ c0

and let (bk)
∞
k=1 be its non-increasing rearrangement.
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If q ≥ 1 we have

‖Tη(f)‖q`1,q ≤
∞∑
k=1

mk
bqk
mq
k

M q−1
k

=
∞∑
k=1

bqk

Ç
Mk

mk

åq−1

≤
∞∑
k=1

bqkk
q−1

= ‖f‖q`1,q .
Thus, ‖Tη‖ ≤ 1.

Assume now that 0 < q < 1. The same argument yields

‖Tη(f)‖q`1,q ≥
∞∑
k=1

bqk

Ç
Mk

mk

åq−1

.

If Tη were bounded, then, for some constant C <∞,

C
∞∑
k=1

bqkk
q−1 = C‖f‖q`1,q ≥ ‖Tη(f)‖q`1,q ≥

∞∑
k=1

bqk

Ç
Mk

mk

åq−1

.

Since

lim
k

∑n
k=1(Mk/mk)

q−1∑n
k=1 k

q−1
= lim

k

Ç
Mk

kmk

åq−1

=∞,

we reach a contradiction.
(ii) Assume, by contradiction, that, when regarded as an automor-

phism of g(up, p), Tη is bounded by some C < ∞. If wn = np−1, we
have

m−1∑
n=j

wn ≥
∫ m

j
xp−1 dx =

1

p
(mp − jp), j,m ∈ N, j ≤ m. (10.13)

Set η = (mk)
∞
k=1. We recursively construct an increasing sequence

ψ : N→ N satisfying

−1 +mψ(k+1) ≥ sk :=
k∑
j=1

mψ(j), k ∈ N.

Then we define φ ∈ O by φ(N) = ∪∞k=1Iψ(k)(η).
Given f = (aj)

∞
j=1 ∈ FN we define f0 = (an,0)∞n=1 ∈ FN by aψ(n),0 = an

for every n ∈ N and an,0 = 0 if n /∈ ψ(N). Let Tη(f) = (bj)
∞
j=1. Taking

into account (10.13) and that the mapping x 7→ (1 + x)p − xp is non-
increasing we have

C‖f‖g(up,p) = C‖f0‖g(up,p)

≥ ‖Tη(f0)‖g(up,p)
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≥
∞∑
n=1

|bφ(n)|pwn

=
∞∑
j=1

|aj|p

mp
ψ(j)

sj∑
n=1+sj−1

wn

≥ 1

p

∞∑
j=1

|aj|p

mp
ψ(j)

((1 + sj)
p − (1 + sj−1)p)

=
1

p

∞∑
j=1

|aj|p

mp
ψ(j)

((1 + sj−1 +mψ(j))
p − (1 + sj−1)p)

≥ 2p − 1

p

∞∑
j=1

|aj|p.

We have obtained `1 ⊆ g(up, p). But, in light of Proposition 10.27, this
is an absurdity. �

The examples of non-quasi greedy bases obtained in [22, Lemma
8.13] can be alternatively constructed combining Theorem 10.34 with
Proposition 10.35. Next we exhibit an example, constructed by the
KT-method from a space for which the operator Tη is unbounded, of a
non-quasi greedy basis that can be squeezed between `1 and `1,∞.

Proposition 10.36. Let 0 < p < 1. Then the unit vector system of
KT[g(up, p),u] is not quasi-greedy.

Proof. We proceed as in the proof of Proposition 10.27. Given N ∈
N, there is an N -tuple (mj)

N
j=1 of natural numbers such that, in the

terminology of that proof,

‖hmN
a · · · a hmj

a · · · a hm1‖g(up,p) ≤ C.

Then, there is another N -tuple (rj)
N
j=1 of natural numbers such that

min1≤j≤N rj > max1≤j≤N mj and

‖hrN a · · · a hrj a · · · a hr1‖g(up,p) ≤ C.

Denote by 0m the null vector of Fm and define

f = hmN
a −hrN a · · · a hmj

a −hrj a · · · a hm1 a −hr1 ,
g = hmN

a 0rN a · · · a hmj
a 0rj a · · · a hm1 a 0r1 .

