

Trabajo Fin de Grado

Author: Juan Paños Basterra

Advisers: Jesús Palacián Subiela

Patricia Yanguas Sayas

Pamplona, 10/02/2022

E.T.S. de Ingeniería Industrial,

Informática y de Telecomunicación

3 Dimensional N-Body Simulator

Grado en Ingeniería Informática

 Juan Paños Basterra N-Body Simulator

1

ACKNOWLEDGEMENTS:

There are many people that I would like to thank for making this project possible.

Firstly, my good friends the “Programa2”, which have motivated and helped me

throughout my university studies and never lost faith in me. They were the ones who

convinced me to sign up to one of the projects the University offered, which is what lead

me into this project, and I will always be thankful for that.

My family and many other friends have also been instrumental to the success of the

project, helping me when I was losing hope and pushing me to achieve my goals.

To my good friend Franklin and my dad, who taught me not to look at my feet, but to

instead look at the sky.

To all the professors at UPNA who made me interested in programming and developing

software and helped me gain the skills with which I built this project.

To Mamen Peña, and the incredible work she did on a simulator for the N-body problem,

which was of immense help and inspiration for this project.

And especially to professors Jesús Palacián and Patricia Yanguas, for entrusting me with

this project, guiding me along the way and helping me learn so many new and different

things, without their guidance and patience this project could not have been possible.

 Juan Paños Basterra N-Body Simulator

2

ABSTRACT:

This thesis is based on the development of a simulation software for the N-body

problem, attempting to provide a modern program to improve upon existing simulators.

To achieve this, the N-body problem will be explained, along with other related concepts

such as numerical integrators. The development of the simulator will also be discussed,

studying the selected framework, design principles followed, program structure and in-

depth code analysis.

Finally, the results of the project will be studied, analyzing aspects such as performance,

resulting UI and several improvements will be proposed.

The results of this project are publicly available in https://github.com/panosjuanis/3D-

N-body-simulator, where anybody can download the developed software to utilize it,

read the documentation, or contribute to it in whichever way they like.

 Juan Paños Basterra N-Body Simulator

3

KEYWORDS:

N-body, Gravity, Unity, 3D, Simulator, Numerical Integrator, C#

 Juan Paños Basterra N-Body Simulator

4

Index

1. Introduction .. 7

1.1. Introduction to the N-body problem ... 7

1.2. Objective .. 8

1.3 Existing simulators .. 10

2. Equations of the N-body problem .. 10

3. Numerical integrators ... 15

3.1. Introduction ... 15

3.2. Euler ... 18

3.3. Leapfrog ... 19

3.4. Runge Kutta 4 .. 20

3.5. Multi-step methods ... 22

3.5.1. Adams-Bashforth .. 22

3.5.2. Adams-Moulton .. 22

3.5.3. Adams-Bashforth-Moulton ... 23

4. Development of the program ... 24

4.1. Selection of framework ... 24

4.1.1. Matlab... 24

4.1.2. First approximation in Python .. 26

4.1.3. Selection of Unity and C# ... 29

4.2. User Interface (UI) ... 30

4.2.1. Design philosophy .. 30

4.2.2. Resulting UI ... 33

4.2.2.1. Main Menu .. 33

4.2.2.2. Load Simulation ... 34

 Juan Paños Basterra N-Body Simulator

5

4.2.2.3. New Simulation ... 35

4.2.2.4. Simulation .. 37

4.3. Programming of the simulator .. 41

4.3.1. UI programming .. 41

4.3.1.1. Main menu .. 41

4.3.1.2. New Simulation ... 42

4.3.1.3. Load Simulation ... 43

4.3.2. Simulation programming .. 44

4.3.2.1. Main scripts ... 45

4.3.2.1.1. SimManager ... 45

4.3.2.1.2. CanvasManager .. 48

4.3.2.2. Other scripts .. 50

5. Performance and optimization ... 51

5.1. Computational costs .. 51

5.1.1. Effect of N ... 52

5.1.2. Visual settings ... 53

5.1.3. Numerical integrators ... 54

5.1.3. Energy/Angular momentum graph .. 55

5.1.4. Improving performance .. 56

5.2. Resulting performance .. 57

5.2.1. Effect of hardware .. 57

5.2.2. CPU, GPU and RAM .. 58

6. User guide ... 59

6.1. Requirements and installation .. 60

6.2. Instructions and tips .. 60

 Juan Paños Basterra N-Body Simulator

6

7. Examples ... 61

7.1. Simulation examples .. 61

7.1.1. Real world examples ... 61

7.1.1.1. External solar system ... 62

7.1.1.2. Trojan asteroids ... 63

7.1.2. Theoretical solutions .. 63

7.1.2.1. Figure 8 .. 64

7.1.2.2. Broucke’s periodic solutions.. 65

8. Conclusions ... 66

8.1 Improvements .. 67

8.1.1 Optimizations... 67

8.1.2 Extra features .. 68

8.1.3 New simulators .. 69

9. Bibliography .. 71

 Juan Paños Basterra N-Body Simulator

7

1. Introduction

1.1. Introduction to the N-body problem

In physics, the N-body problem is the problem of predicting the individual motions of a

group of celestial objects interacting with each other gravitationally. Solving this

problem has been motivated by the desire to understand the motions of

the Sun, Moon, planets, and visible stars ever since humans were able to admire the

cosmos.

The N-body problem has been studied since antiquity, where the interest was placed on

the movement of the planets on the night sky. Different theories were proposed by the

Greeks to explain their movement. Over the centuries the conception of the universe

evolved until in the XVII century, Isaac Newton formulated the theory of universal

gravitation. This established the gravitational attraction between two bodies, which will

be the basis of our application.

Any discussion of planetary interactive forces has historically started with the two-body

problem, which consists of predicting the motions of two bodies interacting with each

other. This problem was solved analytically by Johan Bernoulli in the XVII century.

However, for systems where N > 2 no analytical solution is possible, and therefore an

approximation of the solution is the only viable option. The mathematical techniques

used for approximating the solution are called numerical integrators, which differ in how

they approximate the solution and in their quality and computational cost.

The N-body problem is perfectly suited to be solved by computers because even for

systems where N is small, millions of calculations need to be done to come up with the

solution, therefore rendering any human calculations impossible. Nevertheless, when

determining a solution, computational power is not the only metric that ensures quality.

https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Astronomical_object
https://en.wikipedia.org/wiki/Gravitation
https://en.wikipedia.org/wiki/Sun
https://en.wikipedia.org/wiki/Moon
https://en.wikipedia.org/wiki/Planet
https://en.wikipedia.org/wiki/Star
https://en.wikipedia.org/wiki/Two-body_problem
https://en.wikipedia.org/wiki/Two-body_problem

 Juan Paños Basterra N-Body Simulator

8

Therefore, the selection of quality numerical integrators is an essential part of obtaining

a solution.

1.2. Objective

The purpose of this project is the development of a simulator for the N-body problem,

which approximates the solution of a system of N bodies and renders them in a 3-

dimensional space where the user can interact with different parameters and observe

the simulation in real time. The user shall be able to select the starting parameters, as

well as the numerical integrator to be used, which will greatly vary the resulting

simulation as will be discussed later.

The focus of the project will be on developing an application that is easy to use, with an

intuitive User Interface (UI) to allow the user to interact with the different parameters

to learn how they affect the simulation of the N-body problem, as well as experiment

with a variety of pre-generated simulations and allowing for the creation of new ones.

All being managed by a single application that is easy to download, install and utilize.

This thesis is divided in seven sections, firstly, the equations of motion that describe the

N-body problem will be studied, and the need to approximate a solution will be

explained.

The second part will cover the numerical methods used to approximate the solution of

the general N-body problem, analyzing the difference between them, both in how they

calculate an approximation and in their quality and computational complexity.

The following section will be devoted to the development of the program, we will cover

topics such as the selection of the framework used to create the software, essential in

 Juan Paños Basterra N-Body Simulator

9

any software project, the design of the User Interface (UI) and the principles we have

based our development on, and finally we will study the programming of the different

elements, both the UI and the main Simulation codes that manage different aspects of

our program.

In the fourth part performance will be discussed, analyzing metrics such as Frames Per

Second (FPS), CPU, GPU and RAM. Several optimizations will also be studied, some that

have been implemented as well as some that have been proposed to tackle performance

issues.

After we have analyzed the obtained performance, a user guide will be proposed,

explaining how the user can install the software as well as a brief set of instructions and

tips, that the user should be aware of in order to have a satisfactory experience when

using the program.

The sixth section will help visualize some simulation examples that can be executed by

the simulator, studying both real world examples such as a solar system configuration

and theoretical solutions that have been proposed, such as the renowned Figure 8

configuration.

The conclusions of the development of the project can be found in the last segment,

together with a list of possible improvements proposed and the references used for the

project.

 Juan Paños Basterra N-Body Simulator

10

1.3 Existing simulators

When considering the development of a N-body simulator, it is important to examine

the existing software. While a more in-depth analysis will be performed in a later

chapter, several simulators were tested and scrutinized and some of the detected issues

common among them were:

• Lack of an intuitive User Interface.

• Lack of varied integration methods.

• High complexity to download and utilize

• Usage of only two dimensions

• Lack of user interactivity

In this project, we have attempted to solve most of these issues by designing an intuitive

UI, providing the user with several integration methods, facilitating installation on

multiple platforms with a streamlined application, allowing the user 3-dimensional

movement and providing different tools for the user to interact with the simulation.

2. Equations of the N-body problem

When a N-body system is discussed, interacting through their mutual gravitational

attractions, and confined in a limited special region, we are referencing the appropriate

mathematical model to represent some aspects of real systems, such as the Solar system

and other galaxies.

Let us consider N(>1) point masses moving in an inertial reference system 𝑅3, where the

only forces acting on them are their mutual gravitational attractions.

