

A comparative study of degradation and performance of thin film photovoltaic generators versus a multi-crystalline generator

Iñigo de la Parra, Miguel García, Javier Marcos, Luis Marroyo

Dept. of Electrical and Electronic Engineering, Public University of Navarre, Pamplona, Spain.

	-	
enerator	Total Power (W)	γ(%/°C)
Si	2240	-0.45
a-Si	2400	-0.23
a-Si/µSi	2340	-0.28
a-Si/µSi	1890	-0.24
CIGS	1926	-0.446
CdTe	2250	-0.25

Each generator is connected to a 2.5 kW commercial inverter. As the total power of each generator is lower than 2.4 kW, the inverters will never limit the power. Thus, P_{DC} can be directly considered. DC powers are measured by means of two wattmeters, which give I_{DC} and V_{DC} values. Data is measured every second but recorded as 10 minutes averages.

Maximum uncertainty

(0.2% of reading + 0.2% of range)

(0.2% of reading + 0.2% of range)

(0.3% of reading + 0.2% of range)

B Class = 0.3° C at nominal resistance (0°C)

B Class = 0.8° C at nominal resistance (100°C)

2% (Calibrated by CIEMAT)

Si-x generator	 from March 2011 to M1 (Si-x) M2 (a-Si) M3 (a-Si/µSi) M4 (a-Si/µSi) M6 (CdTe) 	Energy yield while all power referred to the February 2013 : 1,10 1,05 1,00 0,90 0,90 0,85 0,75 0,75 0,10 0,75 0,10
n-Si)* 3 (a-Si/μSi) 4	(a-Si/µSi) 5 (CIGS) 6 (CdTe)	Manufacturer
7.46 2774.13	2787.72 2969.53 3042.18	Energy Yield DC (kWh/kWpreal)
.33 13.11	12.65 6.53 4.08	*Analysed only from March 2011 to D
s have been	 In terms of energy degradation show An experimental different P_{STC,exp}. 	y, the performance of the T is that all of them have low STC power has been n Taking into account this P
P _{STC,exp} (18%). overlapped by i and a-Si/μSi	 this location. Differences in end between their real except in the case into account the manual 	ergy yield between manuf al STC power and the nar e of CIGS generator where neasured P _{STC,exp.}