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A B S T R A C T   

In water bodies, sediment transport is a potential source of numerous negative effects on water resource projects 
and can damage environmental services. Two machine learning (ML) algorithms, the M5P and random forest 
(RF) models, have been explored for the first time as alternatives to the Soil and Water Assessment Tool (SWAT) 
model to estimate suspended sediment load (SSL) in the Oskotz river basin, a forested experimental basin in 
Navarra, northern Spain. In the ML models, streamflow and precipitation data were used to estimate daily SSL, 
testing different combinations of these inputs. The ML models were more accurate than the physically based 
hydrological SWAT model for all input scenarios tested at the daily scale. Moreover, although the SWAT results 
improved considerably at the monthly scale, the statistics obtained were generally inferior compared to the ML 
models. For the best combination of inputs, M5P demonstrated a superior ability to estimate SSL (R2 = 0.73, 
MAE = 135.04, RSR = 0.54, NSE = 0.71 and PBIAS = 5.19), compared to RF (R2 = 0.72, MAE = 143.39, RSR =
0.57, NSE = 0.67 and PBIAS = 11.60) and SWAT (R2 = 0.57, MAE = 181.24, RSR = 0.65, NSE = 0.57 and PBIAS 
= -1.27). The average sediment loads in winter, the season with the highest sediment generation in the Oskotz 
basin, were 2,094.04, 1,831.08 and 2,242.67 tonnes for M5P, RF and SWAT, respectively, compared to an 
observed SSL of 1,878.16 tonnes. These results indicate that M5P and RF are suitable models for simulating 
fluvial sediment production since they improved the results of the SWAT model, which also requires more time 
and data to set up and calibrate. However, since SWAT does not require observed streamflow as an input, it 
remains a useful model, achieving acceptable results in basins with limited streamflow data.   

1. Introduction 

In river and dam engineering studies, the volume of sediment 
transported by a river is of particular interest due to its effect on hy-
draulic structures and water resource management (Kisi, 2004). River 
sediments are of additional interest in environmental engineering, 
especially if the sediments transport pollutants. Suspended sediment 
(SS) inputs are among the main factors contributing to water quality 
degradation (Zeiger and Hubbart, 2016). The transport of soil particles 
through surface waters has negative consequences for the fauna and 
flora of rivers since such sediments can contain organic pollutants and/ 

or absorbed heavy metals, as well as increasing water turbidity (Sir-
abahenda et al., 2020). 

To assess the extent of the soil erosion problem and identify problem 
areas within a basin, the amount of sediment transported by streams or 
rivers must first be reliably quantified. However, finding accurate tools 
to estimate suspended sediment load (SSL) is challenging since fluvial 
sediment transport is a complex, non-linear process influenced by hy-
drographic, hydraulic, climatic, and anthropogenic factors in the river 
basin (Zounemat-Kermani et al., 2020). To simulate sediment transport 
processes in river basins and water bodies, several empirical, physically 
based, and conceptual methods are available (Borrelli et al., 2021; 
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Merritt et al., 2003). Such models are useful for estimating sediment 
concentrations and/or loads generated under different climatic condi-
tions, land use or management strategies, or in ungauged river basins 
(Fu et al., 2019). 

The Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) is 
an efficient tool for many types of water resource and land management 
applications (Gassman et al., 2014) and the most popular physically 
based model applied at the river-basin scale (Fu et al., 2019). Numerous 
studies conducted worldwide have concluded that the SWAT model 
provides a satisfactory estimate of sediment load (Duru et al., 2018; 
Dutta and Sen, 2018; López-Ballesteros et al., 2019; Pulighe et al., 
2019). Physically based models simulate sediment produced by rainfall 
events in a river basin based on the laws of conservation of mass and 
energy. They provide an understanding of river basin processes, which is 
beneficial for assessing the impacts of soil and water conservation 
measures (Singh et al., 2014). However, a disadvantage of these models 
is that they require extensive information for development, calibration, 
and validation. In addition, calibrating the numerous parameters in such 
models is highly complex, due to the non-linearity of sediment transport 
processes, and requires expert knowledge and high computational time 
compared to data-driven models (Hamaamin et al., 2016; Khosravi 
et al., 2020). These drawbacks demand the exploration of more efficient 
methods of sediment computation. 

Due to their capacity to model complex non-linear systems, data- 
driven methods such as machine learning (ML) have emerged as a 
powerful alternative to physically based models. In water resource 
management, such models can be used to estimate variables such as 
streamflow (Jimeno-Sáez et al., 2018; Minns and Hall, 1996; Srivastava 
et al., 2006) and sediment transport (Chen and Chau, 2016; Gupta et al., 
2021; Kumar et al., 2016; Olyaie et al., 2015; Zounemat-Kermani et al., 

2020). In contrast to physical models, ML models uses mathematical 
functions to connect inputs to outputs, ignoring the physical, logical 
relationship between variables (Ji et al., 2021). Kisi (2005) used a neural 
network approach and a neuro-fuzzy technique to estimate current 
suspended sediment values based on previous streamflow and sediment 
data, finding that the best results were obtained using neuro-fuzzy 
techniques. Al-Mukhtar (2019) predicted suspended sediments in the 
Tigris-Baghdad river using random forest (RF), support vector machine, 
and neural network techniques. The results showed that RF performed 
best. Ghasempour et al. (2021) used ML techniques to predict sediment, 
presenting a kernel-based approach based on the Gaussian process and 
the extreme learning kernel. The former was used for linear processes, 
while the latter was applied to non-linear processes. Sihag et al. (2021) 
developed a study to evaluate the best model using M5P and RF 
regression techniques to estimate sediment. The M5P-based model 
performed best in the study. 

