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A B S T R A C T   

Precise and reliable identification of specific plant diseases is a challenge within precision agriculture nowadays. 
This is the case of esca, a complex grapevine trunk disease, that represents a major threat to modern viticulture as 
it is responsible for large economic losses annually. The lack of effective control strategies and the complexity of 
esca disease expression make essential the identification of affected plants, before symptoms become evident, for 
a better management of the vineyard. This study evaluated the suitability of a near-infrared hyperspectral im
aging (HSI) system to detect esca disease in asymptomatic grapevine leaves of Tempranillo red-berried cultivar. 
For this, 72 leaves from an experimental vineyard, naturally infected with esca, were collected and scanned with 
a lab-scale HSI system in the 900-1700 nm spectral range. Then, effective image processing and multivariate 
analysis techniques were merged to develop pixel-based classification models for the distinction of healthy, 
asymptomatic and symptomatic leaves. Automatic and interval partial least squares variable selection methods 
were tested to identify the most relevant wavelengths for the detection of esca-affected vines using partial least 
squares discriminant analysis and different pre-processing techniques. Three-class and two-class classifiers were 
carried out to differentiate healthy, asymptomatic and symptomatic leaf pixels, and healthy from asymptomatic 
pixels, respectively. Both variable selection methods performed similarly, achieving good classification rates in 
the range of 82.77-97.17% in validation datasets for either three-class or two-class classifiers. The latter results 
demonstrated the capability of hyperspectral imaging to distinguish two groups of seemingly identical leaves 
(healthy and asymptomatic). These findings would ease the annual monitoring of disease incidence in the 
vineyard and, therefore, better crop management and decision making.   

1. Introduction 

The potential yield of agricultural crops can be affected by different 
biotic and abiotic stress factors leading to a reduction in the quantity and 
quality of production. Global crop losses caused by pathogens and pests 
have been estimated to account for 17–30% of crop production (Savary 
et al., 2019). Precise control of plant diseases is, therefore, a demanding 

challenge within precision agriculture where new and innovative tech
niques are needed to cope with the forthcoming trends in the agricul
tural sector (Mahlein et al., 2012). 

In the last decades, optical sensor technologies have been recognised 
as promising tools for non-invasive assessment of plant physiological 
status and for disease diagnosis and detection on different scales 
(Mahlein, 2016; Sankaran et al., 2010; West et al., 2003; Zhang et al., 
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2019). Biochemical and biophysical alterations of plant tissue caused by 
biotic and abiotic stresses result in the modification of the optical 
properties of leaves that can be captured by these sensors (Mahlein, 
2016). Thus, spectral characteristics derived from plant-light in
teractions can be assessed within a wide range of the electromagnetic 
spectrum, specifically, in the 350 to 2500 nm region where reflectance 
spectral information relates to the biochemical composition and internal 
structures of leaves (Ollinger, 2011). 

Among optical sensors, hyperspectral imaging (HSI) has proven its 
potential in the evaluation of plant diseases (Lowe et al., 2017; Mahlein 
et al., 2018), providing a better understanding of plant-pathogen in
teractions. During infection and disease development, alterations in the 
structure and chemical composition of tissues occur, such as the 
appearance of chlorotic and necrotic tissue, the production of pathogen- 
specific toxins, or the presence of pathogen structures. As a result of 
these plant impairments, changes in the reflectance response also 
happen (Mahlein, 2016). Thus, providing both spectral and spatial in
formation of the imaged object, HSI seems to be useful for the detection 
and quantification of diseases (Bock et al., 2010), as it allows a pixel- 
wise distribution of disease symptoms on the leaf surface. 

HSI technology, linked to meaningful data analysis approaches, has 
recently been used for the assessment of different grapevine diseases. 
Hence, several studies have been conducted concerning the detection of 
grapevine leafroll associated virus (GLRaV) leaf symptoms (Bendel 
et al., 2020c; Gao et al., 2020; MacDonald et al., 2016) as well as of 
yellows (Bendel et al., 2020a). Detection of powdery mildew and downy 
mildew diseases on both leaves (Oerke et al., 2016) and bunches (Kna
uer et al., 2017; Pérez-Roncal et al., 2020) has also been investigated. 
Regarding grapevine trunk diseases (GTDs), studies using different 
sensor technologies have been carried out on the detection of esca leaf 
symptoms. Some examples include the use of RGB imaging (Rançon 
et al., 2019) and hyperspectral spectroradiometers (Junges et al., 2020, 
2018) separately, as well as in combination (Al-Saddik et al., 2018), or 
unmanned aerial vehicle (UAV) multispectral imagery (Albetis et al., 
2019; Bendel et al., 2020b; Di Gennaro et al., 2016). 

Grapevine trunk diseases are one of the main reasons for vine decline 
in grape growing regions worldwide and represent a major threat to 
viticulture due to the significant economic losses they cause principally 
through reducing yields and grape quality, increasing crop management 
costs, and shortening the longevity of the vineyard (Fontaine et al., 
2016a; Gramaje et al., 2018). They involve several xylem-inhabiting 
fungi able to infect the vines mainly via propagation material in nurs
eries or pruning wounds in vineyards, leading to wood discolouration 
and decay, leaf and berry symptoms and, eventually, to vine death 
(Bertsch et al., 2013; Fontaine et al., 2016b; Mondello et al., 2018). 
Among GTDs, Esca complex is the most prevalent in European and 
Mediterranean countries (Guerin-Dubrana et al., 2019). The increasing 
disease incidence and severity is attributed to different factors, such as 
vineyard intensification or changes in vine management and cultural 
practices. The lack of effective strategies and means of disease control 
has surely contributed to its spread, especially since the ban of sodium 
arsenite at the beginning of the 21st century in Europe, the sole available 
product known to be effective against esca (Gramaje et al., 2018; Graniti 
et al., 2000). 