We have ‖f‖g(up,p) ≤ 21/pC, ‖f‖u = 1 and ‖g‖u = N . Consequently

‖f‖KT[g(up,p),u] ≤ max{21/pC, 1} and ‖f‖KT[g(up,p),u] ≥ N . Since g is a
greedy sum of f we are done. �

As the attentive reader may have noticed, all the examples of non-
quasi greedy bases we have built in this section are bases of non-locally
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convex quasi-Banach spaces. For an example of a Banach space with
a non-quasi-greedy basis which is both a SLC and LUCC we refer to
[21]. It is clear that the non-quasi-greedy basis B for the Banach space
X constructed in the proof of [21, Proposition 5.6] can be squeezed
between two spaces as follows

`1
B
↪→ X B

↪→ `1,∞.

10.9. Conditional almost greedy bases. The topic of finding condi-
tional quasi-greedy bases was initiated by Konyagin and Telmyakov [55]
and developed subsequently in several papers [9, 13, 32, 34, 44, 48, 73].
It turns out that a wide class of Banach spaces posses a conditional
almost greedy basis (see [9]). So, in light of Proposition 10.8, giving
examples of non-locally convex quasi-Banach spaces with an almost
greedy basis is an easy task. For instance, we have the following result.

Proposition 10.37. Let X be a quasi-Banach space X with a basis B0.
Let Y be either `1 or a Banach space equipped with a subsymmetric
basis whose fundamental function s has both the LRP and the URP.

(i) If B0 is unconditional, then X⊕Y has a conditional quasi-greedy
basis.

(ii) If B0 is greedy and ϕEu[B0,X] ≈ s then X⊕ Y has a conditional
almost greedy basis whose fundamental function is equivalent to
s.

Before we see the proof of Proposition 10.37 let us fix some notation
and give an auxiliary lemma. Recall that a function δ : (0,∞)→ (0,∞)
is said to be doubling if there is a positive constant C < ∞ such that
δ(2x) ≤ Cδ(x) for all x ∈ [0,∞).

Lemma 10.38. Let (Lm)∞m=1 be an unbounded non-decreasing sequence
of positive scalars. Then there is a non-decreasing unbounded doubling
function δ : [0,∞)→ (0,∞) such that δ(m) ≤ Lm for every m ∈ N.

Proof. Let (dn)∞n=0 be the sequence defined recursively by the formula

d0 = L1, dn = min{2dn−1, L2n}, n ∈ N.
Since (Lm)∞m=1 is non-decreasing, so is (dn)∞n=0. It is clear from the
definition that dn ≤ 2dn−1 for every n ∈ N. If dn ≤ C for some C <∞
and every n ≥ 0 there is m0 such that Lm > C for every m ≥ m0. Then,
if n ≥ log2(m0), dn = 2dn−1 which implies that (dn)∞n=0 is unbounded.
This contradiction proves that (dn)∞n=0 is unbounded.

Since dn ≤ L2n for every n ∈ N, the function

δ(x) = d0χ[0,2) +
∞∑
n=1

dnχ[2n,2n+1)
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satisfies the desired properties. �

Given a basis B of a quasi-Banach space X we consider the sequence
defined for m ∈ N by

Lm[B,X] = sup

®‖SA[B,X](f)‖
‖f‖

: max(supp(f)) ≤ m, A ⊆ N
´
.

Note that the basis B is unconditional if and only if (Lm[B,X])∞m=1 is
bounded.

Proof of Proposition 10.37. We show (ii) and leave (i) for the reader,
as it is similar and easier. By a classical theorem of Pe lczyński and
Singer [63], we can guarantee the existence of a conditional basis, say
B2, in Y. Then, by Lemma 10.38 there is an unbounded non-decreasing
doubling function δ such that Lm[B2,Y] & δ(m) for m ∈ N. Therefore,
by [9, Remark 4.2], Y has an almost greedy basis B3 with fundamental
function equivalent to s, such that Lm[B3,Y] & δ(log(m)) for m ∈ N.
Hence by Proposition 10.8, the basis B0 ⊕ B3 of X ⊕ Y satisfies the
desired properties. �

