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ABSTRACT: 

This thesis is based on the development of a simulation software for the N-body 

problem, attempting to provide a modern program to improve upon existing simulators. 

 

To achieve this, the N-body problem will be explained, along with other related concepts 

such as numerical integrators. The development of the simulator will also be discussed, 

studying the selected framework, design principles followed, program structure and in-

depth code analysis.  

 

Finally, the results of the project will be studied, analyzing aspects such as performance, 

resulting UI and several improvements will be proposed. 

 

The results of this project are publicly available in https://github.com/panosjuanis/3D-

N-body-simulator, where anybody can download the developed software to utilize it, 

read the documentation, or contribute to it in whichever way they like. 
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1. Introduction 

1.1. Introduction to the N-body problem 

In physics, the N-body problem is the problem of predicting the individual motions of a 

group of celestial objects interacting with each other gravitationally. Solving this 

problem has been motivated by the desire to understand the motions of 

the Sun, Moon, planets, and visible stars ever since humans were able to admire the 

cosmos. 

 

The N-body problem has been studied since antiquity, where the interest was placed on 

the movement of the planets on the night sky. Different theories were proposed by the 

Greeks to explain their movement. Over the centuries the conception of the universe 

evolved until in the XVII century, Isaac Newton formulated the theory of universal 

gravitation. This established the gravitational attraction between two bodies, which will 

be the basis of our application. 

 

Any discussion of planetary interactive forces has historically started with the two-body 

problem, which consists of predicting the motions of two bodies interacting with each 

other. This problem was solved analytically by Johan Bernoulli in the XVII century. 

However, for systems where N > 2 no analytical solution is possible, and therefore an 

approximation of the solution is the only viable option. The mathematical techniques 

used for approximating the solution are called numerical integrators, which differ in how 

they approximate the solution and in their quality and computational cost. 

 

The N-body problem is perfectly suited to be solved by computers because even for 

systems where N is small, millions of calculations need to be done to come up with the 

solution, therefore rendering any human calculations impossible. Nevertheless, when 

determining a solution, computational power is not the only metric that ensures quality. 

https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Astronomical_object
https://en.wikipedia.org/wiki/Gravitation
https://en.wikipedia.org/wiki/Sun
https://en.wikipedia.org/wiki/Moon
https://en.wikipedia.org/wiki/Planet
https://en.wikipedia.org/wiki/Star
https://en.wikipedia.org/wiki/Two-body_problem
https://en.wikipedia.org/wiki/Two-body_problem
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Therefore, the selection of quality numerical integrators is an essential part of obtaining 

a solution. 

 

1.2. Objective 

The purpose of this project is the development of a simulator for the N-body problem, 

which approximates the solution of a system of N bodies and renders them in a 3-

dimensional space where the user can interact with different parameters and observe 

the simulation in real time. The user shall be able to select the starting parameters, as 

well as the numerical integrator to be used, which will greatly vary the resulting 

simulation as will be discussed later.  

 

The focus of the project will be on developing an application that is easy to use, with an 

intuitive User Interface (UI) to allow the user to interact with the different parameters 

to learn how they affect the simulation of the N-body problem, as well as experiment 

with a variety of pre-generated simulations and allowing for the creation of new ones. 

All being managed by a single application that is easy to download, install and utilize. 

 

This thesis is divided in seven sections, firstly, the equations of motion that describe the 

N-body problem will be studied, and the need to approximate a solution will be 

explained. 

 

The second part will cover the numerical methods used to approximate the solution of 

the general N-body problem, analyzing the difference between them, both in how they 

calculate an approximation and in their quality and computational complexity. 

 

The following section will be devoted to the development of the program, we will cover 

topics such as the selection of the framework used to create the software, essential in 
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any software project, the design of the User Interface (UI) and the principles we have 

based our development on, and finally we will study the programming of the different 

elements, both the UI and the main Simulation codes that manage different aspects of 

our program. 

 

In the fourth part performance will be discussed, analyzing metrics such as Frames Per 

Second (FPS), CPU, GPU and RAM. Several optimizations will also be studied, some that 

have been implemented as well as some that have been proposed to tackle performance 

issues. 

 

After we have analyzed the obtained performance, a user guide will be proposed, 

explaining how the user can install the software as well as a brief set of instructions and 

tips, that the user should be aware of in order to have a satisfactory experience when 

using the program. 

 

The sixth section will help visualize some simulation examples that can be executed by 

the simulator, studying both real world examples such as a solar system configuration 

and theoretical solutions that have been proposed, such as the renowned Figure 8 

configuration. 

 

The conclusions of the development of the project can be found in the last segment, 

together with a list of possible improvements proposed and the references used for the 

project.  
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1.3 Existing simulators 

When considering the development of a N-body simulator, it is important to examine 

the existing software. While a more in-depth analysis will be performed in a later 

chapter, several simulators were tested and scrutinized and some of the detected issues 

common among them were: 

• Lack of an intuitive User Interface. 

• Lack of varied integration methods. 

• High complexity to download and utilize 

• Usage of only two dimensions 

• Lack of user interactivity 

 

In this project, we have attempted to solve most of these issues by designing an intuitive 

UI, providing the user with several integration methods, facilitating installation on 

multiple platforms with a streamlined application, allowing the user 3-dimensional 

movement and providing different tools for the user to interact with the simulation. 

 

2. Equations of the N-body problem 

When a N-body system is discussed, interacting through their mutual gravitational 

attractions, and confined in a limited special region, we are referencing the appropriate 

mathematical model to represent some aspects of real systems, such as the Solar system 

and other galaxies. 

 

Let us consider N(>1) point masses moving in an inertial reference system 𝑅3, where the 

only forces acting on them are their mutual gravitational attractions. 
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If the 𝑖𝑡ℎ particle has a position vector �⃗�𝑖 and mass 𝑚𝑖 > 0, because of the second law 

of Newton and the law of gravity, we have the motion equation for the 𝑖𝑡ℎ particle: 

𝑚𝑖 �̈⃗�𝑖 =  ∑
𝐺𝑚𝑖𝑚𝑗(�⃗�𝑗 − �⃗�𝑖)

‖�⃗�𝑖 − �⃗�𝑗‖
3

𝑁

𝑗=1

, (𝑖 ≠ 𝑗),  �̈⃗�𝑖 =  
𝑑2�⃗�𝑖

𝑑𝑡2
 , 

 

Having: 

𝐺 = 6.672−11
𝑚3

𝑘𝑔 ∗ 𝑠2
 . 

If the negative potential function, 𝑈 is introduced: 

𝑈 =  ∑
𝐺𝑚𝑖𝑚𝑗

‖�⃗�𝑖 − �⃗�𝑗‖
3

1≤𝑖<𝑗≤𝑁
 , 

The motion equation can be rewritten: 

𝑚𝑖 �̈⃗�𝑖 =  
𝜕𝑈

𝜕�⃗�𝑖
 . 

 

The system of Ordinary Differential Equations (ODEs) defines the N-body problem. Since 

the initial positions (𝑞), and velocities (�̇�) will be introduced as data, the problem 

corresponds to the category of initial value problems for ODEs. Furthermore, if we 

assert that the bodies move exclusively because of the effect of gravity from the other 

bodies, the problem conserves the total energy, and can be approached as a 

Hamiltonian problem. 

 

The Hamiltonian formulation does not add anything to the physical laws, but it provides 

a very useful formalism [1]. The basic idea of the Hamiltonian formulation is to write the 

equations of motion in terms of positions and momenta, instead of positions and their 

derivatives. 



 Juan Paños Basterra                                                                      N-Body Simulator  

 

12 
 

 

We denote �⃗� = (�⃗�1, �⃗�2, �⃗�3, … , �⃗�𝑁)  ∈  𝑅3 as the position vector, with this new 

nomenclature, the vectorial form of the motion equation is: 

𝑀 ∗ �̈⃗� − ∇𝑈(�⃗�) = 0, 

Having 𝑀 = 𝑑𝑖𝑎𝑔(𝑚1, 𝑚1, 𝑚1, … , 𝑚𝑁 , 𝑚𝑁 , 𝑚𝑁) as the mass vector and ∇ as the 

gradient operator. 

 

Analyzing the last equation, the definition of 𝑈 as the negative potential is clear. The 

potential function 𝑉 is defined as: 

�⃗� =  −∇𝑉. 

From this definition we find the following relation 𝑈 =  −𝑉. Furthermore, by definition, 

since there exists a potential function, the system is conservative. 

