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ABSTRACT Traditionally, to characterize the response of droop-controlled systems RMS models have
been used. However, as it is demonstrated in this work, when droop control is applied to doubly-fed
induction generators, RMS models do not allow to predict the system stability and dynamic response.
Thus, in this article a linearized small-signal model that overcomes the limitations of RMS models is
presented. The proposed model is validated by simulation in MATLAB/Simulink demonstrating that it
allows to accurately analyze the stability and dynamic response of the system under study. This model
is an interesting tool that can be used in future works to design and adjust grid-forming controllers for
doubly-fed induction generators.

INDEX TERMS Doubly-Fed Induction Generator (DFIG), Droop Control, Small-Signal Modeling.

I. INTRODUCTION
Currently the control of power grids falls mainly on syn-
chronous generators (SG) of large conventional fossil-fuel
power plants. However, there are ambitious global targets in
the field of environmental and energy policies to reduce the
use of fossil fuels by replacing them with renewable energies
(RREE) such as wind power. Today, wind power is, together
with photovoltaic, the main renewable energy and it is called
to play a fundamental role in this energy transition process.

Doubly-fed induction generators (DFIG) dominate the
variable speed onshore wind turbine market [1]. As SGs are
replaced by RREE, such as DFIG wind turbines, there is a
risk that the stability of the grid will be compromised as the
grid-following (GFL) control strategies implemented in most
power converters require the presence of a strong grid, where
frequency and voltage are imposed by SG. Therefore, it is
necessary to implement controls that contribute to guarantee
the stability of the electrical grid. This way, in recent years,
the research community has focused on developing grid-
forming (GFM) control strategies that allow to solve the
challenges involved in the large-scale integration of RREE,
to ensure a stable and safe operation of the power system [2],
[3].

Power converters based on GFM control strategies behave
as voltage sources that inject power into the grid imposing
both the voltage amplitude and frequency. The power con-

verter maintains these parameters within predefined limits,
helping to ensure grid stability. Unlike GFL control, GFM
control systems do not require an existing power grid to
operate. In this sense, it is possible to implement a control
in an isolated system so that it is the converter itself that
creates and imposes the voltage and frequency characteristics
to all loads connected to it such as in the case of grid black-
outs. Among multiple GFM control strategies droop control
[4], [5], virtual synchronous machine control (VSM) [6],
[7], machine matching control [8], virtual oscillator control
(VOC) [9], [10] and dispatchable virtual oscillator control
(dVOC) [11], [12] stand out.

Droop control is used in the parallel operation of power
converters to ensure proper load sharing among the different
generating units [13], [14]. Power converters based on this
control strategy act as voltage sources, allowing to regulate
the active and reactive power output. The control consists of
two droop control loops, an active power-frequency control
loop (P-f) and another reactive power-voltage control loop
(Q-V), which adjust the phase angle and amplitude of the
voltage imposed by the converter respectively. In the Q-V
control loop a PI controller is usually implemented to ensure
reactive power reference tracking, while in the P-f control
loop a proportional controller is sufficient to track active
power references. Regarding grid synchronization method,
droop control structures do not require the use of an ad-
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ditional unit, such as a phase locked loop (PLL), for syn-
chronization purposes during normal operation [5], [7], [15],
[16]. This allows power converters to form an AC grid and
to operate whatever the grid-topology, unlike GFL power
converters that operate only in a grid-connected mode and
need grid information to be synchronized. However, although
a dedicated synchronization unit is not necessary for normal
operation, in some droop control structures a back-up PLL
is employed for pre-synchronization purposes, as well as for
operation during grid faults [13].

Droop control has been widely studied and has been
mainly applied to grid-connected power converters [5], [17]–
[27]. When analyzing the response of these systems, RMS
models are commonly used. In these models, it is assumed
that the inductive component of the network impedance is
much larger than the resistive component, which typically
happens in high and medium voltage lines. Thus, the resistive
component of the grid impedance is neglected, and it is
assumed that the angle between the voltage applied by the
converter and the grid voltage, called load angle, is small
[21], [23], [26], [27]. In addition to RMS models, some
authors [19], [20], [24], [25] employ small-signal state-space
models to characterize the power converters line dynam-
ics and analyze the eigenvalues of the system. However,
the use of RMS models is more widespread due to their
greater simplicity, in comparison with small-signal models,
and good performance when characterizing the behavior of
grid-connected power converters.