Proposition 10.37 (ii) can be applied to show that the separable part
of a Triebel-Likorkin space of indices 1 ≤ p < ∞ and 0 < q ≤ ∞
has a conditional almost greedy basis. In turn, Proposition 10.37 (i)
can be used to prove that the separable part of a Triebel-Lizorkin or
Besov space of indices 0 < p ≤ ∞ and 1 ≤ q < ∞ has a conditional
quasi-greedy basis. On the negative side, one finds interesting and
important quasi-Banach spaces such as for instance `p for p < 1, which
are out of the scope of Proposition 10.37 since they do not have a locally
convex complemented subspace. In fact, as Proposition 10.17 shows,
the existence of a nonlocally convex complemented subspace with a
symmetric basis is not a guarantee of the existence of an almost greedy
basis.

The last part of this section will be dedicated to generalizing an
example of a conditional almost greedy basis from [22].

Theorem 10.39. Let X ⊆ FN be a quasi-Banach space. Suppose that
the unit vector system Be of X is a greedy basis with fundamental func-
tion equivalent to the primitive weight s = (sn)∞n=1 of a non-increasing
weight w, and that s has both the LRP and the URP. Then the unit
vector system of KT[X,w] is a quasi-greedy basis.

Before proving Theorem 10.39, we establish an auxiliary lemma.

Lemma 10.40. Let s = (sn)∞n=1 be a non-decreasing weight such that
(sn/n)∞n=1 is essentially decreasing. Assume that s has both the LRP
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and the URP. Then there is r > 1 such that

C[s, r] := sup
n
sr−1
n

∞∑
j=1

1

srj

sn+j−1

n+ j − 1
<∞.

Proof. By Lemma 8.8 there is 1 < r < ∞ such that (srn/n)∞n=1 is
essentially decreasing. Then, also by Lemma 8.8, the sequence (s−rn )∞n=1,
is a regular weight. Set

D = sup
n

srn
n

n∑
j=1

1

srj
<∞.

Using Lemma 8.8 for a third time gives 0 < s < 1 such that (n−ssn)∞n=1

is essentially increasing. Set

C = sup
n≥j

sn
sj

j

n
<∞ and E = sup

n≤j

sn
sj

js

ns
<∞.

On the one hand we have,

sup
n
sr−1
n

n∑
j=1

1

srj

sn+j−1

n+ j − 1
≤ C sup

n
sr−1
n

sn
n

n∑
j=1

1

srj
≤ CD,

and on the other hand,

sup
n
sr−1
n

∞∑
j=n+1

1

srj

sn+j−1

n+ j − 1
= sup

n

∞∑
j=n+1

sr−1
n

sr−1
j

sn+j−1

sj

1

n+ j − 1

≤ CEr−1 sup
n

∞∑
j=n+1

ns(r−1)

js(r−1)

n+ j − 1

j

1

n+ j − 1

= CEr−1 sup
n

∞∑
j=n+1

ns(r−1)

j1+s(r−1)

≤ CEr−1

s(r − 1)
. �

Proof of Theorem 10.39. Since X is contained in d1,∞(w) and the in-
clusion map is continuous, it suffices to prove that there is a constant
C <∞ such that

‖SA(f)‖w ≤ C max{‖f‖1,∞,w, ‖f‖w} (10.14)

for all f = (an)∞n=1 ∈ FN and all greedy sets A of f .
For m ∈ N let Am = {n ∈ A : n ≤ m}. If α = min{|an| : n ∈ A} let

M be the largest integer such that αSM ≤ ‖f‖1,∞,w (by convention we
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take M = 0 if such an integer does not exist). We have∣∣∣∣∣∣∣∣
∑
n∈Am
n≤M

anwn

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
min{m,M}∑

n=1

anwn

∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣

∑
n/∈A

n≤min{m,M}

anwn

∣∣∣∣∣∣∣∣∣
≤ ‖f‖w + αsmin{m,M}

≤ ‖f‖w + ‖f‖1,∞,w.