 

To use the Hamiltonian formulation, it is necessary to introduce momentum vectors. 

We define �⃗� = (�⃗�1, �⃗�2, … , �⃗�𝑁)  ∈  𝑅3𝑁 as the lineal momentum vector, which verifies: 

�⃗� = 𝑀 ∗ �̇⃗�, 

Having �⃗�𝑖 =  𝑚𝑖 ∗  �̇⃗�𝑖  as the momentum of the 𝑖𝑡ℎ particle. 

 

With these definitions, the equations of motion can be written as: 

�̇⃗� =  ∇𝐻(�⃗�) =  𝑀−1 ∗ �⃗�, 

�̇⃗� =  −∇𝐻(�⃗�) =  ∇𝑈(�⃗�), 

Or in components: 

𝑞𝑖⃗⃗⃗ ⃗̇ =  
𝜕𝐻

𝜕�⃗�𝑖
=  

�⃗�𝑖

𝑚𝑖
, 
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𝑝𝑖⃗⃗⃗ ⃗̇ =  −
𝜕𝐻

𝜕�⃗�𝑖
=  

𝜕𝑈

𝜕�⃗�𝑖
=  ∑

𝑚𝑖𝑚𝑗(�⃗�𝑗 − �⃗�𝑖)

‖�⃗�𝑖 − �⃗�𝑗‖
3

𝑁

𝑗=1

 . 

where the Hamiltonian, or the total system energy of the particle system is: 

𝐻 =  
1

2
�⃗�𝑇 ∗ 𝑀−1 ∗ �⃗� − 𝑈 =  ∑

‖�⃗�𝑖‖
2

2𝑚𝑖

𝑁

𝑖=1

− 𝑈, 

With the first term of the equation being the total kinetic energy: 

𝑇 =
1

2
∑

‖�⃗�𝑖‖
2

𝑚𝑖

𝑁

𝑖=1

 , 

And the second term being the potential energy of the system, 𝑉 =  −𝑈. 

The Hamiltonian is a constant of the considered equation system, since: 

𝜕𝐻

𝜕𝑡
=  

𝜕𝐻

𝜕�⃗�
 �̇⃗� +  

𝜕𝐻

𝜕�⃗�
 �̇⃗� =  �̇⃗� ∗ �̇⃗� + (− �̇⃗� ∗ �̇⃗�) = 0, 

 

The N-body problem is a system of 3N equations of second order (𝑞𝑖𝑥
, 𝑞𝑖𝑦

, 𝑞𝑖𝑧
) in the 

Newtonian formulation, and of 6N order equations (𝑞𝑖𝑥
, 𝑞𝑖𝑦

, 𝑞𝑖𝑧
, 𝑝𝑖𝑥

, 𝑝𝑖𝑦
, 𝑝𝑖𝑧

) in the 

Hamiltonian formulation. To solve this problem, we need to know 6N independent first 

integrals. However, ∀𝑁 ≥ 3, only ten first integrals are known (In 1887, H.Burns proved 

that no more independent integrals exist [2]). One of them is the Hamiltonian, which 

has been demonstrated previously. The other nine remaining integrals are shown next: 

The center of mass in the system is defined as: 

𝐶 =  
∑ 𝑚𝑖�⃗�𝑖

𝑁
𝑖 =1

∑ 𝑚𝑖
𝑁
𝑖 =1

 , 

The total lineal momentum is: 

�⃗⃗� = ∑ 𝑝𝑖

𝑁

𝑖 =1

 , 



 Juan Paños Basterra                                                                      N-Body Simulator  

 

14 
 

Deriving both vectors with respect to time we obtain: 

𝐶 = ∑ 𝑚𝑖 �̇⃗�𝑖

𝑁

𝑖 =1

= �⃗⃗� , 

�⃗⃗� =  ∑ �̇⃗�𝑖

𝑁

𝑖 =1

=  ∑ −
𝜕𝐻

𝜕�⃗�𝑖

𝑁

𝑖 =1

=  ∑
𝜕𝑈

𝜕�⃗�𝑖

𝑁

𝑖 =1

=  ∑ ∑
𝑚𝑖𝑚𝑗(�⃗�𝑗 − �⃗�𝑖)

‖�⃗�𝑖 − �⃗�𝑗‖
3

𝑁

𝑗 =1

𝑁

𝑖 =1

= 0 , 

Therefore, we have: 

�̈� = �̇⃗⃗� = 0 , 

If we integrate the previous equation, we obtain 

�̇� = �⃗⃗�0                𝐶 = �⃗⃗�0𝑡 +  𝐶0 . 

As we can see, the center of mass vector, which has a uniform line movement, offers us 

three motion integrals, and the lineal momentum vector provides us with three more 

constants.  Taking into account that the Hamiltonian is another motion integral, we only 

have three more first integrals to study, which come from the total angular momentum: 

�⃗⃗� = ∑ �⃗�𝑖

𝑁

𝑖=1

 ×   �⃗�𝑖 . 

 

Applying these motion integrals, we can reduce the dimension of the system to 6N – 10. 

The ten constants of motion, �⃗⃗�0, 𝐶0, �⃗⃗� 𝑎𝑛𝑑 𝐻 are functions of the positions and 

velocities of the N point masses and of time and their independence from each other 

can be demonstrated [3], through two additional transformations, we can obtain two 

more constants, bringing our total to twelve. Therefore, for any system where  𝑁 ≥ 3, 

we simply cannot meet 6𝑁 ≤ 12, therefore no analytical solution is possible. 
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3. Numerical integrators 

3.1. Introduction 

The integration of the N-body problem can be seen as an initial value problem for 

Ordinary Differential Equations (ODEs). The ODE that models the problem cannot be 

solved exactly. Therefore, different approximation methods, called numerical 

integrators or numerical methods, are used to attempt to solve the problem with 

minimal errors. Such methods do not produce a continuous solution, but instead 

generate approximations for specific discrete points in time. 

 

The initial value problem for a first ODE implies finding a function y(t) that satisfies: 

    
𝑑𝑦(𝑡)

𝑑𝑡
= 𝑓(𝑡, 𝑦(𝑡)) ,  

together with the initial condition: 

𝑦(𝑡0) = 𝑦0 , 

A numerical solution for this problem generates a sequence of values for the 

independent variable: t, and the corresponding sequence of values for the dependent 

variable y. So for every value i we have: 

𝑖 = 1, 2, 3. . 𝑁                         𝑦𝑖  ≈ 𝑦(𝑡𝑖),  

Where yi is an approximation for the value of y in ti. Therefore we cannot obtain a 

continuous approximation to the solution y(t), but instead a series of approximations to 

that solution for a set of given points (i).  

 

In the n-body problem we have that 𝑓(𝑡, 𝑦) = 𝑓(𝑦), since the function is not dependent 

on time, only on the variables (y). We also need to consider that for the n-body problem:  

𝑓(𝑦) =  
𝜕𝐻

𝜕�⃗�
−  

𝜕𝐻

𝜕�⃗�
 . 
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Given a time interval [t0, tf], we call h (also referred to as DT in the simulator) the 

timestep, which is the length of time separating ti from ti+1. This parameter is essential 

when creating a simulation since, as we will see later, it directly impacts the way in which 

the solution is calculated. 

 

When making an approximation for a value yi, different techniques are used, the first is 

called single-step, this is because when approximating the solution for the value ti+1, 

only the previous point (ti) is used. The other type of methods we will study are called 

multistep, since when approximating a solution for ti+1, several previous points (ti , ti-1, 

ti-2,… ti-n) are used.  

 

Multistep methods are generally regarded as obtaining better solutions because by 

using the information contained in previous steps, the predicted value is closer to the 

function. On the contrary, single-step methods only utilize the information of the 

previous calculated value, and generate less optimal results, though by eliminating these 

extra calculations they manage to decrease their computational costs. [4]  

 

These methods can also be either implicit or explicit. Explicit integrators are based on 

formulas that predict the value for the function in ti+1 from the value of the function and 

its derivative in ti and previous values (ti-1 , ti-2…), resulting in: 

 𝑦𝑖+1 = 𝑓(𝑦𝑖, 𝑦𝑖−1, … , 𝑡). 

Meanwhile when we are talking about implicit integrators to calculate the value of y in 

ti+1 the derivate for that time point needs to be known, resulting in: 

𝑦𝑖+1 = 𝑓(𝑦𝑖+1, 𝑦𝑖 , 𝑦𝑖−1, … , 𝑡). 