Droop control has also been applied to DFIG wind tur-
bines, but the studies carried out are not very numerous at
the moment [28]–[37]. In almost all case studies, in addition
to droop control loops, inner current and/or voltage loops
are implemented. Thus, some authors [29], [31]–[33], [35]
assume that the DFIG acts as a controllable voltage source
and they use the usual RMS models to characterize the
power exchange with the grid, without taking into account
the internal dynamics of the machine. Other authors do model
the internal dynamics of the machine, even if they implement
inner current and/or voltage loops [37], [38]. In [37] a droop
control with inner voltage and current loops is implemented
and a transfer matrix based impedance model is developed
to analyze stability and to study the influence of the control
structure and short circuit ratio. Likewise, in [38] a GFM
control with an inner voltage loop is implemented and a trans-
fer matrix based impedance modeling process is presented
in detail. In both papers the internal dynamics of the DFIG
are modeled, but the nonlinearities that the system presents,
due to the interaction of the machine with the control, are
not fully considered. The P-f control loop adjust the angular
frequency, ω, so the model depends on a variable ω, but in
[37], [38] ω is assumed to be constant.

Although the work done so far for DFIG wind turbines has
focused on the implementation of droop control with inner
current and/or voltage loops, these inner control loops can
be eliminated, what allows to resemble the droop control to
the control of a SG [24]. With no inner loops the control

structure is simpler, and the dynamic response and small-
signal stability improve [26]. However, with the absence of
inner current and voltage control loops the machine dynamics
become more relevant, which requires the correct modeling
of the DFIG and its interaction with the droop control. In this
article, in order to fully model the machine and its interaction
with the control, first, a RMS model, as those generally used
in grid-connected power converters, is employed. However,
when analyzing the stability and dynamic response of the
system, it is verified that the RMS model do not allow to
predict the system stability and dynamics. Thus, a small-
signal model, that takes into account all the nonlinearities
that the system presents due to the interaction between the
machine and the implemented control, is proposed. This
model is validated by simulation in MATLAB/Simulink,
proving that it allows to analyze the stability and to reproduce
the dynamic response of the system under study accurately,
unlike the models developed in previous works.

II. SYSTEM DESCRIPTION
The system under study shown in Fig. 1 consists of a
grid-connected DFIG wind turbine. The rotor-side converter
(RSC) is directly connected to the rotor and controls the
torque and rotational speed of the generator. The grid-side
converter (GSC) controls its output current, igsc, to regulate
the DC bus voltage, vDC , and it is connected to the stator
terminals through the output inductance LGSC . The grid
is modeled as an ideal voltage source, vg , with a series
inductance, Lg . Even though the system shown in Fig. 1
represents a single grid-connected DFIG wind turbine, it
could also represent an aggregate set of N number of DFIG
wind turbines with the same parameters that operate under
the same conditions. In this case, it would be necessary to
multiply the grid inductance by the number of wind turbines
connected in parallel to the point of common coupling (PCC),
N, as it is explained in [39]. The voltage vs represents the
stator voltage, and the currents is, ir, and ig the stator, rotor,
and grid currents respectively.

The DFIG is controlled in the synchronous reference frame
or d − q axes. In the GSC a conventional current control
is applied, while in the RSC a droop control without PLL
is implemented. The droop control structure is detailed in
Fig. 1. On the one hand, the reactive power-voltage control
loop adjusts the voltage amplitude imposed by the RSC
on the rotor. The PI regulator of the Q-V control loop
provides an increase in the rotor voltage amplitude, ∆Vr,
depending on the difference between the reference reactive
power, Qs,ref , and the reactive power measured at the stator,
Qs,meas. This increment is added to the voltage reference,
Vr,ref , and the reference voltage, aligned with the d axis,
Vrd,ref , is obtained. On the other hand, the active power-
frequency control loop regulates the frequency and phase of
the rotor voltage so that the use of a PLL for synchronizing
the RSC with the grid is not required. The P-f control loop
provides an increase in the voltage frequency imposed by
the RSC, ∆ω, proportional to the defined P-f droop coeffi-
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FIGURE 1. Droop control for a DFIG wind turbine.

cient, mp, and to the difference between the reference active
power, Ps,ref , and the measured active power, Ps,meas. This
increment is added to the frequency reference, ωref , and the
frequency ω is obtained. Integrating ω, the angle θ, which is
used for the application of Park transformation of the stator
variables, is obtained. Thus, the filtered measurements of the
stator voltages and currents in the d − q axes, vsdf , vsqf ,
isdf and isqf , are obtained, and from this measurements the
stator active and reactive powers are calculated. The angle
required for the application of Park transformation of the
rotor variables and, in this case, for obtaining the three-phase
rotor reference voltage in real magnitude, vr,ref , depends
on the position of the rotor, θm, which, in turn, depends on
the rotational speed of the machine Ωm. Both loops include
a low-pass analog filter, LPAFp and LPAFq , where ωcp
and ωcq are the cut-off frequencies of the active and reactive
power filters respectively.

