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Abstract—The knowledge of wireless signal distribution 

within an urban scenario can provide useful information to 

users as well as to enhance connectivity and device operation 

or to perform municipal logistics based on crowd density and 

user mobility patterns. In this work, a distributed wireless 

mapplicationing system, based on a combination of 

opportunistic nodes such as smartphones which map 

geolocated WiFi access point connection and received power 

levels, and a cloud-based information gathering architecture is 

described. The proposed system and the developed tool has 

been tested in the framework of the Smart City platform of the 

city of Pamplona, providing signal distribution heat maps, 

which can be used for multiple municipal services.  

Keywords—Distributed Wireless Monitoring; Smart City 

Platforms; Digital Twins; Sensor Network  

I. INTRODUCTION 

Digital twins are a very interesting applicationroach to 
define and construct a smart city. The simulations that are 
made from these digital twins need physical models, sensors 
and all types of mapplicationings to become a practical and 
vital tool. One of these mapplicationings that feed these 
models is the distributed systems of wireless networks that 
operate in the city. The European Commission is 
encouraging all these technological solutions to improve the 
management and efficiency of the urban environment. One 
of these initiatives is the one covered by EU Horizon 2020 
Smart Cities project. Under the umbrella of this project, 
various cities are providing solutions from different 
applicationroaches and with the aim of improving the quality 
of life of citizens. One of these works framed in the Stardust 
project [1] is the one presented in this paper aimed at 
contributing ideas and data with which to nurture the 
initiatives of digital models that may arise in the different 
partner and follower cities, as well as the rest of the cities of 
the world that may be interested. 

Within the framework of Smart Cities, mapplicationing 
wireless signals is gaining relevance, owing to multiple 
aspects related with user information, device handling, 
context awareness and connectivity enhancement, among 
others. One of the goals is to monitor interference sources, 
which can impact the operation of electronic devices and 
systems, such as massive transceiver IoT deployments [2]. In 
this line, wireless signal mapplicationing is also being 
explored in order to provide information to users in relation 
to human exposure to non-ionizing radiation, usually based 
in the use of purpose specific personal dosimeters, operating 

as point receivers or as a set of distributed body receivers [3-
5].  

Knowledge of wireless signal distribution provides also 
relevant information in relation with potential security 
vulnerabilities, which can lead to fairly straightforward 
attacks, such as denial of service attacks owing to undesired 
message flooding, interference jamming or man in the 
middle attacks leading to identity theft or impersonation, 
among others [6-7]. 

The massive deployment of WiFi hotspots and 
public/private WiFi networks in urban scenarios with 
relatively high radiated power densities has led to the 
unintentional creation of a wireless power grid. Such grid 
can be employed in an opportunistic way to power wireless 
devices using electromagnetic energy harvesting techniques. 
In dense urban scenarios, hundreds of WiFi access points can 
be detected from a single location, which potentially can lead 
to harvest a non-negligible amount of energy depending on 
the location and transmitted power of such access points. 
This applicationroach has also been exploited with other 
wireless technologies [8-10], where high efficiency rectennas 
are proposed in order to maximize the electromagnetic 
energy collected. However, in order optimize the use of the 
WiFi infrastructure deployed to this aim, it is required to 
have prior knowledge about the expected power densities 
available in the different locations within a certain urban 
area. In this sense, the availability of the average energy 
heatmaps resulting from this work may become a very useful 
tool. 

Another applicationlication that derives from the 
knowledge of wireless signal distribution is related with 
crowd sensing, based on the study of signal variations as a 
function of the number of users, their density and their 
movement patterns, providing potentially useful information 
in relation with person heat maps or user mobility analysis, 
following different mobile network signal capture analysis 
[11-14]. 

In this work, a distributed wireless signal 
mapplicationing system is proposed, based on the use of 
opportunistic measurement sensors, such as smartphones. 
The geolocated data of WiFi access points and there received 
signal level is collected and processed by the monitoring 
system, capable of interoperating with the Smart City 
platform in the city of Pamplona, Spain, thanks to a cloud-
based scalable architecture. The proposed system gives 
information which can be employed in multiple 
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applicationlications, such as to inform users in relation with 
EM signal levels related with human exposure, enhance 
WiFi based connectivity, crowd sensing processing and 
potential EM based energy harvesting deployments. On the 
other hand, the construction of a wireless map with the help 
of artificial intelligence technology will help to infer useful 
knowledge and data not only to feed the models of digital 
twins of smart cities and for the rest of the 
applicationlications mentioned above, but also to learn in a 
dynamic way on the behavior of citizens from a different 
perspective. 

II. DISTRIBUTED WIRELESS SIGNAL MONITORING 

SYSTEM DESIGN 

A. Mobile distributed sensors architecture 

In this case, our sensor network is composed by a set of 
mobile devices running an application to gather data from the 
environment when the mobile is operating. In this case, 
mobile devices collect information about the Service Set 
Identifier (SSIDs), and the measured Received Signal 
Strength Indication (RSSI) for each one at a given location in 
a particular timestamp (data = (timestamp, GPS, {(SSID, 
RSSI)}). Gathered data is transferred to the cloud, where 
data is stored, filtered, and analyzed. 