Then we have come across a system of non-linear equations that need to be solved 

iteratively. 
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Explicit integrators are faster because they do not require solving an implicit equation 

with the Newton method, or with other techniques, however, implicit integrators offer 

approximations of higher quality than explicit ones. 

 

Previously we have seen how the N-body problem can be solved through a second-order 

ODE and through two first-order ODEs, therefore numerical integrators that are either 

second-order or first-order will help us obtain a solution. 

 

Since numerical methods produce approximations of varying quality, to compare the 

efficiency of different integrators, we use the truncation error, there are two kinds: 

• Local truncation error (𝜏𝑛) is the error that our approximation function, 𝐴, 

causes during a single iteration, assuming perfect knowledge of the true solution 

at the previous iteration. It is computed from the difference between the left 

and the right-hand side of the equation for the increment: 

𝑦𝑛  ≈  𝑦𝑛−1 + ℎ𝐴(𝑡𝑛−1, 𝑦𝑛−1, ℎ, 𝑓), 

𝜏𝑛 = 𝑦(𝑡𝑛) −  𝑦(𝑡𝑛−1) − ℎ𝐴(𝑡𝑛−1, 𝑦(𝑡𝑛−1), ℎ, 𝑓), 

We say that a numerical integrator has order 𝒑 if the local truncation error is 

𝑂(ℎ𝑝+1), the higher the order, the better the integrator approximates the 

solution. 

• Global truncation error is the accumulation of the local truncation error over all 

the iterations, assuming a perfectly accurate solution at the initial time step. The 

global truncation error 𝑒𝑛 at time 𝑡𝑛 is defined by: 

𝑒𝑛 =  𝑦(𝑡𝑛) −  𝑦𝑛 , 

𝑒𝑛 = 𝑦(𝑡𝑛) − (𝑦0 + ℎ𝐴(𝑡0, 𝑦0, ℎ, 𝑓) +  ℎ𝐴(𝑡1, 𝑦1, ℎ, 𝑓) + ⋯

+  ℎ𝐴(𝑡𝑛−1, 𝑦𝑛−1, ℎ, 𝑓). 

Local and global truncation errors are closely related, and we always seek to minimize 

them when selecting our numerical integrators. 
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Next, we will analyze the different kinds of numerical integrators used to approximate 

the solution to the N-body problem that have been implemented in our simulator, as 

well as the differences between them in complexity, quality and computational costs. 

 

3.2. Euler 

One of the most basic numerical integrators is the Euler method, it does not have great 

utility when trying to obtain a reliable approximation of the solution, but it does serve 

as a good introduction to understand these methods. 

 

The way the Euler numerical method approximates a solution is the following: 

𝑤0 =  𝛼 , 

 𝑤𝑖+1 =  𝑤𝑖 + ℎ ∗ 𝑓(𝑡𝑖, 𝑤𝑖) , 

∀𝑖 = 0, 1, … 𝑁 , 

Where 𝜶 is the initial condition (y0) and 𝑤𝑖 ≈ 𝑦(𝑡𝑖) is the approximation of y for ti. 

After observing the method, we notice that it is implicit and single-step. The Euler 

method approximates the solution with its tangent as can be seen in image 1. 
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         Image 1. Solution to the y’ = 2t equation using Euler’s method with several step sizes (h). 

As we can observe, the smaller the value of h, the bigger the accuracy we obtain, this 

will be a recurring factor in the other integrators we are going to examine. 

 

 

3.3. Leapfrog 

The Leapfrog integrator is a second-order method with a similar velocity to Verlet’s  

method, which is a variant of Verlet integration [5]. Leapfrog integration is equivalent to 

updating positions x(t) and velocities v(t) at interleaved time points, in such a way that 

they “leapfrog” over each other. 

The leapfrog algorithm for updating position and velocity is the following: 

𝑎𝑖 = 𝐴(𝑥𝑖) , 

𝑣
𝑖+

1
2

=  𝑣𝑖 +  𝑎𝑖

ℎ

2
 , 
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𝑥𝑖+1 =  𝑥𝑖 +  ℎ ∗ 𝑣
𝑖+

1
2

 , 

𝑣𝑖+1 =  𝑣𝑖+1/2 + 𝑎𝑖+1

ℎ

2
 , 

Where 𝑥𝑖  is the position at step 𝑖, 𝑣𝑖+1/2 is the velocity (first derivative) of 𝑥 at step 𝑖 +

1/2, 𝑎𝑖 is the acceleration (second derivative) of 𝑥, at step 𝑖 and ℎ is the timestep. 

 

When it comes to mechanics problems, leapfrog integration has two major advantages. 

The first is the Leapfrog method's reversibility in time. To arrive at the same starting 

location, one can integrate forward n steps and then reverse the direction of integration 

and integrate n steps backwards. The second advantage is that it is symplectic, which 

means that it conserves the (modified) energy of the system. Many other integration 

schemes, such as the (order-4) Runge–Kutta method, do not conserve energy and allow 

the system to drift significantly over time.  

 

3.4. Runge Kutta 4 

The Runge-Kutta methods are single-step families of methods which can be either 

explicit or implicit. These methods can have varying orders (4, 8, 12…). One of the most 

common ones, and the one that has been implemented into the simulator, is the Runge-

Kutta 4 (RK4) method, which is explicit. 

Its equations are the following: 

𝑤0 =  𝛼 , 

𝑘1 = ℎ ∗ 𝑓(𝑡𝑖 , 𝑤𝑖) , 

𝑘2 = ℎ ∗ 𝑓 (𝑡𝑖 +  
ℎ

2
, 𝑤𝑖 +  

1

2
𝑘1 ), 

𝑘3 = ℎ ∗ 𝑓 (𝑡𝑖 +  
ℎ

2
, 𝑤𝑖 +  

1

2
𝑘2 ), 

𝑘4 = ℎ ∗ 𝑓(𝑡𝑖+1, 𝑤𝑖 + 𝑘3), 
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𝑤𝑖+1 = 𝑤𝑖 +
1

6
(𝑘1 +  2𝑘2 +  2𝑘3 + 𝑘4) , 

∀𝑖 = 1, 2, … 𝑁 − 1 . 

 

Here 𝑤𝑖+1 is the RK4 approximation of 𝑦𝑖+1. It is determined by the previous value 𝑤𝑖 

plus the weighted average of four increments, where each increment is obtained by 

multiplying ℎ with a slope estimating function 𝑓. When averaging the slopes, greater 

weight is given to the two middle slopes. 

     Image 2. Graph showing the approximation of y(t) using Runge Kutta 4 method. 

 

The bigger effort when applying the Runge-Kutta methods is the evaluation of 𝑓. The 

method RK4 requires four evaluations per step, and its local truncation error is 𝑂(ℎ4) as 

long as the solution 𝑦(𝑡) has five continuous derivatives. 
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There are many Runge-Kutta methods, some are implicit and of higher order (their local 

and global truncation errors are smaller), but require more function evaluations and the 

solving of implicit equations with the Newton method. 

 

3.5. Multi-step methods 

The previous methods were  single-step methods, where the approximation of 𝑤𝑖+1 was 

made using only the previous value 𝑤𝑖. However, we know that many previous 

approximations have been calculated before 𝑤𝑖, and ignoring them results in the loss of 

valuable information, it is therefore reasonable to utilize methods that use more points 

previously calculated (𝑤𝑖, 𝑤𝑖−1, 𝑤𝑖−2, … 𝑤0). 

 

3.5.1. Adams-Bashforth 

This is an explicit method whose equations are the following: 

𝑤0 =  𝛼0,  𝑤1 =  𝛼1, 𝑤2 =  𝛼2, 𝑤3 =  𝛼3 , 

𝑤𝑖+1 =  𝑤𝑖 +  
ℎ

24
 [55𝑓(𝑡𝑖, 𝑤𝑖) − 59𝑓(𝑡𝑖−1, 𝑤𝑖−1) + 37𝑓(𝑡𝑖−2, 𝑤𝑖−2) − 9𝑓(𝑡𝑖−3, 𝑤𝑖−3)], 

∀𝑖 = 1, 2, … 𝑁 − 1. 

This method involves 4 steps, as can be seen by the number of initial conditions required 

to execute it. In order to calculate these another method is used, for example a Runge-

Kutta 4. 

The local truncation error is 𝜏𝑖+1(ℎ) =  
251

720
 𝑦(5)(𝜇𝑖)ℎ4 for any 𝜇𝑖  ∈ (𝑡𝑖−3, 𝑡𝑖+1). 

