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Abstract. We show that every unconditional basis in a finite
direct sum

⊕
p∈A `p, with A ⊂ (0,∞], splits into unconditional

bases of each summand. This settles a 40 year old question raised
in [A. Ortyński, Unconditional bases in `p ⊕ `q, 0 < p < q < 1,
Math. Nachr. 103 (1981), 109-116]. As an application we obtain
that for any A ⊂ (0, 1] finite, the spaces Z =

⊕
p∈A `p, Z⊕ `2, and

Z ⊕ c0 have a unique unconditional basis up to permutation.

1. Introduction

From a structural point of view, an important topic in vintage Banach
space theory is the description of the unconditional bases in a given
space. This note is devoted to advance the state of art of this subject
by proving the following result.

Theorem 1.1 (Main Theorem). Let A be a finite set of indexes con-
tained in (0,∞]. If (xj)j∈J is an unconditional basis of

⊕
p∈A `p (with

the convention that `∞ means c0 if ∞ ∈ A) then there is a partition
(Jp)p∈A of J in such a way that (xj)j∈Jp is a basis of `p for each p ∈ A.

Theorem 1.1 builds on previous work on the subject initiated by
Edelstein and Wojtaszczyk in 1976, and continued by Ortyński in 1981.
In [12] the authors described unconditional bases in finite direct sums
of `p spaces for values of p in the locally convex range, i.e., when the
set A in the statement of the theorem is contained in [1,∞]. Five
years later, Ortýnski ventured himself across the nonlocally convex
border and extended Edelstein and Wojtaszczyk’s result to the case
when A ⊆ (0, 1) ∪ (1,∞]. However, Ortyński’s methods break down

2000 Mathematics Subject Classification. 46A16, 46A35, 46A40, 46A45, 46B15.
Key words and phrases. unconditional basis, quasi-Banach space, Banach lattice,

Marriage Lemma.
Both authors supported by the Spanish Ministry for Science, Innovation, and

Universities, Grant PGC2018-095366-B-I00 for Análisis Vectorial, Multilineal y Ap-
proximación. The first-named author also acknowledges the support from Spanish
Ministry for Economy and Competitivity, Grant MTM2016-76808-P for Operators,
lattices, and structure of Banach spaces.

1

This is the peer reviewed version of the following article: Ansorena, J.L and Albiac, F, 'Projections and unconditional bases in direct sums 
of ℓp spaces, 0<p≤∞', Nov. 30 2021, Mathematische Nachrichten, which has been published in final form at https://doi.org/10.1002/
mana.201900537. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-
Archived Versions.



2 F. ALBIAC AND J. L. ANSORENA

precisely when the set A contains the index p = 1, which led him to
raise the question whether his theorem remained valid without any
restriction on p (see Remark 2 in [22, p. 115]). Our goal is to fill this
gap in the literature. With the help of fresh techniques derived from
the theory of anti-Euclidean spaces developed by Casazza and Kalton
in the late 1990’ (hence not yet available when [22] was written) we
are able to prove Theorem 1.1 in its whole generality, thus providing a
positive answer to Ortyński’s question.

2. Preliminaries

Throughout this article we employ the notation commonly used in Ba-
nach space theory as can be found in [2]. The only exception is that,
for convenience in writing our results in a unified way, unless otherwise
stated the symbol `∞ denotes the space of sequences tending to zero
equipped with the supremum norm, usually denoted by c0. Next we
single out the notation that it is more heavily used. We denote by F
the real or complex scalar field and by c00(J) the set of all (aj)j∈J ∈ FJ
such that |{j ∈ J : aj 6= 0}| < ∞. We write by EJ := (ej)i∈J for the
canonical unit vector system of FJ , i.e., ej = (δj,i)i∈J for each j ∈ J ,
where δj,i = 1 if i = j and δi,j = 0 otherwise. The symbol αi . βi
for i ∈ I means that the families of positive real numbers (αi)i∈I and
(βi)i∈I verify supi∈I αi/βi <∞. If αi . βi and βi . αi for i ∈ I we say
(αi)i∈I are (βi)i∈I are equivalent, and we write αi ≈ βi for i ∈ I. The
closed linear span of a set of vectors A in a quasi-Banach space X is de-
noted by [A]. If we have a finite family (Xi)i∈F of quasi-Banach spaces,
the Cartesian product

⊕
i∈F Xi of Xi’s with coordinatewise algebraic

operations is a quasi-Banach space with the quasi-norm

‖(xi)i‖ = sup
i∈F
‖xi‖, xi ∈ Xi.

If F = {i, . . . , N} and Xi = X for i ∈ F we simply write XN and call
the resulting direct sum the N -fold product of X. A 2-fold product will
be called a square.