 Juan Paños Basterra N-Body Simulator

11

If the 𝑖𝑡ℎ particle has a position vector �⃗�𝑖 and mass 𝑚𝑖 > 0, because of the second law

of Newton and the law of gravity, we have the motion equation for the 𝑖𝑡ℎ particle:

𝑚𝑖 �̈⃗�𝑖 = ∑
𝐺𝑚𝑖𝑚𝑗(�⃗�𝑗 − �⃗�𝑖)

‖�⃗�𝑖 − �⃗�𝑗‖
3

𝑁

𝑗=1

, (𝑖 ≠ 𝑗), �̈⃗�𝑖 =
𝑑2�⃗�𝑖

𝑑𝑡2
 ,

Having:

𝐺 = 6.672−11
𝑚3

𝑘𝑔 ∗ 𝑠2
 .

If the negative potential function, 𝑈 is introduced:

𝑈 = ∑
𝐺𝑚𝑖𝑚𝑗

‖�⃗�𝑖 − �⃗�𝑗‖
3

1≤𝑖<𝑗≤𝑁
 ,

The motion equation can be rewritten:

𝑚𝑖 �̈⃗�𝑖 =
𝜕𝑈

𝜕�⃗�𝑖
 .

The system of Ordinary Differential Equations (ODEs) defines the N-body problem. Since

the initial positions (𝑞), and velocities (�̇�) will be introduced as data, the problem

corresponds to the category of initial value problems for ODEs. Furthermore, if we

assert that the bodies move exclusively because of the effect of gravity from the other

bodies, the problem conserves the total energy, and can be approached as a

Hamiltonian problem.

The Hamiltonian formulation does not add anything to the physical laws, but it provides

a very useful formalism [1]. The basic idea of the Hamiltonian formulation is to write the

equations of motion in terms of positions and momenta, instead of positions and their

derivatives.

 Juan Paños Basterra N-Body Simulator

12

We denote �⃗� = (�⃗�1, �⃗�2, �⃗�3, … , �⃗�𝑁) ∈ 𝑅3 as the position vector, with this new

nomenclature, the vectorial form of the motion equation is:

𝑀 ∗ �̈⃗� − ∇𝑈(�⃗�) = 0,

Having 𝑀 = 𝑑𝑖𝑎𝑔(𝑚1, 𝑚1, 𝑚1, … , 𝑚𝑁 , 𝑚𝑁 , 𝑚𝑁) as the mass vector and ∇ as the

gradient operator.

Analyzing the last equation, the definition of 𝑈 as the negative potential is clear. The

potential function 𝑉 is defined as:

�⃗� = −∇𝑉.

From this definition we find the following relation 𝑈 = −𝑉. Furthermore, by definition,

since there exists a potential function, the system is conservative.

To use the Hamiltonian formulation, it is necessary to introduce momentum vectors.

We define �⃗� = (�⃗�1, �⃗�2, … , �⃗�𝑁) ∈ 𝑅3𝑁 as the lineal momentum vector, which verifies:

�⃗� = 𝑀 ∗ �̇⃗�,

Having �⃗�𝑖 = 𝑚𝑖 ∗ �̇⃗�𝑖 as the momentum of the 𝑖𝑡ℎ particle.

With these definitions, the equations of motion can be written as:

�̇⃗� = ∇𝐻(�⃗�) = 𝑀−1 ∗ �⃗�,

�̇⃗� = −∇𝐻(�⃗�) = ∇𝑈(�⃗�),

Or in components:

𝑞𝑖⃗⃗⃗ ⃗̇ =
𝜕𝐻

𝜕�⃗�𝑖
=

�⃗�𝑖

𝑚𝑖
,

 Juan Paños Basterra N-Body Simulator

13

𝑝𝑖⃗⃗⃗ ⃗̇ = −
𝜕𝐻

𝜕�⃗�𝑖
=

𝜕𝑈

𝜕�⃗�𝑖
= ∑

𝑚𝑖𝑚𝑗(�⃗�𝑗 − �⃗�𝑖)

‖�⃗�𝑖 − �⃗�𝑗‖
3

𝑁

𝑗=1

 .

where the Hamiltonian, or the total system energy of the particle system is:

𝐻 =
1

2
�⃗�𝑇 ∗ 𝑀−1 ∗ �⃗� − 𝑈 = ∑

‖�⃗�𝑖‖
2

2𝑚𝑖

𝑁

𝑖=1

− 𝑈,

With the first term of the equation being the total kinetic energy:

𝑇 =
1

2
∑

‖�⃗�𝑖‖
2

𝑚𝑖

𝑁

𝑖=1

 ,

And the second term being the potential energy of the system, 𝑉 = −𝑈.

The Hamiltonian is a constant of the considered equation system, since:

𝜕𝐻

𝜕𝑡
=

𝜕𝐻

𝜕�⃗�
 �̇⃗� +

𝜕𝐻

𝜕�⃗�
 �̇⃗� = �̇⃗� ∗ �̇⃗� + (− �̇⃗� ∗ �̇⃗�) = 0,

The N-body problem is a system of 3N equations of second order (𝑞𝑖𝑥
, 𝑞𝑖𝑦

, 𝑞𝑖𝑧
) in the

Newtonian formulation, and of 6N order equations (𝑞𝑖𝑥
, 𝑞𝑖𝑦

, 𝑞𝑖𝑧
, 𝑝𝑖𝑥

, 𝑝𝑖𝑦
, 𝑝𝑖𝑧

) in the

Hamiltonian formulation. To solve this problem, we need to know 6N independent first

integrals. However, ∀𝑁 ≥ 3, only ten first integrals are known (In 1887, H.Burns proved

that no more independent integrals exist [2]). One of them is the Hamiltonian, which

has been demonstrated previously. The other nine remaining integrals are shown next:

The center of mass in the system is defined as:

𝐶 =
∑ 𝑚𝑖�⃗�𝑖

𝑁
𝑖 =1

∑ 𝑚𝑖
𝑁
𝑖 =1

 ,

The total lineal momentum is:

�⃗⃗� = ∑ 𝑝𝑖

𝑁

𝑖 =1

 ,

 Juan Paños Basterra N-Body Simulator

14

Deriving both vectors with respect to time we obtain:

𝐶 = ∑ 𝑚𝑖 �̇⃗�𝑖

𝑁

𝑖 =1

= �⃗⃗� ,

�⃗⃗� = ∑ �̇⃗�𝑖

𝑁

𝑖 =1

= ∑ −
𝜕𝐻

𝜕�⃗�𝑖

𝑁

𝑖 =1

= ∑
𝜕𝑈

𝜕�⃗�𝑖

𝑁

𝑖 =1

= ∑ ∑
𝑚𝑖𝑚𝑗(�⃗�𝑗 − �⃗�𝑖)

‖�⃗�𝑖 − �⃗�𝑗‖
3

𝑁

𝑗 =1

𝑁

𝑖 =1

= 0 ,

Therefore, we have:

�̈� = �̇⃗⃗� = 0 ,

If we integrate the previous equation, we obtain

�̇� = �⃗⃗�0 𝐶 = �⃗⃗�0𝑡 + 𝐶0 .

As we can see, the center of mass vector, which has a uniform line movement, offers us

three motion integrals, and the lineal momentum vector provides us with three more

constants. Taking into account that the Hamiltonian is another motion integral, we only

have three more first integrals to study, which come from the total angular momentum:

�⃗⃗� = ∑ �⃗�𝑖

𝑁

𝑖=1

 × �⃗�𝑖 .

Applying these motion integrals, we can reduce the dimension of the system to 6N – 10.

The ten constants of motion, �⃗⃗�0, 𝐶0, �⃗⃗� 𝑎𝑛𝑑 𝐻 are functions of the positions and

velocities of the N point masses and of time and their independence from each other

can be demonstrated [3], through two additional transformations, we can obtain two

more constants, bringing our total to twelve. Therefore, for any system where 𝑁 ≥ 3,

we simply cannot meet 6𝑁 ≤ 12, therefore no analytical solution is possible.

 Juan Paños Basterra N-Body Simulator

15

3. Numerical integrators

3.1. Introduction

The integration of the N-body problem can be seen as an initial value problem for

Ordinary Differential Equations (ODEs). The ODE that models the problem cannot be

solved exactly. Therefore, different approximation methods, called numerical

integrators or numerical methods, are used to attempt to solve the problem with

minimal errors. Such methods do not produce a continuous solution, but instead

generate approximations for specific discrete points in time.

The initial value problem for a first ODE implies finding a function y(t) that satisfies:

𝑑𝑦(𝑡)

𝑑𝑡
= 𝑓(𝑡, 𝑦(𝑡)) ,

together with the initial condition:

𝑦(𝑡0) = 𝑦0 ,

A numerical solution for this problem generates a sequence of values for the

independent variable: t, and the corresponding sequence of values for the dependent

variable y. So for every value i we have:

𝑖 = 1, 2, 3. . 𝑁 𝑦𝑖 ≈ 𝑦(𝑡𝑖),

Where yi is an approximation for the value of y in ti. Therefore we cannot obtain a

continuous approximation to the solution y(t), but instead a series of approximations to

that solution for a set of given points (i).

In the n-body problem we have that 𝑓(𝑡, 𝑦) = 𝑓(𝑦), since the function is not dependent

on time, only on the variables (y). We also need to consider that for the n-body problem:

𝑓(𝑦) =
𝜕𝐻

𝜕�⃗�
−

𝜕𝐻

𝜕�⃗�
 .

 Juan Paños Basterra N-Body Simulator

16

Given a time interval [t0, tf], we call h (also referred to as DT in the simulator) the

timestep, which is the length of time separating ti from ti+1. This parameter is essential

when creating a simulation since, as we will see later, it directly impacts the way in which

the solution is calculated.