Esca is a disease complex, comprising several syndromes according 
to the vine age, environmental factors, the type of wood and foliar 
symptoms and the pathogens involved (Bertsch et al., 2013; Surico, 
2009), mostly associated with vascular ascomycete fungi Phaeomoniella 
chlamydospora and Phaeoacremonium aleophilum, and the basidiomycete 
Fomitiporia mediterranea. External symptoms appear as either a chronic 
(mild) form or an acute (severe) form, the so-called apoplexy. The acute 
form is characterised by a sudden wilting of the entire vine or of several 
shoots, leading to the plant death within a short period (Lecomte et al., 
2012; Mugnai et al., 1999). The chronic form is characterised by typical 
leaf symptoms, showing interveinal red or yellow discolouration and 
necrotric zones that produce a tiger-stripe pattern, which can affect one 

or several shoots of the vine canopy. Foliar symptoms may not be 
observed in every growing season, even if the infected vine appeared 
symptomatic in previous years, and their expression can be influenced 
by several environmental, cultural and genetic factors (Fischer and 
Peighami Ashnaei, 2019). 

The effects of Esca on vine morphology and physiology that have 
been shown to occur include modifications in the primary and secondary 
metabolism of leaves as symptoms progress (Fontaine et al., 2016b; 
Martín et al., 2019). These changes entail a decline of photosynthetic 
activity, alteration of carbohydrate metabolism, induction of defence 
responses (gene and protein expression), as well as alteration of phenolic 
compounds. Since these alterations at the cellular level of leaves arise 
prior to the development of visible symptoms (Fontaine et al., 2016b), a 
technique capable of detecting affected vines before symptoms become 
evident would enable annual monitoring of disease incidence in the 
vineyard and, therefore, better crop management and decision making. 

The present study focuses on the suitability of applying near-infrared 
hyperspectral imaging (HSI-NIR) for the detection of esca disease com
plex in asymptomatic leaves of Tempranillo red-berried cultivar on a 
laboratory scale. For this purpose, effective image processing and 
multivariate data analysis techniques were merged to (1) develop clas
sification models for the differentiation of healthy, asymptomatic and 
symptomatic leaves, and (2) identify the most relevant wavelengths for 
the detection of esca-affected vines. 

2. Material and methods 

2.1. Leaf samples 

All grapevine leaves included in the experiment were collected close 
to 2018 harvest (September 20), at stage 89 according to the BBCH scale 
(Meier, 2001), from an experimental rainfed vineyard naturally infected 
with esca located in Olite, Spain (42◦26′19.06′′ N, 1◦38′52.57′′ W), 
which belongs to the Viticulture and Enology Station of Navarra 
(EVENA). This vineyard consisted of Vitis vinifera L. cv. ’Tempranillo’ 
grafted on 110-Richter rootstock, originally planted in 1990. In this 
vineyard rows were oriented along the north–south axis, and featured 
row and vine spacing of 2.8 m and 1.4 m, respectively. Vines were 
trained to a 12-bud bilateral Royat Cordon system with vertical shoot 
orientation and managed according to conventional viticulture 
practices. 

In this vineyard, the appearance of esca foliar symptoms had been 
systematically monitored from 2014, which allowed us knowing, for 
each individual plant, if esca had appeared before or not. Considering 
this historic recording that comprised five consecutive seasons, it was 
possible to collect leaves that fell into three categories: control (CO), 
asymptomatic leaves from vines that had never shown esca symptoms 
and could therefore considered to be totally healthy; asymptomatic 
leaves from plants were showing esca symptoms, named Esca 1 (E1), and 
symptomatic leaves from the same esca-affected vines considered for E1, 
named Esca 2 (E2). Twenty-four leaves of each category, 72 in total, 
were taken from no more than 6 different vines, always considering 
mature but not senescent leaves. Leaves were kept refrigerated (3 ◦C) 
until the measurement process started, around 24 h after the sample 
gathering. 

2.2. Hyperspectral image acquisition and processing 

The spectral imaging data used in this study were captured using a 
line scan HSI system composed of a Xeva 1.7–320 InGaAs camera 
(Xenics, Leuven, Belgium), with a resolution of 320 × 256 pixels in the 
900–1700 nm spectral range (3.14 nm spectral resolution), coupled to 
an ImSpector N17E spectrograph (Specim, Spectral Imaging Ltd., Oulu, 
Finland) with a 30 μm slit and a 16 mm C-mount lens (f/1.4). The system 
also consisted of a linear translation stage driven by a stepper motor 
(LEFS25, SMC Corporation, Tokyo, Japan) attached to a black sample 
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holder plate, that allowed sample movement during image acquisition. 
Four 46 W halogen lamps pointing at the scanning area and a black 
cover enclosing the entire setup were used to ensure uniform lighting of 
the scene and to avoid interference from external light. A computer 
equipped with Xeneth 2.5 and ACT Controller software was used to 

adjust configuration settings and control the camera and translation 
stage during scanning, as well as to store the leaf images. The parameters 
of the system were optimised so that the free distance from lens to linear 
translation stage was set to 400 mm providing an image spatial resolu
tion of 0.75 mm/pixel along the scanning line (320 pixels). The vendor’s 

Fig. 1. Workflow of HSI analysis for the detection of esca disease complex.  