3.5.2. Adams-Moulton 

An implicit multi-step method is the Adams-Moulton method in 3 steps. Its equations 

are the following: 

𝑤0 =  𝛼0,  𝑤1 =  𝛼1, 𝑤2 =  𝛼2 , 

𝑤𝑖+1 =  𝑤𝑖 +  
ℎ

24
 [9𝑓(𝑡𝑖+1, 𝑤𝑖+1) + 19𝑓(𝑡𝑖, 𝑤𝑖) − 5𝑓(𝑡𝑖−1, 𝑤𝑖−1) +  𝑓(𝑡𝑖−2, 𝑤𝑖−2)], 
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∀𝑖 = 1, 2, … 𝑁 − 1. 

The local truncation error is 𝜏𝑖+1(ℎ) =  
−19

720
 𝑦(5)(𝜇𝑖)ℎ4 for any 𝜇𝑖  ∈ (𝑡𝑖−3, 𝑡𝑖+1). 

As we can see, the truncation error for this method is smaller than for the Adams-

Bashforth method, this is because generally implicit methods have smaller truncation 

errors, however they are commonly used to improve the approximations of explicit 

methods, as we are about to see. 

 

3.5.3. Adams-Bashforth-Moulton 

As we have mentioned before, implicit methods are used to improve the 

approximations of explicit methods, since in implicit methods the term 𝑤𝑖+1 appears on 

both sides of the equation, we use the 𝑤𝑖+1 calculated with an explicit method in the 

implicit method equation. 

 

The combination of implicit and explicit methods is called a predictor-corrector 

method, normally executed in two steps, in the first one the explicit method 

approximates a solution, and in the second one the implicit method uses this 

approximation to generate a new, corrected approximation. 

 

Since we are using the Adams-Bashforth method together with the Adams-Moulton 

method, this method is called the Adams-Bashforth-Moulton method. 

 

In order to use this method, we need 4 initial values 𝑤0, 𝑤1, 𝑤2, 𝑤3 , then we proceed to 

calculate an approximation using the Adams-Bashforth method: 

𝑤4
(0)

=  𝑤3 +  
ℎ

24
 [55𝑓(𝑡3, 𝑤3) − 59𝑓(𝑡2, 𝑤2) + 37𝑓(𝑡1, 𝑤1) − 9𝑓(𝑡0, 𝑤0)], 
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After we have calculated this approximation, we proceed to correct it using the Adams-

Moulton method: 

 

𝑤4
(1)

=  𝑤3 +  
ℎ

24
 [9𝑓(𝑡4, 𝑤4

(0)
) + 19𝑓(𝑡3, 𝑤3) − 5𝑓(𝑡2, 𝑤2) +  𝑓(𝑡1, 𝑤1)], 

After achieving this, we have successfully improved our first approximation, the next 

iteration the Adams-Bashforth method will use the value 𝑤4
(1)

 as one of its initial 

conditions. 

 

 

4. Development of the program 

4.1. Selection of framework 

The selection of a correct development framework is one of the keys to a project’s 

success, creating software is a complex process, that requires multiple tasks such as 

coding, designing and testing to be performed correctly in order to achieve success. The 

simulator we have set out to build requires complex code that will need to be developed, 

the integration of 3-dimensional graphics and an interactive interface as well as ease of 

execution when the application is complete. 

 

4.1.1. Matlab 

The first option we considered was the use of the programming language MATLAB since 

this was the language the previous simulator was built on [6], the advantages it provides 

over other programming languages is the ease of programming large vector operations, 

which our simulator will utilize enormously as well as the existence of multiple numerical 

integrators already developed in Matlab libraries, the main drawback of choosing 

Matlab as our programming language was the inexistence of tools to develop a truly 

interactive 3 dimensional space and graphic user interface. 
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As it has been stated before, Matlab excels in matrix operations such as indexing, 

concatenation, transposing, reshaping and many more [7], this makes programming 

much easier for large vector operations, such as the ones undertaken in the 

programming for this project. This is not the case in other C-like languages, where native 

matrix operations do not exist and the use of libraries is almost necessary for 

development. 

         Image 3. MATLAB and C programs to multiply a matrix by its transpose 

 

The main downside of programming the simulator in Matlab is the difficulty to create a 

3 dimensional graphical user interface that is interactive and allows for a proper and 

appealing visualization of the calculated body motions, while a rudimentary GUI would 

have been possible, and sufficient documentation can be found online [8], Matlab is just 

not suited for complex interface development. 
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    Image 4. Matlab App Designer Interface [9] 

 

4.1.2. First approximation in Python 

Python shares many of the advantages that Matlab has when developing the simulator, 

matrix operations are very easy to program and many numerical integrators are already 

developed for these languages, having said that, Python also suffers from the lack of 

quality 3 dimensional interactive GUIs. 

 

Despite this, Python was chosen as the language to create a first approximation of the 

simulator, to see whether or not the programming in C#, which will be discussed later, 

could be undertaken. 

 

In this first approximation, the main objectives were to do a small version of our 

simulator in order to ease the transition to C# and Unity for final development. The tasks 
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that were completed successfully were the programming of numerical methods, which 

was essential to the viability of the project since, as we will discuss later, this same 

programming would have to be accomplished in the C# language. Other tasks included 

the plotting of a reduced number of simulations to check the quality of the calculations 

and finally the realization of a small-scale energy graph. 

 

This small-scale simulator implemented some of the integrators described in the Matlab 

version [6], among them were Euler, Leapfrog, Runge-Kutta 4, Adams-Bashforth and 

Adams-Bashforth-Moulton. The programming was made easier by the use of the library 

Numpy [10] as well as several tutorials on numerical integrators [11]. 

       Image 5. Code to execute the simulation with LeapFrog integrator. 
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The development of the simulator was very useful to confirm that indeed it was possible 

to program the integrators manually and output the correct simulations despite them 

still being static. These codes were used as the first prototype in an iterative method of 

development and would serve as the stepping stone for the development in C#. 

Image 6. 3d & 2d graphs showing Interior solar system and figure 8 simulations using different numerical integrators. 

 

Despite this success, the next iterations of the simulator were not developed using 

Python due to the lack of tools to design and create an interactive 3-dimensional GUI, 

much like in Matlab, the tool selected to develop the final iterations was Unity, which 

will be discussed next. 

 



 Juan Paños Basterra                                                                      N-Body Simulator  

 

29 
 

4.1.3. Selection of Unity and C# 

Unity is one of the most popular game engines in the market [12], used for creating 

cross-platform (Windows, iOS, Linux, Android…) 2D and 3D videogames and simulators. 

It was a very interesting option from the beginning for our project, due to the ease of 

developing and deploying an application which would be valid both for iOS and Windows 

platforms.  

   Image 7. Sample screenshot of a Unity project 

 

The underlying programming language that is used in unity is C#, which as we explained 

earlier, is much more difficult for programming matrix operations and manipulation 

than Matlab or Python. To bridge this gap, some external libraries such as Numsharp 

[13] have been used to solve some of the intrinsic issues and ease the development of 

the solution. 

 

In addition to this problem, the other main challenge for building the simulator in Unity 

is the lack of libraries from which to import numerical integrators, as C# is not a language 

normally used for these types of calculations and thus there is little supporting materials 

that can be found on the internet. Therefore, the majority of the numerical integrators 



 Juan Paños Basterra                                                                      N-Body Simulator  

 

30 
 

have to be manually programmed, requiring a lot of effort to correctly develop and 

optimize. 

 

The main strength Unity has over Matlab and Python environments is the suitability to 

develop 3D software, this is due to the vast array of tools, technologies and ready to go 

assets available to developers, especially given how comparatively easier they are to 

utilize [14]. Unity offers 3D support, creation and optimization of custom graphics, GUI 

design as well as built in menus all completely integrated, rendered, and optimized by 

the game engine, leaving the developer to focus on the more technical scripts. To build 

upon this, the compilation of all the source code into a single executable file compatible 

with Windows and iOS makes the simulator very easy to access and utilize since the final 

user does not have to execute command lines or read through extensive documentation 

to open the program. 

 

It is because of all the reasons mentioned above, as well as the familiarity I had with this 

environment, which would improve development speed and reduce errors that Unity 

was chosen as the framework to create this application. 

 

4.2. User Interface (UI) 

The User Interface [15], is the point at which human users interact with a computer 

website of application. The goal of an efficient UI is to make the user’s experience easy, 

intuitive and enjoyable, requiring minimum effort on the user’s part to receive the 

desired outcome all while avoiding undesired outcomes. 