To date, several sediment transport models using SWAT and ML al-
gorithms have been studied individually. However, few studies have 
compared both approaches. Singh et al. (2014, 2012) compared SWAT 
with a multilayer perceptron artificial neural network model and a 
radial basis neural network by simulating monthly sediment yields and 
obtained better results using the artificial neural network. Kim et al. 
(2012) observed that using artificial neural networks to predict total 
suspended solids was a useful alternative to SWAT. Sirabahenda et al. 
(2020) evaluated the SWAT model and the adapted neuro-fuzzy infer-
ence system (ANFIS) for SS prediction concluding that ANFIS obtained 
higher accuracy than SWAT. 

In Navarra, Spain, soil erosion is a major problem on agricultural 
land (Casalı ́ et al., 1999; De Santisteban et al., 2006). For this reason, the 
Government of Navarra created a network of experimental basins to 

Fig. 1. (a) Location of the Oskotz river basin in Spain and (b) in the province of Navarra, (c) digital elevation model (DEM), and (d) land use map of the Oskotz 
river basin. 
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obtain data on water quality and soil erosion and evaluate the impact of 
agriculture in different areas of the region. In terms of morphology, soils, 
climate, land use, and management, these experimental river basins are 
representative of large areas of Navarra and Spain (Casalí et al., 2008). 
Oskotz is one of the four pilot basins in this network. This study uses data 
recorded at the Oskotz river basin to study SSL. 

Modeling the specific processes that occur in a basin is highly com-
plex, and no model works perfectly in all basins. Identifying models that 
accurately simulate the complexity of basin processes using available 
data is a challenge for decision-makers in basin management (Nguyen 
et al., 2019). This study individually tests two ML methods, M5P and RF, 
as alternatives to the SWAT model to estimate SSL in the Oskotz river 
basin. To our knowledge, no previous studies have compared SWAT with 
these models for SSL estimation. The application of ML versus SWAT in 
the study basin is also novel. The main objective of this research is to 
determine efficient models for SSL estimation by comparing the results 
obtained using ML models with those obtained using the physically 
based SWAT model. This study follows four steps: (i) SWAT model 
calibration for streamflow and sediment, (ii) ML model training, (iii) SSL 
estimation using the calibrated SWAT model and trained ML models, 
and (iv) comparison of the results and model performance analysis. 

2. Materials and methods 

2.1. Study area and data source 

This research was conducted in the Oskotz river basin, located in 
Navarra (northern Spain) between 1◦47′–1◦44′ W longitude and 
42◦55′–42◦58′ N latitude (Fig. 1). It is a small experimental basin 
covering 16.74 km2. The climate in the basin is sub-Atlantic with an 
average annual rainfall of 1200 mm and an average annual temperature 
of 12 ◦C (Casalí et al., 2010). The Oskotz river basin has a wet season in 
autumn and winter and a drier season in summer. Nevertheless, summer 
rainfall is still important, accounting for approximately 11% of the 
annual precipitation. Most of the basin is covered by forest (66%) while 
the remaining area consists of pasture and crops. Pastures are used for 
grazing animals and are both natural and cultivated. The dominant soil 
class depends on the landscape type. According to Casalí et al. (2010), 
accumulation hillslopes are dominated by Typic Ustochrepts, eroded 
hillslopes by Lythic and Typic Ustochrepts and the valley plain by Flu-
ventic Ustochrepts. Soils are fine with a thickness of more than 1 m, 
except on the eroded hillslopes where soils are shallow, between 0.5 and 
1 m. The elevation in the basin is between 531 and 918 m a.s.l. and most 
of the slopes are in the range of 8–30%. 

The basin is equipped with an automatic meteorological station and 
a hydrological station that measures streamflow and water quality pa-
rameters and takes water samples. The data from these stations are 
available in the experimental basins portal from the local Government of 
Navarra (http://cuencasagrarias.navarra.es/) and include precipitation 
(mm), maximum and minimum temperatures (◦C), and observed 
streamflow and SSL data. Hydrometeorological data are available from 
2002 to the present while sediment data are available from 2004. These 
data, obtained from observation stations in the basin, were used to 
construct the ML methods and the hydrological model. The SWAT hy-
drological model also required spatial inputs such as digital elevation 
model (DEM) data (Fig. 1), land use, and soil data. The 25 × 25 m DEM 
was obtained from the National Geographic Institute (IGN) in Spain. 
Land-use map was extracted from Corine Land Cover (2012) with a scale 
of 1:100,000, and a soil map with a resolution of 1 km was implemented 
from the Harmonized World Soil Database (HWSD) (Nachtergaele et al., 
2010). 

2.2. Hydrological model 

2.2.1. SWAT model description 
SWAT is a physically based, hydrological model developed to 

simulate water, sediment, and agricultural chemical production in a 
river basin in a semi-distributed form. The SWAT model divides the 
basin into sub-basins, each of which is further divided into several Hy-
drological Response Units (HRUs), areas of land that are homogeneous 
and have similar responses to meteorological inputs. Each HRU is a 
combination of a specific soil type, land use, and slope. The hydrological 
part of the model simulates a catchment’s hydrological cycle, based on 
the water balance equation, and calculates the runoff from each HRU. 
The curve number and Muskingum methods are employed for runoff 
computation and channel routine respectively. SWAT calculates the 
sediment yield for each HRU using the Modified Universal Soil Loss 
Equation (MUSLE) (Williams, 1975), which predicts erosion as a func-
tion of a runoff factor representing the energy used in the detachment 
and transport of sediment (Neitsch et al., 2009). SWAT computes water 
and sediment yield for each HRU individually and aggregates them at 
the sub-basin level. 