In the system modeling presented below, the subscripts s, r
and g refer to the stator, rotor, and grid variables respectively,
and the subscripts d and q to the d and q axes. When modeling
the system, a small-signal analysis is performed so that the
state variables are defined as x = X0 + ∆X , where x is
the state variable, X0 is the steady-state value, and ∆X is a
small-signal perturbation. It should be noted that the GSC has
little influence on small-signal stability, so when modeling
the system its analysis will be neglected as in [38].

III. LIMITATIONS OF RMS MODELS FOR
DROOP-CONTROLLED DFIG WIND TURBINES
A. SIMPLIFIED RMS MODEL
In this section, following the dominant methodology in the
literature, an RMS model is developed to analyze the power
exchange between two voltage sources; the droop-controlled
RSC and the grid. In the implemented droop control, since
there are no inner current or voltage control loops, the control
directly adjusts the voltage at the RSC output terminals,
so the influence of the DFIG and the grid impedance must
be considered when modeling the exchanged power [26].
Fig. 2 (a) shows the equivalent circuit from which the RMS
model is developed. The circuit includes the DFIG steady-
state equivalent circuit, referred to the stator, and the grid-
connection impedance, where Rs and Rr are the stator and
rotor resistors, Xl and X0 are the equivalent leakage reac-
tance and the magnetization reactance of the machine. I0 is
the no-load current, s is the slip and Xg the grid reactance.
The magnetic losses of the machine and the resistive compo-
nent of the grid impedance are assumed to be negligible. The
voltages and currents are represented in phasor form by the
superscript ‘−’.

The grid current, Īg , can be written as

Īg = Īr − Ī0 = Īr −
V̄s
jX0

. (1)
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FIGURE 2. Simplified RMS model of a DFIG wind turbine connected to the
grid: (a) equivalent circuit and (b) phasor diagram.

Then, the stator voltage, V̄s, can be expressed as

V̄s = V̄g + jXg Īg = V̄g + jXg

(
Īr −

V̄s
jX0

)
. (2)

Therefore,

V̄s =
X0

X0 +Xg
V̄g + j

X0Xg

X0 +Xg
Īr. (3)

The voltage applied in the rotor by the RSC can be ex-
pressed as

V̄r
s

= V̄s +

(
Rr
s

+Rs + jXl

)
Īr. (4)

Substituting (3) into (4), the following equation is obtained

V̄r
s

=
X0

X0 +Xg
V̄g +

[
Rr
s

+Rs + j

(
Xl +

X0Xg

X0 +Xg

)]
Īr.

(5)

Defining the variables

Req =
Rr
s

+Rs, (6)

Xeq = Xl +
X0Xg

X0 +Xg
, (7)

Z2
eq = R2

eq +X2
eq, (8)

and

a = 3

X0

X0+Xg
Vg

Z2
eq

, (9)

the voltage applied by the RSC can be compactly written as

V̄r
s

=
X0

X0 +Xg
V̄g + (Req + jXeq)Īr. (10)

The expression (10) can be represented in a phasor dia-
gram as the one shown in Fig. 2 (b). From this phasor diagram
the expressions of the active (Pg) and reactive (Qg) powers
injected to the grid are obtained

Pg = aReq

(
Vr
s
cosδ −

aZ2
eq

3

)
+ aXeq

Vr
s
sinδ, (11)

Qg = −aReq
Vr
s
sinδ + aXeq

(
Vr
s
cosδ −

aZ2
eq

3

)
. (12)

The above expressions are not linear as the load angle
δ and the voltage applied in the rotor by the RSC, Vr,
are adjusted by the control loops, and thus are variable. In
this case, unlike the usual RMS models [21], [23], [26],
[27], the angle δ cannot be assumed to be small since the
inductance of the grid-connection impedance is added to the
inductance of the machine that can be greater than 0.3 pu.
Therefore, a small-signal model should be used to linearize
these expressions around an operating point. Defining the
angle δ and the voltage Vr as

δ = δ0 + ∆δ,

Vr = Vr0 + ∆Vr,

and developing (11) and (12), the linearized power expres-
sions are obtained

∆Pg =
aReq
s

(−Vr0sinδ0∆δ + cosδ0∆Vr)+

+
aXeq

s
(Vr0cosδ0∆δ + sinδ0∆Vr),

(13)

∆Qg =
−aReq
s

(Vr0cosδ0∆δ + sinδ0∆Vr)+

+
aXeq

s
(−Vr0sinδ0∆δ + cosδ0∆Vr).