 

4.2.1. Design philosophy 

The importance of a good UI cannot be overstated, to produce a satisfactory experience 

for the user, a UI needs to be clear, intuitive, not overbearing, and easy to use. The 

contrary is a UI that displays too much information, has a complex set of options, an 
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outdated design and is not easy to use [16]. All of this leads to confusing and negative 

user experience, our design philosophy has set out to avoid these mistakes.  

 

As it was mentioned in the first chapter of this thesis, most of the existing simulator 

suffer from several flaws. Web-based simulators tend to be too simplistic, offering the 

user a very restricted simulation and rarely implementing the third dimension. In 

addition, the numerical methods used in the solution of the problems is rarely available, 

let alone modifiable by the user.  

Image 8. Web-based simulator developed by Clark University (https://mathcs.clarku.edu/~jtrahan/subsites/nbody/) 

 

Commercial simulators suffer from the opposite problems, overwhelming the user with 

too much unnecessary information, and occupying the UI with many complicated 

options and menus. The lack of interactivity is also prominent in these kinds of 

simulations, opting for a more static behaviour. 
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  Image 9. Screenshot from first execution of AstroGrav simulator. [17] 

 

In order to improve upon the existing simulators, the design for our UI has been based 

on the following principles: 

• Intuitiveness: The simulator UI should be easy to use for the first time user as 

well as for an experienced user, in order to achieve this a set of instructions is 

provided on the first screen, and in every menu, the actions to perform are 

clearly displayed so that the user can select them without any confusion. Apart 

from this, all buttons, toggles, graphs and other interactable items should offer 

information into what their function is so that the user can get the expected 

functionality from them. 

• Usability: The simulator UI should provide a satisfactory experience for the user, 

this is achieved by reducing user burden, for example being able to use the Tab 

key to move between input fields the user has to introduce, minimizing loading 

times and making mistakes easy to fix. 
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• Simplicity: The simulator should have a simple interface, displaying the essential 

information to the user, and allowing for options to minimize cognitive burden 

for the user when receiving too much information all at once. 

 

 

4.2.2. Resulting UI 

Each of the following menus that are about to be explained are created through an 

object in Unity called Scene [18], these Scenes contain the different objects that allow 

the user to interact with it, such as Buttons, Sliders and the scripts that manage the 

different menu logic. 

 

Next, we will see the functionalities the menus that have been created offer the user, as 

well as how they interact with each other. 

 

4.2.2.1. Main Menu 

   Image 10. Main menu loaded when starting the application. 
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The main menu that can be seen on image 10 is loaded when executing the simulator, 

this menu has different functionalities. For the first time users of the program, a flashing 

green text in the bottom indicates them to “Create or Load a simulation to start”, 

pointing them in a path to take. A set of instructions can be accessed through the 

“Instructions” button, where users can learn about how to create, execute or edit a 

simulation, how to navigate through the program or receive tips on how to increase 

performance and speed. 

 

The options the user can choose are the following:  

• Instructions: Obtain set of instructions for the program. 

• Gallery: Open a file explorer and look through screenshots taken with the app. 

• Create Simulation: Open the Create simulation, explained next. 

• Load Simulation: Open the Load simulation menu, explained next. 

• Exit: Quit the program and return to desktop. 

  

4.2.2.2. Load Simulation 

    Image 11. Load simulation menu layout. 
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This menu, which can be seen in image 11, has several elements that are of interest to 

the user, the first of them is the big list of simulations we can see in green, after selecting 

the desired simulation, the user now has 4 options open to them: 

• Load simulation: Loads the selected simulation in the Simulation scene, which 

will be explained later. 

• Delete: Deletes the file of the selected simulation, removing it from the 

application folder that stores simulations. 

• Back: Loads the Main menu. 

• Edit: Opens the New Simulation menu on edit mode, explained next. 

 

4.2.2.3. New Simulation 

         Image 12. New Simulation menu. 

This menu allows for the creation of a new simulation, as well as the editing of existing 

ones, two paths lead to this menu, through the “Create Simulation” button in the Main 

menu and through the “Edit” button in the Load simulation menu. 
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The user can input different simulation parameters:  

• G: Gravitational constant, default value is 6.672e-11 m3kg-1s-2. 

• DT: Timestep, also referred to as h, measures the length of time elapsed 

between each iteration. 

• FPS: Frames Per Second (FPS) which the simulator will target executing. 

• Trail Size: Number of points to draw in a body’s orbit. 

• Integrator: Integrator to use in the simulation, this parameter will greatly 

impact the simulation and allows the user to compare between the different 

ones that have been implemented. 

The user can also modify the simulation name and select Create new body, 

which opens a pop up menu where the user enters the name, mass, position and 

velocity of the body, placeholder values are provided, so the user can see the 

format that is expected and the recommended values for each input. 

 

Once the parameters are set correctly, the user can press Save sim, which will save the 

new simulation, overwriting an existing the previous one if it was editing it and will start 

the Simulation menu, if the user presses the Back button, the program will load the 

Main menu. 
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4.2.2.4. Simulation 

 Image 13. View of the Simulation menu while executing the “Solar system external” simulation 

This menu is the soul of the application, it displays the evolution of the simulation 

parameters that the user has input over time and allows for editing in real time as well 

as the visualization of a multitude of parameters. The UI is divided into several parts: 

• Non-Interactable parameters: 

Image 14. Non-interactable parameters in a simulation. 

The purpose of these parameters is to give information to the user about the 

overall simulation, these are:  

o Simulated time: measures the time that has been simulated in seconds. 

o Real time: represents real time that has elapsed since the beginning of 

the simulation 

o Executed frames: represents total number of frames executed since the 

beginning of the simulation and the real fps in parenthesis and lastly the 

Integrator: lets the user know which numerical integrator is being used. 
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• Interactive parameters: 

          Image 15. Interactable parameters in simulation. 

The parameters that are shown in image 15 are the ones the user can interact 

with in real time, both by entering data through the keyboard and by selecting 

the arrows next to the value which will update it in real time. With these controls 

the user can set the desired parameters for frames per second (FPS), dt, change 

the gravitational constant (G) to see the effect on the simulation and zoom 

in/out. 

• Body data: 

 Image 16. Body parameters in the simulation. 

Information about the evolution of each individual body data (Position-Q and 

Velocity-V) can be found on the top right section of the screen, where the user 

can scroll through the list of bodies in the simulation and select the one they are 

interested in to visualize how its parameters change in real time. 
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• Energy/Momentum graph: 

Image 17. Different modes of the graph showing relative energy and relative angular momentum. 

This section of the UI consists of a graph that is updated in real time which can 

display 4 different types of data: 

o Kinetic energy (KE),  Potential energy (PE), Total Energy (E). 

o Relative energy. 

o Angular momentum (L). 

o Relative angular momentum. 

The y axis displays the values for the selected parameters and the x axis displays 

the iterations. 

The user can cycle through the different graphs and can also choose to hide the 

graph from rendering, thus increasing overall performance. 

• Control buttons: 

         Image 18. Control buttons located on the bottom part of the screen 

The control buttons that can be seen on the image 18 allow the user to perform 

the following actions: 
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o Play/Pause: These two buttons allow the player to pause and resume the 

simulation, they can be toggled both by mouse and by pressing the space 

key.  

o Restart: This button resets the simulation, removing any modifications 

made by the user to the simulation parameters. 

o Hide UI: This button allows the user to hide the UI elements, this is very 

useful when visualization of the simulation is the main objective and the 

accompanying data is not required, UI can be reenabled by pressing the 

same button. 

     Image 19. Simulation before and after pressing the Hide UI button. 
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o Screenshot: This button allows for the user to take a screenshot of the 

current simulation, this is very interesting to keep track of how it evolves 

over time, or to save some data parameters without having to execute 

the simulation multiple times. These screenshots can be accessed 

through the Gallery button in the Main menu. 

          Image 20. Screenshot button. 

 

4.3. Programming of the simulator 

This section will cover how this simulator has been programmed, the structure of the 

codes and how the encountered problems have been solved. 

 

4.3.1. UI programming 

The programming of the UI is radically different to the programming for the simulation. 

While the latter involves more mathematical codes, requiring the calculation of new 

positions, updating the graphics and setting the trails, the former is more modularized, 

managing the execution of small, more diverse set of tasks. We will now take a closer 

look at some of the scripts that are run by the UI. 

 

4.3.1.1. Main menu 

The scripts that manage the functionality of the Main Menu are simple and are all 

managed by a single script, MainMenuManager.cs. Some of the functionalities of this 

script are: 
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• Loading either the New Simulation scene or the Load Simulation scene. 