For expositional ease and to fix the notation, below we gather well-
known concepts scattered through the literature and the basic facts
about them that we will need later on, both in Sections 3 and 4.

Quasi-Banach spaces and envelopes. Quasi-Banach spaces pro-
vide the natural framework for our work. Recall that a quasi-Banach
space X is a locally bounded topological vector space. This is equiva-
lent to saying that the topology on X is induced by a quasi-norm, i.e.,
a map ‖ · ‖ : X→ [0,∞) with the following properties:
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(i) ‖x‖ = 0 if and only if x = 0;
(ii) ‖αx‖ = |α|‖x‖ for α ∈ F and, x ∈ X,
(iii) there is a constant κ ≥ 1 so that for all x and y in X we have

‖x+ y‖ ≤ κ(‖x‖+ ‖y‖).
If it is possible to take κ = 1 we obtain a norm. A quasi-norm ‖ · ‖ is
called p-norm (0 < p ≤ 1) if it is p-subadditive, that is,

‖x+ y‖p ≤ ‖x‖p + ‖y‖p, ∀x, y ∈ X.
In this case the unit ball of X is an absolutely p-convex set and X is
said to be p-convex. A quasi-norm clearly defines a metrizable vector
topology on X whose base of neighborhoods of zero is given by sets of
the form {x ∈ X : ‖x‖ < 1/n}, n ∈ N. If such topology is complete
we say that (X, ‖ · ‖) is a quasi-Banach space. If the quasi-norm is p-
subadditive for some 0 < p ≤ 1, X is said to be a p-convex quasi-Banach
space (p-Banach space for short). Let us notice that a p-subadditive
quasi-norm ‖ · ‖ induces an invariant metric topology on X by the
formula d(x, y) = ‖x− y‖p.

All Banach spaces are locally convex thanks to the triangle law of
the norm, which translates geometrically in the spaces having a convex
set as unit ball. In contrast, a quasi-Banach space (X, ‖·‖) need not be
p-convex for any p ≤ 1. The Aoki-Rolewicz theorem [8, 23] guarantees
that, at least, X is p-normable for some 0 < p ≤ 1, i.e., X can be
endowed with an equivalent quasi-norm which is p-subadditive.

When dealing with a quasi-Banach space X it is often convenient to
know which is, the “smallest” Banach space containing X. Formally,
the Banach envelope of a quasi-Banach space X consists of a Banach

space X̂ together with a linear contraction JX : X → X̂ satisfying the
following universal property: for every Banach space Y and every linear

contraction T : X → Y there is a unique linear contraction T̂ : X̂ → Y
such that T̂ ◦ JX = T . Given a family of vectors (usually a basis)

B in X we put B̂ := JX(B). A map J from X into a Banach space

Y is said to be an envelope map if the associated map Ĵ : X̂ → Y is
an isomorphic embedding. If J : X → Y is an envelope map there

is a natural identification of (JX, X̂) with (J, J(X)). For instance, the
Banach envelope of `p for p < 1 is (naturally identified with) `1, whereas
the Banach envelope of Lp([0, 1]) is {0}. The unfamiliar reader will find
general information about quasi-Banach spaces in [17].

Unconditionality of bases and basic sequences. Let X be a quasi-
Banach space and J be a (finite or infinite) countable set. Given a
sequence (fj)j∈J , a series

∑
j∈J fj converges unconditionally to f ∈
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X, and write f =
∑

j∈J fj unconditionally, if either J is finite and

f =
∑

j∈J fj or J is infinite and f =
∑∞

n=1 fπ(n) for every bijection
π : N→ J .

A sequence B = (xj)j∈J in X is an unconditional basic sequence if for
every f ∈ [xj : j ∈ J ] there is a unique family (aj)j∈J in F such that the
series

∑
j∈J aj xj converges unconditionally to f . Given 1 ≤ C < ∞

we say that B is a C-unconditional basic sequence if xj 6= 0 for every
j ∈ J and there is a constant C such that∥∥∥∥∥∑

j∈J

aj xj

∥∥∥∥∥ ≤ C

∥∥∥∥∥∑
j∈J

bj xj

∥∥∥∥∥
for every (aj)j∈J and (bj)j∈J in c00(J) such that |aj| ≤ |bj| for all j ∈ J .
It is well-known that B is an unconditional basic sequence if and only it
is a C-unconditional basic sequence for some C. The smallest constant
C ≥ 1 for which an unconditional basic sequence is C-unconditional
will be called the unconditional constant of B. Of course, a finite
unconditional basis is nothing but a finite linearly independent family.
All unconditional basic sequences are assumed to be infinite, unless
otherwise stated. It is customary to index basic sequences with the set
N of natural numbers, and to index finite basic sequences with subsets
{1, . . . ,m} of N. We prefer to use an arbitrary countable set J to
emphasize that, when dealing with unconditional basic sequences, it is
unnecessary to arrange the sequences in a particular way.