When making an approximation for a value yi, different techniques are used, the first is

called single-step, this is because when approximating the solution for the value ti+1,

only the previous point (ti) is used. The other type of methods we will study are called

multistep, since when approximating a solution for ti+1, several previous points (ti , ti-1,

ti-2,… ti-n) are used.

Multistep methods are generally regarded as obtaining better solutions because by

using the information contained in previous steps, the predicted value is closer to the

function. On the contrary, single-step methods only utilize the information of the

previous calculated value, and generate less optimal results, though by eliminating these

extra calculations they manage to decrease their computational costs. [4]

These methods can also be either implicit or explicit. Explicit integrators are based on

formulas that predict the value for the function in ti+1 from the value of the function and

its derivative in ti and previous values (ti-1 , ti-2…), resulting in:

 𝑦𝑖+1 = 𝑓(𝑦𝑖, 𝑦𝑖−1, … , 𝑡).

Meanwhile when we are talking about implicit integrators to calculate the value of y in

ti+1 the derivate for that time point needs to be known, resulting in:

𝑦𝑖+1 = 𝑓(𝑦𝑖+1, 𝑦𝑖 , 𝑦𝑖−1, … , 𝑡).

Then we have come across a system of non-linear equations that need to be solved

iteratively.

 Juan Paños Basterra N-Body Simulator

17

Explicit integrators are faster because they do not require solving an implicit equation

with the Newton method, or with other techniques, however, implicit integrators offer

approximations of higher quality than explicit ones.

Previously we have seen how the N-body problem can be solved through a second-order

ODE and through two first-order ODEs, therefore numerical integrators that are either

second-order or first-order will help us obtain a solution.

Since numerical methods produce approximations of varying quality, to compare the

efficiency of different integrators, we use the truncation error, there are two kinds:

• Local truncation error (𝜏𝑛) is the error that our approximation function, 𝐴,

causes during a single iteration, assuming perfect knowledge of the true solution

at the previous iteration. It is computed from the difference between the left

and the right-hand side of the equation for the increment:

𝑦𝑛 ≈ 𝑦𝑛−1 + ℎ𝐴(𝑡𝑛−1, 𝑦𝑛−1, ℎ, 𝑓),

𝜏𝑛 = 𝑦(𝑡𝑛) − 𝑦(𝑡𝑛−1) − ℎ𝐴(𝑡𝑛−1, 𝑦(𝑡𝑛−1), ℎ, 𝑓),

We say that a numerical integrator has order 𝒑 if the local truncation error is

𝑂(ℎ𝑝+1), the higher the order, the better the integrator approximates the

solution.

• Global truncation error is the accumulation of the local truncation error over all

the iterations, assuming a perfectly accurate solution at the initial time step. The

global truncation error 𝑒𝑛 at time 𝑡𝑛 is defined by:

𝑒𝑛 = 𝑦(𝑡𝑛) − 𝑦𝑛 ,

𝑒𝑛 = 𝑦(𝑡𝑛) − (𝑦0 + ℎ𝐴(𝑡0, 𝑦0, ℎ, 𝑓) + ℎ𝐴(𝑡1, 𝑦1, ℎ, 𝑓) + ⋯

+ ℎ𝐴(𝑡𝑛−1, 𝑦𝑛−1, ℎ, 𝑓).

Local and global truncation errors are closely related, and we always seek to minimize

them when selecting our numerical integrators.

 Juan Paños Basterra N-Body Simulator

18

Next, we will analyze the different kinds of numerical integrators used to approximate

the solution to the N-body problem that have been implemented in our simulator, as

well as the differences between them in complexity, quality and computational costs.

3.2. Euler

One of the most basic numerical integrators is the Euler method, it does not have great

utility when trying to obtain a reliable approximation of the solution, but it does serve

as a good introduction to understand these methods.

The way the Euler numerical method approximates a solution is the following:

𝑤0 = 𝛼 ,

 𝑤𝑖+1 = 𝑤𝑖 + ℎ ∗ 𝑓(𝑡𝑖, 𝑤𝑖) ,

∀𝑖 = 0, 1, … 𝑁 ,

Where 𝜶 is the initial condition (y0) and 𝑤𝑖 ≈ 𝑦(𝑡𝑖) is the approximation of y for ti.

After observing the method, we notice that it is implicit and single-step. The Euler

method approximates the solution with its tangent as can be seen in image 1.

 Juan Paños Basterra N-Body Simulator

19

 Image 1. Solution to the y’ = 2t equation using Euler’s method with several step sizes (h).

As we can observe, the smaller the value of h, the bigger the accuracy we obtain, this

will be a recurring factor in the other integrators we are going to examine.

3.3. Leapfrog

The Leapfrog integrator is a second-order method with a similar velocity to Verlet’s

method, which is a variant of Verlet integration [5]. Leapfrog integration is equivalent to

updating positions x(t) and velocities v(t) at interleaved time points, in such a way that

they “leapfrog” over each other.

The leapfrog algorithm for updating position and velocity is the following:

𝑎𝑖 = 𝐴(𝑥𝑖) ,

𝑣
𝑖+

1
2

= 𝑣𝑖 + 𝑎𝑖

ℎ

2
 ,

 Juan Paños Basterra N-Body Simulator

20

𝑥𝑖+1 = 𝑥𝑖 + ℎ ∗ 𝑣
𝑖+

1
2

 ,

𝑣𝑖+1 = 𝑣𝑖+1/2 + 𝑎𝑖+1

ℎ

2
 ,

Where 𝑥𝑖 is the position at step 𝑖, 𝑣𝑖+1/2 is the velocity (first derivative) of 𝑥 at step 𝑖 +

1/2, 𝑎𝑖 is the acceleration (second derivative) of 𝑥, at step 𝑖 and ℎ is the timestep.

When it comes to mechanics problems, leapfrog integration has two major advantages.

The first is the Leapfrog method's reversibility in time. To arrive at the same starting

location, one can integrate forward n steps and then reverse the direction of integration

and integrate n steps backwards. The second advantage is that it is symplectic, which

means that it conserves the (modified) energy of the system. Many other integration

schemes, such as the (order-4) Runge–Kutta method, do not conserve energy and allow

the system to drift significantly over time.

3.4. Runge Kutta 4

The Runge-Kutta methods are single-step families of methods which can be either

explicit or implicit. These methods can have varying orders (4, 8, 12…). One of the most

common ones, and the one that has been implemented into the simulator, is the Runge-

Kutta 4 (RK4) method, which is explicit.

Its equations are the following:

𝑤0 = 𝛼 ,

𝑘1 = ℎ ∗ 𝑓(𝑡𝑖 , 𝑤𝑖) ,

𝑘2 = ℎ ∗ 𝑓 (𝑡𝑖 +
ℎ

2
, 𝑤𝑖 +

1

2
𝑘1),

𝑘3 = ℎ ∗ 𝑓 (𝑡𝑖 +
ℎ

2
, 𝑤𝑖 +

1

2
𝑘2),

𝑘4 = ℎ ∗ 𝑓(𝑡𝑖+1, 𝑤𝑖 + 𝑘3),

 Juan Paños Basterra N-Body Simulator

21

𝑤𝑖+1 = 𝑤𝑖 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) ,

∀𝑖 = 1, 2, … 𝑁 − 1 .

Here 𝑤𝑖+1 is the RK4 approximation of 𝑦𝑖+1. It is determined by the previous value 𝑤𝑖

plus the weighted average of four increments, where each increment is obtained by

multiplying ℎ with a slope estimating function 𝑓. When averaging the slopes, greater

weight is given to the two middle slopes.

 Image 2. Graph showing the approximation of y(t) using Runge Kutta 4 method.

The bigger effort when applying the Runge-Kutta methods is the evaluation of 𝑓. The

method RK4 requires four evaluations per step, and its local truncation error is 𝑂(ℎ4) as

long as the solution 𝑦(𝑡) has five continuous derivatives.

 Juan Paños Basterra N-Body Simulator

22

There are many Runge-Kutta methods, some are implicit and of higher order (their local

and global truncation errors are smaller), but require more function evaluations and the

solving of implicit equations with the Newton method.

3.5. Multi-step methods

The previous methods were single-step methods, where the approximation of 𝑤𝑖+1 was

made using only the previous value 𝑤𝑖. However, we know that many previous

approximations have been calculated before 𝑤𝑖, and ignoring them results in the loss of

valuable information, it is therefore reasonable to utilize methods that use more points

previously calculated (𝑤𝑖, 𝑤𝑖−1, 𝑤𝑖−2, … 𝑤0).

3.5.1. Adams-Bashforth

This is an explicit method whose equations are the following:

𝑤0 = 𝛼0, 𝑤1 = 𝛼1, 𝑤2 = 𝛼2, 𝑤3 = 𝛼3 ,

𝑤𝑖+1 = 𝑤𝑖 +
ℎ

24
 [55𝑓(𝑡𝑖, 𝑤𝑖) − 59𝑓(𝑡𝑖−1, 𝑤𝑖−1) + 37𝑓(𝑡𝑖−2, 𝑤𝑖−2) − 9𝑓(𝑡𝑖−3, 𝑤𝑖−3)],

∀𝑖 = 1, 2, … 𝑁 − 1.

This method involves 4 steps, as can be seen by the number of initial conditions required

to execute it. In order to calculate these another method is used, for example a Runge-

Kutta 4.

The local truncation error is 𝜏𝑖+1(ℎ) =
251

720
 𝑦(5)(𝜇𝑖)ℎ4 for any 𝜇𝑖 ∈ (𝑡𝑖−3, 𝑡𝑖+1).