Image 21. Functions in MainMenuManager.cs which load the selected scenes. 

• Accessing the file system to open an instance of the file manager, this 

section of the code needs to check the operative system to act accordingly, as 

files are not opened the same way in iOS and in Windows. 

• Displaying the instructions, a set of pop-up menus can be iterated 

through by the user. 

          Image 22. Function in MainMenuManager.cs to iterate through the instruction menus. 

 

4.3.1.2. New Simulation 

The complexity of the scripts increases as the tasks go from trivial ones, such as loading 

scenes and files, to more complex ones, such as editing a file of simulation parameters. 

This menu allows the user to create a new simulation as well as, through the Load 

Simulation menu, edit an existing simulation. In order to achieve this, several codes have 

to be implemented, the most important of them are: 

• NewSimManager: The main tasks of this script are managing the events of 

buttons, loading the existing simulation when the user chooses to edit it and 

sending the simulation information to the DataManager.cs to save it into the file 

system and then load it in the Simulation scene. 
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Image 23. Functions to edit and save a simulation in NewSimManager.cs 

• DataManager: Once all the parameters have been correctly set, this script parses 

all the input parameters to their desired type, calculates the correct zoom for 

every simulation based on the maximum distance and creates a json object to 

then store the data as a .json file. 

Image 24. Earth and moon simulation .json file containing the simulation parameters. 

 

4.3.1.3. Load Simulation 

This menu, and its corresponding scripts, LoadSimManager and LoadSimPanelManager 

fulfill several tasks: 

• Loading all the simulations contained in the \Examples folder and sorting them 

in order to make searches easier for the user. 
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    Image 25. readFiles function in LoadSimPanelManager which reads all .json files in the Examples folder. 

• Generate the UI panel containing the list of all simulations, where each name is 

a button with a given file path to a simulation, when the button is pressed it sets 

a variable from which the loading, editing or deleting information is extracted. 

Image 26. Function to generate list of simulations available to load/edit/delete in LoadSimulation menu. 

 

4.3.2. Simulation programming 

When studying the structure of the codes that run the simulation, it is critical to discuss 

the most essential parts: loading the simulation, executing the iterations and updating 

the UI. This is because the simulation the user experiences is just a sequence of different 

iterations, which are all run in the same way and are executed from a series of 

parameters that are loaded from files. 
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4.3.2.1. Main scripts 

It is important to note that a wide of array of scripts manage the main simulation code, 

some manage the calculations using numerical methods, some control the canvas and 

how the user interacts with it and others oversee calculating and rendering the graph 

data, as well as many other auxiliary codes, here are the main ones: 

• SimManager: This is the heart of the simulation, it is the script that 

controls all others and stores the most important data, its functions are Loading 

the simulation parameters, calculating the Next Iteration and Updating the 

graphics. 

• Canvas Manager: This script manages all of the UI (excluding the graph), 

it is in charge of Updating certain simulation parameters which are editable by 

the user, such as G, DT, Zoom, and FPS. As well as Receiving information from 

the SimManager in order to display it in the UI. 

 

4.3.2.1.1. SimManager 

As its name states, the Sim(ulation)Manager manages the simulation, it acts like a 

“brain”, which controls a “body” of codes, it is divided mostly into three sections, Start, 

Update, and public methods. This script also contains some of the most important 

variables in the whole simulation, some of them are: 

• y0: This is one of several parameters from the simulation data, but it is the most 

important, it is the code representation of the initial conditions of the bodies, 

take the following configuration: 

 Earth Moon 

Positions X:0m 
Y:0m 
Z:0m 

X:384400000m 
Y:0m 
Z:0m 

Velocities X:0m/s 
Y:0m/s 
Z:0m/s 

X:0m/s 
Y:10000m/s 

Z:0m/s 
Image 27. Initial configuration of the Earth and moon simulation. 
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• History: List of arrays of type double which store every y vector that has been 

calculated each frame, if we have a simulation with 6 bodies that has run for 100 

frames, the size of history will be 100x36. 

Image 28. Declaration of history in SimManager.cs. 

• Bodies: Array of GameObjects [19], these are the graphical representation of our 

bodies, containing both the Sphere and the Line Renderer (orbit) for each of our 

bodies. 

Image 29. View of a body GameObject with its components in the Unity Editor. 

 

 

Now we will take a look at the main sections in which the code is divided:  

• Start: This function defined by Unity [20] executes when the simulation is first 

loaded, in it the SimManager performs the following actions: 

o Loading the simulation data from the file selected by the user. 

o Instantiating (Creating) the 3D bodies with their parameters. 

o Initializing the history depending on the integrator used as some require 

more than 1 initial condition. 
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o Initializing the Canvas (UI). 

              Image 30. Start() function in SimManager.cs 

 

• Update: This function is also defined by Unity [21] and it executes each frame, 

the most important actions it performs are: 

o Check that the simulation is playing, in order to advance a frame, this is 

done by checking if the Boolean variable playToggle.isOn has the value 

true. 

o Control the current FPS, since the Update method is called on every Unity 

frame, there is a difference between the desired FPS value and the FPS 

value unity is trying to achieve, this is controlled by a set of variables that 

keep track of time and only allow the desired number of frames to be 

executed per second. 

o Calculate the next iteration, the selected numerical integrator is used to 

obtain the following approximation of the simulation parameters. 

o Check that no collisions have occurred, if they have, merge the two 

bodies by removing them and creating a new body which will be located 

in the halfway point between the two collided bodies. 

o Update the positions of the in-game spheres representing the bodies by 

scaling them to in-game zoom. 

o Update the materials used to color the spheres based on which body the 

user is monitoring. 

o Update the graph variables and render the new result, this is done 

through the variable graphManager. 
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Image 31. Update() function in SimManager.cs  

4.3.2.1.2. CanvasManager 

The Canvas [22] is the Unity object in which we design and program the UI, as in any UI, 

in order to perform the actions the user desires, there needs to be a script which 

manages the UI, that is the function of our CanvasManager. Some of the main variables 

are: 

• Buttons: The Button [23] object  allows for actions to be performed when 

pressed, many of them are used in our Canvas, and they have different functions; 

allowing the user to control the simulation, increasing or decreasing simulation 

parameters, switching the graph view or allowing the user to inspect the 

parameters of a body. 
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         Image 32. Button variables in CanvasManager.cs 

• Texts and InputFields: To display information on screen, the object 

TextMeshProGUI [24] allows for the manipulation of the content of the text in 

real time. Most of these objects are only modified by the CanvasManager, for 

user manipulation, the object InputField [25] is used. 

           Image 33. InputField and TextMeshProGUI variable declaration in CanvasManager.cs 

 

The most important part of the script however, are the functions it performs to update 

and modify the data that is being displayed in the UI, as well as modify the simulation 

parameters if the user chooses to do so, here are the most important functions: 

• Update: Much like in SimManager.cs, this function also executes each frame, to 

improve efficiency, it is only executed when the Canvas is not hidden. The main 

actions it performs are: 

o Update the texts that display the selected Body parameters. 

o Update the simulation variables values, taking them from the InputFields 

and sending them to the SimManager.cs script while also updating the 

displayed text. 
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o Update the remaining texts the user cannot interact with. 

Image 34. Update function for the CanvasManager.cs script. 

 

4.3.2.2. Other scripts 

While the SimManager and CanvasManager are the main scripts tasked with running 

and displaying the simulation, they rely on a wide array of auxiliary codes to perform 

parallel calculations, variable management and other auxiliary tasks. These are some of 

the scripts: 

• ELGraphManager: This script is tasked with calculating the Energy, both KE and 

PE as well as the angular momentum, and rendering this data in a custom graph 

that is created with the WindowGraph script since Unity does not offer native 

graph support. 

Image 35. updateGraph() function in ELGraphManager.cs script, this function is executed every frame. 
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• Screensaver: This script is in charge of capturing the screen when the user selects 

the screenshot button, as well as navigating in the file system and creating a new 

file in which to store the image. 

Image 36. Main functions of the Screensaver.cs script, these functions take a screenshot and save it to the file system. 

 

 

5. Performance and optimization 

This section is dedicated to the study of the computational complexity of the N-body 

problem and the performance obtained by the simulator that has been developed. 

Several measures of performance will be taken into account, the most widely used is 

Frames Per Second (FPS), because it is the one that impacts user experience the most 

[26],  30 FPS is an industry standard considered optimal, with 60 FPS considered a more 

premium target. Other metrics that will be considered are CPU, GPU, and RAM usage. 