The following lemmas just follow from the universal property of Ba-
nach envelopes (see, e.g., [1, Proposition 9.9]). We write them down
for further reference.

Lemma 2.1. If B is a semi-normalized complemented unconditional

basic sequence of a quasi-Banach space X then B̂ is a semi-normalized

complemented unconditional basic sequence of X̂.

Lemma 2.2. If Y is a complemented subspace of a quasi-Banach space

X, then JX|Y : Y→ X̂ is an envelope map.

Lemma 2.3. If X1 and X2 are quasi-Banach spaces, then

(JX1 , JX2) : X1 ⊕ X2 → X̂1 ⊕ X̂2

is an envelope map.

An unconditional basis of a quasi-Banach space X is an uncondi-
tional basic sequence whose closed linear span is X. Given a basis
B = (xj)j∈J of X there is unique sequence B∗ = (x∗j)j∈J in X∗ such that
f =

∑
j∈J x

∗
j(f)xj for every f ∈ X. The support of f =

∑
j∈J aj xj ∈
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X with respect to B is the set supp(f) = {j ∈ J : aj 6= 0}, and the
support of f ∗ ∈ X∗ with respect to B is the set supp(f ∗) = {j ∈
J : f ∗(xj) 6= 0}. Associated to an unconditional basis B of X, for each
γ = (γj)j∈J ∈ `∞(J) there is a bounded linear map Sγ : X → X given
by

Sγ(f) =
∑
j∈J

γj x
∗
j(f)xj, f ∈ X.

In case that γ is the indicator function of a set A ⊆ J we put SA := Sγ
and say that the operator SA is the coordinate projection on A.

Suppose that F is a finite set of indices and that Bi = (xi,j)j∈Ji is
an unconditional basis of a quasi-Banach space Xi for i ∈ F . Then the
sequence ⊕

i∈F

Bi := (xi,j)(i,j)∈∪i∈F {i}×Ji ⊂
⊕
i∈F

Xi

defined by

xi,j = (xi,j,k)k∈F , where xi,j,k =

{
xj if k = i,

0 otherwise,

is an unconditional basis of
⊕

i∈F Xi. If F = {1, . . . , N} and Xi = X
and Bi = B for all i ∈ F , we put BN =

⊕
i∈F Bi and say that BN is the

N -fold product of B.
A subbasis of a basis B = (xj)j∈J of a quasi-Banach space X is a

sequence of the form (xj)j∈I for some I ⊆ J . A block basic sequence
with respect to B is a sequence (ui)i∈G in X such that (supp(ui))i∈G is a
family of pairwise disjoint finite sets. A block basic sequence of an un-
conditional basis is an unconditional basic sequence, and the subbases
of B are in particular block basic sequences.

Domination and equivalence of sequences. Let B0 = (xj)j∈J and
B1 = (yi)i∈I be two sequences in quasi-Banach spaces X and Y re-
spectively. We say that B0 dominates a permutation of B1 if there are
a bounded linear map T : [B0] → B1] and a bijection π : J → I such
that T (xj) = yπ(j) for all j ∈ J . In the case when π is the identity
map we say that B0 dominates B1. If T is an isomorphism from [B0]
onto [B1] we say B0 and B1 are permutatively equivalent (equivalent if,
moreover, π is the identity map), and we write B0 ∼ B1. Note that
if B0 and B1 are permutatively equivalent and B0 is an unconditional
basic sequence, then B1 is an unconditional basic sequence.

An unconditional basis B = (xj)
∞
j=1 of a quasi-Banach space X is said

to be subsymmetric if it is equivalent to (xφ(j))
∞
j=1 for every increasing

map φ : N → N. For example, the canonical basis of `p, which we
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denote by E`p from now on, is subsymmetric (in fact it is symmetric,
see [13, 24]).

Let us record a very simple, yet useful, property.

Lemma 2.4. Suppose that |F | < ∞ and that for each i ∈ F , Bi is a
subsymmetric basis in a quasi-Banach space Xi. Then every subbasis
of
⊕

i∈F Bi is permutatively equivalent to
⊕

i∈G Bi for some G ⊆ F .