Use Lemma 10.40 to pick r > 1 such that C[s, r] < ∞. Choose a
bijection β : {1, . . . , N} → {n ∈ A : M < n ≤ m} (N = 0 if the
involved set is empty). Applying the rearrangement inequality gives∣∣∣∣∣∣∣∣

∑
n∈Am
n>M

anwn

∣∣∣∣∣∣∣∣ ≤
N∑
j=1

|aβ(j)|wβ(j)

≤ α1−r
N∑
j=1

|aβ(j)|rwβ(j)

≤ α1−r
∞∑
n=1

(a∗j)
rwj+M

≤ α1−r‖f‖r1,∞,w
∞∑
j=1

1

srj

sj+M
j +M

≤ C[s, r]α1−rS1−r
1+M‖f‖r1,∞,w

≤ C[s, r]‖f‖1,∞,w.

Summing up, (10.14) holds with C = 2(1 + C[s, r]). �

Remark 10.41. By Lemma 10.30 in the case when d1,1(w) ( X, the
weight w is doubling, and the unit vector system of X is a symmet-
ric basis, the quasi-greedy bases originating from Theorem 10.39 are
conditional.

Remark 10.42. The most natural application of Theorem 10.39 is ob-
tained by putting X = d1,q(w) with q > 1 and w regular. In this case,
by Proposition 10.32, the quasi-Banach space KT[d1,q(w),w] is locally
convex. In particular, if for 1 < p <∞ we consider w = u1/p (with the
terminology of (8.2)) we obtain that the unit vector system of the lo-
cally convex space KT[`p,q,u1/p] = KT[d1,q(u1/p),u1/p] is quasi-greedy.
This result was previously proved in [22], thus Theorem 10.39 provides
an extension.
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11. Renorming quasi-Banach spaces with greedy-like bases

The topic of renorming Banach spaces with greedy (or almost greedy,
or quasi-greedy) bases has its origins in [17], where the authors char-
acterized 1-greedy bases and posed the problem, still unsolved as of
today, of finding a renorming of Lp, 1 < p <∞, with respect to which
the Haar system is 1-greedy. Subsequently, 1-almost greedy bases and
1-quasi-greedy bases were also characterized in [3, 4]. The first exam-
ples of non-symmetric 1-greedy bases of an infinite-dimensional Banach
space appeared if [37] (see [12] for another relevant contribution to this
subject). In those papers convexity is both a requirement and a key
tool. Note that every renorming ‖ · ‖0 of a Banach space (X, ‖ · ‖) has
the form

‖f‖0 = max{a‖f‖, ‖T (f)‖Y}, f ∈ X, (11.1)

for some 0 < a <∞ and some bounded linear operator from X into a
Banach space (Y, ‖·‖Y). Indeed, it is clear that (11.1) gives a new norm
and, conversely, given a new norm ‖·‖0, if we put Y = (X, ‖·‖0), choose
T to be the identity operator and pick a > 0 small enough, (11.1) holds.
The situation in quite different when dealing with quasi-norms as the
following easy result evinces.

Lemma 11.1. Let (X, ‖ · ‖) be a quasi-Banach space. Assume that
‖ · ‖0 : X→ [0,∞) is such that

(i) ‖tf‖0 = |t|‖f‖0 for every t ∈ F and f ∈ X, and
(ii) ‖f‖0 ≈ ‖f‖ for f ∈ X.

Then ‖ · ‖0 is a renorming of ‖ · ‖.

Lemma 11.1 allows us to build renormings of quasi-Banach spaces
based on non-linear operators. So it is not surprising that we are able
to find renormings of quasi-Banach spaces for which the properties
associated to the greedy algorithm hold isometrically. For instance,
the following result is essentially based on the fact that the families of
maps (Gm)∞m=0, (Hm)∞m=0 and (Tm)∞m=0 are semigroups of (non-linear)
operators on X.

Theorem 11.2. Let B be a quasi-greedy basis of a quasi-Banach space
X. Then there is a renorming of X with respect to which Cqg = Λt =
Λu = 1.

Proof. By Lemma 3.12 we need only estimate Cqg and Λt. For f ∈ X
put

R0(f) = {(A1, A2) : Ai greedy set of f , A1 ⊆ A2 ⊆ supp(f)},
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and
‖f‖0 = sup{‖SA2\A1(f)‖ : (A1, A2) ∈ R0(f)}.