The main computational costs of the simulator will be analyzed, and the final 

performance of the simulator will be discussed. 

 

5.1. Computational costs 

The computational complexity of the N-body problem has been studied for decades, 

especially for the so called “many-bodies” where the large magnitude of N (usually > 

10.000) implies that direct methods such as the ones used by our simulator are 

impossible, and special optimization techniques need to be implemented [27].  
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Next, we will review some aspects that affect the computational cost of calculating the 

evolution of any simulation, such as the size of N, the visual settings, the numerical 

integrator being used, and other calculations. 

 

5.1.1. Effect of N 

Because every body exerts a gravitational force on every other body in the simulation, 

the complexity of obtaining the total force that a body experiments in a given moment 

in time is of order O(n2) [28]. This is the biggest limiting factor in our simulator, since the 

number of calculations needed is exponentially bigger when N increases, the number of 

Frames Per Second that we can achieve decreases exponentially. 

 Image 37. Graph showing the drop in FPS value as N increases. Using Euler integrator and trail size = 250. 
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5.1.2. Visual settings 

Graphical components are also a big part of computational costs, the elements in the 

scene in Unity, mainly the UI and the bodies need to be rendered [29], and the 

computational costs of rendering these elements needs to be carefully monitored. 

The element that most affects graphic performance is the Line Renderer [30] , this 

component takes an array of two or more points in 3D space, and draws a straight line 

between each one. This is used to visualize the orbits of the planets, the length of which 

is referred to as Trail size.  

      Image 38. Line renderer component in the Unity editor. 

 

The main challenge comes when the selected Trail size is > 10.000, as the engine needs 

to calculate and render every point in the line for every body each frame, which causes 

the simulator to slow down considerably. 
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        Image 39. Graph showing the impact of trail size on performance. 

 

5.1.3. Numerical integrators 

Numerical methods provide different ways of approximating the solution to any given 

N-body configuration, each approximation varies in its equations, error and complexity. 

As we have seen, integrating a simulation with the Euler method requires only one 

function evaluation, whereas in the Adams-Bashforth-Moulton method we need to 

combine two other methods each with several function evaluations.  

 

Since one of the main objectives of the simulator is to contrast and compare different 

numerical integrators, observing the differences in the quality of the solutions and the 

error obtained, it is very interesting to also contrast the effect different integrators have 

on performance. In order to do this, the same simulation has been observed while 

varying the integrators and CPU usage has been measured. 
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Image 40. CPU use of different numerical integrators in the simulation “Solar System Asteroids”, at the 1000th frame. 

 

Surprisingly, the CPU usage is similar for all integrators, this could be due to the relative 

simplicity of the methods that have been implemented, as more complex integrators 

could have a more severe impact on CPU usage. From these measurements we observe 

that numerical integrators do not have a significant effect on the program’s 

performance. 

 

5.1.3. Energy/Angular momentum graph 

Other computational costs come from the calculation and rendering of the 

Energy/Angular momentum graph, this is because for each frame the program needs 

to calculate the new values for the KE, PE, E and L, update their Maximum and Minimum 

values, and render the graph. These calculations are not computationally significant, in 

contrast, when first developing this graph, inspired by [31], the rendering of the graph 

affected the performance massively, due to errors when batching the UI elements  [32]. 
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Once these issues were fixed through rendering optimizations [32] the effect of the 

graph calculations and rendering on the FPS was reduced significantly. 

         Image 41. Effect of UI batching on graph performance in simulation “Asteroids”. 

 

5.1.4. Improving performance 

After visualizing how these parameters affect performance, we can draw some 

conclusions on how to improve the performance of the program. If the user suffers from 

low FPS, performing some of the following actions will help: 

o Reducing Trail size: As we have seen, this is the parameter that least 

affects the simulation because it is only visual, and it is the one that 

impacts FPS the most, therefore it should always be kept at a minimum. 

o Reducing N: This is not desirable, as it involves changing the simulation 

drastically by eliminating bodies until the FPS count reaches the desired 

target. 
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o Changing Numerical integrators: This is also not desirable, as generally 

changing the current numerical integrator for one with less 

computational costs involves losing quality in the simulation results, but 

it can be done if necessary. 

o Hiding E/L graph: As we have discussed in the previous section, after 

some optimizations, hiding the graph does not significantly affect 

performance, but it might help speed up the simulator by a few FPS. 

If the user wishes to improve the performance of the simulator, these are the internal 

options that are available to them, other external ways of increasing performance could 

involve shutting down other running applications or upgrading the hardware of the 

machine. 

 

5.2. Resulting performance 

We have already seen how different parameters such as N, the Trail size or the 

Numerical integrator used have a profound impact on the simulator’s performance. 

However, other metrics are also used in the videogame industry [33] to evaluate the 

performance of an application, mainly CPU, GPU and RAM use, these metrics will also 

be useful to analyze how our simulator performs. 

 

5.2.1. Effect of hardware 

The measurements that about to be analyzed have been taken on a computer with the 

following specifications: 

• CPU: Intel Core i7-6700 CPU 3.4GHz 

• GPU: NVIDIA GeForce GTX 1060 6GB 

• RAM: 16 GB RAM 
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This corresponds to a mid-upper range hardware configuration, performance can 

increase or decrease based on the user’s hardware specifications, we will also study 

which of these three parameters is the most important when trying to optimize 

performance. 

 

5.2.2. CPU, GPU and RAM 

To study the evolution of these parameters, the simulation “Orbit Layers” with N = 11, 

Trail size = 25000 and Integrator = Runge Kutta 4 was executed, and the following data 

was extracted.  

 Image 42. Graph showing RAM vs Iterations.  Image 43. Graph showing GPU vs Iterations. 

Image 44. Graph showing CPU vs Iterations. 
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The results from these measurements are very interesting but require a few 

explanations. As we can see, once again the Trail size is the parameter that has the 

biggest impact on performance.   

 

It is apparent that until the 25000 Trail size limit is reached, the simulator keeps 

increasing the RAM allocated to it. However, the CPU usage does not increase, as the 

iteration of the orbit array does not appear to be parallelized by the processor, this 

means that one processor core needs to do more tasks each iteration, therefore 

decreasing the number of FPS achieved, as seen in 4.1.2. 

 

Interestingly, GPU usage is inversely proportional to Trail size, since less frames are 

calculated by the processor, less frames need to be rendered graphically by the GPU, 

therefore lowering its consumption. 

 

One solution to this problem would be to speed up the iteration of the orbit array by 

parallelizing this task by using technique such as parallelization. This consists of 

allocating multiple CPU cores to perform separate tasks, effectively “breaking” up the 

main task into many smaller ones that different CPU cores can perform separately and 

allowing for the calculations required to perform an iteration to be sped up [34]. 

 

 

6. User guide 

This section will provide the guidelines on how to install, execute and utilize the 

program, explaining both the technical requirements for installation as well as 

instructions on its use and best practices to obtain the best experience when utilizing 

the simulator. 



 Juan Paños Basterra                                                                      N-Body Simulator  

 

60 
 

 

6.1. Requirements and installation 

The technical requirements required to run the simulator are inherited from the Unity 

framework [35] , they are the following: 

• Operating system: Windows 7+ or macOS 10.12+ 

• CPU: SSE2 Instruction set support 

• GPU: Graphics card with DX10 (shader model 4.0) capabilities 

These requirements are met by most modern machines, therefore most people who are 

interested in this simulator should be able to run it. 

 

To install the program, the user simply needs to open 

https://github.com/panosjuanis/3D-N-body-simulator and download the version for 

the operating system they are interested in, after this is complete, simply copying the 

folder to the desired destination and executing either the .exe (Windows) or the .app 

(Mac) files will start the program. 

 

In order to uninstall the program, simply removing the folders from the file system will 

delete the program and all its auxiliar files. 

 

6.2. Instructions and tips 

The instructions on how to use the program are explained in the main menu so that the 

user can understand concepts both regarding the calculation of the simulation, such as 

DT and numerical integrators, and of the graphical aspect of the program, such as 

movement with the camera and how to properly manage it. 
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Other aspects are also covered, such as managing the simulation files, both editing, 

creating, and deleting existing simulations and taking screenshots and visualizing them. 

The UI elements that have been described previously are also explained here so that the 

user can have a correct  understanding of them and knows how to utilize them properly. 

 

Lastly the user is given some tips on how to reduce the main problem challenging a 

premium user experience: performance. This has been discussed in an earlier chapter 

and the user is given a brief summary of these issues and how to address them, by 

reducing trail size, n, selecting the correct integrator and turning off the UI. 