Proof. Let B0 be a subbasis of
⊕

i∈I Bi and write B0 =
⊕

i∈F Bi,0, where
Bi,0 is a (finite or infinite) subbasis of Bi, i ∈ F . The set

G = {i ∈ F : Bi,0 is infinite}

is clearly nonempty, and B0 ∼ B′ ⊕ (
⊕

i∈G Bi) for some finite basis B′.
Pick g ∈ G. Dropping a finite number of elements from Bg, we infer
that Bg ∼ B′ ⊕ Bg. Therefore, B0 ∼

⊕
i∈G Bi. �

Lattice structure and convexity conditions. We are interested in
quasi-Banach lattices of functions defined on a countable set J , i.e.,
a quasi-Banach space L ⊆ FJ such that ej = (δi,j)i∈J ∈ L for every
j ∈ J , and whenever f ∈ L and g ∈ FJ satisfy |g| ≤ |f | we have g ∈ L
and ‖g‖ ≤ ‖f‖. In this case, the unit vector system EJ = (ej)j∈J is a
1-unconditional basic sequence for L. If, additionally, EJ is normalized
we will say that L is a sequence space. Recall that a quasi-Banach
lattice L is said to be p-convex (resp., q-concave), where 0 < p ≤ ∞
(resp. 0 < q ≤ ∞) if there is a constant M > 0 such that for any
x1, . . . , xm ∈ L and m ∈ N we have∥∥∥∥∥∥

(
m∑
n=1

|xn|p
)1/p

∥∥∥∥∥∥ ≤M

(
m∑
n=1

‖xn‖p
)1/p

(2.1)

(resp., (
m∑
n=1

‖xn‖q
)1/q

≤M

∥∥∥∥∥∥
(

m∑
n=1

|xn|q
)1/q

∥∥∥∥∥∥ .) (2.2)

The general procedure to define the element (
∑m

n=1 |xn|p)1/p ∈ L is
described in [21, pp. 40-41]. However, when our lattice L is a sequence
space, so that xn = (aj,n)j∈J for n = 1, . . . ,m, we have(

m∑
n=1

|xn|p
)1/p

=

( m∑
n=1

|aj,n|p
)1/p


j∈J

,

and so (2.1) and (2.2) take a more workable form.
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Every semi-normalized unconditional basis B of a quasi-Banach space
X becomes normalized and 1-unconditional after a suitable renorming
of X, so that we can associate a sequence space to B. An unconditional
basis B will be said to be p-convex if its associated sequence space is.
In general, we say that a semi-normalized unconditional basis has a
property about lattices if its associated sequence space has it. And the
other way around, i.e., we will say that a sequence space enjoys a cer-
tain property relevant to bases if its unit vector system does. A family
of semi-normalized unconditional bases will be said to have a certain
property if every basis in the family has it and all the constants involved
(including the semi-normalization and the unconditionality ones) are
uniformly bounded.

If a quasi-Banach lattice is locally convex as a quasi-Banach space,
then it is 1-convex as a quasi-Banach lattice. However, despite the fact
that every quasi-Banach space is p-convex for some 0 < p ≤ 1, there
exist quasi-Banach lattices that are not p-convex for any p. Kalton
introduced in [15] the concept of L-convex lattice and showed that a
quasi-Banach lattice is L-convex if and only if it is p-convex for some
p > 0.

Lemma 2.5. Let A be a finite subset of (0,∞]. Then the sequence space⊕
p∈A `p is q-convex and r-concave, where q = minA and r = maxA.

Proof. Minkowski’s inequality yields that for any measure µ, the lattice
Lp(µ) is r-convex and q-concave for 0 < q ≤ p ≤ r ≤ ∞. Now we just
need to use that q-convexity and r-concavity are preserved under direct
sums. �

Recall that two quasi-Banach spaces X1 and X2 are totally incom-
parable if they have no infinite-dimensional subspaces in common (up
to isomorphism). It is known [20,25] that `p and `q are totally incom-
parable spaces if 0 < p < q ≤ ∞. Let us see what happens with the
direct sums of `p spaces.

Proposition 2.6. Suppose that
⊕

p∈A `p ≈
⊕

p∈B `p for some finite

subsets A,B of (0,∞]. Then A = B.

Proof. Let p ∈ A. Applying [22, Proposition 1.3] yields (Xq)q∈B such
that Xq is a complemented subspace of `q for every q ∈ B and `p ≈⊕

q∈B Xq. Pick q ∈ B such that Xq is infinite-dimensional. Then `q
and `p are not totally incomparable, and so p = q. We have proved
that A ⊆ B. Switching the roles of A and B we obtain B ⊆ A. �

We will take advantage of the lattice structure to delve a bit deeper
into the concept of totally incomparable quasi-Banach spaces.
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Lemma 2.7. Let L1 and L2 be sequence spaces. Suppose that L1 is
r-convex, that L2 is q-convex and that q < r. Then L1 and L2 are
totally incomparable.