C. Pérez-Roncal et al.                                                                                                                                                                                                                          



Computers and Electronics in Agriculture 196 (2022) 106863

4

calibration package was applied for image correction and the integra
tion time was adjusted to 2 ms to avoid detector saturation. 

Leaves were positioned with the adaxial side facing the camera and 
one hyperspectral image was taken per sample. RGB images as reference 
were also obtained for each sample by a Lumix DMC-TZ25 digital 
camera (Panasonic, Japan). In addition, maximum and minimum 
reflectance images were acquired for reflectance calibration, using a 
Teflon white calibration tile with standard reflectance of 99% (Specim, 
Spectral Imaging Ltd., Oulu, Finland) for the white reference and, with 
the lens covered and lights off for the dark reference. 

The processing of NIR hyperspectral images was carried out using 
MATLAB R2018b (The MathWorks, Natick, MA, USA). The workflow of 
such images was as follows:.  

• Image calibration. The raw intensity values were converted into 
relative reflectance values R(x,λ) as: 

R(x, λ) =
IRaw(x, λ) − ID(x, λ)
IW(x, λ) − ID(x, λ)

(1)   

where × represents a pixel, λ represents a wavelength and IRaw, ID, 
and IW are the intensity for the original image, the dark reference and 
the white reference images, respectively. Note that IW is, at each 
pixel and wavelength, the 99% of the reference intensity on the white 
reference panel.   

• Segmentation. The images were segmented using the algorithm in 
Lopez-Molina et al. (2017), which was aimed to discriminate the 
vegetal area from the background. This algorithm creates an initial 
superpixel-based oversegmentation, built upon local contrast mea
surements based on Baddeley’s metrics. Superpixel images, intro
duced by Ren and Malik (2003), are oversegmented images such that 
each local granule is composed of contiguous pixels with similar 
features. The binarization of the superpixel image into a binary 
image is performed using Otsu threshold determination algorithm 
(Otsu, 1979) and basic morphological operations (which are meant 
to regularise the selected area and avoid isolated positive/negative 
detections). Some images contained small, yet relevant regions in 
which spectral measurements were saturated. In this regard, all 
pixels having at least 2% of the bands in maximum values were 
considered as saturated and hence removed from the selected area. 
Moreover, a low signal-to-noise ratio was observed at the beginning 
of the spectrum, resulting in noisy images in this region. Therefore, 
bands in the 900–1000 nm range were completely excluded for 
further analysis, reducing the spectral range to 1000–1700 nm with a 
total of 224 bands.  

• Spectral data extraction. In this study, data were treated on a spectral 
basis. That is, each pixel (spectrum) was considered as an individual 
instance belonging to each of the abovementioned classes. This was 
achieved unfolding the three-dimensional hypercube into a 2D data 
matrix containing the leaf pixel reflectance values at the 224 wave
lengths (from 1000 to 1700 nm). 

The dataset was randomly divided into calibration and validation 
subsets. The former comprised 54 leaves (75% of the dataset, with 
equal presence of all classes), while the latter consisted of 18 leaves 
(25%). For each of the 54 leaves (18 images per class) in the cali
bration set, 10 pixels were manually selected using the graphical 
user-friendly interface HYPER-Tools (Mobaraki and Amigo, 2018) 
and taking the RGB images as a reference to identify and locate 
visually healthy and symptomatic leaf zones (avoiding nerves). For 
CO and E1 classes, pixels were selected from both internal and 
external zone leaf rings (5 pixels per ring), while for class E2 only the 

pixels corresponding to leaf zones with visible esca symptoms were 
selected. This supervised subselection of data resulted in a matrix 
(540 rows × 224 columns) used as the calibration dataset for the 
(classification) model training. The remaining 18 images (6 samples 
per class) were used as validation dataset. 

2.3. Multivariate data analysis 

The multivariate data analysis was carried out using the PLS_Toolbox 
version 8.8 (Eigenvector Research Inc., Wenatchee, WA, USA) within 
MATLAB® computational environment. The workflow of this study, 
including the steps of data acquisition, image processing and data 
analysis, is illustrated in Fig. 1. 

2.3.1. Spectral pre-processing 
Hyperspectral data contain complex and substantial information, 

often affected by undesirable phenomena such as physical effects or 
noise. Thus, mathematical pre-processing is normally used to mitigate 
the effects of irregularities in the spectra and consequently improve the 
data analysis (exploratory analysis and multivariate models) (Rinnan 
et al., 2009). In this study, different pre-processing techniques were 
tested to correct light scattering and noise effects, and to remove base
line drifts and overlapping peaks in the spectra (Nicolaï et al., 2007; 
Rinnan et al., 2009). These included mean centering (MC), smoothing 
(SM), multiplicative scatter correction (MSC (mean)), standard normal 
variate (SNV), and first and second derivatives (1st D and 2nd D, 
respectively). Smoothing was performed using a 15-point Savitz
ky–Golay (Savitzky and Golay, 1964) filtering operation, while de
rivatives were computed using the Savitzky–Golay method by a second- 
order polynomial and 15 window points. The pre-processing techniques 
were evaluated both individually and combined with posterior mean 
centering, in order to enhance the performance of the classification 
model. The effect of no pre-processing (None) was also analysed. A total 
of 12 pre-processing combinations were tested. 