Each mobile device operates as a sensor, building all 
together a distributed sensor network (MASK – Mobile 
Application Sensor networK). Such sensor network has two 
main properties: redundancy, and wide coverage. On one 
side, as mobile devices can be close to each other, and they 
are capturing information continuously (sampling time can 
be configured), we could have a lot of redundant 
information. Filtering algorithms based on device location, 
SSID names, and timestamp are used to consolidate gathered 
data in order to get quality data. On the other side, as mobile 
devices can operate at any place, we are sensing practically 
every point of the city, granularity of the measures decreases 
as time increases. 

B. Gathering algorithm 

Each mobile device operates a service in background 
collecting RSSI information. Figure 1 describes the 
algorithm followed by this service. The algorithm waits for a 
parametrized time before looking for active wireless 
networks in the surrounding area. In case the mobile device 
can reach any network, it collects the received SSIDs, and 
RSSI values. Once collected, the mobile device builds JSON 
packet (see figure 2) and transfers it to the cloud. 

SensorGatheringData(long delay) 
Precondition: GPS is ACTIVE and (WiFi is 
ACTIVE or Bluetooth is ACTIVE) 

while (1) 
 wait(delay); 
 listSSIDs = collectWirelessNetworksSSIDs(); 
 if (listSSIDs.contains() != emptySet) then 
      location = readGPS(); 
      sendMessageToTheCloud(gettimeofday(), 
location,   

            listSSIDs); 

Fig. 1. Pseudocode of sensor node. 

{"timestamp": "2021-06-10 12:31:43.064000", "location": 
"lat=XXXX; lon= XXXX; altitude=440.4", "listSSID": [{ 

"ssid": "Vodafone1453", "rssi": -76}, {"ssid": "MiHouse", 
"rssi": -54}]} 

Fig. 2. JSON packet format. 

The cloud platform consists of an Apache Kafka 
component devoted to collect sensor data (data feeds), an 
Apache NiFi devoted to transform the JSON messages 
received to SQL sentences, a MySQL database management 
system where data is properly stored, and, finally, the 
visualization component in charge of data plotting with the 
aid of Google Maps. Figure 3 depicts the cloud platform, a 
simple cascading architecture based on reliable and well-
known components. 

 

Fig. 3. Schematic description of the employed Cloud platform 
architecture. 

Figure 4 shows the insertion of the JSON file described 
in Figure 2 into the Kafka’s topic, while Figure 5 illustrates 
the creation process of the NiFi stream that will allow to 
store the data in the MySQL database. 

 

Fig. 4. JSON message submitted to the Kafka component. 

 

Fig. 5. Example of NiFi stream setup .Measuring scenario 

We have measured a sector of the city of Pamplona 
(Spain). We have tested our mobile sensor network 
equipping a car with the application and driving through 
different streets of Pamplona. Gathered data have been used 
to create a heatmap to show the number of access points at a 
given location, and the average energy received at a given 
location. The heatmap is built considering the whole region 
divided in squares, where their side length is an analysis 
parameter. Depending on this parameter (square side length), 
we calculate the results and use a color code to represent 
graphically the obtained values (red squares means greater 

Authorized licensed use limited to: UNIV PUBLICA DE NAVARRA. Downloaded on May 10,2022 at 15:25:26 UTC from IEEE Xplore.  Restrictions apply. 



values than blue squares) being the reference the maximum 
value of the complete set of squares. Figure 6 shows two 
heatmaps, which represent the total amount of Wi-Fi access 
points detected (a), and the average RSSI measured (b). 

 

                                           a) 

 

                                           b) 

Fig. 6. Heatmap with the number of access points (a), and with average 
RSSI (b). 

The example described refers to Wi-Fi networks, but 
other technologies such as Bluetooth are also considered. 
The main relevant differences can be found, at the physical 
level where a Bluetooth receiver is used instead of the Wi-Fi 
receiver, and at the logical level, where a different channel is 
used in Kafka and where data is stored into a different 
database. Different statistical operators can be selected when 
drawing the heat maps: mean RSSI value, maximum and 
minimum values, standard deviation, mode, median... 

Figure 7 shows the monitoring mobile applicationlication 
developed. Note that GPS coordinates are null since the 
capture corresponds to an indoor measurement. 

 

Fig. 7. Monitoring APPLICATION developed (in Spanish) to enable 
opportunistic signal detection and mapplicationing. 

III. CONCLUSIONS 

In this work, a distributed wireless mapplicationing 
system has been described, taking full advantage of 
opportunistic sensing capabilities. The system employs an 
ad-hoc implemented applicationlication which obtains 
geolocated information of Wi-Fi hot-spot SSID as well as 
RSSI, by taking advantage of smartphones acting as 
opportunistic sensors. The information is collected and 
transmitted to a cloud-based architecture, in order to be 
processed by different applicationlication modules, providing 
different services, such as human exposure distribution maps, 
municipal connectivity optimization, crowd sensing 
processing or EM based energy harvesting signal availability 
when employing RF rectennas. The proposed system has 
been deployed and tested within the city of Pamplona, 
providing comprehensive wireless signal heat maps. Future 
developments consider the use of alternative wireless 
systems, the integration of static measurement nodes or 
further data processing towards enhanced inference and data 
visualization. 
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