To prove this we need an auxiliary result.

Lemma 2.8. Let X be an infinite dimensional quasi-Banach space.
For any 0 < δ < 1 there is (fn)∞n=1 in the open unit ball BX of X with
‖fn − fm‖ > δ for all n 6= m in N.

Proof. We construct the sequence (fn)∞n=1 recursively. Fix 0 < δ < 1
and assume that for a given k ∈ N we have chosen vectors (fn)k−1n=1 in BX
fulfilling our claim. Set Yn = [xn : 1 ≤ n ≤ k − 1] and Xn = X/Yn−1.
Since Xn 6= {0}, there is f ∈ X such that ‖ − f + Yn−1‖ < 1 and
‖ − f + Yn−1‖ > δ. The mere definition of the norm in X/Yn−1 yields
fn ∈ X such that f + fn ∈ Yn−1 and ‖fn‖ < 1. Let k ≤ n − 1. Since
fk − (f + fn) ∈ Yn−1,

‖fk − fn‖ = ‖f + fk − fn − f‖ ≥ ‖f + Yn−1‖ > δ. �

Proof of Lemma 2.7. Let Y be a quasi-Banach space isomorphic to a
subspace of both L1 and L2, and let Ti : Y → Li be an isomorphic
embedding, i = 1, 2. By Lemma 2.8 we can pick a sequence (fn)∞n=1

in BY such that infn 6=m ‖fn − fm‖ > 0. Using a Cantor diagonal argu-
ment, passing to a subsequence we obtain that (Ti(fn))∞n=1 is pointwise
convergent in Li, i = 1, 2. Then, if yn = f2n−1 − f2n, (Ti(yn))∞n=1 is
pointwise convergent to zero in Li, i = 1, 2. Since infn ‖yn‖ > 0 and
supn ‖yn‖ < ∞, applying a standard “gliding hump” argument (see
[9]) we may pass to a further subsequence and obtain that (yn)∞n=1 is
equivalent to a block basic sequence with respect to the canonical basis
of both L1 and L2. Then for any (an)∞n=1 ∈ c00 we have(
∞∑
n=1

|an|q
)1/q

.

∥∥∥∥∥
∞∑
n=1

anT2(yn)

∥∥∥∥∥ ≈
∥∥∥∥∥
∞∑
n=1

anT1(yn)

∥∥∥∥∥ .
(
∞∑
n=1

|an|r
)1/r

.

This absurdity proves that L1 and L2 are totally incomparable. �

A quasi-Banach space (respectively, a quasi-Banach lattice) X is said
to be sufficiently Euclidean if `2 is crudely finitely representable in X
as a complemented subspace (respectively, complemented sublattice),
i.e., there is a positive constant C such that for every n ∈ N there are
bounded linear maps (respectively, lattice homomorphisms) In : `n2 →
X and Pn : X→ `n2 with Pn◦In = Id`n2 and ‖In‖ ‖Pn‖ ≤ C. We say that
X is anti-Euclidean (resp. lattice anti-Euclidean) if it is not sufficiently
Euclidean.



9

The theory of anti-Euclidean (locally convex) spaces goes back to
[10]. As for nonlocally spaces, we point out that if the Banach en-
velope of a quasi-Banach space X is anti-Euclidean, then X is anti-
Euclidean. However, no examples are known of anti-Euclidean quasi-
Banach spaces whose Banach envelope is sufficiently Euclidean. Per-
haps this gap is at the root of the lack of motivation for developing a
theory of sufficiently Euclidean spaces in the setting of quasi-Banach
spaces. In practice, the only thing we will use in this paper is that `1
(the Banach envelope of `p for 0 < p < 1) is anti-Euclidean. The most
natural way to see this relies on Grothendick’s theorem. Indeed, if `1
were sufficiently Euclidean, by [19, Theorem 4.1] the identity map on
`n2 would be absolutely summing uniformly in n, which is absurd.

Remark 2.9. If a quasi-Banach space X is anti-Euclidean then every
complemented subspace Y of X is lattice anti-Euclidean with respect
to any lattice estructure on Y.

Proposition 2.10. Suppose X is a quasi-Banach space with a semi-
normalized unconditional basis B which dominates the unit vector basis
of `1. Then the coefficient transform regarded as a map from X into `1
is an envelope map, hence X̂ ≈ `1 is anti-Euclidean.