2.3.2. Exploratory data analysis 
A principal component analysis (PCA) was carried out for explor

atory purposes and to visualise any difference between the three classes 
(CO, E1 and E2) in the calibration dataset. PCA is a dimensionality 
reduction technique that transforms the original variables of a dataset 
into a set of new uncorrelated variables, known as principal components 
(PC), while retaining most of the existing variability (Jolliffe, 1986). 
One PCA per pre-processing combination was conducted in this study 
and its interpretation was based on the information retained in both the 
PC score and loading line plots. 

2.3.3. Data classification 
Partial least squares discriminant analysis (PLS-DA) was used to 

classify grapevine leaves according to the expression of esca leaf 
symptoms. For this, three-class classifiers were developed to differen
tiate healthy (CO), asymptomatic (E1) and symptomatic (E2) leaf pixels, 
as well as two-class classifiers to distinguish two apparently healthy leaf 
types (CO and E1 pixels) before symptoms become visible. PLS-DA is a 
supervised technique based on the PLS regression algorithm that pre
dicts class membership on a dataset by maximising the covariance be
tween the categorical Y matrix and the data matrix X (the leaf pixel 
spectral matrix) (Barker and Rayens, 2003). In this study, PLS-DA 
models were calculated on a calibration data matrix of size 540 × 224 
and 360 × 224 for three-class and two-class classifiers, respectively. A 
single Venetian blinds cross-validation (CV) (10 data splits) method was 
used to select the optimal number of latent variables (LV). As in the case 
of PCA analysis, one PLS-DA model was conducted for each of the pre- 
processing techniques tested. 

In order to identify a subset of relevant spectral variables that pre
serve the most variability, while reducing the dimensionality of 
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hyperspectral data and improving model interpretation, 2 variable se
lection methods were applied for the three-class and two-class classi
fiers: automatic and interval PLS (iPLS). The automatic method conducts 
variable selection using both variable importance in projection (VIP) 
(Chong and Jun 2005) and selectivity ratio (SR) (Rajalahti et al., 2009) 
approaches and only returns the selection leading to the lowest root 
mean squared error of cross-validation (RMSECV). In each run, the 
variables with the lowest VIP or SR measured values are removed, and 
the iteration stops when no improvement in the model performance is 

achieved. The iPLS develops local PLS regression models on equidistant 
subintervals of the full spectrum region and selects a subset of variables 
that provide superior prediction (lowest RMSECV) compared to using 
the full spectrum (Nørgaard et al., 2000). In forward iPLS the algorithm 
conducts a sequential search for the best variable or combination of 
variables where intervals are successively included in the analysis. In 
this study, the automatic method was applied for the same pre- 
processing combinations as in the full spectrum models and the for
ward iPLS for the best performing pre-processing using an automatic 
number of intervals with interval size between 10 and 20 (in increments 
of 2 wavelengths, i.e., 10, 12, 14, 16, 18, 20). 

The validation dataset (leaf pixel matrices of the remaining 6 images 
per class) was then employed for the independent external validation of 
the best performing PLS-DA models with and without variable selection, 
for each classification case. A classification image was generated per leaf 
based on the pixel membership prediction for each sample, showing the 
predictable esca-affected areas. 

The performance of the PLS-DA models was assessed by the overall 
classification accuracy, the percentage of correctly classified (% CC) 
pixels, and the sensitivity and specificity of each class obtained in CV. 
Classification accuracy and class sensitivity and specificity parameters 
were calculated as follows (Ballabio and Consonni, 2013):. 

Accuracy =
TP + TN

TP + TN + FN + FP
× 100% (2)  

Sensitivity =
TP

TP + FN
(3)  

Fig. 2. Mean reflectance spectra (1000–1700 nm) of healthy, asymptomatic 
and symptomatic esca leaf samples in the calibration set. Mean spectrum cor
responds to the average of n = 180 pixels of characteristic tissue of each class. 

Fig. 3. Mean pre-processed spectra of the calibration dataset: (a) MSC; (b) 1st derivative; (c) Smoothing and MSC; (d) 1st derivative and SNV.  
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Specificity =
TN

TN + FP
(4) 

where TP, TN, FN and FP indicate the number of true positive, true 
negative, false negative and false positive pixels, respectively. For an 
adequate performance, the accuracy should be close to 100% and the 
sensitivity and specificity close to 1. Moreover, the percentage of 
correctly predicted pixels per class obtained on each sample was used to 
the external validation assessment. 

3. Results and discussion 

3.1. Spectra interpretation and pre-processing 

Mean reflectance spectra of the healthy (CO), asymptomatic (E1) and 
symptomatic (E2) pixels selected in the calibration dataset are shown in 
Fig. 2. A similar trend in the spectral signature was observed for the 
three leaf classes along the selected spectral range (1000–1700 nm). The 

Fig. 4. PCA results for the best data pre-processing combination for class separation in the calibration dataset: (a) score plot of PC1 vs. PC2 for the three-class analysis 
using SM + SNV + MC pre-processing; (b) loadings for PC1 and PC2 for the three-class analysis; (c) score plot of PC1 vs. PC2 for the two-class analysis using SM +
MSC + MC pre-processing; (d) loadings for PC1 and PC2 for the two-class analysis. 

Table 1 
Summary results of the CV dataset for the best performing three-class (healthy vs. asymptomatic vs. symptomatic pixel-based) and two-class (healthy vs. asymptomatic 
pixel-based) PLS-DA models using different pre-processing combinations.  