2.2.2. SWAT model set up, calibration, and validation 
The Oskotz river basin was subdivided into four sub-basins and ho-

mogenous sections, resulting in 53 HRUs. The Hargreaves-Samani 
approach was chosen to estimate potential evapotranspiration. The 
SUFI-2 algorithm was used to automatically calibrate the SWAT model 
parameters in SWAT-CUP (Abbaspour et al., 2007). Since sediment 
transport is dependent on runoff, a sequential calibration approach was 
applied (recommended by Arnold et al., (2015)), in which streamflow 
generation parameters were calibrated first, followed by sediment pa-
rameters. One thousand simulations were performed twice, and the 
parameters were readjusted after the second iteration. The selected 
parameters were calibrated using daily time steps and adjusted using the 
Nash-Sutcliffe efficiency (NSE) as an objective function to ensure that 
the simulation results were as close as possible to the streamflow and 
SSL observations. The periods 2002–2012 (11 years) and 2013–2020 (8 
years) were used to calibrate and validate the streamflow, respectively. 
In the case of SSL, 2004–2012 (9 years) was the calibration period and 
2013–2020 (8 years) was the validation period. In both calibrations, 
three years were used as a warm-up period. 

2.3. Machine learning algorithms 

2.3.1. M5P 
The M5P technique (Wang and Witten, 1997) is a remodeling of 

Quinlan’s M5 (Quinlan, 1992) for induction trees in regression models. 
This technique combines a traditional decision tree with the possibility 
of performing linear regression functions at the nodes. First, an induc-
tion decision tree is constructed, applying the splitting criterion, which 
minimizes the variance of a subset of class values at each branch, at each 
node. This process is stopped if the values of each branch vary slightly or 
there are a minimum number of instances at the node. Secondly, a 
pruning process is performed, in which a regression function converts 
the internal nodes into a leaf node. Finally, to avoid discontinuities, a 
smoothing process is applied that combines the leaf model prediction 
with each node encountered on the way to the root node. 

2.3.2. Random forest (RF) 
RF (Breiman, 2001) is defined as an ensemble based on decision 

trees. Decision trees have the advantage of good interpretability in both 
the constructed model and inference. However, they have the disad-
vantage of bias and variance problems. These complications are resolved 
using the ensemble to merge and combine information from the decision 
trees. On the one hand, the data variability and amount of stored in-
formation are increased. On the other hand, the interpretability of the 
constructed model is maintained, although in a more complex manner. 
In general, the RF ensemble has the following characteristics:  

• Given a dataset of |N| samples to construct each tree a, |N| cases are 
randomly selected using replacement as a training dataset. The 
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process of sampling with replacement is called bootstrapping. One 
third of the data is excluded from training and used for testing 
(Schonlau and Zou, 2020). These data are known as out-of-bag 
(OOB) samples. Each tree has an OOBa set with which it is tested. 
The testing result provides a weighting for each tree used in the 
combination of the information.  

• To choose the splitting decision for a node, the M attributes to be 
studied are chosen at random from the M input variables at each tree 
node. 

• Each tree grows to its maximum possible extent and can be config-
ured so that no pruning is required. New instances are predicted by 
aggregating the predictions of the A trees (i.e., a majority vote for 
classification, an average for regression). 

2.3.3. ML model inputs 
Concerning ML model inputs, streamflow and precipitation were 

selected to estimate SSL according to previous studies (Cobaner et al., 
2009; Kumar et al., 2016; Singh et al., 2014). The precipitation and 
streamflow variables are correlated but complementary since precipi-
tation transports sediment in the drainage basin and streamflow regu-
lates concentrations and downstream transport (Sirabahenda et al., 
2020). Correlation coefficients (CCs) were calculated to analyze the 
dependence between the observed sediment data and the flow and 
precipitation data on the same and previous days (Table 1). 

The SSL for day t (SSLt) was strongly correlated with the streamflow 
on that day (Qt), with a CC of 0.64. The CC for SSLt and the precipitation 
for day t (Pt) had a value of 0.40. From time t-1, the correlations between 
the Q and P variables and SSL (t) decreased considerably, with values 
below 0.2. Therefore, to estimate daily SSL, several input combinations 
were constructed and tested (Table 2), including the daily streamflow 
and precipitation of the current day t and previous days. 

The first scenario considered the streamflow for day t (i.e. the vari-
able most strongly correlated with SSLt) as the only predictor variable. 
Scenario II considered the two variables most correlated with sediment 
(Qt and Pt). Scenario III was similar to scenario two but with the addition 
of the third most correlated variable (Pt-1). Scenario IV considered only 
the hydrological variables on the same day and the previous day (Qt and 
Qt-1). In addition, scenario V included all variables with a CC greater 
than 0.15. The remaining scenarios were other combinations of these 
variables. The advantage of employing only streamflow and precipita-
tion as inputs is that the collection and availability of these data are 
often easier than other data in many basins. Other studies (Kumar et al., 
2016; Sihag et al., 2021; Zounemat-Kermani et al., 2020) have also used 
sediment from previous days as inputs with the disadvantage that this 
type of data is measured with less frequency and is, therefore, more 

Table 1 
The correlation coefficients (CC) between the input variables and SSLt.  