Proof. Lemma 2.1 yields that B̂ is a semi-normalized unconditional

basis of X̂. By the universal property of X̂, the basis B̂ dominates the

unit vector system of `1 and, by the local convexity of X̂, the converse
also holds. We conclude that those two bases are equivalent, therefore

X̂ ≈ `1. �

3. Complemented sequences in quasi-Banach spaces

This section is geared towards Theorem 3.5, which tells us that, un-
der three straightforwardly verified conditions regarding a space and a
basis, the complemented unconditional basic sequences of certain quasi-
Banach spaces with unconditional basis are rather easy to classify. The
techniques used in the proof of this theorem are a development of the
methods introduced by Casazza and Kalton in [10, 11] to investigate
the problem of uniqueness of unconditional basis in a class of Banach
lattices that they called anti-Euclidean. The subtle but crucial role
played by the lattice structure of the space in the proof of Theorem 3.5
has to be seen in that it will permit to simplify the untangled way in
which complemented basic sequences can be written in terms of the
basis. These techniques have been extended to the nonlocally convex
setting and efficiently used in the literature to establish the uniqueness
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of unconditional bases of complemented subspaces of infinite prod-
ucts such as `p(`q) = (`q ⊕ `p ⊕ · · · ⊕ `p . . . )q for p ∈ (0, 1] ∪ {∞}
and q ∈ (0, 1] ∪ {2,∞} ([3–7]). However, the spaces

⊕
p∈A `p with

2 < |A| < ∞ are not complemented in any space `p(`q), and so the
known results on the subject do not shed direct information about
them.

Before moving on, recall that a basic sequence (ui)i∈I in a quasi-
Banach space X (with nontrivial dual) is said to be complemented if
its closed linear span U = [ui : i ∈ I] is a complemented subspace of X,
i.e., there is a bounded linear map P : X→ U with P |U = IdU. Thus, a
basic sequence Bu = (ui)i∈I is complemented in X if and only if there
is a sequence (u∗i )i∈I in X∗ such that u∗i (uk) = δi,j for every i, k ∈ I
and the linear map Pu : X→ X given by

Pu(f) =
∑
i∈I

u∗i (f)ui, f ∈ X, (3.1)

is well-defined (hence bounded by Closed Graph Theorem). We will
refer to (u∗i )i∈I as a sequence of projecting functionals for Bu. Notice
that the sequence (u∗i )i∈I thus defined need not be unique unless, of
course, Bu = (ui)i∈I spans the whole space X. A complemented basic
sequence Bu = (ui)i∈I in X with mutually disjoint supports with respect
to a basis B will be said to be well complemented if we can choose
a sequence of projecting functionals B∗u = (u∗i )i∈I with supp(u∗i ) ⊆
supp(ui) for i ∈ I. In this case B∗u is called a sequence of good projecting
functionals for Bu. For instance, since the coordinate projections of an
unconditional basis B are bounded, the subbases of B are trivially well
complemented basic sequences with respect to B.

Let us get started with a reduction lemma.

Lemma 3.1 (cf. [3, Lemma 3.8]). Let Bu = (ui)i∈I be a well com-
plemented block basic sequence with respect to an unconditional basis
B = (xj)j∈J of a quasi-Banach space X, and let (u∗i )i∈I be a sequence
of good projecting functionals for Bu. Suppose Bv = (vi)i∈I and (v∗i )i∈I
are sequences in X and X∗ respectively such that for some positive con-
stant C we have

(i) |x∗j(vi)| ≤ C|x∗j(ui)| for all (i, j) ∈ I × J ,
(ii) |v∗i (xj)| ≤ C|u∗i (xj)| for all (i, j) ∈ I × J , and
(ii) infi∈I |v∗i (vi)| > 0 for all i ∈ I.

Then Bv is a well complemented block basic sequence equivalent to Bu.
Moreover, if v∗i (vi) = 1 and supp(v∗i ) ⊆ supp(vi) for all i ∈ I, then
(v∗i )i∈I is a sequence of good projecting functionals for Bv.
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Proof. Without loss of generality, by dilation we assume that v∗i (vi) = 1
for all i ∈ I. Replacing v∗i with S∗supp(vi)

(v∗i ) we can also assume that

supp(v∗i ) ⊆ supp(vi) for all i ∈ I. Since supp(vi) ⊆ supp(ui) for every
i ∈ I, there are β and γ ∈ `∞ such that Sγ(ui) = vi and S∗β(u∗i ) = v∗i
for every i ∈ I. It follows that Bv is a block basic sequence, thus
v∗i (vk) = 0 whenever i 6= k.

Let Pu be defined as in (3.1). The bounded linear map T = Pu ◦ Sβ
satisfies

T (f) =
∑
i∈I

u∗i (Sβ(f))ui =
∑
i∈I

S∗β(u∗i )(f)ui =
∑
i∈I

v∗i (f)ui

for all f ∈ X. In particular, T (vi) = ui for all i ∈ I. Therefore Bu and
Bv are equivalent.