Since B is quasi-greedy, ‖ · ‖0 is a renorming of ‖ · ‖.
If (A1, A2) ∈ R0(f) and (B1, B2) ∈ R0(SA1\A2(f)) then we have

that (A1 ∪ B1, A1 ∪ B2) ∈ R0(f), SB2\B1(SA2\A1(f)) = SB2\B1(f), and
A1 ∪ B2 \ (A1 ∪ B1) = B2 \ B1. We infer that for every f ∈ X and
(A1, A2) ∈ R0(f),

‖SA2\A1(f)‖0 ≤ ‖f‖0. (11.2)

For f ∈ X put

‖f‖1 = sup{‖T (f, A)‖0 : A strictly greedy set of f}.
By Proposition 3.14, ‖ · ‖1 is a renorming of ‖ · ‖. Let us check that it
is the one we are after.

If A a strictly greedy set of f and B is a non-empty strictly greedy
set of T (f, A) then A ⊆ B and B is a strictly greedy set of f . Moreover,
T (T (f, A), B) = T (f,B). It follows that ‖T (f, A)‖1 ≤ ‖f‖1 for every
f ∈ X and every A strictly greedy set of f . Now observe that for every
greedy set A of f ∈ X there is a strictly greedy set A0 with A ⊆ A0

and T (A, f) = T (A0, f), so we get Λt ≤ 1 with respect to ‖ · ‖1.
Let (A1, A2) ∈ R0(f) and B be a non-empty strictly greedy set of

SA2\A1(f). Then B ∪A1 is a strictly greedy set of f , and B ∪A1 ⊆ A2.
Consequently (A1, A2) ∈ R0(T (f, A1 ∪B)) and

T (SA2\A1(f), B) = SA2\A1(T (f, A1 ∪B)). (11.3)

From (11.3) we get

‖SA2\A1f‖1 = sup
B
‖SA2\A1(T (f, A1 ∪B))‖0,

where B runs over all strictly greedy sets of SA2\A1(f). Since the pair
(A1, A2) belongs to R0(T (f, A1 ∪B)), from (11.2) we get

‖SA2\A1f‖1 ≤ sup
B
‖T (f, A1 ∪B)‖0

where B runs again over all strictly greedy sets of SA2\A1(f). Now we
observe that if B is a strictly greeedy set of SA2\A1(f) then A1 ∪ B is
a strictly greedy set of f . Thus we get ‖SA2\A1f‖1 ≤ ‖f‖1. �

Inspired by Corollary 5.4, we introduce the following function on a
quasi-Banach space X associated to a basis B of X. For f ∈ X we put

‖f‖a = inf{‖f − SA(f) + z‖ : (A, z) ∈ D(f)}, (11.4)

where D(f) is the set consisting of all pairs (A, z) ∈ P(N)×X such that
|A| <∞, (supp(f) \ A) ∩ supp(z) = ∅, A ⊆ supp(f), |A| ≤ | supp(z)|,
and maxn∈N |x∗n(f)| ≤ minn∈supp(z) |x∗n(z)|.
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Theorem 11.3. Let B be an almost greedy basis of a quasi-Banach
space (X, ‖.‖). The function ‖ · ‖a defined in (11.4) gives a renorming
of X with respect to which Cag = Λt = 1. Moreover, if we additionally
assume that Cqg = 1 for ‖ · ‖, then Cqg = Λu = 1 for ‖ · ‖a.

Proof. By Corollary 5.4, ‖f‖a ≈ ‖f‖ for f ∈ X, so by Lemma 11.1, ‖·‖a
is a renorming of ‖·‖. Let (A, z) ∈ D(f) and set g = f−SA(f)+z. Let
(B, y) ∈ D(g) and denote B1 = B∩(supp(f)\A) and B2 = B∩supp(z),
so that

g − SB(g) = f − SA∪B1(f) + z − SB2(z).

We have supp(z − SB2(z)) ∩ supp(y) = ∅ and

|A ∪B1| = |A|+ |B1|
= |A|+ |B| − |B2|
≤ | supp(z)|+ | supp(y)| − |B2|
= | supp(z − SB2(z))|+ | supp(y)|
= | supp(z − SB2(z) + y)|.