Variable Qt Qt-1 Qt-2 Qt-3 Qt-4 Qt-5 Pt Pt-1 Pt-2 Pt-3 Pt-4 Pt-5 

CC  0.64  0.34  0.18  0.16  0.15  0.11  0.40  0.36  0.17  0.12  0.12  0.11  

Table 2 
Input scenarios for the ML models.  

Scenario Model inputs 

I Qt 

II Qt, Pt 

III Qt, Pt, Pt-1 

IV Qt, Qt-1 

V Qt, Pt, Qt-1, Qt-2, Qt-3, Qt-4, Pt-1, Pt-2 

VI Qt, Pt, Qt-1 

VII Qt, Pt, Qt-1, Qt-2 

VIII Qt, Pt, Qt-1, Qt-2, Pt-1, Pt-2 

IX Qt, Pt, Qt-1, Qt-2, Qt-3, Pt-1, Pt-2, Pt-3  

Table 3 
Model performance metrics.  

Measure Equation Range Optimal value 

R2 ⎡

⎢
⎣

∑n
t=1(Ot − O)⋅(St − S)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

t=1(Ot − O)
2

√

⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

t=1(St − S)2
√

⎤

⎥
⎦

2   [0, 1] 1 

MAE ∑n
t=1 |Ot − St |

n  
[0, ∞] 0 

RSR 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

t=1(Ot − St)
2

∑n
t=1(Ot − S)2

√
√
√
√

[0, ∞] 0 

NSE 
1 −

∑n
t=1(Ot − St)

2

∑n
t=1(Ot − O)

2   

[–∞, 1] 1 

PBIAS 
∑n

t=1(Ot − St)⋅100
∑n

t=1(Ot)

[–∞, ∞] 0  

Table 4 
The SWAT model parameters used to calibrate streamflow and sediment.  

Parameter Description Initial range 
used in 
calibration 

Calibrated 
value 

Parameters used to calibrate streamflow 
r_CN2.mgt SCS runoff curve number –0.2 to 0.2 − 0.16 
v_ESCO.bsn Soil evaporation 

compensation factor 
0.1 to 1 0.89 

v_EPCO.bsn Plant uptake compensation 
factor 

0.1 to 1 0.56 

v_SURLAG.bsn Surface runoff lag time (days) 0.05 to 24 15.40 
v_LAT_TTIME. 

hru 
Lateral flow travel time (days) 0 to 30 2.20 

v_ALPHA_BF. 
gw 

Baseflow alpha factor (days-1) 0 to 1 0.53 

v_GW_DELAY. 
gw 

Groundwater delay (days) 0 to 100 13 

v_GW_REVAP. 
gw 

Groundwater revap coefficient 0.02 to 0.20 0.09 

v_GWQMN.gw Threshold depth of water in 
the shallow aquifer for return 
flow to occur (mm) 

0 to 5000 1863.12 

v_REVAPMN. 
gw 

Threshold depth of water in 
the shallow aquifer for revap 
to occur (m) 

0 to 1000 252.13 

v_RCHRG_DP. 
gw 

Deep aquifer percolation 
fraction 

0 to 1 0.07 

r_SOL_AWC.sol Available water capacity of 
the soil layer (mm H2O/mm 
soil) 

–0.2 to 0.2 0.12 

r_SOL_BD.sol Moist bulk density –0.2 to 0.2 0.11 
r_SOL_K.sol Saturated hydraulic 

conductivity (mm h-1) 
–0.2 to 0.2 0.12 

Parameters used to calibrate SSL 
v_CH_COV1. 

rte 
Channel erodibility factor 0 to 1 0.35 

v_CH_COV2. 
rte 

Channel cover factor 0 to 1 0.42 

v_SPCON.bsn Linear parameter for 
calculating the maximum 
amount of sediment that can 
be re-entrained during 
channel sediment routing 

0.0001 to 0.01 0.0001 

v_SPEXP.bsn Exponent parameter for 
calculating sediment re- 
entrained in channel sediment 
routing 

1 to 1.5 1.45 

v_USLE_P.mgt USLE equation support 
practice factor 

0 to 1 0.85 

r_USLE_K.sol USLE equation soil erodibility 
(K) factor 

− 0.2 to 0.2 0.04  
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difficult to collect. Therefore, nine scenarios were tested for each ML 
model. The training period was from September 2004 to December 
2012, and the test period was from January 2013 to December 2020. 

2.4. Model performance metrics and evaluation criteria 

Five statistical criteria were used to evaluate the performance of the 
models on two different time scales (daily and monthly). The coefficient 
of determination (R2), the mean absolute error (MAE), the root mean 
square error observations standard deviation ratio (RSR), the NSE, and 
the percent bias (PBIAS) were calculated using the equations listed in 
Table 3, where Ot is the observed data at time t, O is the mean of the 
observed data, St is the simulated data at time t, S is the mean of the 
simulated data, and n is the total number of observed data. The R2 de-
notes the degree of collinearity between the simulated and observed 
data, as well as the fraction of variance in the observed data explained by 
the model. The MAE measures the overall deviation of the models. The 
RSR uses the standard deviation of the observations to standardize the 
mean square error. The variance between the observed and simulated 
data is quantified using NSE. The PBIAS indicates the average tendency 
of the simulated data to be higher (negative values) or lower (positive 
values) than the observed data. 