Finally, the bounded linear map Pv = Sγ ◦ T satisfies

Pv(f) =
∑
i∈I

v∗i (f)vi, f ∈ X.

We deduce that Bv is well complemented and that (v∗i )i∈I is a sequence
of (good) projecting functionals for Bv. �

The following definition identifies and gives relief to an unstated
feature shared by some unconditional bases. Examples of such bases
can be found e.g. in [4, 10, 14], where the property naturally arises in
connection with the problem of uniqueness of unconditional basis.

Definition 3.2. A semi-normalized unconditional basis B = (xj)j∈J of
a quasi-Banach space X is said to be universal for well complemented
block basic sequences if for every semi-normalized well complemented
block basic sequence Bu = (ui)i∈I of B there is a one-to-one map π : I →
J such that π(i) ∈ supp(ui) for all i ∈ I, and Bu is equivalent to the
rearranged subbasis (xπ(i))i∈I of B.

Remark 3.3. The fact that the canonical basis E`p of `p, 0 < p ≤ ∞, is
perfectly homogeneous (see [2, Chapter 9]) implies that E`p is universal
for well complemented block basic sequences.

This observation in combination with our next result gives ground to
the fact that for any A ⊂ (0,∞] finite, the basis

⊕
p∈A E`p of

⊕
p∈A `p

is universal for well complemented block basic sequences.

Proposition 3.4. Let (Xi)i∈F be a finite collection of quasi-Banach
spaces. For each i ∈ F suppose that Bi is a basis of Xi which is uni-
versal for well complemented block basic sequences. Then the basis
B =

⊕
i∈F Bi of X =

⊕
i∈F Xi is universal for well complemented block

basic sequences.
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Proof. Let (uj)j∈J be a well complemented block basic sequence in
X with respect to B with good projecting functionals (u∗j)j∈J . Write
uj = (uj,i)i∈F and u∗j = (u∗j,i)i∈I . By hypothesis we have supp(u∗j,i) ⊆
supp(uj,i) for every (j, i) ∈ J × F . Since

∑
i∈F u∗j,i(uj,i) = 1, there is

ι : J → F such that

|u∗j,ι(j)(uj,ι(j))| ≥ |F |−1, j ∈ J.

For i ∈ F let Si : Xi → X be the inclusion map. By Lemma 3.1, the
family

B′ = (Sι(j)(uj,ι(j)))j∈J

is a well complemented block basic sequence in X equivalent to B.
We infer that B′i := (uj,i)j∈ι−1(i) is is a well complemented block basic
sequence in Xi for every i ∈ F . By hypothesis, B′i is permutatively
equivalent to a subbasis B′′i of Bi. Hence, B′ is permutatively equivalent
to the subbasis

⊕
i∈F B′′i of B. �

Theorem 3.5. Let X be a quasi-Banach space whose Banach envelope
is anti-Euclidean. Suppose B is an unconditional basis for X such that:

(i) The lattice structure induced by B in X is L-convex;
(ii) B is universal for well complemented block basic sequences; and
(iii) B ∼ B2.

Then every complemented unconditional basic sequence of X is permu-
tatively equivalent to a subbasis of B.

Proof. Let B0 be a semi-normalized complemented unconditional basic

sequence in X. The unconditional basic sequence B̂0 spans a comple-

mented subspace of X̂ and hence, by Remark 2.9, B̂0 is lattice anti-
Euclidean. Theorem 3.4 from [3] gives that B0 is permutatively equiva-
lent to a well complemented block basic sequence of Bs for some s ∈ N.
Since, by the hypothesis (iii), Bs ∼ B and B is universal for well com-
plemented block basic sequences, we are done. �

This result applied to finite direct sums
⊕

p∈A `p gives the following.

Theorem 3.6. Let A be a finite subset of (0, 1]. Then every comple-
mented unconditional basic sequence of the sequence space

⊕
p∈A `p is

permutatively equivalent to the unit vector basis of
⊕

p∈B `p for some
B ⊆ A.

Proof. We have that
⊕

p∈A `p ⊆ `
|A|
1 ≡ `1 (as quasi-Banach lattices).

Then, the result follows by combining Lemma 2.4, Lemma 2.5, Propo-
sition 2.10, Remark 3.3, Proposition 3.4, and Theorem 3.5. �
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4. The proof of the Main Theorem

With the all groundwork of the previous sections we may proceed di-
rectly to proof of our Main Theorem.