3.5.2. Adams-Moulton

An implicit multi-step method is the Adams-Moulton method in 3 steps. Its equations

are the following:

𝑤0 = 𝛼0, 𝑤1 = 𝛼1, 𝑤2 = 𝛼2 ,

𝑤𝑖+1 = 𝑤𝑖 +
ℎ

24
 [9𝑓(𝑡𝑖+1, 𝑤𝑖+1) + 19𝑓(𝑡𝑖, 𝑤𝑖) − 5𝑓(𝑡𝑖−1, 𝑤𝑖−1) + 𝑓(𝑡𝑖−2, 𝑤𝑖−2)],

 Juan Paños Basterra N-Body Simulator

23

∀𝑖 = 1, 2, … 𝑁 − 1.

The local truncation error is 𝜏𝑖+1(ℎ) =
−19

720
 𝑦(5)(𝜇𝑖)ℎ4 for any 𝜇𝑖 ∈ (𝑡𝑖−3, 𝑡𝑖+1).

As we can see, the truncation error for this method is smaller than for the Adams-

Bashforth method, this is because generally implicit methods have smaller truncation

errors, however they are commonly used to improve the approximations of explicit

methods, as we are about to see.

3.5.3. Adams-Bashforth-Moulton

As we have mentioned before, implicit methods are used to improve the

approximations of explicit methods, since in implicit methods the term 𝑤𝑖+1 appears on

both sides of the equation, we use the 𝑤𝑖+1 calculated with an explicit method in the

implicit method equation.

The combination of implicit and explicit methods is called a predictor-corrector

method, normally executed in two steps, in the first one the explicit method

approximates a solution, and in the second one the implicit method uses this

approximation to generate a new, corrected approximation.

Since we are using the Adams-Bashforth method together with the Adams-Moulton

method, this method is called the Adams-Bashforth-Moulton method.

In order to use this method, we need 4 initial values 𝑤0, 𝑤1, 𝑤2, 𝑤3 , then we proceed to

calculate an approximation using the Adams-Bashforth method:

𝑤4
(0)

= 𝑤3 +
ℎ

24
 [55𝑓(𝑡3, 𝑤3) − 59𝑓(𝑡2, 𝑤2) + 37𝑓(𝑡1, 𝑤1) − 9𝑓(𝑡0, 𝑤0)],

 Juan Paños Basterra N-Body Simulator

24

After we have calculated this approximation, we proceed to correct it using the Adams-

Moulton method:

𝑤4
(1)

= 𝑤3 +
ℎ

24
 [9𝑓(𝑡4, 𝑤4

(0)
) + 19𝑓(𝑡3, 𝑤3) − 5𝑓(𝑡2, 𝑤2) + 𝑓(𝑡1, 𝑤1)],

After achieving this, we have successfully improved our first approximation, the next

iteration the Adams-Bashforth method will use the value 𝑤4
(1)

 as one of its initial

conditions.

4. Development of the program

4.1. Selection of framework

The selection of a correct development framework is one of the keys to a project’s

success, creating software is a complex process, that requires multiple tasks such as

coding, designing and testing to be performed correctly in order to achieve success. The

simulator we have set out to build requires complex code that will need to be developed,

the integration of 3-dimensional graphics and an interactive interface as well as ease of

execution when the application is complete.

4.1.1. Matlab

The first option we considered was the use of the programming language MATLAB since

this was the language the previous simulator was built on [6], the advantages it provides

over other programming languages is the ease of programming large vector operations,

which our simulator will utilize enormously as well as the existence of multiple numerical

integrators already developed in Matlab libraries, the main drawback of choosing

Matlab as our programming language was the inexistence of tools to develop a truly

interactive 3 dimensional space and graphic user interface.

 Juan Paños Basterra N-Body Simulator

25

As it has been stated before, Matlab excels in matrix operations such as indexing,

concatenation, transposing, reshaping and many more [7], this makes programming

much easier for large vector operations, such as the ones undertaken in the

programming for this project. This is not the case in other C-like languages, where native

matrix operations do not exist and the use of libraries is almost necessary for

development.

 Image 3. MATLAB and C programs to multiply a matrix by its transpose

The main downside of programming the simulator in Matlab is the difficulty to create a

3 dimensional graphical user interface that is interactive and allows for a proper and

appealing visualization of the calculated body motions, while a rudimentary GUI would

have been possible, and sufficient documentation can be found online [8], Matlab is just

not suited for complex interface development.

 Juan Paños Basterra N-Body Simulator

26

 Image 4. Matlab App Designer Interface [9]

4.1.2. First approximation in Python

Python shares many of the advantages that Matlab has when developing the simulator,

matrix operations are very easy to program and many numerical integrators are already

developed for these languages, having said that, Python also suffers from the lack of

quality 3 dimensional interactive GUIs.

Despite this, Python was chosen as the language to create a first approximation of the

simulator, to see whether or not the programming in C#, which will be discussed later,

could be undertaken.

In this first approximation, the main objectives were to do a small version of our

simulator in order to ease the transition to C# and Unity for final development. The tasks

 Juan Paños Basterra N-Body Simulator

27

that were completed successfully were the programming of numerical methods, which

was essential to the viability of the project since, as we will discuss later, this same

programming would have to be accomplished in the C# language. Other tasks included

the plotting of a reduced number of simulations to check the quality of the calculations

and finally the realization of a small-scale energy graph.

This small-scale simulator implemented some of the integrators described in the Matlab

version [6], among them were Euler, Leapfrog, Runge-Kutta 4, Adams-Bashforth and

Adams-Bashforth-Moulton. The programming was made easier by the use of the library

Numpy [10] as well as several tutorials on numerical integrators [11].

 Image 5. Code to execute the simulation with LeapFrog integrator.

 Juan Paños Basterra N-Body Simulator

28

The development of the simulator was very useful to confirm that indeed it was possible

to program the integrators manually and output the correct simulations despite them

still being static. These codes were used as the first prototype in an iterative method of

development and would serve as the stepping stone for the development in C#.

Image 6. 3d & 2d graphs showing Interior solar system and figure 8 simulations using different numerical integrators.

Despite this success, the next iterations of the simulator were not developed using

Python due to the lack of tools to design and create an interactive 3-dimensional GUI,

much like in Matlab, the tool selected to develop the final iterations was Unity, which

will be discussed next.

 Juan Paños Basterra N-Body Simulator

29

4.1.3. Selection of Unity and C#

Unity is one of the most popular game engines in the market [12], used for creating

cross-platform (Windows, iOS, Linux, Android…) 2D and 3D videogames and simulators.

It was a very interesting option from the beginning for our project, due to the ease of

developing and deploying an application which would be valid both for iOS and Windows

platforms.

 Image 7. Sample screenshot of a Unity project

The underlying programming language that is used in unity is C#, which as we explained

earlier, is much more difficult for programming matrix operations and manipulation

than Matlab or Python. To bridge this gap, some external libraries such as Numsharp

[13] have been used to solve some of the intrinsic issues and ease the development of

the solution.

In addition to this problem, the other main challenge for building the simulator in Unity

is the lack of libraries from which to import numerical integrators, as C# is not a language

normally used for these types of calculations and thus there is little supporting materials

that can be found on the internet. Therefore, the majority of the numerical integrators

 Juan Paños Basterra N-Body Simulator

30

have to be manually programmed, requiring a lot of effort to correctly develop and

optimize.

The main strength Unity has over Matlab and Python environments is the suitability to

develop 3D software, this is due to the vast array of tools, technologies and ready to go

assets available to developers, especially given how comparatively easier they are to

utilize [14]. Unity offers 3D support, creation and optimization of custom graphics, GUI

design as well as built in menus all completely integrated, rendered, and optimized by

the game engine, leaving the developer to focus on the more technical scripts. To build

upon this, the compilation of all the source code into a single executable file compatible

with Windows and iOS makes the simulator very easy to access and utilize since the final

user does not have to execute command lines or read through extensive documentation

to open the program.

It is because of all the reasons mentioned above, as well as the familiarity I had with this

environment, which would improve development speed and reduce errors that Unity

was chosen as the framework to create this application.

4.2. User Interface (UI)

The User Interface [15], is the point at which human users interact with a computer

website of application. The goal of an efficient UI is to make the user’s experience easy,

intuitive and enjoyable, requiring minimum effort on the user’s part to receive the

desired outcome all while avoiding undesired outcomes.

4.2.1. Design philosophy

The importance of a good UI cannot be overstated, to produce a satisfactory experience

for the user, a UI needs to be clear, intuitive, not overbearing, and easy to use. The

contrary is a UI that displays too much information, has a complex set of options, an

 Juan Paños Basterra N-Body Simulator

31

outdated design and is not easy to use [16]. All of this leads to confusing and negative

user experience, our design philosophy has set out to avoid these mistakes.

As it was mentioned in the first chapter of this thesis, most of the existing simulator

suffer from several flaws. Web-based simulators tend to be too simplistic, offering the

user a very restricted simulation and rarely implementing the third dimension. In

addition, the numerical methods used in the solution of the problems is rarely available,

let alone modifiable by the user.

Image 8. Web-based simulator developed by Clark University (https://mathcs.clarku.edu/~jtrahan/subsites/nbody/)

Commercial simulators suffer from the opposite problems, overwhelming the user with

too much unnecessary information, and occupying the UI with many complicated

options and menus. The lack of interactivity is also prominent in these kinds of

simulations, opting for a more static behaviour.

 Juan Paños Basterra N-Body Simulator

32

 Image 9. Screenshot from first execution of AstroGrav simulator. [17]

In order to improve upon the existing simulators, the design for our UI has been based

on the following principles:

• Intuitiveness: The simulator UI should be easy to use for the first time user as

well as for an experienced user, in order to achieve this a set of instructions is

provided on the first screen, and in every menu, the actions to perform are

clearly displayed so that the user can select them without any confusion. Apart

from this, all buttons, toggles, graphs and other interactable items should offer

information into what their function is so that the user can get the expected

functionality from them.

• Usability: The simulator UI should provide a satisfactory experience for the user,

this is achieved by reducing user burden, for example being able to use the Tab

key to move between input fields the user has to introduce, minimizing loading

times and making mistakes easy to fix.