3. Results and discussion 

3.1. SWAT calibration 

Fourteen commonly used streamflow calibration parameters and 
their ranges were selected based on available studies close to the study 
area (Epelde et al., 2015; Meaurio et al., 2015) and our previous expe-
rience. Following hydrological calibration, sediment calibration was 
performed using six specific parameters. The calibration process sub-
stantially reduced the disparity between the observed and simulated 
streamflow and SSL. The specific parameters used to calibrate stream-
flow and SSL are listed in Table 4, which describes each parameter, its 
range, and its final calibrated value. 

The calibrated parameter analysis presented in Table 4 shows that 
CN2 decreased by 16% compared to the default value, thus increasing 
infiltration and decreasing runoff. The adjusted ESCO value was 0.89, a 
high value typical of climates in which evapotranspiration is not highly 
relevant (Jimeno-Sáez et al., 2018). The LAT_TTIME value was low, 
indicating that water pathways through the soil profile are short. The 
RCHRG_DP value was very low at 0.07 and characteristic of land with no 
relevant groundwater storage (Senent-Aparicio et al., 2019). The fitted 
values for ESCO, LAT_TTIME, RCHRG_DP, SPCON, and SPEXP in the 
Oskotz river basin were similar to those used in nearby basins (Epelde 
et al., 2015; Meaurio et al., 2015). 

3.2. ML model parameters and computational time 

The following M5P parameters were used in the experiments: a 
minimum number of four examples for the leaf nodes and no pruning for 
the trees. Regarding the parameters used in the RF experiments, there 
were 100 trees (A), each having a maximum depth expansion, and for 
each node, the number of attributes selected to divide de node was 
log2(M) + 1, where M was the maximum number of input attributes. The 
computational times were very low for both the M5P and RF techniques. 
In the scenario with the most variables, the model building times for 
M5P and RF were 0.33 and 0.58 s respectively. The inference was 0.08 
and 0.03. 

3.3. SWAT streamflow estimation 

The calibrated SWAT model simulated daily streamflow using R2 

values of 0.71 and 0.79 for the calibration and validation periods, 
respectively. The RSR, NSE, and PBIAS were respectively 0.54, 0.70, and 
− 20.95% for the calibration period and 0.48, 0.76, and − 24.38% for the 
validation period. At the monthly scale, the performance statistics were 
more satisfactory, displaying R2 values of 0.84 for calibration and 0.94 
for validation. The monthly RSR, NSE, and PBIAS values were 0.46, 
0.81, and − 20.55% for the calibration period and 0.36, 0.86, and 
− 24.85% for the validation period. Therefore, the model was evaluated 

Fig. 2. Monthly precipitation, observed streamflow, and streamflow simulated by SWAT at a hydrological station for (a) the calibration period and (b) the vali-
dation period. 
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as very good regarding monthly streamflow simulation during both 
calibration and validation, according to the RSR and NSE criteria 
described by Moriasi et al. (2007). The good agreement between simu-
lated and observed monthly streamflow is presented graphically in 
Fig. 2, which displays both the calibration and validation periods. 
However, the model was classified as satisfactory according to PBIAS 
(Moriasi et al., 2007) since calibration and validation both obtained 
negative values, indicating that the model overestimated the streamflow 
(see Fig. 2). However, the simulated streamflow fitted the observed 
flows very satisfactorily, matching the low flows and most of the peaks 
well. 

3.4. SWAT and ML sediment estimation 

Nine combinations of inputs were used in the ML models. The daily 
calibration and validation results for each model are presented in 
Table 5. 

In all scenarios, the M5P and RF models obtained better daily per-
formance metrics than the SWAT model, during both calibration and 
validation. In the training (calibration) phase, RF performed particularly 
well compared to the other models. However, RF was less reliable in the 
test phase (validation) due to model overfitting during training. This 
problem can occur if the model is not tested using cross-validation (Cai 
et al., 2020). The M5P models were more stable, demonstrating similar 
results during both phases. Compared to the RF models, the M5P models 
improved the test-phase statistics in many scenarios, indicating that the 
model did not overfit during the training phase. Regarding the different 

scenarios, at the daily level, scenario III, which included the three var-
iables most correlated with sediment, presented the best results during 
M5P and RF model validation. Scenario V obtained one of the best re-
sults for both models, albeit during calibration only. Scenario IX was the 
most successful of the nine scenarios for both ML models in both phases 
(training and validation). The SWAT model did not reach the NSE value 
of 0.3. However, the ML models obtained an NSE value greater than 0.3 
in all cases, reaching the satisfactory classification according to the daily 
criteria established by Kalin et al. (2010). The two ML models and SWAT 
achieved PBIAS values of less than 25%, the criterion for very good daily 
models set by Kalin et al. (2010). 

The statistics in Table 6 indicate that the SWAT and ML approaches 
performed well in SSL estimation at the monthly scale. According to 
criteria set by Moriasi et al. (2007), SWAT simulated monthly SSL well 
during calibration and satisfactorily during validation. Conversely, 
PBIAS had very good values in both cases. The monthly SWAT results 
were significantly better than the daily results. Similar findings have 
been observed in other studies (Choukri et al., 2020; Nunes et al., 2018), 
in which problems in SWAT’s sediment transport module caused inac-
curacies in daily sediment estimates, which were averaged out and 
smoothed on a monthly scale. The M5P model was superior to SWAT 
during calibration in scenarios III, V, and IX but better in all scenarios 
during validation. In all cases, RF outperformed SWAT. As expected, the 
best results for both models were obtained in scenarios III, V, and IX, 
which is similar to the daily scale results. Again, both ML models per-
formed best in scenario IX, with performance statistics classified as very 
good during calibration and good during validation, according to the 

Table 5 
The daily performance of the models in SSL estimation.  