(14)

Equations (13) and (14) can be expressed in matrix form
as

(
∆Pg
∆Qg

)
= [PQ]

(
∆δ
∆Vr

)
, (15)

where

[PQ] =
a

s

[
Vr0(−Reqsinδ0 +Xeqcosδ0) Reqcosδ0 +Xeqsinδ0
−Vr0(Reqcosδ0 +Xeqsinδ0) −Reqsinδ0 +Xeqcosδ0

]
.

(16)

The matrix [PQ] relates the load angle, ∆δ, and the RMS
value of the voltage imposed by the RSC, ∆Vr, which are
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adjusted by the P-f and Q-V droop control loops, with the
active and reactive powers injected into the grid, ∆Pg and
∆Qg .

Fig. 3 depicts the RMS model in block diagram form. The
block Dconv(s) included in the control diagram models the
delay of one sampling period due to the calculation time
of the DSP and the effect of the zero-order hold, which
represents the PWM converter. To model the effect of such
delays, the first-order Padé approximation [39] is used

Dconv(s) =
1 − 0.5sTs

(1 + 0.5sTs)2
. (17)

FIGURE 3. RMS model block diagram.

B. MODEL VALIDATION
In order to test the validity of the RMS model, a model of
the system under study has been built in MATLAB/Simulink.
The system parameters are specified in Appendix A, where
all parameters of the DFIG are referred to the stator. The
model has been built with blocks from the Simscape / Elec-
trical / Specialized Power Systems library. For the DFIG the
Asynchronous Machine block is used. This block implements
a three-phase asynchronous machine whose electrical part
is represented by a fourth-order state-space model, and the
mechanical part by a second-order system [40], [41]. The
Simulink model is taken as reference for the validation of
the developed RMS model. To determine the stability of
the Simulink model, its response across the operating speed
range of the machine has been simulated, in this case from
1050 to 1950 rpm, since the operation is limited to a slip of
±30%. A step from 1.8 MW to 2 MW has been introduced
in the reference active power, keeping the reference reactive
power at zero, and the response has been analyzed. The
stability results obtained in the simulations are graphically
represented in the first column of Fig. 4.

Similarly, the stability of the RMS model represented in
Fig. 3 has been analyzed in MATLAB. Once the model has
been implemented, it has been linearized for an active power
equal to 2 MW and a null reactive power, and the closed-
loop poles of the system in the operating speed range of the

1050

1150

1250

1350

1450

1550

1650

1750

1850

1950

Simulink Model RMS Model

Ω
m

(r
p

m
)

Stable

Unstable

Not coinciding
range

FIGURE 4. Simulink and RMS model stability comparison.

Ω𝑚 = 1219 𝑟𝑝𝑚

Ω𝑚 = 1806 𝑟𝑝𝑚

Ωm < Ωs
Ωm > Ωs

FIGURE 5. Evolution of the closed-loop poles of the RMS model as a function
of rotational speed.

machine have been obtained. In Fig. 5 the evolution of the
closed-loop poles as a function of the machine’s rotational
speed, Ωm, is plotted. The poles corresponding to rotational
speeds below the synchronous speed, Ωs, are represented
in blue and the poles corresponding to speeds above the
synchronous speed are shown in red. This way, the stability
range of the RMS model is determined (see second column
of Fig. 4).

As can be seen in Fig. 4, the stability range of both models
does not match. The Simulink model is stable from 1050 to
1198 rpm and from 1686 to 1917 rpm, while the RMS model
is stable from 1050 to 1219 rpm and from 1806 to 1950 rpm.

In addition to the fact that the stability range of the models
does not match, if their step-response is compared it can
be seen that the RMS model does not allow to model the
real dynamics of the system. In Fig. 6 the step-response
of both models at 1050 rpm is represented, comparing the
evolution of active and reactive power, and as can be seen the
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RMS model does not reproduce the behavior of the Simulink
model. Therefore, the RMS model cannot be considered a
valid model to analyze the stability and dynamics of the
system under study.

(a)

(b)

FIGURE 6. Step-response of Simulink and RMS model at Ωm=1050 rpm:
(a) active power and (b) reactive power.

IV. PROPOSED MODEL
In this section the small-signal model that overcomes the
limitations of the RMS model is presented. First, the DFIG
state-space model is developed to model the dynamics of the
stator voltages and currents. Second, from these voltages and
currents the stator active and reactive powers are calculated.

A. DFIG ANG GRID MODEL
Fig. 7 represents the DFIG equivalent circuit in the d − q
axes, where vsd, vsq , vrd and vrq are the stator and rotor
voltages, isd, isq , ird and irq are the stator and rotor currents,
ψsd, ψsq , ψrd and ψrq are the stator and rotor fluxes, Lls and
Llr are the stator and rotor leakage inductances, Lm is the
mutual inductance and ω and ωm are the angular speed of

the d − q reference and the electrical rotational speed of the
machine, respectively. All DFIG variables and parameters are
referred to the stator. The circuit includes the grid-connection
impedance, where Rg represents the resistive component, Lg
the inductive component, and ψgd and ψgq the grid flux.