 Juan Paños Basterra N-Body Simulator

33

• Simplicity: The simulator should have a simple interface, displaying the essential

information to the user, and allowing for options to minimize cognitive burden

for the user when receiving too much information all at once.

4.2.2. Resulting UI

Each of the following menus that are about to be explained are created through an

object in Unity called Scene [18], these Scenes contain the different objects that allow

the user to interact with it, such as Buttons, Sliders and the scripts that manage the

different menu logic.

Next, we will see the functionalities the menus that have been created offer the user, as

well as how they interact with each other.

4.2.2.1. Main Menu

 Image 10. Main menu loaded when starting the application.

 Juan Paños Basterra N-Body Simulator

34

The main menu that can be seen on image 10 is loaded when executing the simulator,

this menu has different functionalities. For the first time users of the program, a flashing

green text in the bottom indicates them to “Create or Load a simulation to start”,

pointing them in a path to take. A set of instructions can be accessed through the

“Instructions” button, where users can learn about how to create, execute or edit a

simulation, how to navigate through the program or receive tips on how to increase

performance and speed.

The options the user can choose are the following:

• Instructions: Obtain set of instructions for the program.

• Gallery: Open a file explorer and look through screenshots taken with the app.

• Create Simulation: Open the Create simulation, explained next.

• Load Simulation: Open the Load simulation menu, explained next.

• Exit: Quit the program and return to desktop.

4.2.2.2. Load Simulation

 Image 11. Load simulation menu layout.

 Juan Paños Basterra N-Body Simulator

35

This menu, which can be seen in image 11, has several elements that are of interest to

the user, the first of them is the big list of simulations we can see in green, after selecting

the desired simulation, the user now has 4 options open to them:

• Load simulation: Loads the selected simulation in the Simulation scene, which

will be explained later.

• Delete: Deletes the file of the selected simulation, removing it from the

application folder that stores simulations.

• Back: Loads the Main menu.

• Edit: Opens the New Simulation menu on edit mode, explained next.

4.2.2.3. New Simulation

 Image 12. New Simulation menu.

This menu allows for the creation of a new simulation, as well as the editing of existing

ones, two paths lead to this menu, through the “Create Simulation” button in the Main

menu and through the “Edit” button in the Load simulation menu.

 Juan Paños Basterra N-Body Simulator

36

The user can input different simulation parameters:

• G: Gravitational constant, default value is 6.672e-11 m3kg-1s-2.

• DT: Timestep, also referred to as h, measures the length of time elapsed

between each iteration.

• FPS: Frames Per Second (FPS) which the simulator will target executing.

• Trail Size: Number of points to draw in a body’s orbit.

• Integrator: Integrator to use in the simulation, this parameter will greatly

impact the simulation and allows the user to compare between the different

ones that have been implemented.

The user can also modify the simulation name and select Create new body,

which opens a pop up menu where the user enters the name, mass, position and

velocity of the body, placeholder values are provided, so the user can see the

format that is expected and the recommended values for each input.

Once the parameters are set correctly, the user can press Save sim, which will save the

new simulation, overwriting an existing the previous one if it was editing it and will start

the Simulation menu, if the user presses the Back button, the program will load the

Main menu.

 Juan Paños Basterra N-Body Simulator

37

4.2.2.4. Simulation

 Image 13. View of the Simulation menu while executing the “Solar system external” simulation

This menu is the soul of the application, it displays the evolution of the simulation

parameters that the user has input over time and allows for editing in real time as well

as the visualization of a multitude of parameters. The UI is divided into several parts:

• Non-Interactable parameters:

Image 14. Non-interactable parameters in a simulation.

The purpose of these parameters is to give information to the user about the

overall simulation, these are:

o Simulated time: measures the time that has been simulated in seconds.

o Real time: represents real time that has elapsed since the beginning of

the simulation

o Executed frames: represents total number of frames executed since the

beginning of the simulation and the real fps in parenthesis and lastly the

Integrator: lets the user know which numerical integrator is being used.

 Juan Paños Basterra N-Body Simulator

38

• Interactive parameters:

 Image 15. Interactable parameters in simulation.

The parameters that are shown in image 15 are the ones the user can interact

with in real time, both by entering data through the keyboard and by selecting

the arrows next to the value which will update it in real time. With these controls

the user can set the desired parameters for frames per second (FPS), dt, change

the gravitational constant (G) to see the effect on the simulation and zoom

in/out.

• Body data:

 Image 16. Body parameters in the simulation.

Information about the evolution of each individual body data (Position-Q and

Velocity-V) can be found on the top right section of the screen, where the user

can scroll through the list of bodies in the simulation and select the one they are

interested in to visualize how its parameters change in real time.

 Juan Paños Basterra N-Body Simulator

39

• Energy/Momentum graph:

Image 17. Different modes of the graph showing relative energy and relative angular momentum.

This section of the UI consists of a graph that is updated in real time which can

display 4 different types of data:

o Kinetic energy (KE), Potential energy (PE), Total Energy (E).

o Relative energy.

o Angular momentum (L).

o Relative angular momentum.

The y axis displays the values for the selected parameters and the x axis displays

the iterations.

The user can cycle through the different graphs and can also choose to hide the

graph from rendering, thus increasing overall performance.

• Control buttons:

 Image 18. Control buttons located on the bottom part of the screen

The control buttons that can be seen on the image 18 allow the user to perform

the following actions:

 Juan Paños Basterra N-Body Simulator

40

o Play/Pause: These two buttons allow the player to pause and resume the

simulation, they can be toggled both by mouse and by pressing the space

key.

o Restart: This button resets the simulation, removing any modifications

made by the user to the simulation parameters.

o Hide UI: This button allows the user to hide the UI elements, this is very

useful when visualization of the simulation is the main objective and the

accompanying data is not required, UI can be reenabled by pressing the

same button.

 Image 19. Simulation before and after pressing the Hide UI button.

 Juan Paños Basterra N-Body Simulator

41

o Screenshot: This button allows for the user to take a screenshot of the

current simulation, this is very interesting to keep track of how it evolves

over time, or to save some data parameters without having to execute

the simulation multiple times. These screenshots can be accessed

through the Gallery button in the Main menu.

 Image 20. Screenshot button.

4.3. Programming of the simulator

This section will cover how this simulator has been programmed, the structure of the

codes and how the encountered problems have been solved.

4.3.1. UI programming

The programming of the UI is radically different to the programming for the simulation.

While the latter involves more mathematical codes, requiring the calculation of new

positions, updating the graphics and setting the trails, the former is more modularized,

managing the execution of small, more diverse set of tasks. We will now take a closer

look at some of the scripts that are run by the UI.

4.3.1.1. Main menu

The scripts that manage the functionality of the Main Menu are simple and are all

managed by a single script, MainMenuManager.cs. Some of the functionalities of this

script are:

 Juan Paños Basterra N-Body Simulator

42

• Loading either the New Simulation scene or the Load Simulation scene.

Image 21. Functions in MainMenuManager.cs which load the selected scenes.

• Accessing the file system to open an instance of the file manager, this

section of the code needs to check the operative system to act accordingly, as

files are not opened the same way in iOS and in Windows.

• Displaying the instructions, a set of pop-up menus can be iterated

through by the user.

 Image 22. Function in MainMenuManager.cs to iterate through the instruction menus.

4.3.1.2. New Simulation

The complexity of the scripts increases as the tasks go from trivial ones, such as loading

scenes and files, to more complex ones, such as editing a file of simulation parameters.

This menu allows the user to create a new simulation as well as, through the Load

Simulation menu, edit an existing simulation. In order to achieve this, several codes have

to be implemented, the most important of them are:

• NewSimManager: The main tasks of this script are managing the events of

buttons, loading the existing simulation when the user chooses to edit it and

sending the simulation information to the DataManager.cs to save it into the file

system and then load it in the Simulation scene.

 Juan Paños Basterra N-Body Simulator

43

Image 23. Functions to edit and save a simulation in NewSimManager.cs

• DataManager: Once all the parameters have been correctly set, this script parses

all the input parameters to their desired type, calculates the correct zoom for

every simulation based on the maximum distance and creates a json object to

then store the data as a .json file.

Image 24. Earth and moon simulation .json file containing the simulation parameters.

4.3.1.3. Load Simulation

This menu, and its corresponding scripts, LoadSimManager and LoadSimPanelManager

fulfill several tasks:

• Loading all the simulations contained in the \Examples folder and sorting them

in order to make searches easier for the user.

 Juan Paños Basterra N-Body Simulator

44

 Image 25. readFiles function in LoadSimPanelManager which reads all .json files in the Examples folder.

• Generate the UI panel containing the list of all simulations, where each name is

a button with a given file path to a simulation, when the button is pressed it sets

a variable from which the loading, editing or deleting information is extracted.

Image 26. Function to generate list of simulations available to load/edit/delete in LoadSimulation menu.

4.3.2. Simulation programming

When studying the structure of the codes that run the simulation, it is critical to discuss

the most essential parts: loading the simulation, executing the iterations and updating

the UI. This is because the simulation the user experiences is just a sequence of different

iterations, which are all run in the same way and are executed from a series of

parameters that are loaded from files.

 Juan Paños Basterra N-Body Simulator

45

4.3.2.1. Main scripts

It is important to note that a wide of array of scripts manage the main simulation code,

some manage the calculations using numerical methods, some control the canvas and

how the user interacts with it and others oversee calculating and rendering the graph

data, as well as many other auxiliary codes, here are the main ones:

• SimManager: This is the heart of the simulation, it is the script that

controls all others and stores the most important data, its functions are Loading

the simulation parameters, calculating the Next Iteration and Updating the

graphics.

• Canvas Manager: This script manages all of the UI (excluding the graph),

it is in charge of Updating certain simulation parameters which are editable by

the user, such as G, DT, Zoom, and FPS. As well as Receiving information from

the SimManager in order to display it in the UI.