Input 
scenario 

Model Performance metrics Calibration (Validation) 

R2 MAE 
(ton/day) 

RSR NSE PBIAS (%) 

– SWAT 0.27 
(0.28) 

5.64 
(11.17) 

0.86 
(0.86) 

0.28 
(0.26) 

− 7.60 
(− 11.98) 

I M5P 0.41 
(0.49) 

4.63 
(8.83) 

0.77 
(0.75) 

0.41 
(0.44) 

− 5.25 
(− 5.79) 

RF 0.88 
(0.31) 

2.15 
(10.14) 

0.37 
(0.83) 

0.86 
(0.32) 

1.58 
(− 7.55) 

II M5P 0.41 
(0.48) 

4.62 
(8.86) 

0.77 
(0.75) 

0.41 
(0.44) 

− 6.12 
(− 6.84) 

RF 0.90 
(0.41) 

1.97 
(8.95) 

0.36 
(0.78) 

0.87 
(0.39) 

0.12 (2.11) 

III M5P 0.50 
(0.51) 

4.12 
(8.02) 

0.71 
(0.71) 

0.50 
(0.50) 

− 0.60 
(0.50) 

RF 0.91 
(0.45) 

1.94 
(8.58) 

0.35 
(0.77) 

0.88 
(0.41) 

− 0.47 
(4.79) 

IV M5P 0.42 
(0.50) 

4.55 
(8.73) 

0.76 
(0.75) 

0.42 
(0.44) 

− 3.11 
(− 1.23) 

RF 0.89 
(0.37) 

1.99 
(9.52) 

0.37 
(0.80) 

0.86 
(0.35) 

0.93 
(− 2.78) 

V M5P 0.54 
(0.44) 

4.03 
(8.93) 

0.68 
(0.75) 

0.54 
(0.44) 

− 0.21 
(− 17.87) 

RF 0.92 
(0.41) 

1.91 
(8.94) 

0.34 
(0.79) 

0.88 
(0.38) 

− 0.73 
(0.40) 

VI M5P 0.42 
(0.50) 

4.55 
(8.73) 

0.76 
(0.75) 

0.42 
(0.44) 

− 3.11 
(− 1.23) 

RF 0.92 
(0.34) 

1.92 
(9.23) 

0.35 
(0.82) 

0.88 
(0.33) 

1.2 (0.99) 

VII M5P 0.42 
(0.50) 

4.55 
(8.74) 

0.76 
(0.75) 

0.42 
(0.44) 

− 3.06 
(− 1.25) 

RF 0.91 
(0.41) 

1.91 
(8.85) 

0.35 
(0.79) 

0.88 
(0.38) 

− 0.4 
(2.06) 

VIII M5P 0.43 
(0.49) 

4.70 
(8.87) 

0.75 
(0.75) 

0.43 
(0.44) 

− 7.13 
(− 3.71) 

RF 0.90 
(0.43) 

1.95 
(8.80) 

0.34 
(0.78) 

0.88 
(0.40) 

− 1.91 
(1.60) 

IX M5P 0.68 
(0.51) 

3.55 
(8.10) 

0.58 
(0.71) 

0.66 
(0.50) 

0.68 
(− 6.80) 

RF 0.92 
(0.43) 

1.96 
(8.77) 

0.34 
(0.78) 

0.88 
(0.39) 

− 1.4 
(− 2.52)  

Table 6 
The monthly performance of the models in SSL estimation.  

Input 
scenario 

Model Performance metrics Calibration (Validation) 

R2 MAE (ton/ 
day) 

RSR NSE PBIAS 
(%) 

– SWAT 0.75 
(0.57) 

116.20 
(181.24) 

0.52 
(0.65) 

0.72 
(0.57) 

1.25 
(− 1.27) 

I M5P 0.62 
(0.62) 

118.25 
(153.12) 

0.62 
(0.62) 

0.62 
(0.62) 

8.55 
(4.27) 

RF 0.90 
(0.58) 

59.97 
(161.97) 

0.40 
(0.60) 

0.84 
(0.58) 

12.13 
(1.08) 

II M5P 0.64 
(0.64) 

116.72 
(153.09) 

0.60 
(0.61) 

0.64 
(0.63) 

7.75 
(3.30) 

RF 0.92 
(0.59) 

59.81 
(162.63) 

0.37 
(0.65) 

0.86 
(0.57) 

9.79 
(12.25) 

III M5P 0.75 
(0.72) 

101.08 
(136.08) 

0.50 
(0.55) 

0.74 
(0.70) 

8.83 
(6.04) 

RF 0.94 
(0.65) 

58.33 
(157.04) 

0.35 
(0.63) 

0.88 
(0.60) 

8.62 
(14.24) 

IV M5P 0.62 
(0.62) 

118.70 
(157.55) 

0.62 
(0.63) 

0.61 
(0.60) 

11.21 
(7.76) 

RF 0.92 
(0.61) 

58.17 
(158.25) 

0.38 
(0.63) 

0.86 
(0.60) 

11.19 
(4.39) 

V M5P 0.78 
(0.69) 

92.90 
(142.02) 

0.46 
(0.56) 

0.78 
(0.69) 

4.86 
(− 4.48) 

RF 0.93 
(0.69) 