FIGURE 7. DFIG equivalent circuit in the d− q axes.

The following differential equations define the DFIG
model represented in Fig. 7

vgd = Rgsisd +
dψgsd
dt

− ωψgsq, (18)

vgq = Rgsisq +
dψgsq
dt

+ ωψgsd, (19)

vrd = Rrird +
dird
dt

− (ω − ωm)ψrq, (20)

vrd = Rrirq +
dirq
dt

+ (ω − ωm)ψrd, (21)

where

Rgs = Rg +Rs, (22)

ψgsd = ψgd + ψsd = Lgsisd + Lmird, (23)

ψgsq = ψgq + ψsq = Lgsisq + Lmirq, (24)

ψrd = Lrird + Lmisd, (25)

ψrq = Lrirq + Lmisq, (26)

where Lgs = Lg+Ls, Ls = Lfs+Lm, and Lr = Lfr+Lm.
Substituting (22)-(26) into (18)-(21), a system of four first-

order differential equations is obtained

vgd = Rgsisd + Lgs
disd
dt

+ Lm
dird
dt

− ω(Lgsisq + Lmirq),

(27)
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vgq = Rgsisq + Lgs
disq
dt

+ Lm
dirq
dt

+ ω(Lgsisd + Lmird),

(28)

vrd = Rrird + Lr
dird
dt

+ Lm
disd
dt

−

− (ω − ωm)(Lrirq + Lmisq),
(29)

vrq = Rrirq + Lr
dirq
dt

+ Lm
disq
dt

+

+ (ω − ωm)(Lrird + Lmisd).
(30)

Therefore, four state variables are required to describe the
dynamic behavior of the DFIG. In this case, the stator and
rotor currents in the d− q axes, isd, isq , ird and irq, are taken
as state variables. By developing equations (27)-(30) the state
equations of the system are obtained

disd
dt

=
1

L2
σ

[LrRgsisd + (L2
mωr − LrLgsω)isq−

− LmRrird − LmLrωmirq − Lrvgd + Lmvrd],
(31)

disq
dt

=
1

L2
σ

[−(L2
mωr − LrLgsω)]isd + LrRgsisq+

+ LmLrωmird − LmRrirq − Lrvgq + Lmvrq],
(32)

dird
dt

=
1

L2
σ

[−LmRgsisd + LmLgsωmisq + LgsRrird+

+ (L2
mω − LrLgsωr)irq + Lmvgd − Lgsvrd],

(33)

dirq
dt

=
1

L2
σ

[−LmLgsωmisd − LmRgsisq−

− (L2
mω − LrLgsωr)ird + LgsRrirq+

+ Lmvgq − Lgsvrq],

(34)

where L2
σ = L2

m − LgsLr and ωr = ω − ωm.
The stator and rotor currents, and the stator voltage are

taken as output of the model. The stator voltage can be
deduced from the circuits of Fig. 7

vsd = vgd −Rgisd − Lg
disd
dt

+ ωLgisq, (35)

vsq = vgq −Rgisq − Lg
disq
dt

− ωLgisd. (36)

The model inputs are the rotor and grid voltages in the d−q
axes, vrd, vrq, vgd and vgq . The grid voltage module, Vg , can
be considered constant, but its projections in the d−q axes are
not, as they depend on the load angle δ which is defined as the
angle between the voltage imposed by the RSC and the grid
voltage. The grid frequency is assumed to be constant so the
phase angle of the grid voltage, θg , varies linearly. However,
since the rotor voltage is aligned with de d axis, the phase

angle of the rotor voltage varies according to the angle of
the d − q reference, θ, which is adjusted by the P-f control
loop. Therefore, the load angle is variable. From Fig. 8 it is
extracted that vgd = Vgcosδ and vgq = Vgsinδ where δ =
θ − θg . Likewise, the angular speed of the d − q reference,
ω, is an internal variable of the P-f control loop so it is not
constant and, as a consequence, ωr is not either.

FIGURE 8. Rotor and grid voltages in the d− q axes.

Therefore, the state and output equations are not linear. On
the one hand, it is required to linearize the projections of the
grid voltage in the d− q axes, vgd and vgq, and, on the other
hand, the crossed terms ωixy and ωrixy . For this purpose, a
small-signal model is used. The currents are defined as the
sum of the steady-state value and a small-signal perturbation,

ixy = Ixy0 + ∆ixy,

where x = s, r and y = d, q, and similarly the angular speed
of the d− q reference, ω, and the load angle, δ,

ω = ω0 + ∆ω,

δ = δ0 + ∆δ.