We infer that (A ∪B1, z − SB2(z) + y) ∈ D(f). Therefore,

‖f‖a ≤ ‖f − SA∪B1(f) + z − SB2(z) + y‖ = ‖g − SB(g) + y‖.
Taking the infimum over (B, y) we get ‖f‖a ≤ ‖g‖a.

Clearly, SA(f) = SA∩supp(f)(f) so the inequality

‖f‖a ≤ ‖f − SA(f) + z‖a (11.5)

holds for every A ⊆ N such that (A∩supp f, z) ∈ D(f). By Lemma 5.2
and Lemma 5.5, Cag = Λt = 1 with respect to the equivalent quasi-
norm ‖ · ‖a.

From our additional assumption that Cqg = 1 for ‖ · ‖ it follows
that ‖SB(f)‖ ≤ ‖f‖ for every f ∈ X and every greedy set B of f .
Let (A, z) ∈ D(f). Then (A ∩ B, z) ∈ D(SB(f)). Moreover, D =
supp(z) ∪ (B ∩ Ac) is a greedy set of g = f − SA(f) + z and so

‖SB(f)‖a ≤ ‖SAc∩B(f) + z‖ = ‖SD(g)‖ ≤ ‖g‖ = ‖f − SA(f) + z‖.
Taking the infimum over (A, z) we get

‖SB(f)‖a ≤ ‖f‖a. (11.6)

Substituting f = h− SB(h), A = ∅ and z = SB(h) in (11.5) we get

‖h− SB(h)‖a ≤ ‖h‖a (11.7)

for every h ∈ X and every greedy set B of h. From (11.6) and (11.7) it
follows that Cqg = 1 with respect to ‖ · ‖a. Now thanks to Lemma 3.12
we get Λu = 1 for the quasi-norm ‖ · ‖a. �
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Corollary 11.4. Let B be an almost greedy basis of a quasi-Banach
space X. Then there is a renorming of X with respect to which Cqg =
Cag = Λu = Λt = 1.

Proof. Since an almost greedy basis is quasi-greedy, Theorem 11.2
yields that X has a renorming with respect to which Cqg[B,X] = 1.
Now Theorem 11.3 finishes the proof. �

Theorem 11.5. Let B be a greedy basis of a quasi-Banach space X.
There is a renorming of X with respect to which Cg = Ku = 1.

Proof. Without loss of generality we may assume that X is equipped
with a quasi-norm ‖ · ‖ with respect to which Ku = 1. Let ‖ · ‖a be as
is (11.4). Since every greedy basis is almost greedy, by Theorem 11.3,
‖ · ‖a is a renorming of ‖ · ‖ with respect to which Cag = 1. By
Theorem 6.1 it suffices to prove that Ku = 1 with respect to ‖ · ‖a. Let
f ∈ X, γ = (γn)∞n=1 ∈ FN with ‖γ‖∞ ≤ 1, and (A, z) ∈ D(f). Put
B = {n ∈ A : γn 6= 0} and consider the sequence µ = (µn)∞n=1 defined
by

µn =

γn if n /∈ supp(z),

1 if n ∈ supp(z).

Since (B, z) ∈ D(Mγ(f)) we have

‖Mγ(f)‖a ≤ ‖SBc(Mγ(f)) + z‖ = ‖Mµ(SAc(f) + z)‖ ≤ ‖SAc(f) + z‖.
Minimizing over (A, z) ∈ D(f) finishes the proof. �

12. Open Problems

It is clear that our work leaves many questions unanswered. This is a
sign that the subject of greedy approximation using bases is still very
much alive as intriguing new problems arise from the main theory.
Below we include a non-exhaustive list of questions that spring very
naturally from our exposition and that we think are the natural road
to take to make headway from here.

Problem 12.1. Unconditionality for constant coefficients, or SUCC for
short, is a very natural assumption about the basis. It seems to be
unknown whether LUCC implies SUCC for every basis.