Pre-Processing n λ LV Variance (%) CO (%CC) E1 (%CC) E2 (%CC) Accuracy (%) 

None 540 224 4  99.97  95.00  76.11  98.33  89.81 
SM + MC 540 224 5  99.83  93.89  77.78  80.00  83.89 
1st D + MC 540 224 3  94.20  95.56  60.00  92.78  82.78 
SM + SNV + MC 536 224 5  96.51  94.44  78.89  85.23  86.19 
SM + 1st D + MC 535 224 2  91.30  90.56  68.33  96.00  84.86 
1st D + SNV + MC 538 224 4  95.34  94.44  73.33  87.08  84.94 
None 360 224 3  99.97  90.56  98.33  –  94.44 
SM + MC 359 224 4  99.49  91.62  96.11  –  93.87 
1st D + MC 360 224 3  94.92  92.78  96.67  –  94.72 
SM + MSC + MC 358 224 4  95.80  94.97  96.09  –  95.53 
SM + 1st D + MC 360 224 2  91.21  90.56  98.33  –  94.44 
1st D + SNV + MC 359 224 3  92.75  95.00  95.53  –  95.26 

n: number of samples used; λ: number of wavelengths; LV: latent variables selected; CO: healthy sample; E1: asymptomatic sample; E2: symptomatic sample; CC: 
correctly classified. 
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mean spectra indicated differences in the magnitude of reflectance be
tween the classes, being the reflectance values of class E2 higher than 
those of classes E1 and CO. Furthermore, the greatest difference between 
classes was observed in the 1400–1700 nm range related to the water 
content and leaf biochemicals (Fourty et al., 1996), in which a reflec
tance valley was noticeable around 1450 nm due to O-H stretching first 
overtone (Osborne et al., 1993). Leaves suffering from increased tissue 
dehydration show a general increase in reflectance throughout the 
400–2500 nm region due to alterations in the internal leaf structure 
(associated with increased cell air spaces, among others) (Carter, 1991; 
Gausman, 1974). The higher reflectance obtained for E2 pixels within 
the whole spectral range would be in agreement with this statement as 
these values corresponded to necrotic tissue or areas showing some 
desiccation in symptomatic leaves. Thus, morphological and physio
logical changes caused by the disease led to a different spectral response 
in symptomatic leaves compared to asymptomatic and healthy ones. 

NIR reflectance spectra presented variations and spectral noise be
sides sample information due to instrumental noise and light scattering 
from the internal leaf structure. Fig. 3 displays the effects of some of the 
denoising and scatter corrective pre-processing techniques used to 
reduce these phenomena in the spectra. The algorithm MSC (mean) 
corrects for the scatter variability (Fig. 3a), and the SM + MSC combi
nation also removes the noise effects (Fig. 3c). Savitzky-Golay 1st de
rivative eliminates the effect of baseline drifts in the spectra (Fig. 3b), 
and the 1st D + SNV combination also removes multiplicative scatter 
effects (Fig. 3d). 

3.2. Exploratory data analysis: PCA 

In order to explore the spectral variation of the three leaf classes in 
the calibration dataset, PCA was used for each combination of pre- 
processing techniques. In the case of three-class analysis, the best class 
segregation was accomplished after applying SM + SNV + MC pre- 
processing combination, where 5 PCs were selected accounting for 
97.28% of the variance (3 outliers removed). Fig. 4a displays PC1 
(63.35%) vs. PC2 (22.41%) scores, revealing a slight distinction in the 
cross-sectional direction of the three groups in the dataset with some 
overlap, mainly between asymptomatic and symptomatic samples. 

Moreover, nearly all healthy pixels presented negative values in the first 
component and could be roughly separated from E1 and E2 pixels along 
it. The PC1 and PC2 loading plot (Fig. 4b) showed interpretable bands at 
1458 nm (negative) in PC1, and at 1424 nm (negative) and 1640 nm 
(positive) in PC2. The bands at 1424 nm and 1458 nm (O-H stretch first 
overtone) are related with phenol groups (ArOH) and water absorption, 
respectively. The band at 1640 nm could be associated with the C-H 
stretch first overtone (Osborne et al., 1993). 

Regarding the two-class analysis, the SM + MSC + MC combination 
was found to be the best data pre-processing for the separation of 
healthy and asymptomatic pixels. The first 5 PCs, accounting for 97.12% 
of the variance (1 outlier removed), were used to build the PCA. Fig. 4c 
displays the score plot of PC1 (74.51%) vs. PC2 (15.01%) showing that 
healthy and asymptomatic samples could almost be separated along the 
PC1. The loading plot of these first 2 PCs (Fig. 4d) showed interpretable 
bands at 1462 nm (negative) in PC1, and at 1051 nm (negative), 1458 
nm (negative) and 1615 nm (positive) in PC2. The bands at 1051 nm and 
1615 nm (C-H stretch first overtone) could be related with methylene 
groups (CH2 and = CH2, respectively). The band at 1462 nm is associ
ated with the N-H stretch first overtone found in amide groups (CONH2), 
and the band at 1458 nm is related with the absorption of water 
(Osborne et al., 1993). 