This way, nonlinear terms are linearized

∆vgd = −Vgsinδ0∆δ, (37)

∆vgq = Vgcosδ0∆δ, (38)

∆ωixy = ω0∆ixy + Ixy0∆ω, (39)

∆ωrixy = ωr0∆ixy + Ixy0∆ω, (40)

and the linearized state equations are obtained

d∆isd
dt

=
1

L2
σ

[LrRgs∆isd + (L2
mωr0 − LrLgsω0)∆isq−

− LmRr∆ird − LmLrωm∆irq + Lm∆vrd+

+ L2
σIsq0∆ω + LrVgsinδ0∆δ],

(41)

VOLUME X, 2020 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3142734, IEEE Access

Oraa et al.: Modeling of a Droop-Controlled Grid-Connected DFIG Wind Turbine

d∆isq
dt

=
1

L2
σ

[−(L2
mωr0 − LrLgsω0)∆isd + LrRgs∆isq+

+ LmLrωm∆ird − LmRr∆irq + Lm∆vrq−
− L2

σIsd0∆ω − LrVgcosδ0∆δ],
(42)

d∆ird
dt

=
1

L2
σ

[−LmRgs∆isd + LmLgsωm∆isq+

+ LgsRr∆ird + (L2
mω0 − LrLgsωr0)∆irq−

− Lgs∆vrd + L2
σIrq0∆ω − LmVgsinδ0∆δ],

(43)

d∆irq
dt

=
1

L2
σ

[−LmLgsωm∆isd − LmRgs∆isq−

− (L2
mω0 − LrLgsωr0)∆ird + LgsRr∆irq−

− Lgs∆vrq − L2
σIrd0∆ω + LmVgcosδ0∆δ].

(44)

Likewise, linearizing (35) and (36) the following equations
are obtained

∆vsd = −Lg
d∆isd
dt

−Rg∆isd + Lg∆ωisq − Vgsinδ0∆δ,

(45)

∆vsq = −Lg
d∆isq
dt

−Rg∆isq − Lg∆ωisd + Vgcosδ0∆δ.

(46)

Substituting (41) and (42) into (45) and (46), the linearized
equations of the stator voltage are obtained

∆vsd = −(
LgLr
L2
σ

Rgs +Rg)∆isd+

+ [−Lg
L2
σ

(L2
mωr0 − LrLgsω0) + Lgω0]∆isq+

+
LgLmRr
L2
σ

∆ird +
LgLmLrωm

L2
σ

∆irq−

− LgLm
L2
σ

∆vrd − [(
LgLr
L2
σ

+ 1)Vgsinδ0]∆δ,

(47)

∆vsq = [
Lg
L2
σ

(L2
mωr0 − LrLgsω0) − Lgω0]∆isd−

− (
LgLr
L2
σ

Rgs +Rg)∆isq −
LgLmLrωm

L2
σ

∆ird+

+
LgLmRr
L2
σ

∆irq −
LgLm
L2
σ

∆vrq+

+ [(
LgLr
L2
σ

+ 1)Vgcosδ0]∆δ.

(48)

Equations (41)-(44), (47) and (48) define the linearized
state-space model of the DFIG


d∆isd
dt

d∆isq
dt

d∆ird
dt

d∆irq
dt

 = A


∆isd
∆isq
∆ird
∆irq

+B


∆vrd
∆vrq
∆ω
∆δ

 , (49)


∆isd
∆isq
∆ird
∆irq
∆vsd
∆vsq

 = C


∆isd
∆isq
∆ird
∆irq

+D


∆vrd
∆vrq
∆ω
∆δ

 , (50)

where A, B, C, and D matrixes are defined in Appendix B.

B. RSC CONTROL
The current and voltage measurements are filtered by a low-
pass analog filter, LPAF = 1/(τs + 1), while the block
Dconv as previously mentioned in III-A, models the delay
due to digitization and for this purpose the first-order Padé
approximation, (17), is used.