60.56 
(146.24) 

0.36 
(0.58) 

0.87 
(0.66) 

9.36 
(8.99) 

VI M5P 0.62 
(0.62) 

118.70 
(157.55) 

0.62 
(0.63) 

0.61 
(0.60) 

11.21 
(7.76) 

RF 0.93 
(0.64) 

59.58 
(157.31) 

0.39 
(0.61) 

0.85 
(0.62) 

11.66 
(10.41) 

VII M5P 0.62 
(0.62) 

118.68 
(157.60) 

0.62 
(0.63) 

0.61 
(0.60) 

11.25 
(7.74) 

RF 0.92 
(0.67) 

59.35 
(151.35) 

0.38 
(0.56) 

0.85 
(0.63) 

10.31 
(10.63) 

VIII M5P 0.66 
(0.65) 

119.16 
(159.31) 

0.60 
(0.57) 

0.64 
(0.62) 

8.14 
(5.06) 

RF 0.92 
(0.72) 

60.45 
(145.51) 

0.38 
(0.53) 

0.86 
(0.67) 

8.83 
(10.10) 

IX M5P 0.83 
(0.73) 

89.13 
(135.04) 

0.43 
(0.54) 

0.81 
(0.71) 

8.90 
(5.19) 

RF 0.94 
(0.72) 

57.95 
(143.39) 

0.35 
(0.57) 

0.88 
(0.67) 

8.56 
(11.60)  
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monthly criteria established by Moriasi et al. (2007). 
The monthly results of the SWAT and ML models for the best-case 

scenario (scenario IX) are presented graphically in Fig. 3 and Fig. 4. 
The temporal variations in monthly SSL at the Oskotz river basin are 
given for the calibration period (Fig. 3) and the validation period 
(Fig. 4). 

In all cases, the PBIAS values were positive, indicating that the 
models simulated less sediment load than observed (shown in the figures 
on the right). The exception was the SWAT model validation (PBIAS =
-1.27%). Significant R2 relationships between the observed and simu-
lated SSLs are seen on the right of the figures in the scatter plots. The 
satisfactory monthly NSE (NSE > 0.5) values suggest that the monthly 
SSLs simulated by all the models were close to the observed quantities. 
Scatter plots compare the estimated and observed SSLs, providing 
another tool for evaluating the model. The more dispersed the data 
points, the worse the model performance. The higher the NSE value, the 
better the data fit the 1:1 line. Graphically, it is evident that the RF 
calibration provided the best fit. The scatter plot of the RF model cali-
bration, with an NSE of 0.88, shows that the data points are very close to 
the diagonal line. During validation, however, M5P gave the best fit, 
although the graphical results are less evident. The scatterplots show 
that the ML models provided the best estimates of low SSL values. For 
high SSL events, both ML models predicted SSL more accurately than the 
SWAT model, although all the models underestimated most of the peaks, 
as found by Sirabahenda et al. (2020). Benaman and Shoemaker (2005) 
analyzed thirty-five high-flow events using SWAT. They found that 
SWAT generally underestimated high sediment load events, as is the 
case in this study. Conversely, a clear advantage of SWAT over the ML 
models is reflected graphically; SWAT can simulate the sediment load 
over the entire calibration period without the need for data for the 

present or previous days. 
The effect of precipitation variability on SSL production can be 

observed in Fig. 5, which presents the mean monthly values for pre-
cipitation, streamflow, and SSL in the basin for the calibration and 
validation periods. 

The sediment loads simulated by all the models followed a seasonal 
distribution similar to the observed data. In both the calibration (Fig. 5a) 
and validation (Fig. 5b) periods, all the models estimated the highest 
sediment loads during the months with the greatest rainfall and, 
therefore, the highest flows. In the Oskotz, sediment loads displayed 
significant inter-annual variability, which is logical since they are 
largely regulated by precipitation. The production of SSL is directly 
related to precipitation and streamflow. During months with higher 
precipitation (autumn and winter), more streamflow is generated and, 
therefore, more SSL. During the summer months, however, monthly 
flows are very low, even when there is precipitation, and SSL is therefore 
insignificant. Despite accounting for 11% of the annual rainfall and 
having the most erosive precipitation, discharge during the dry season 
barely represents 1% of the total annual flow, since seasonal vegetation 
cover provides canopy interception and evapotranspiration, resulting in 
less runoff (Casalí et al., 2010). Most of the Oskotz Basin is covered by 
forest (66%). Therefore, according to Gallart and Llorens (2003), the 
negligible streamflow generation is also explained by high infiltration 
rates caused by the macro-porosity of the forest soil and drier soil con-
ditions before any rainfall event. In the Oskotz basin, most sediment is 
generated during the winter season, as observed by Casalí et al. (2010), 
since during winter, basin soils are more saturated, resulting in 
increased runoff. Furthermore, this study concludes that the sediment 
load in the Oskotz could be explained by vegetation and soil conditions 
rather than the erosivity of precipitation episodes. Owens et al. (1997) 

Fig. 3. A comparison of observed SSL and monthly SSL simulated using SWAT, M5P, and RF during the calibration period.  
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demonstrated that winter grazing can produce a large increase in sedi-
ment in small basins with pasture because livestock damage the soil 
structure when the soil is wet, compacting it and reducing its infiltration 
capacity and vegetation cover. During calibration, the models estimated 
that between 48% and 51% of the sediment was produced in winter 
compared to 49% of the observed sediment. In validation, the values 
were higher, between 65% and 69%, compared to 57% of the observed 
sediment. Specifically, winter sediment loads estimated by SWAT, M5P, 
and RF were 849.92, 891.77, and 888.42 tons respectively during the 

calibration period (2005–2012), which was drier than the later years 
used for validation (2013–2020). During winter, the observed mean SSL 
was 911.35 tons. Therefore, the two ML models produced better esti-
mates for this season. The same was true for the validation period, as the 
average winter sediment loads for SWAT, M5P, and RF were 2,242.67, 
2,094.04, and 1,831.08 tons, compared to an observed SSL of 1,878.16 
tons. 