3.3. Data classification: PLS-DA and variable selection performance 

In this study, 12 PLS-DA models (using the 1000–1700 nm spectrum) 
were developed for the distinction of esca leaf symptoms, for both three- 
class and two-class classifiers, applying the same pre-processing com
binations as in PCA. Table 1 summarises the results of the 6 best per
forming PLS-DA models (including the effect of no pre-processing) for 
each classification case in terms of overall accuracy and percentage of 
correctly classified (% CC) pixels of each class obtained in the CV 
dataset. Accuracy values above 82% and 93% were obtained for three- 
class and two-class classifiers, respectively, regardless of the pre- 
processing combination applied. 

In three-class models, better classification rates were achieved for 
classes CO and E2 (80–99% CC) than for class E1 (60–79% CC), with 
most of the misclassified pixels in the latter being assigned as 

Table 2 
Summary results of the CV dataset for the best performing three-class (healthy vs. asymptomatic vs. symptomatic pixel-based) and two-class (healthy vs. asymptomatic 
pixel-based) PLS-DA models using different pre-processing and variable selection methods.  

VS Pre-Processing n λ LV Variance (%) CO (%CC) E1 (%CC) E2 (%CC) Accuracy (%) 

Auto None 471 80 3  99.96  88.70  75.00  96.61  85.56 
Auto SM + MC 476 116 5  99.79  92.35  75.57  80.00  82.77 
Auto SM + MSC + MC 466 99 4  98.31  96.45  73.14  84.43  84.55 
Auto 1st D + SNV + MC 492 216 4  96.24  95.98  71.76  86.49  84.76 
iPLS-20* None 471 120 3  99.97  94.92  78.41  89.83  87.47 
iPLS-10* SM + SNV + MC 483 30 2  98.49  91.28  70.86  94.85  84.89 
Auto None 336 48 3  99.95  92.68  98.26  –  95.54 
Auto SM + MC 336 123 4  99.56  89.41  98.19  –  93.75 
Auto 1st D + MC 336 137 4  97.31  96.41  97.04  –  96.73 
Auto SM + SNV + MC 331 116 2  93.84  91.46  98.80  –  95.17 
iPLS-14* None 336 70 3  99.96  90.85  98.84  –  94.94 
iPLS-10* SM + MSC + MC 332 50 3  97.11  96.36  97.60  –  96.99 

VS: variable selection; n: number of samples used; λ: number of wavelengths; LV: latent variables selected; CO: healthy sample; E1: asymptomatic sample; E2: 
symptomatic sample; CC: correctly classified; Auto: automatic; iPLS-*: interval partial least squares (*: interval size). 

Table 3 
Sensitivity and specificity values obtained in the CV dataset for the best three-class PLS-DA model with and without variable selection.      

Sensitivity Specificity 

VS Pre-Processing n λ CO E1 E2 CO E1 E2 

None SM + SNV + MC 536 224  0.978  0.856  0.938  0.949  0.579  0.883 
iPLS-10* SM + SNV + MC 483 30  0.965  0.869  0.963  0.958  0.740  0.841 

VS: variable selection; n: number of samples used; λ: number of wavelengths; CO: healthy sample; E1: asymptomatic sample; E2: symptomatic sample; iPLS-*: interval 
partial least squares (*: interval size). 
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symptomatic (15–32%). Despite the fact that better accuracy was ob
tained with no pre-processing (89.81%), the SM + SNV + MC combi
nation was selected as the best performing PLS-DA model since the % CC 
pixels for E1 class was higher (78.89% CC vs. 76.11%), and also the 
accuracy was better (86.19%) than with the other models. Concerning 
two-class models, best results were achieved when applying SM + MSC 
+ MC pre-processing combination with classification rates around 95% 
of both accuracy and % CC pixels of each class (see Table 1). 

The results of the best performing PLS-DA models using automatic 

and forward iPLS variable selection methods are shown in Table 2. A 
robust PLS (alpha value equal to 0.9) was computed for automatic 
outlier detection resulting in a large sample removal. In general, a 
greater variable reduction (fewer feature wavelengths selected) was 
performed with forward iPLS. 

For three-class classifiers, classification rates similar to those of 
models without variable selection were obtained, for the same pre- 
processing combinations in the case of automatic method and for the 
best performing pre-processing algorithm using different interval sizes 
in iPLS. Although a higher accuracy was obtained with no pre- 
processing (87.47%), the SM + SNV + MC combination using forward 
iPLS (interval size of 10) achieved better classification (overall accuracy 
increase of 10%) and spatial location of pixels in the validation samples 
(with fewer wavelengths) and was therefore selected for external vali
dation. In this model, 2 LVs (accounting for 98.49% of the variance) and 
30 wavelengths (covering the 1596–1687 nm range) were chosen for the 
three-class distinction. 

In two-class classifiers, classification results improved when variable 
selection methods were applied. As in the full spectrum model, the 
highest results were obtained for SM + MSC + MC pre-processing, using 
forward iPLS (interval size of 10), which resulted in classification rates 

Table 4 
Sensitivity and specificity values obtained in the CV dataset for the best two- 
class PLS-DA model with and without variable selection.      

Sensitivity Specificity 

VS Pre-Processing n λ CO E1 CO E1 

None SM + MSC + MC 358 224  0.950  0.961  0.961  0.950 
iPLS-10* SM + MSC + MC 332 50  0.964  0.976  0.976  0.964 

VS: variable selection; n: number of samples used; λ: number of wavelengths; 
CO: healthy sample; E1: asymptomatic sample; iPLS-*: interval partial least 
squares (*: interval size). 