The control of the system is performed in the d − q axes
whose rotational speed ω is an internal variable of the control
itself. Therefore, the control is performed in a variable speed
rotating reference frame and all control elements must be
referenced to that reference frame. To rotate the transfer
functions between the different references, the transforma-
tion presented in [42] is used. In equilibrium, the rotational
speed of the d − q axes coincides with the grid frequency,
ω = ω0. For simplicity, to perform the transformations from
LPAF and Dconv to d− q, variations of ω are neglected and
the d − q axes are considered to rotate at ω0 as the small-
signal perturbation, ∆ω, has slight influence in these modes.
For example, considering the LPAF defined in a stationary
reference frame, its equivalent model in the d − q axes is a
2x2 MIMO model

[LPAF ]ω =
1

2

[
LPAF1(s) LPAF2(s)
−LPAF2(s) LPAF1(s)

]
, (51)

where LPAF1(s) = LPAF (s+ jω) +LPAF (s− jω) and
LPAF2(s) = jLPAF (s + jω) − jLPAF (s − jω). In the
stator, since the LPAF is defined in a stationary reference
frame with the stator, αβs, the rotation is performed with ω0,
[LPAF ]ω0

. In contrast, for the RSC, [Dconv] is defined in
a stationary reference frame with the rotor windings, αβm,
which rotates at ωm, so the transformation is performed with
ωr, [Dconv]ωr .

C. POWER CALCULATION
To determine the stator active and reactive powers the filtered
measurements of the stator voltages and currents are used.
The generated powers can be computed as

Ps,meas = −(vsdf isdf + vsqf isqf ), (52)
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FIGURE 9. Proposed model block diagram.

Qs,meas = −(vsqf isdf − vsdf isqf ). (53)

In the model developed in IV-A a motor convention is
assumed, so to determine the generated powers in (52) and
(53) a negative sign is introduced.

The power equations are not linear, so a small-signal
model is used to linearize these expressions. Defining stator
voltages and currents as

vsyf = Vsyf0 + ∆vsyf ,

isyf = Isyf0 + ∆isyf ,

where y = d, q, the linearized power expressions are ob-
tained

∆Ps,meas = −Isdf0∆vsdf − Isqf0∆vsqf − Vsdf0∆isdf−
− Vsqf0∆isqf ,

(54)

∆Qs,meas = Isqf0∆vsdf − Isdf0∆vsqf − Vsqf0∆isdf+

+ Vsdf0∆isqf .
(55)

Equations (54) and (55) can be expressed in matrix form
as

(
∆Ps,meas
∆Qs,meas

)
= [PQ]


∆vsdf
∆vsqf
∆isdf
∆isqf

 , (56)

where

[PQ] =

[
−Isdf0 −Isqf0 −Vsdf0 −Vsqf0

Isqf0 −Isdf0 −Vsqf0 Vsdf0

]
. (57)

Finally, in Fig. 9 the complete proposed model is repre-
sented in block diagram form.

V. VALIDATION OF THE PROPOSED MODEL BY
SIMULATION
To validate the linearized small-signal model proposed in
IV, its stability and dynamic response is compared to the
stability range and step-response of the model built in MAT-
LAB/Simulink. The stability range of the Simulink model
has been previously determined in III-B by analyzing its
step-response, and the results obtained are plotted in the first
column of Fig. 10.

1050

1150

1250

1350

1450

1550

1650

1750

1850

1950

Simulink Model Proposed Model

Ω
m

(r
p

m
)

Stable

Unstable

FIGURE 10. Simulink and proposed model stability comparison.

The stability range of the proposed model is determined in
MATLAB by analyzing the position of the closed-loop poles.
First, the model has been linearized for an active reference
power equal to the nominal power, 2 MW, and a null reactive
power. Then, in the operating speed range of the machine
(from 1050 to 1950 rpm) the closed-loop poles of the system
have been obtained. In Fig. 11 the evolution of the closed-
loop poles as a function of the machine’s rotational speed
is represented. The poles corresponding to operating points
below synchronism are represented in blue and the poles
corresponding to operating points above synchronism in red.
Thus, the stability range of the proposed model has been
determined (see second column of Fig. 10).
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Ω𝑚 = 1198 𝑟𝑝𝑚

Ω𝑚 = 1686 𝑟𝑝𝑚

Ω𝑚 = 1913 𝑟𝑝𝑚

Ωm < Ωs
Ωm > Ωs

FIGURE 11. Evolution of the closed-loop poles of the proposed model as a
function of rotational speed.

(a)

(b)

FIGURE 12. Step-response of Simulink and proposed model at
Ωm=1050 rpm: (a) active power and (b) reactive power.

(a)

(b)

FIGURE 13. Step-response of Simulink and proposed model at
Ωm=1800 rpm: (a) active power and (b) reactive power.

As can be seen in Fig. 10 the stability range of the models
coincides. Below synchronism both models are stable from
1050 to 1198 rpm, and above synchronism the stability range
is almost equal; the Simulink model is stable from 1686 to
1917 rpm and the proposed model from 1687 to 1913 rpm.