Problem 12.2. The renorming results of Section 11 leave a lot of open
questions. Basically we would like to produce better renormings. As
an example let us start with the following still open problem from [17]:

Does there exists a renorming of the Banach space Lp,
1 < p < ∞, with respect to which the Haar system is
1-greedy?
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Theorem 11.5 says yes, but it gives a (most likely discontinuous) quasi-
norm when it is clear that the original problem asks for norm. Thus
the following weaker questions are also open:

(i) Does there exists an equivalent, continuous quasi-norm on Lp,
1 < p <∞, with respect to which the Haar system is 1-greedy?

(ii) Does there exists an equivalent s-norm (for some 0 < s < 1)
on Lp, 1 < p < ∞, with respect to which the Haar system is
1-greedy?

We would also like to pose the following question:

(iii) Characterize (or describe an interesting class of) quasi-Banach
spaces which have a 1-greedy (or quasi-greedy) basis with re-
spect to a p-norm (or continuous quasi-norm).

Problem 12.3 (Weakly quasi-greedy basis). Let us introduce the follow-
ing definition: Let X be a quasi-Banach space and let τ be a topology
on X weaker than the norm topology. A basis B = (xn)∞n=1 in X is said
to be τ -quasi-greedy if for every f ∈ X the greedy series (3.1) converges
to f in the τ -topology. Important examples include the following.

• X is a space of functions on a space K and τ is a pointwise
convergence or convergence almost everywhere or convergence
in measure. Many classical cases were considered already (see
[56] for a general introduction).
• Let τ be a weak topology on X. Let us make some remarks.

(a) Since the basis is total if such a series converges, it con-
verges to f .

(b) If X is a Banach space then weak concergence implies that
partial sums are bounded so Theorem 3.1 implies that the
basis is quasi-greedy.

(c) For a general quasi-greedy Banach space, weak convergence
does not imply boundedness; it implies boundedness in the
Banach envelope.

Problem 12.4. The definition of bidemocracy was tailored for Banach
spaces. Every (sub)symmetric basis in a Banach space is bidemocratic
while the most natural bases like the unit vector bases in `p for 0 < p <
1 are not. It is natural to think that the existence of a bidemocratic
basis in a space X implies some convexity that brings X to being close to
a Banach space. The following questions are of interest in this context:

(i) Does there exists a bidemocratic basis in the space `p⊕ `2 with
0 < p < 1?
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(ii Suppose X is infinite-dimensional and has a a bidemocratic ba-
sis. Given 0 < p < 1, does there exists an infinite-dimensional
subspace Xp ⊂ X which has an equivalent p-norm?

Problem 12.5. Our discussion in Section 9 on Banach envelopes leaves
the following open questions:

(i) If B is a quasi-greedy basis in a quasi-Banach space X, is its Ba-
nach envelope Bc quasi-greedy in the Banach envelope Xc of X?
More generally, is Bc,r quasi-greedy in the r-Banach envelope
Xc,r for every (some) 0 < r ≤ 1?

The reader may argue that this question is too hard to tackle. In-
deed, perhaps it would be more sensible to get started by focusing on
special types of bases. In particular, the question remains open for
bidemocratic quasi-greedy bases:

(ii) Let 0 < r < 1. If a basis is bidemocratic and quasi-greedy in
X, is it quasi-greedy in the r-Banach envelope Xc,r?

Problem 12.6. The greedy algorithm with respect to bases is essen-
tially independent of the particular ordering we chose for the basis.
That is, an M -bounded semi-normalized basis B = (xn)∞n=1 enjoys the
same greedy-like properties as any of its reorderings (xφ(n))

∞
n=1. Thus,

when dealing with greedy-like properties, imposing conditions on the
basis such as being Schauder, which depend on a particular ordering,
is somewhat unnatural. In fact, investigating the greedy algorithm
without assuming that our basis is Schauder, not only does enable us
to obtain more general results, but also, and above all, gives us the
opportunity to differentiate those results that can be obtained only for
Schauder bases from those other results that can be proved circum-
venting this condition. However, it must be conceded that the most
important examples of bases respect to which the greedy algorithm is
considered are Schauder bases, to the extent that the following question
seems to be unsolved.

• Is there a quasi-greedy basis which is not a Schauder basis for
any ordering?