Fig. 5. Percentage of predicted pixels per class (CO, E1 and E2) obtained in the validation dataset (sample 1 to 6 of each class and total (T) per class): (a) three-class 
full spectrum model using SM + SNV + MC pre-processing; (b) two-class full spectrum model using SM + MSC + MC pre-processing; (c) three-class iPLS-10 model 
using SM + SNV + MC pre-processing; (d) two-class iPLS-10 model using SM + MSC + MC pre-processing. 
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above 96%. For this combination, 3 LVs (97.11% of variance explained) 
and 50 wavelengths (covering the 1000–1029 nm, 1126–1154 nm, 
1408–1436 nm, 1534–1562 nm and 1659–1687 nm ranges) were chosen 
to build the classification model. This was selected as the best per
forming PLS-DA model for the two-class distinction and hence the one 
used for the external validation. 

These characteristic spectral ranges identified for the leaf classes 
differentiation would be related to the changes in the biochemical 
composition of leaves, which are caused by the effect of esca on the vine 
physiology as stated previously, leading to the alteration of the spectral 
response. Thus, absorption features related to leaf constituents could be 
found near 1020 nm and 1420 nm associated to nitrogen status and 
lignin, respectively (Serrano et al., 2002); near 1143 nm assigned to 
aromatic structure and methyl group (CH3) and at 1540 nm related to 
starch content (Fourty et al., 1996; Osborne et al., 1993); and near 1660 
nm attributed to phenolic compounds (Kokaly and Skidmore, 2015). 

Table 3 shows the sensitivity and specificity values of each class 
obtained for the best performing three-class model, with and without 
variable selection, which in both cases included the SM + SNV + MC 
pre-processing combination. Higher values were achieved after wave
length selection (except for CO sensitivity and E2 specificity) and, in 
both models, the CO and E2 classes obtained better sensitivity and 

specificity values than E1 class. This means that CO and E2 pixels were 
better classified into their corresponding class than E1 pixels. Further
more, misclassified pixels in CO and E2 classes (5.55–8.72% and 
5.15–14.77%, respectively) were assigned as E1 class, resulting in a 
specificity value decrease for the latter. 

In Table 4, sensitivity and specificity values of both CO and E1 classes 
obtained for the best performing model with and without variable se
lection are displayed. As in three-class classifiers, the model with vari
able selection obtained better values. In this case, sensitivity was slightly 
higher for E1 class than for CO one, indicating that E1 pixels were better 
classified than CO pixels (97.60% CC vs. 96.36%). 

The external validation of the three-class classifier was performed 
independently for each sample of the validation dataset (18 leaves). For 
this, only the PLS-DA models using SM + SNV + MC pre-processing with 
variable selection (iPLS-10, 6th row of Table 2) and without it (4th row 
of Table 1) were used. As can be seen in Fig. 5a and c, a large proportion 
of pixels (above 74%) in all samples were correctly classified into the 
class they belonged to. Higher classification rates were achieved for 
healthy and symptomatic pixels than for asymptomatic pixels as in the 
case of the CV dataset, and also the results improved after wavelengths 
selection. In total, 96.64% and 99.78% of pixels from the 6 CO leaves 
were correctly classified as healthy, 77.60% and 91.57% of pixels from 

Fig. 6. Display of a pixel-based classification in the external validation using SM + SNV + MC three-class PLS-DA models for samples: (a) CO (healthy sample 5); (b) 
E1 (asymptomatic sample 6); and (c) E2 (symptomatic sample 4). Images from left to right correspond to: RGB images taken as reference, greyscale base reflectance 
images at 1260 nm used for displaying the prediction results, and gradient reflectance images of the probability-based classification of pixels obtained from the full 
spectrum and iPLS (VS) models, respectively. 
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the 6 E1 leaves were correctly labelled as asymptomatic, and 86.47% 
and 96.67% of pixels from the 6 E2 leaves were identified as symp
tomatic, for the model using the full spectrum (Fig. 5a) and the iPLS 
(Fig. 5c), respectively. 

Fig. 6a-c displays a pixel-based classification using the best three- 
class PLS-DA models mentioned above for 3 leaves of the validation 
dataset belonging to classes CO (sample 5), E1 (sample 6) and E2 
(sample 4), respectively. In sample CO (Fig. 6a) 95.65% and 99.62% of 
pixels were correctly assigned as healthy; in sample E1 (Fig. 6b) 81.47% 
and 92.56% of pixels were labelled as asymptomatic; and in sample E2 
(Fig. 6c) 86.14% and 97.66% of pixels were classified as symptomatic, 
for the full spectrum and iPLS models, respectively. In general, as seen in 
Fig. 6 the misclassified pixels were mostly located on the edge and leaf 
nerves, especially in CO and E1 leaves (Fig. 6a and b) for the model 
without variable selection (Gradient image), and on the sloping surfaces 
of the leaf, mainly on E2 leaf margins showing necrotic tissue (Fig. 6c). 
Moreover, a greater differentiation within the leaf (nerves, necrotic 
zones, internal areas and edges) was observed when using the full 
spectrum model, which allowed to distinguish asymptomatic areas 
(more orange pixels) from symptomatic ones (higher concentration of 
magenta pixels) on leaf E2 (Fig. 6c). However, almost all leaf pixels in 
the three classes corresponded to their class when the variable selection 
method was used, which suggests that esca caused effects produce a 
different spectral response in the three leaf types and, therefore, at these 
selected wavelengths an easier discrimination between healthy, 
asymptomatic and symptomatic classes is achieved. 