Completion of the proof of Theorem 1.1. Without loss of generality we
assume that the basis B = (xj)j∈J is normalized. Assume also that
the set of indexes AK = {p ∈ A : p ≤ 1} is nonempty, otherwise the
result would follow from the afore-mentioned result by Edelstein and
Wojtaszczyk’s [12, Theorem 4.11].

Put AC = A\AK, XK =
⊕

p∈AK `p, XC =
⊕

p∈AC `p and X =
⊕

p∈A `p,
so that X = XK ⊕ XC.

Since XK is contained in the |AK|-fold product `
|AK|
1 we have X̂K ≈ `1

and so X̂ ≈ `1 ⊕ XC. By Edelstein-Wojtaszczyk’s theorem there is a
partition (Jp)p∈{1}∪AC of J such that for each p ∈ {1}∪AC, the sequence
(JX(xj))j∈Jp generates a space isomorphic to `p. By Lemma 2.2, if we
put Yp = [xj : j ∈ Jp] for p ∈ {1} ∪ AC, the restriction of JX to Yp is
an envelope map. Therefore

Ŷp ≈ [JX(xj) : j ∈ Jp] ≈ `p, p ∈ {1} ∪ AC.

Since, by Lemmas 2.5 and 2.7, the spaces XK and XC are totally
incomparable, there exist complemented subspaces YK of XK and YC
of XC such that Y1 ' YK ⊕ YC. Taking Banach envelopes, in light of
Lemma 2.3, we obtain

`1 ≈ ŶK ⊕ ŶC = ŶK ⊕ YC.

Since `1 and XC are totally incomparable, YC must be finite dimen-
sional. Hence XK⊕YC ≈ XK. We infer that Y1 is isomorphic to a com-
plemented subspace of XK. Then, by Theorem 3.6, there is B ⊆ AK
such that (xj)j∈J1 is permutatively equivalent to the unit vector sys-
tem of

⊕
p∈B `p. That is, there is a partition (J ′p)p∈B of J1 such that

(xj)j∈J ′p is (permutatively) equivalent to the unit vector system of `p
for every p ∈ B.

If p ∈ AC, the dual space of Ŷp has a finite cotype. Moreover, by
[15, Theorem 4.2], Yp is an L-convex quasi-Banach lattice. Therefore,
by [16, Theorem 3.4], JX|Yp is an isomorphism and so (xj)j∈Jp generates
a space isomorphic to `p.

Summing up, if we put A′ = B∪AC and J ′p = Jp for p ∈ AC, we have
that (J ′p)p∈A′ is a partition of J such that (xj)j∈J ′p generates a space
isomorphic to `p. Consequently, X ≈

⊕
p∈A′ `p. By Proposition 2.6,

A = A′. �
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As an application we obtain new additions to the list of spaces with
a unique unconditional basis. Recall that a quasi-Banach space X with
an unconditional basis B is said to have a unique unconditional basis
up to a permutation if every normalized unconditional basis of X is
permutatively equivalent to B.

Theorem 4.1. Let A be a finite subset of indexes of (0, 1] ∪ {2,∞}.
Then the quasi-Banach space

⊕
p∈A `p has a unique unconditional basis,

up to permutation.

Proof. It just follows by combining Theorem 1.1 and the uniqueness of
unconditional basis of `p for p ∈ A ([14,18,19]). �

Remark 4.2. Observe that Theorem 3.5 provides a proof of the unique-
ness of unconditional basis of `p for p ∈ (0, 1] ∪ {∞}.
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[1] F. Albiac, J. L. Ansorena, P. Berná, and P. Wojtaszczyk, Greedy approximation
for biorthogonal systems in quasi-Banach spaces, arXiv:1903.11651 [math.FA].

[2] F. Albiac and N. J. Kalton, Topics in Banach space theory, 2nd revised and up-
dated edition, Graduate Texts in Mathematics, vol. 233, Springer International
Publishing, 2016.
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[4] F. Albiac and C. Leránoz, Uniqueness of unconditional basis in Lorentz se-
quence spaces, Proc. Amer. Math. Soc. 136 (2008), no. 5, 1643–1647.

[5] , An alternative approach to the uniqueness of unconditional basis of
`p(c0) for 0 < p < 1, Expo. Math. 28 (2010), no. 4, 379–384.

[6] , Uniqueness of unconditional basis in quasi-Banach spaces which are
not sufficiently Euclidean, Positivity 14 (2010), no. 4, 579–584.

[7] , Uniqueness of unconditional bases in nonlocally convex `1-products, J.
Math. Anal. Appl. 374 (2011), no. 2, 394–401.

[8] T. Aoki, Locally bounded linear topological spaces, Proc. Imp. Acad. Tokyo 18
(1942), 588–594.
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