4.3.2.1.1. SimManager

As its name states, the Sim(ulation)Manager manages the simulation, it acts like a

“brain”, which controls a “body” of codes, it is divided mostly into three sections, Start,

Update, and public methods. This script also contains some of the most important

variables in the whole simulation, some of them are:

• y0: This is one of several parameters from the simulation data, but it is the most

important, it is the code representation of the initial conditions of the bodies,

take the following configuration:

 Earth Moon

Positions X:0m
Y:0m
Z:0m

X:384400000m
Y:0m
Z:0m

Velocities X:0m/s
Y:0m/s
Z:0m/s

X:0m/s
Y:10000m/s

Z:0m/s
Image 27. Initial configuration of the Earth and moon simulation.

 Juan Paños Basterra N-Body Simulator

46

• History: List of arrays of type double which store every y vector that has been

calculated each frame, if we have a simulation with 6 bodies that has run for 100

frames, the size of history will be 100x36.

Image 28. Declaration of history in SimManager.cs.

• Bodies: Array of GameObjects [19], these are the graphical representation of our

bodies, containing both the Sphere and the Line Renderer (orbit) for each of our

bodies.

Image 29. View of a body GameObject with its components in the Unity Editor.

Now we will take a look at the main sections in which the code is divided:

• Start: This function defined by Unity [20] executes when the simulation is first

loaded, in it the SimManager performs the following actions:

o Loading the simulation data from the file selected by the user.

o Instantiating (Creating) the 3D bodies with their parameters.

o Initializing the history depending on the integrator used as some require

more than 1 initial condition.

 Juan Paños Basterra N-Body Simulator

47

o Initializing the Canvas (UI).

 Image 30. Start() function in SimManager.cs

• Update: This function is also defined by Unity [21] and it executes each frame,

the most important actions it performs are:

o Check that the simulation is playing, in order to advance a frame, this is

done by checking if the Boolean variable playToggle.isOn has the value

true.

o Control the current FPS, since the Update method is called on every Unity

frame, there is a difference between the desired FPS value and the FPS

value unity is trying to achieve, this is controlled by a set of variables that

keep track of time and only allow the desired number of frames to be

executed per second.

o Calculate the next iteration, the selected numerical integrator is used to

obtain the following approximation of the simulation parameters.

o Check that no collisions have occurred, if they have, merge the two

bodies by removing them and creating a new body which will be located

in the halfway point between the two collided bodies.

o Update the positions of the in-game spheres representing the bodies by

scaling them to in-game zoom.

o Update the materials used to color the spheres based on which body the

user is monitoring.

o Update the graph variables and render the new result, this is done

through the variable graphManager.

 Juan Paños Basterra N-Body Simulator

48

Image 31. Update() function in SimManager.cs

4.3.2.1.2. CanvasManager

The Canvas [22] is the Unity object in which we design and program the UI, as in any UI,

in order to perform the actions the user desires, there needs to be a script which

manages the UI, that is the function of our CanvasManager. Some of the main variables

are:

• Buttons: The Button [23] object allows for actions to be performed when

pressed, many of them are used in our Canvas, and they have different functions;

allowing the user to control the simulation, increasing or decreasing simulation

parameters, switching the graph view or allowing the user to inspect the

parameters of a body.

 Juan Paños Basterra N-Body Simulator

49

 Image 32. Button variables in CanvasManager.cs

• Texts and InputFields: To display information on screen, the object

TextMeshProGUI [24] allows for the manipulation of the content of the text in

real time. Most of these objects are only modified by the CanvasManager, for

user manipulation, the object InputField [25] is used.

 Image 33. InputField and TextMeshProGUI variable declaration in CanvasManager.cs

The most important part of the script however, are the functions it performs to update

and modify the data that is being displayed in the UI, as well as modify the simulation

parameters if the user chooses to do so, here are the most important functions:

• Update: Much like in SimManager.cs, this function also executes each frame, to

improve efficiency, it is only executed when the Canvas is not hidden. The main

actions it performs are:

o Update the texts that display the selected Body parameters.

o Update the simulation variables values, taking them from the InputFields

and sending them to the SimManager.cs script while also updating the

displayed text.

 Juan Paños Basterra N-Body Simulator

50

o Update the remaining texts the user cannot interact with.

Image 34. Update function for the CanvasManager.cs script.

4.3.2.2. Other scripts

While the SimManager and CanvasManager are the main scripts tasked with running

and displaying the simulation, they rely on a wide array of auxiliary codes to perform

parallel calculations, variable management and other auxiliary tasks. These are some of

the scripts:

• ELGraphManager: This script is tasked with calculating the Energy, both KE and

PE as well as the angular momentum, and rendering this data in a custom graph

that is created with the WindowGraph script since Unity does not offer native

graph support.

Image 35. updateGraph() function in ELGraphManager.cs script, this function is executed every frame.

 Juan Paños Basterra N-Body Simulator

51

• Screensaver: This script is in charge of capturing the screen when the user selects

the screenshot button, as well as navigating in the file system and creating a new

file in which to store the image.

Image 36. Main functions of the Screensaver.cs script, these functions take a screenshot and save it to the file system.

5. Performance and optimization

This section is dedicated to the study of the computational complexity of the N-body

problem and the performance obtained by the simulator that has been developed.

Several measures of performance will be taken into account, the most widely used is

Frames Per Second (FPS), because it is the one that impacts user experience the most

[26], 30 FPS is an industry standard considered optimal, with 60 FPS considered a more

premium target. Other metrics that will be considered are CPU, GPU, and RAM usage.

The main computational costs of the simulator will be analyzed, and the final

performance of the simulator will be discussed.

5.1. Computational costs

The computational complexity of the N-body problem has been studied for decades,

especially for the so called “many-bodies” where the large magnitude of N (usually >

10.000) implies that direct methods such as the ones used by our simulator are

impossible, and special optimization techniques need to be implemented [27].

 Juan Paños Basterra N-Body Simulator

52

Next, we will review some aspects that affect the computational cost of calculating the

evolution of any simulation, such as the size of N, the visual settings, the numerical

integrator being used, and other calculations.

5.1.1. Effect of N

Because every body exerts a gravitational force on every other body in the simulation,

the complexity of obtaining the total force that a body experiments in a given moment

in time is of order O(n2) [28]. This is the biggest limiting factor in our simulator, since the

number of calculations needed is exponentially bigger when N increases, the number of

Frames Per Second that we can achieve decreases exponentially.

 Image 37. Graph showing the drop in FPS value as N increases. Using Euler integrator and trail size = 250.

 Juan Paños Basterra N-Body Simulator

53

5.1.2. Visual settings

Graphical components are also a big part of computational costs, the elements in the

scene in Unity, mainly the UI and the bodies need to be rendered [29], and the

computational costs of rendering these elements needs to be carefully monitored.

The element that most affects graphic performance is the Line Renderer [30] , this

component takes an array of two or more points in 3D space, and draws a straight line

between each one. This is used to visualize the orbits of the planets, the length of which

is referred to as Trail size.

 Image 38. Line renderer component in the Unity editor.

The main challenge comes when the selected Trail size is > 10.000, as the engine needs

to calculate and render every point in the line for every body each frame, which causes

the simulator to slow down considerably.

 Juan Paños Basterra N-Body Simulator

54

 Image 39. Graph showing the impact of trail size on performance.

5.1.3. Numerical integrators

Numerical methods provide different ways of approximating the solution to any given

N-body configuration, each approximation varies in its equations, error and complexity.

As we have seen, integrating a simulation with the Euler method requires only one

function evaluation, whereas in the Adams-Bashforth-Moulton method we need to

combine two other methods each with several function evaluations.

Since one of the main objectives of the simulator is to contrast and compare different

numerical integrators, observing the differences in the quality of the solutions and the

error obtained, it is very interesting to also contrast the effect different integrators have

on performance. In order to do this, the same simulation has been observed while

varying the integrators and CPU usage has been measured.

 Juan Paños Basterra N-Body Simulator

55

Image 40. CPU use of different numerical integrators in the simulation “Solar System Asteroids”, at the 1000th frame.

Surprisingly, the CPU usage is similar for all integrators, this could be due to the relative

simplicity of the methods that have been implemented, as more complex integrators

could have a more severe impact on CPU usage. From these measurements we observe

that numerical integrators do not have a significant effect on the program’s

performance.

5.1.3. Energy/Angular momentum graph

Other computational costs come from the calculation and rendering of the

Energy/Angular momentum graph, this is because for each frame the program needs

to calculate the new values for the KE, PE, E and L, update their Maximum and Minimum

values, and render the graph. These calculations are not computationally significant, in

contrast, when first developing this graph, inspired by [31], the rendering of the graph

affected the performance massively, due to errors when batching the UI elements [32].

 Juan Paños Basterra N-Body Simulator

56

Once these issues were fixed through rendering optimizations [32] the effect of the

graph calculations and rendering on the FPS was reduced significantly.

 Image 41. Effect of UI batching on graph performance in simulation “Asteroids”.

5.1.4. Improving performance

After visualizing how these parameters affect performance, we can draw some

conclusions on how to improve the performance of the program. If the user suffers from

low FPS, performing some of the following actions will help:

o Reducing Trail size: As we have seen, this is the parameter that least

affects the simulation because it is only visual, and it is the one that

impacts FPS the most, therefore it should always be kept at a minimum.

o Reducing N: This is not desirable, as it involves changing the simulation

drastically by eliminating bodies until the FPS count reaches the desired

target.

 Juan Paños Basterra N-Body Simulator

57

o Changing Numerical integrators: This is also not desirable, as generally

changing the current numerical integrator for one with less

computational costs involves losing quality in the simulation results, but

it can be done if necessary.

o Hiding E/L graph: As we have discussed in the previous section, after

some optimizations, hiding the graph does not significantly affect

performance, but it might help speed up the simulator by a few FPS.