Regarding the external validation of CO and E1 leaves for the two- 
class distinction (12 samples), only the PLS-DA models using SM +
MSC + MC pre-processing with variable selection (iPLS-10, 12th row of 
Table 2) and without it (10th row of Table 1) were used. In most sam
ples, a large proportion of pixels (above 83%) were correctly assigned 
into their corresponding class as shown in Fig. 5b and d. Higher classi
fication rates were obtained for healthy pixels than for asymptomatic 
pixels and, in general, the results improved when variable selection was 

applied. In total, 99.39% and 99.27% of pixels from the 6 CO leaves 
were correctly classified as healthy, and 86.99% and 93.83% of pixels 
from the 6 E1 leaves were correctly labelled as asymptomatic, for the full 
spectrum (Fig. 5b) and iPLS (Fig. 5d) models, respectively. 

Fig. 7a-b displays a pixel-based classification using the best two-class 
PLS-DA models mentioned above for the same 2 validation samples used 
in three-class distinction belonging to CO (sample 5) and E1 (sample 6) 
classes, respectively. For instance, in CO sample (Fig. 7a) 99.13% and 
99.06% of pixels were correctly assigned as healthy (blue pixels), 
whereas in E1 sample (Fig. 7b) 94.96% and 96.96% of pixels were 
labelled as asymptomatic (orange pixels), for the full spectrum and iPLS 
models, respectively. As in the three-class model displays, misclassified 
pixels were located on the edge and leaf nerves, which was most 
appreciated for the full spectrum model (Gradient images on Fig. 7a and 
b). In any case, both models allowed to differentiate the two apparently 
healthy leaf classes (CO and E1 classes). 

Overall, the results showed that the PLS-DA classifier performed very 
well in discriminating both three classes (healthy, asymptomatic and 
symptomatic) and two classes (healthy and asymptomatic) of leaves, 
which suggests the possibility of identifying esca-affected leaves before 
symptoms become evident using hyperspectral imaging. Similar results 
to the ones reported here have been obtained in other studies concerning 
the detection of disease symptoms on grapevine leaves. Junges et al. 
(2020) evaluated the potential of a hyperspectral sprectroradiometer to 
discriminate asymptomatic and symptomatic leaves of Merlot cultivar 
affected by GTDs and GLRaV. Based on the differences in the spectral 
signature they were able to distinguish between leaf types and identify 
the most useful wavelengths for the distinction task. Hyperspectral and 
multispectral imaging approaches for the detection of foliar Esca 
symptoms in Phoenix cultivar were investigated by Bendel et al. 
(2020b). Accuracy values above 70% were obtained for healthy, pre- 
symptomatic and symptomatic leaves differentiation based on spectral 
reflectance in the 1000–2500 nm range. Our study not only allows to 
differentiate whether a leaf is affected, but also a pixel-based 

Fig. 7. Display of a pixel-based classification in the external validation using SM + MSC + MC two-class PLS-DA models for samples: (a) CO (healthy sample 5); and 
(b) E1 (asymptomatic sample 6). Images from left to right correspond to: RGB images taken as reference, greyscale base reflectance images at 1260 nm used for 
displaying the prediction results, and gradient reflectance images of the probability-based classification of pixels obtained from the full spectrum and iPLS (VS) 
models, respectively. 
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identification of disease symptoms on the leaf surface (mapping of esca- 
affected areas). Moreover, a successful distinction of two groups of 
leaves that are identical to the naked eye (healthy and asymptomatic) 
has been achieved. Thus, the results obtained in this study could lay the 
groundwork for the development of a decision support tool in the 
context of precision viticulture. However, for future investigations in 
this line of research, it would be interesting to compare the spectral 
response of other biotic and abiotic factors that may produce similar 
symptoms on leaves. In this study, the experimental set-up was specially 
designed to avoid the effects of other stresses, as all plants were under 
the same growing conditions. Therefore, it can be said with confidence 
that the differentiating factor was associated with the esca. In any case, 
diagnosis of the presence of esca causal agents in vines would be highly 
recommended to ensure that only this disease is being assessed and no 
other biotic or abiotic stresses. 

4. Conclusions 

The suitability of NIR hyperspectral imaging to discriminate esca- 
affected leaves according to foliar symptoms expression (healthy, 
asymptomatic and symptomatic leaves) was evaluated in this study. In 
general, accuracy values in the range of 82.78–95.53% were obtained in 
CV and validation datasets for both three-class and two-class PLS-DA 
classifiers, using the full spectrum and different pre-processing tech
niques. Similar and even better classification rates (82.77–97.17%) were 
achieved after variable selection, where both automatic and forward 
iPLS methods gave similar performances. Leaf reflectance measurements 
in the NIR region revealed useful information for the detection of foliar 
esca symptoms. Thus, wavelengths in the 1596–1687 nm range were 
identified as the most relevant ones for the three leaf classes distinction, 
while 5 spectral ranges (1000–1029, 1126–1154, 1408–1436, 
1534–1562 and 1659–1687 nm) were selected for healthy and asymp
tomatic classes differentiation. Hyperspectral technology would there
fore allow the detection of differential spectral characteristics of esca- 
affected leaves, even before the appearance of visible symptoms, 
which would be very useful for disease monitoring and vineyard man
agement in a more accurate way. However, esca disease expression 
depends on several factors, including the cultivar and other biotic and 
abiotic determinants, and further research is needed to support these 
findings. 
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Bendel, N., Kicherer, A., Backhaus, A., Köckerling, J., Maixner, M., Bleser, E., Klück, H.- 
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