The successful performance of the ML models is supported in pre-
vious literature. In their study estimating bed-load transportation rates, 

Fig. 4. A comparison of observed SSL and monthly SSL simulated using SWAT, M5P, and RF during the validation period.  

Fig. 5. The seasonal distribution of observed precipitation, streamflow, and SSL and SSL simulated using SWAT and ML models for (a) calibration and (b) validation.  
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Khosravi et al. (2020) found that M5P models could replace process- 
based models since they effectively reproduce the highly stochastic 
behavior of sediment transport and have low build and running costs. 
Al-Mukhtar (2019) and Sihag et al. (2021) found that RF had a superior 
performance among the other algorithms used to model sediment load. 
Part of the reason why ML models improve on SWAT may be different 
input data. The SWAT model simulates streamflow data and then uses 
the values as input in the sediment model, whereas M5P and RF used 
observed streamflow data to achieve the same outcome. 

Regarding the advantages and disadvantages of each model, the 
SWAT model’s utility is limited compared to the other techniques 
because this model requires a large amount of data (Pandey et al., 2021) 
and considerable calibration time. However, SWAT has the advantage of 
simulating sediment on days where no streamflow data exist, which 
allows filling in historical data or generating future sediments just by 
using climate data from the future. Conversely, the ML models require 
fewer data less and computational time. In addition, the proposed ML 
models share the advantage of easy result interpretation. It should be 
noted, however, that RF, being an ensemble, is more difficult to interpret 
than M5P. Furthermore, although RF is fast to run, it takes several 
seconds longer to display the results compared to M5P. An advantage of 
M5P is the potential to display the model using a set of rules or a decision 
tree, providing flexibility in interpreting the results as well as the vari-
ables used in each scenario. 

The main limitation to the development of sediment estimation 
models is the availability of climate and streamflow data, which can be 
very limited, incomplete and sometimes non-existent (Mapes and Pri-
cope, 2020). ML models constructed using small data sets are fitted to 
the local conditions of a study area rather than universally applicable 
laws of physics. Therefore, such ML models are not transferable outside 
the training region (Shen et al., 2021). ML models are obviously more 
advanced and powerful than traditional forecasting models, but they are 
less interpretable (Sarkar and Pal, 2021). In addition to data availability, 
the SWAT model has several other limitations. Data accuracy is crucial 
for the proper functioning of SWAT, but so is understanding the pa-
rameters. The SWAT model requires the user to have a high level of 
hydrological knowledge. Moreover, SWAT simulates sediment based on 
the MUSLE equation, which tends to underestimate large sediment 
events and overestimate smaller ones (Ma et al., 2021). However, SWAT 
has the potential to be applied in different assessment scenarios, such as 
climate change impacts, land-use changes and land management prac-
tices (Li et al., 2017). 

4. Conclusions 

Accurately estimating SSL is important for understanding the hy-
drodynamics of rivers. Due to the non-linear behavior of sediment 
transport, ML algorithms demonstrate considerable potential for accu-
rately estimating sediment loads. This study has explored the perfor-
mance of two ML models (M5P and RF) and compared them to the SWAT 
hydrological model for SSL simulation, using data collected in the 
Oskotz river basin, an experimental basin in Navarra, northern Spain. 
This study presents the following conclusions:  

1. The sediment loads estimated by the three models generally provide 
satisfactory approximations. 

2. Regarding the ML models, nine input scenarios were tested exclu-
sively using daily precipitation and streamflow as input data and 
considering scenarios with and without past data. The best scenario 
included streamflow and precipitation data from day t to day t-3 as 
inputs. Moreover, both ML models were equally valid with similar 
statistics. 

3. At the daily scale, the ML models outperformed the SWAT hydro-
logical model in all scenarios. At the monthly scale, both ML models 
achieved better validation results than SWAT.  

4. The ML models significantly reduced the time and computational 
effort required compared to SWAT, making sediment estimation 
easier. Since ML models are data-driven, they can be trained to 
describe complex processes without spatial data. In contrast, SWAT 
requires multiple spatial data and a complete description of the 
physical processes that govern the hydrological behavior of a river 
basin. 

Overall, the results indicate that ML techniques provide a more ac-
curate prediction of SSL than the SWAT model. Therefore, for water 
basin managers and stakeholders, ML can be a useful method for 
simulating sediment production, analyzing soil degradation, and 
designing appropriate measures for soil and water conservation. Such 
models could be particularly useful in basins where limited spatial data 
are available or knowledge of the processes taking place in the basin is 
limited or unknown. The novelty of this study is that it is the first to 
compare the performance of SWAT with M5P and RF models to estimate 
SSL. Moreover, no previous studies using these models have been carried 
out in the study area. Furthermore, SSL estimation can be extended to 
other ML models or the estimation of other water quality variables. In 
addition, future research could improve the models by exploring the 
influence of other inputs related to uptake and sedimentation processes. 
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