If the user wishes to improve the performance of the simulator, these are the internal

options that are available to them, other external ways of increasing performance could

involve shutting down other running applications or upgrading the hardware of the

machine.

5.2. Resulting performance

We have already seen how different parameters such as N, the Trail size or the

Numerical integrator used have a profound impact on the simulator’s performance.

However, other metrics are also used in the videogame industry [33] to evaluate the

performance of an application, mainly CPU, GPU and RAM use, these metrics will also

be useful to analyze how our simulator performs.

5.2.1. Effect of hardware

The measurements that about to be analyzed have been taken on a computer with the

following specifications:

• CPU: Intel Core i7-6700 CPU 3.4GHz

• GPU: NVIDIA GeForce GTX 1060 6GB

• RAM: 16 GB RAM

 Juan Paños Basterra N-Body Simulator

58

This corresponds to a mid-upper range hardware configuration, performance can

increase or decrease based on the user’s hardware specifications, we will also study

which of these three parameters is the most important when trying to optimize

performance.

5.2.2. CPU, GPU and RAM

To study the evolution of these parameters, the simulation “Orbit Layers” with N = 11,

Trail size = 25000 and Integrator = Runge Kutta 4 was executed, and the following data

was extracted.

 Image 42. Graph showing RAM vs Iterations. Image 43. Graph showing GPU vs Iterations.

Image 44. Graph showing CPU vs Iterations.

 Juan Paños Basterra N-Body Simulator

59

The results from these measurements are very interesting but require a few

explanations. As we can see, once again the Trail size is the parameter that has the

biggest impact on performance.

It is apparent that until the 25000 Trail size limit is reached, the simulator keeps

increasing the RAM allocated to it. However, the CPU usage does not increase, as the

iteration of the orbit array does not appear to be parallelized by the processor, this

means that one processor core needs to do more tasks each iteration, therefore

decreasing the number of FPS achieved, as seen in 4.1.2.

Interestingly, GPU usage is inversely proportional to Trail size, since less frames are

calculated by the processor, less frames need to be rendered graphically by the GPU,

therefore lowering its consumption.

One solution to this problem would be to speed up the iteration of the orbit array by

parallelizing this task by using technique such as parallelization. This consists of

allocating multiple CPU cores to perform separate tasks, effectively “breaking” up the

main task into many smaller ones that different CPU cores can perform separately and

allowing for the calculations required to perform an iteration to be sped up [34].

6. User guide

This section will provide the guidelines on how to install, execute and utilize the

program, explaining both the technical requirements for installation as well as

instructions on its use and best practices to obtain the best experience when utilizing

the simulator.

 Juan Paños Basterra N-Body Simulator

60

6.1. Requirements and installation

The technical requirements required to run the simulator are inherited from the Unity

framework [35] , they are the following:

• Operating system: Windows 7+ or macOS 10.12+

• CPU: SSE2 Instruction set support

• GPU: Graphics card with DX10 (shader model 4.0) capabilities

These requirements are met by most modern machines, therefore most people who are

interested in this simulator should be able to run it.

To install the program, the user simply needs to open

https://github.com/panosjuanis/3D-N-body-simulator and download the version for

the operating system they are interested in, after this is complete, simply copying the

folder to the desired destination and executing either the .exe (Windows) or the .app

(Mac) files will start the program.

In order to uninstall the program, simply removing the folders from the file system will

delete the program and all its auxiliar files.

6.2. Instructions and tips

The instructions on how to use the program are explained in the main menu so that the

user can understand concepts both regarding the calculation of the simulation, such as

DT and numerical integrators, and of the graphical aspect of the program, such as

movement with the camera and how to properly manage it.

 Juan Paños Basterra N-Body Simulator

61

Other aspects are also covered, such as managing the simulation files, both editing,

creating, and deleting existing simulations and taking screenshots and visualizing them.

The UI elements that have been described previously are also explained here so that the

user can have a correct understanding of them and knows how to utilize them properly.

Lastly the user is given some tips on how to reduce the main problem challenging a

premium user experience: performance. This has been discussed in an earlier chapter

and the user is given a brief summary of these issues and how to address them, by

reducing trail size, n, selecting the correct integrator and turning off the UI.

7. Examples

7.1. Simulation examples

One of the main goals of developing this simulator is the creation of a didactical tool to

learn about the law of gravitation, numerical integration and visually understand the

different celestial configurations that often are studied in theory.

To achieve this, and for the user to be able to experiment with different scenarios,

dozens of pre-loaded simulations can be accessed by the user when entering the

application, these are mainly divided into two parts, real world examples and theoretical

solutions of the n-body problem.

7.1.1. Real world examples

There are hundreds of known configurations for the N-body problem, and it would be

impossible to try to encompass all of them, but we have strived to introduce a variety of

real world configurations focusing on the solar system, which is the system most people

are familiar with, we will take closer look at two of them.

 Juan Paños Basterra N-Body Simulator

62

7.1.1.1. External solar system

Image 45. “External solar system” simulation over a period of 260 years using Adams-Bashforth-Moulton integrator.

The initial conditions for this configuration were obtained through NASA’s database [36]

and Mamen Peña’s simulator examples [6] and have been saved in the “Solar system

external” file which can be accessed and edited by the user. The simulation that can be

observed in the figure has evolved for a 260 year period, and the bodies that are

represented are: The Sun (Green sphere), Jupiter, Saturn, Uranus, Neptune, and Pluto.

The user can move around the 3-Dimensional space in the simulator and observe the

evolution of the system from any angle they desire, in this simulation the orbit described

by Pluto is especially interesting, as it has a tilt that the other bodies do not have.

 Juan Paños Basterra N-Body Simulator

63

7.1.1.2. Trojan asteroids

Image 46. “Trojan asteroids” simulation over a period of 8 years using Runge Kutta 4 integrator.

This is another real world configuration, this time relating to Trojan asteroids [37], which

are a group of asteroids that share the planet Jupiter’s orbit around the Sun first

discovered around 1904 by E.E.Bernard. In this configuration, we will focus on the

asteroids Aquilles and Patroclus in their obits around the Sun, the user can observe both

asteroids share Jupiter’s orbit around the Sun.

7.1.2. Theoretical solutions

Another type of configurations that can be found in the files of the simulator are the

theoretical simulations, this is a very well established field of the N-body simulations,

and hundreds of people have come up with configurations that achieve stable orbits,

 Juan Paños Basterra N-Body Simulator

64

due to the way the bodies move in the simulations, they are called choreographies as

the bodies appear to be “dancing”.

Next, we will take a closer look at two of these choreographies but this is a fascinating

topic and new choreographies are discovered constantly, for more information see [38].

7.1.2.1. Figure 8

One of the most famous of these kinds of solutions is the so called Figure 8, because the

motions of the bodies look like the number 8. It was discovered by Chris Moore [39],

since this is one of the most famous theoretical configurations, we thought it would be

interesting to visualize it with our program.

 Image 47. Figure 8 simulation with the Adams-Bashforth method over a period of 9 seconds.

As we can see, the bodies perfectly follow the motions that are expected from them and

display a beautiful 8. Other variations of this configuration also exist, Figure 8

simulations can be created with different N values which result in more complex

patterns, but always in line with the original solution.

 Juan Paños Basterra N-Body Simulator

65

 Image 48. Figure 8 simulation with Adams-Bashforth method over a period of 16 seconds with N = 6.

7.1.2.2. Broucke’s periodic solutions

Another family of solutions was discovered by Roger A. Broucke and Michel Hénon in

the 1970 [40]. In this family the three objects all have the same mass and in some of

these solutions, two of the bodies follow the same path.

Several solutions from this family have been included into the simulator so that the user

can visualize them and experiment with them.

 Juan Paños Basterra N-Body Simulator

66

 Image 49. Periodic Broucke solution 4, simulated with the LeapFrog method over 35 seconds.

8. Conclusions

The initial aim when starting this project was the development of a simulator for the N-

body problem that was easy to use, representing the motions of the bodies in a 3-

dimensional space and allowed the interaction of the user with different parameters

and numerical methods.

These objectives were successfully completed, as the developed simulator can be

installed and utilized by users with great ease, allowing them to experiment with

different configurations of the N-body, visualizing or modifying different parameters in

real time. The user can also move around the 3-dimensional space inside the simulation

and monitor elements such as the energy of the system, its angular momentum, or the

different body parameters.

Though other N-body simulators exist, the one that has been developed in this project

excels in the visualization of the solution and the ease of use that it provides. Its UI is

 Juan Paños Basterra N-Body Simulator

67

tailored towards first comers and people that are familiar with the N-body problem

alike, allowing the user to intuitively use the program, which is not the standard practice

in the N-body simulators.

This makes it especially interesting for pedagogical uses, such as university lectures or

any teaching of Newton’s law of gravity. Researchers of the N-body problem, be it

amateur or professional, can also find the simulator interesting, as the installation,

camera movement and parameter options it provides are not easily found in other

simulators, which tend to be simpler and not allow for 3-dimensional motion.

The development of this thesis has facilitated learning from a diverse range of topics,

from the N-body problem formulation, the numerical methods used to resolve it,

developing in different programming languages to UI design and many other interesting

topics.

8.1 Improvements

Despite the success of the project in the development of a 3-dimensional N-body

simulator, there are several ways in which this application could be improved both by

optimizing the program and by adding some extra features, now we will cover some of

them.

8.1.1 Optimizations

When it comes to optimizations, these should always be targeted at the issues that

affect performance the most, in our case like we have seen that the Trail size is the

parameter that has the biggest impact in simulator performance, to solve this issue, two

solutions are proposed:

 Juan Paños Basterra N-Body Simulator

68

• Changing the way the orbit points are assigned by using the SetPositions()

function in the LineRenderer component [41]. This allows for a more rapid

assignment of the points that make up the orbit, which needs to happen every

frame. This change has not been implemented because it would involve

structural changes in the code and in the way camera zoom is calculated, and

this issue was detected in the final stages of development.