 

 

7. Examples 

7.1. Simulation examples 

One of the main goals of developing this simulator is the creation of a didactical tool to 

learn about the law of gravitation, numerical integration and visually understand the 

different celestial configurations that often are studied in theory. 

 

To achieve this, and for the user to be able to experiment with different scenarios, 

dozens of pre-loaded simulations can be accessed by the user when entering the 

application, these are mainly divided into two parts, real world examples and theoretical 

solutions of the n-body problem. 

 

7.1.1. Real world examples 

There are hundreds of known configurations for the N-body problem, and it would be 

impossible to try to encompass all of them, but we have strived to introduce a variety of 

real world configurations focusing on the solar system, which is the system most people 

are familiar with, we will take closer look at two of them. 
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7.1.1.1. External solar system 

Image 45. “External solar system” simulation over a period of 260 years using Adams-Bashforth-Moulton  integrator. 

 

The initial conditions for this configuration were obtained through NASA’s database [36] 

and Mamen Peña’s simulator examples [6] and have been saved in the “Solar system 

external” file which can be accessed and edited by the user. The simulation that can be 

observed in the figure has evolved for a 260 year period, and the bodies that are 

represented are: The Sun (Green sphere), Jupiter, Saturn, Uranus, Neptune, and Pluto. 

 

The user can move around the 3-Dimensional space in the simulator and observe the 

evolution of the system from any angle they desire, in this simulation the orbit described 

by Pluto is especially interesting, as it has a tilt that the other bodies do not have. 
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7.1.1.2. Trojan asteroids 

Image 46. “Trojan asteroids” simulation over a period of 8 years using Runge Kutta 4 integrator. 

 

This is another real world configuration, this time relating to Trojan asteroids [37], which 

are a group of asteroids that share the planet Jupiter’s orbit around the Sun first 

discovered around 1904 by E.E.Bernard. In this configuration, we will focus on the 

asteroids Aquilles and Patroclus in their obits around the Sun, the user can observe both 

asteroids share Jupiter’s orbit around the Sun. 

 

 

7.1.2. Theoretical solutions 

Another type of configurations that can be found in the files of the simulator are the 

theoretical simulations, this is a very well established field of the N-body simulations, 

and hundreds of people have come up with configurations that achieve stable orbits, 
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due to the way the bodies move in the simulations, they are called choreographies as 

the bodies appear to be “dancing”. 

 

Next, we will take a closer look at two of these choreographies but this is a fascinating 

topic and new choreographies are discovered constantly, for more information see [38]. 

 

7.1.2.1. Figure 8 

One of the most famous of these kinds of solutions is the so called Figure 8, because the 

motions of the bodies look like the number 8. It was discovered by Chris Moore [39], 

since this is one of the most famous theoretical configurations, we thought it would be 

interesting to visualize it with our program. 

   Image 47. Figure 8 simulation with the Adams-Bashforth method over a period of 9 seconds. 

 

As we can see, the bodies perfectly follow the motions that are expected from them and 

display a beautiful 8. Other variations of this configuration also exist, Figure 8 

simulations can be created with different N values which result in more complex 

patterns, but always in line with the original solution. 
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 Image 48. Figure 8 simulation with Adams-Bashforth method over a period of 16 seconds with N = 6. 

 

7.1.2.2. Broucke’s periodic solutions 

Another family of solutions was discovered by Roger A. Broucke and Michel Hénon in 

the 1970 [40]. In this family the three objects all have the same mass and in some of 

these solutions, two of the bodies follow the same path. 

 

Several solutions from this family have been included into the simulator so that the user 

can visualize them and experiment with them. 
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 Image 49. Periodic Broucke solution 4, simulated with the LeapFrog method over 35 seconds. 

 

8. Conclusions 

The initial aim when starting this project was the development of a simulator for the N-

body problem that was easy to use, representing the motions of the bodies in a 3-

dimensional space and allowed the interaction of the user with different parameters 

and numerical methods. 

 

These objectives were successfully completed, as the developed simulator can be 

installed and utilized by users with great ease, allowing them to experiment with 

different configurations of the N-body, visualizing or modifying different parameters in 

real time. The user can also move around the 3-dimensional space inside the simulation 

and monitor elements such as the energy of the system, its angular momentum, or the 

different body parameters. 

 

Though other N-body simulators exist, the one that has been developed in this project 

excels in the visualization of the solution and the ease of use that it provides. Its UI is 
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tailored towards first comers and people that are familiar with the N-body problem 

alike, allowing the user to intuitively use the program, which is not the standard practice 

in the N-body simulators. 

 

This makes it especially interesting for pedagogical uses, such as university lectures or 

any teaching of Newton’s law of gravity. Researchers of the N-body problem, be it 

amateur or professional, can also find the simulator interesting, as the installation, 

camera movement and parameter options it provides are not easily found in other 

simulators, which tend to be simpler and not allow for 3-dimensional motion. 

 

The development of this thesis has facilitated learning from a diverse range of topics, 

from the N-body problem formulation, the numerical methods used to resolve it, 

developing in different programming languages to UI design and many other interesting 

topics. 

 

8.1 Improvements 

Despite the success of the project in the development of a 3-dimensional N-body 

simulator, there are several ways in which this application could be improved both by 

optimizing the program and by adding some extra features, now we will cover some of 

them. 

 

8.1.1 Optimizations 

When it comes to optimizations, these should always be targeted at the issues that 

affect performance the most, in our case like we have seen that the Trail size is the 

parameter that has the biggest impact in simulator performance, to solve this issue, two 

solutions are proposed: 
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• Changing the way the orbit points are assigned by using the SetPositions() 

function in the LineRenderer component [41]. This allows for a more rapid 

assignment of the points that make up the orbit, which needs to happen every 

frame. This change has not been implemented because it would involve 

structural changes in the code and in the way camera zoom is calculated, and 

this issue was detected in the final stages of development. 

• Since the optimization proposed above might not solve this issue, an alternative 

would be to speed up the iteration of the orbit setting in the LineRenderer with 

the techniques described in [42]. 

 

Many other optimizations could be done to improve code efficiency, graphical 

rendering, and many other aspects of the simulator, but these are all secondary changes, 

since the simulator performs satisfactorily except when using big Trail sizes. 

 

8.1.2 Extra features 

In these types of programs, hundreds of different features can be implemented, with 

varying degrees of importance and interest for the user. In our application we have 

implemented the features that we thought most important, such as a 3-Dimensional 

interactive space, real time rendering and others. Some features that were studied with 

interest but have not been implemented are: 

• Fixed interval simulation, instead of letting the user run the simulation for as long 

as they want, and  update it in real time, another option would be to allow the 

user to select a start and finish times and display the resulting simulation results. 

• Allowing the user to export data at any given point in the simulation, this is very 

interesting for the user if, after experimenting with a simulation, they find an 

evolution that they would like to save. 

• Allowing for video recordings to be made inside the application, this would 

enable the user to save a small video of the evolution of a simulation to be used 

in presentations, projects… 
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One of the main purposes of this simulator was to allow the user to compare and 

contrast different numerical integrators, to achieve this, a wide range of numerical 

integrators of different types, single-step/multi-step, implicit/explicit… , should have 

been developed. However, due to time and complexity constraints, only a small set of 

numerical methods has been implemented, and the programming of more methods 

would greatly improve the options the user can choose from. 

 

8.1.3 New simulators 

During the final stages of the development for this project, a new simulator for the N-

body problem has been discovered, it is called “Harmony of the spheres” [43]. It is very 

interesting because it is a web-based simulator and contains several of the 

improvements over the existing simulators that this project has tried to implement. 

 

Some of its features are a wide array of numerical integrators, smooth 3-dimensional 

camera movement, a vast number of existing simulations and many other features. 

Though we cannot compete with this project, since it has been developed over a span 

of several years and many experienced people are working on it, it does serve as a 

benchmark for future projects of this nature since it is a piece of software of very high 

quality. 

 

Despite its many polished features, in some aspects the simulator that has been 

developed in this project offers some improvements, some of them are: 

• Free camera movement, as opposed to camera movement restricted to be 

anchored around a body. 

• Stable orbit paths, in the “Harmony of the spheres” simulator, orbits will become 

incorrect when altering several parameters drastically. 
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• Direct control over some simulation parameters, as opposed to restricted 

changes in parameters. 

• Visualization of metrics such as Energy and Angular momentum. 
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