Problem 12.7. Now we focus on locally convex quasi-Banach spaces.
Every Schauder basis B for a Banach space is equivalent to its bidual
basis B∗∗ (see Theorem 1.14), but this result does not carry over to total
M -bounded bases (see Proposition 1.11). This forced us to conduct our
study of duality properties of greedy-like bases without this powerful
and widely used tool. In this context, it is natural to wonder whether or
not a given total M -bounded basis is equivalent to its bidual basis. As
for quasi-greedy bases, which are total by Corollary 3.5, Theorem 9.15
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provides a partial answer to this reflexivity question. To the best of
our knowledge, the general problem remains open:

• Let B be a quasi-greedy basis for a Banach space. Is the map-
ping hB,X defined in (1.8) an isomorphic embedding? Is B∗∗
equivalent to B?

Problem 12.8. It is well known that `1, `2, and c0 are the only Ba-
nach spaces with a unique unconditional basis ([57,59,60]). It happens
that in all three spaces, quasi-greedy bases are democratic (thus almost
greedy) [32, 38, 73]. The spaces `p for p < 1 also have a unique uncon-
ditional basis [52], and their Banach envelope is `1. Hence, by analogy,
it is very natural to ask whether quasi-greedy bases in `p for p < 1 are
democratic. Note that, as of today, there is no known example of a
conditional quasi-greedy basis for `p when 0 < p < 1.

Problem 12.9. The question on the existence of an almost greedy basis
in locally convex mix-norm sequence spaces `p ⊕ `q, and matrix spaces
Bp,q and `q(`p) was completely settled in [32]. As for non-locally convex
spaces, Propositions 10.17 and 10.18 seem to be the sole advances as
of today on this question. So, we wonder if the following spaces have
an almost greedy basis.

• `p(`q) and `q(`p) if 0 < p < 1 and 0 < q ≤ ∞ (with the usual
modification if q =∞). Note that, by Theorems 10.9 and 10.14,
if such a basis exists, it is conditional.
• Bp,q if 0 < p < 1 and p < q <∞.
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Annex

Summary of the most commonly employed constants.

Symbol Name of constant Equation

Ap Geometric constant (1.1)

Bp Geometric constant (1.2)

ηp(·) Geometric function (3.5)

Cg Greedy constant (6.1)

Cag Almost-greedy constant (5.1)

Cqg Quasi-greedy constant (3.2)

Cql Quasi-greedy for largest coefficients constant (3.2)

∆ Democracy constant (4.1)

∆d Disjoint-democracy constant (4.1)

∆s Superdemocracy constant (4.1)

∆sd Disjoint-superdemocracy constant (4.1)

Γ Symmetry for largest coefficients constant (4.1)

∆b bidemocracy constant (4.3)

∆sb Bi-superdemocracy constant (4.4)

Ku Lattice unconditional constant (1.6)

Ksu Suppression unconditional constant (1.7)

Ksc Suppression unconditional for constant coefficients constant (2.1)

Klc Lower unconditional for constant coefficients constant (2.4)

Kpu Partially lattice unconditional constant (2.6)

Λt Truncation operator constant (3.8)

Λu Restricted truncation operator constant (3.7)
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Acronym List.

Acronym Meaning Place

SUCC suppression unconditional for constant coefficients page 16

LUCC lower unconditional for constant coefficients page 17

LPU lattice partially unconditional page 17

QGLC quasi-greedy for largest coefficients page 23

SLC symmetric for largest coefficients Section 4

URP upper regularity property (8.5), page 54

LRP lower regularity property (8.6), page 54
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[62] R. I. Ovsepian and A. Pe lczyński, On the existence of a fundamental total and
bounded biorthogonal sequence in every separable Banach space, and related
constructions of uniformly bounded orthonormal systems in L2, Studia Math.
54 (1975), no. 2, 149–159.
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José L. Ansorena, Department of Mathematics and Computer Sci-
ences, Universidad de La Rioja, Logroño, 26004 Spain, Tel.: +34-941-
299464, Fax: +34-941-299460

E-mail address: joseluis.ansorena@unirioja.es
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