• Since the optimization proposed above might not solve this issue, an alternative

would be to speed up the iteration of the orbit setting in the LineRenderer with

the techniques described in [42].

Many other optimizations could be done to improve code efficiency, graphical

rendering, and many other aspects of the simulator, but these are all secondary changes,

since the simulator performs satisfactorily except when using big Trail sizes.

8.1.2 Extra features

In these types of programs, hundreds of different features can be implemented, with

varying degrees of importance and interest for the user. In our application we have

implemented the features that we thought most important, such as a 3-Dimensional

interactive space, real time rendering and others. Some features that were studied with

interest but have not been implemented are:

• Fixed interval simulation, instead of letting the user run the simulation for as long

as they want, and update it in real time, another option would be to allow the

user to select a start and finish times and display the resulting simulation results.

• Allowing the user to export data at any given point in the simulation, this is very

interesting for the user if, after experimenting with a simulation, they find an

evolution that they would like to save.

• Allowing for video recordings to be made inside the application, this would

enable the user to save a small video of the evolution of a simulation to be used

in presentations, projects…

 Juan Paños Basterra N-Body Simulator

69

One of the main purposes of this simulator was to allow the user to compare and

contrast different numerical integrators, to achieve this, a wide range of numerical

integrators of different types, single-step/multi-step, implicit/explicit… , should have

been developed. However, due to time and complexity constraints, only a small set of

numerical methods has been implemented, and the programming of more methods

would greatly improve the options the user can choose from.

8.1.3 New simulators

During the final stages of the development for this project, a new simulator for the N-

body problem has been discovered, it is called “Harmony of the spheres” [43]. It is very

interesting because it is a web-based simulator and contains several of the

improvements over the existing simulators that this project has tried to implement.

Some of its features are a wide array of numerical integrators, smooth 3-dimensional

camera movement, a vast number of existing simulations and many other features.

Though we cannot compete with this project, since it has been developed over a span

of several years and many experienced people are working on it, it does serve as a

benchmark for future projects of this nature since it is a piece of software of very high

quality.

Despite its many polished features, in some aspects the simulator that has been

developed in this project offers some improvements, some of them are:

• Free camera movement, as opposed to camera movement restricted to be

anchored around a body.

• Stable orbit paths, in the “Harmony of the spheres” simulator, orbits will become

incorrect when altering several parameters drastically.

 Juan Paños Basterra N-Body Simulator

70

• Direct control over some simulation parameters, as opposed to restricted

changes in parameters.

• Visualization of metrics such as Energy and Angular momentum.

 Juan Paños Basterra N-Body Simulator

71

9. Bibliography

[1] K. R. Meyer, Periodic solutions of the N-Body Problem., Berlin: Ed Springer, 1999.

[2] B. H., Uber die Integrale des Vielkörper-Problems, Acta Math, 1887.

[3] A. Wintner, The analytical foundations of Celestial Mechanics, Princeton Univ.

Press, 1947.

[4] J. C. Butcher, Numerical Methods for Ordinary Differential Equations, Wiley,

2003.

[5] E. Hairer, C. Lubich and G. Wanner, Geometric numerical integration illustrated

by the Störmer/Verlet method, Acta Numerica, 2003.

[6] M. d. C. Peña Moreno, "Construcción de un simulador del sistema solar mediante

la integración del problema de n-cuerpos," 2005. [Online]. Available:

https://academica-e.unavarra.es/handle/2454/761.

[7] Mathworks, "Matrix operations in Matlab," [Online]. Available:

https://es.mathdowks.com/help/matlab/math/basic-matrix-

operations.html?lang=en.

[8] Mathworks, "Creation of a User Interface in Matlab," [Online]. Available:

https://es.mathworks.com/videos/creating-a-gui-with-guide-68979.html.

[9] Mathworks, "Matlab GUI," [Online]. Available:

https://es.mathworks.com/discovery/matlab-gui.html.

[10] NumPy.org, "Numpy Documentation," [Online]. Available:

https://numpy.org/doc/.

 Juan Paños Basterra N-Body Simulator

72

[11] T. C. Omelette, "Python N-Body orbit simulation," [Online]. Available:

http://www.cyber-omelette.com/2016/11/python-n-body-orbital-

simulation.html.

[12] Nanalyze, "Unity Technologies – The World’s Leading Game Engine," October

2017. [Online]. Available: https://www.nanalyze.com/2017/10/unity-

technologies-leading-game-engine/.

[13] NumSharp, "NumSharp: The C# Numpy port," [Online]. Available:

https://github.com/SciSharp/NumSharp.

[14] S. Axon, "Unity at 10: For better—or worse—game development has never been

easier," 27 9 2016. [Online]. Available:

https://arstechnica.com/gaming/2016/09/unity-at-10-for-better-or-worse-

game-development-has-never-been-easier/.

[15] Indeed Editorial Team, "What is a User Interface?," 17 9 2021. [Online]. Available:

https://www.indeed.com/career-advice/career-development/user-

interface#:~:text=The%20user%20interface%20(UI)%20is,to%20receive%20maxi

mum%20desired%20outcome.

[16] L. Stanley, "Signs that point to a poor user experience," [Online]. Available:

https://www.resourcetechniques.co.uk/news/web-design/signs-that-point-to-

poor-user-experience-101495.

[17] AstroGrav, "AstroGrav Astronomy Software," [Online]. Available:

http://www.astrograv.co.uk/.

[18] Unity Technologies, "Scenes," 19 1 2022. [Online]. Available:

https://docs.unity3d.com/Manual/CreatingScenes.html.

[19] Unity Technologies, "GameObject," 19 1 2022. [Online]. Available:

https://docs.unity3d.com/ScriptReference/GameObject.html.

 Juan Paños Basterra N-Body Simulator

73

[20] Unity Technologies, "MonoBehaviour.Start()," [Online]. Available:

https://docs.unity3d.com/ScriptReference/MonoBehaviour.Start.html.

[21] Unity Technologies, "MonoBehaviour.Update()," [Online]. Available:

https://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html.

[22] Unity Technologies, "Canvas," [Online]. Available:

https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/UICanvas.htm

l#:~:text=The%20Canvas%20is%20the%20area%20that%20all%20UI%20element

s%20should%20be%20inside.&text=Creating%20a%20new%20UI%20element,a

%20child%20to%20this%20Canvas.

[23] Unity Technologies, "Button," [Online]. Available:

https://docs.unity3d.com/es/2018.4/ScriptReference/UI.Button.html.

[24] Unity Technologies, "Text Mesh Pro," [Online]. Available:

https://docs.unity3d.com/Manual/com.unity.textmeshpro.html.

[25] Unity Technologies, "Input Field," [Online]. Available:

https://docs.unity3d.com/2019.1/Documentation/ScriptReference/UI.InputField

.html.

[26] GameBench Staff, "Game performance that matters," [Online]. Available:

https://blog.gamebench.net/game-performance-metrics-that-matter.

[27] F. Diacu, "The solution of the n-body problem," 1996. [Online]. Available:

https://www.math.uvic.ca/faculty/diacu/diacuNbody.pdf.

[28] S. R. T. John H. Reif, The Complexity of N-Body Simulation, Springer-Verlag, 1993.

[29] T. Akenine-Möller y E. Haines, Real-time rendering, A K Peters/CRC Press, 2004.

[30] Unity Technologies, "Line Renderer," [Online]. Available:

https://docs.unity3d.com/Manual/class-LineRenderer.html.

 Juan Paños Basterra N-Body Simulator

74

[31] C. Monkey, "Unity tutorial - Create a graph," [Online]. Available:

https://www.youtube.com/watch?v=CmU5-v-

v1Qo&list=PLzDRvYVwl53v5ur4GluoabyckImZz3TVQ&index=3.

[32] Unity Technologies, "Optimizing Unity UI," [Online]. Available:

https://learn.unity.com/tutorial/optimizing-unity-ui.

[33] J. Dobbin, "GPU vs CPU: What matters most for PC Gaming?," 2019. [Online].

Available: https://www.hp.com/us-en/shop/tech-takes/gpu-vs-cpu-for-pc-

gaming.

[34] B. Barney, Introduction to parallel computing, Lawrence Livermore National

Laboratory.

[35] Unity Technologies, "Requirements to run Unity 2019.1f," [Online]. Available:

https://docs.unity3d.com/2019.1/Documentation/Manual/system-

requirements.html.

[36] NASA, "Small-Body database," [Online]. Available:

https://ssd.jpl.nasa.gov/tools/sbdb_lookup.html#/.

[37] S. B. Nicholson, The Trojan Asteroids, Astronomical Society of the Pacific Leaflets,

1961.

[38] J. Montaldi, "N-Body Choreographies," [Online]. Available:

https://personalpages.manchester.ac.uk/staff/j.montaldi/Choreographies/abou

t.html.

[39] C. Moore, Figure eight orbit, Science direct, 1993.

[40] D. B. R. Broucke, Periodic orbits in the Planar General Three-Body Problem,

Celest. Mech., 1975.

[41] Unity Technologies, "LineRenderer SetPositions()," [Online]. Available:

https://docs.unity3d.com/ScriptReference/LineRenderer.SetPosition.html.

 Juan Paños Basterra N-Body Simulator

75

[42] Microsoft Inc, "System Threading," [Online]. Available:

https://docs.microsoft.com/en-

us/dotnet/api/system.threading.parameterizedthreadstart?redirectedfrom=MS

DN&view=net-6.0.

[43] H. G. P. W. J. V. V. Darell A. Huffman, «Harmony of the spheres,» [En línea].

Available: https://gravitysimulator.org/.