Once it has been verified that the stability range of the
models coincides, their dynamic response is compared. A
step from 1.8 MW to 2 MW has been introduced in the
reference active power, keeping the reference reactive power
at zero, and the evolution of both active and reactive powers
has been analyzed. Fig. 12 and Fig. 13 show the simulation
results at 1050 rpm and 1800 rpm, and as can be seen, the
proposed model exhibit an identical dynamic response to that
of the Simulink model. These simulation results validate the
proposed model, so it could be used to adjust stable con-
trollers for all possible operating points of droop-controlled
DFIG wind turbines.
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VI. CONCLUSION
This paper presents a linearized small-signal model that
accurately represents the stability and dynamic response of a
droop-controlled DFIG wind turbine. Traditionally, to char-
acterize the response of droop-controlled systems RMS mod-
els have been used. However, those models are not suitable
for DFIG wind turbines, as it is verified in this paper. The
proposed model, unlike the models developed in previous
works, models the internal dynamics of the machine taking
into account all the nonlinearities that the system presents due
to its interaction with the control. To validate the proposed
model its stability and step-response is compared with that
of the model built in MATLAB/Simulink. The simulation
results show that the proposed model allows to analyze the
stability and reproduce the dynamic response of the system
under study with high accuracy. The following work will
focus on adjusting the control to stabilize the response of
the system over the whole range of rotational speeds of
the machine and for different reference active and reactive
powers.

.

APPENDIX A SYSTEM PARAMETERS

TABLE 1. System Parameters (referred to the stator)

Parameter Magnitude
Grid

SB = 2 MVA, U = 690 V , fg = 50 Hz

Line reactance (Lg) 0.1 p.u.
Line resistance (Rg) 0.015 p.u.

DFIG
S = 2 MVA, U = 690 V , fgen = 50 Hz

Rotor resistance (Rr) 0.0018 Ω
Rotor leakage inductance (Llr) 76.3 µH
Stator resistance (Rs) 0.0032 Ω
Stator leakage inductance (Lls) 161 µH
Mutual inductance (Lm) 0.0025 H
Pole pairs (pp) 2

Power converter
Sampling frequency 5.7 kHz

Control parameters
P-f droop coefficient (mp) 0.05 p.u.
Q-V PI proportional gain (Kp) 0.33 abs(s) p.u.
Q-V PI integral time constant (tn) 0.01
P-f loop low-pass filter cut-off frequency (ωcp) abs(ωr)/10 rad/s
Q-V loop low-pass filter cut-off frequency (ωcq) abs(ωr)/10 rad/s
Low-pass analog filter time constant (τ ) 1.061−4

References for the simulations
Active power initial reference (Ps,ref,0) 1.8 MW
Active power final reference (Ps,ref,f ) 2 MW
Reactive power reference (Qs,ref ) 0 MVA
Angular frequency (ωref ) 2π50 rad/s
Voltage reference (Vr,ref ) 690 abs(s) V

APPENDIX B DFIG AND GRID MODEL

A =
1

L2
σ

[
A11 A12

A21 A22

]
(58)

where

A11 =

[
LrRgs L2

mωr0 − LrLgsω0

−(L2
mωr0 − LrLgsω0) LrRgs

]
(59)

A12 =

[
−LmRr −LmLrωm
LmLrωm −LmRr

]
(60)

A21 =

[
−LmRgs LmLgsωm

−LmLgsωm −LmRgs

]
(61)

A22 =

[
LgsRr L2

mω0 − LrLgsωr0
−(L2

mω0 − LrLgsωr0) LgsRr

]
(62)

B =
1

L2
σ


Lm 0 L2

σIsq0 LrVgsinδ0
0 Lm −L2

σIsd0 −LrVgcosδ0
−Lgs 0 L2

σIrq0 −LmVgsinδ0
0 −Lgs −L2

σIrd0 LmVgcosδ0


(63)

C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
C21 C22 C23 C24

 (64)

where

C21 =

[
−(

LgLr
L2
σ
Rgs +Rg)

Lg
L2
σ

(L2
mωr0 − LrLgsω0) − Lgω0

]
(65)

C22 =

[
−Lg
L2
σ

(L2
mωr0 − LrLgsω0) + Lgω0

−(
LgLr
L2
σ
Rgs +Rg)

]
(66)

C23 =

[
LgLmRr

L2
σ

−LgLmLrωm
L2
σ

]
(67)

C24 =

[
LgLmLrωm

L2
σ

LgLmRr
L2
σ

]
(68)

D =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−LgLm
L2
σ

0 0 −(
LgLr
L2
σ

+ 1)Vgsinδ0

0 −LgLm
L2
σ

0 (
LgLr
L2
σ

+ 1)Vgcosδ0


(69)
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