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A B S T R A C T

Aims: To identify all cardiovascular disease risk prediction models developed in patients

with type 2 diabetes or in the general population with diabetes as a covariate updating pre-

vious studies, describing model performance and analysing both their risk of bias and their

applicability

Methods: A systematic search for predictive models of cardiovascular risk was performed in

PubMed. The CHARMS and PROBAST guidelines for data extraction and for the assessment

of risk of bias and applicability were followed. Google Scholar citations of the selected arti-

cles were reviewed to identify studies that conducted external validations.

Results: The titles of 10,556 references were extracted to ultimately identify 19 studies with

models developed in a population with diabetes and 46 studies in the general population.

Within models developed in a population with diabetes, only six were classified as having a

low risk of bias, 17 had a favourable assessment of applicability, 11 reported complete

model information, and also 11 were externally validated.

Conclusions: There exists an overabundance of cardiovascular risk prediction models appli-

cable to patients with diabetes, but many have a high risk of bias due to methodological

shortcomings and independent validations are scarce. We recommend following the exist-

ing guidelines to facilitate their applicability.
� 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction
Type 2 diabetes is one of the most prevalent chronic diseases

in the world [1], and cardiovascular disease (CVD) is one of the

major complications of patients with diabetes, with a twofold

increased risk compared with the general population [2].

Prevention of cardiovascular disease is a key issue, and eval-

uation and stratification of the cardiovascular risk of patients

with diabetes is needed to establish and personalize treat-

ments and maximize the benefit of those treatments. CVD

risk prediction models are the main tool for risk estimation

and stratification, and they have increasingly been included

in clinical guidelines [3,4]. Over the last few years, many car-

diovascular risk models have been developed in different

locations, and consequently, several systematic reviews of

prediction model studies, both in the general population

[5,6] and in people with type 2 diabetes, have also been pub-

lished in recent years [7,8].

Risk prediction models need to fulfil strict conditions that

go beyond usual methodological requirements to be useful as

valid decision support tools in clinical practice. However,

according to the aforementioned reviews and despite the

overabundance of CVD risk prediction models, many of them

fail to meet key quality criteria [8], such as being methodolog-

ically correct, being appropriately presented, being externally

validated and having impact studies that assess the effect of

using them in clinical practice [5]. The issues of poor report-

ing and low development quality in prediction model devel-

opment studies have been addressed in recent years with

the publication of different guidelines and checklists: the TRI-

POD statement for transparent reporting of a multivariable

prediction model [9], CHARMS checklist for critical appraisal

and data extraction for systematic reviews [10] and PROBAST

tool for the assessment of risk of bias and applicability [11].
This study was intended to identify all cardiovascular dis-

ease risk prediction models developed in patients with type 2

diabetes or in the general population with diabetes as a

covariate, updating the study conducted by Van Dieren et al.

[7], describing model performance and analysing both their

risk of bias and their applicability, and assessing whether

they have gone under external validation or whether their

implementation has been assessed in the case of models

developed in patients with type 2 diabetes.
2. Methods

2.1. Search strategy

This review was conducted following the Preferred Reporting

Items for Systematic Reviews and Meta-analyses (PRISMA)

reporting guidelines [12]. To identify prediction model devel-

opment studies, a search was performed in PubMed covering

the period April 1, 2011, to June 18, 2021. This search was con-

ducted on two different moments. The first search took place

on April 2018 in the previous PubMed version andwas applied

to the period April 1, 2011 to April 6, 2018. The search terms

included were exactly those used in Van Dieren et al. [7].

The second search was conducted on June 2021 in the new

PubMed version and was applied to the period April 6, 2018

to June 18, 2021. The search strategy used for this second

search had to be adapted, since the previous search was not

reproducible in this new PubMed version. The terms selection

process for this second search was conducted trying to main-

taining both precision and recall. The entire process is

detailed in Additional file 1. In addition, known reviews and
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lists of references of selected articles were tracked to find

other records.

2.2. Inclusion criteria

Models were included if 1) they were developed in patients

with type 2 diabetes or if they included diabetes as a predic-

tor, and 2) the outcome was CVD or any subtype as coronary

heart disease (CHD), heart failure (HF) or stroke. Exclusion cri-

teria were: models not applicable to patients with type 2 dia-

betes, models derived for populations with specific diseases,

models with outcomes different from CVD or subtypes of

CVD, non-original articles, commentaries or reviews, studies

that analysed the added prediction value of a predictor with-

out formal validation, those that were not prediction studies,

and those that were only validation or impact studies.

2.3. Data extraction, analysis and reporting

All records were divided into two sets, and each set was

reviewed independently by two groups of reviewers, AG/JL

and IT/BI/ME. Each group analysed one set of records and

the selected records were merged. The screening was per-

formed in three phases: first, only titles were analysed; sec-

ond, abstracts of the selected titles were considered; and

finally, full texts of the selected abstract were read. Discrepan-

cies were resolved by consensus. A unified chart of exclusion

criteria was applied in the title, abstract and full-text screen-

ing steps.

In the selected articles, population size, number of events

and details of the developed model were extracted, including

type of statistical model, identification of predictors and

selectionmethod (if available), and internal validation results,

following the CHARMS guidelines for systematic reviews of

prediction modelling studies [10] and the TRIPOD guidelines

for reporting prediction models [9].The risk of bias (ROB)

and applicability of individual studies were evaluated with

the Prediction Model Risk Of Bias Assessment Tool (PROBAST)

[11]. This tool evaluates four domains, namely participants,

predictors, outcome and analysis, using 20 signalling ques-

tions and classifies models as having high, low or unclear risk

of bias and as high, low or unclear concern regarding

applicability.

2.4. External validation studies

An additional search was performed to identify all studies

that carried out an external validation of the identified mod-

els. Citations to the identified models were individually

searched in Google Scholar, and after screening titles,

abstracts and full text, validation studies were selected and

summarized.
3. Results

The study selection process is described in Fig. 1. A total of

10,556 records were extracted from the search and screened

based on their title. Of them, 688 were screened during the

abstract review, 119 full texts were assessed for eligibility,
and 65 studies were included in the review, including three

studies added from reference search. Of the included studies,

19 were developed in patients with type 2 diabetes, whereas

46 were developed in the general population and included

diabetes as a covariate.

3.1. Models developed in populations with diabetes

3.1.1. Design, population, follow-up
The results of the 19 models developed in patients with type 2

diabetes are given in Table 1.[13–31] Fourteen of them used

observational cohort data, four used registry data and the lat-

ter used clinical trial data. Eight were developed in the Euro-

pean population, six in the Asian population, three in the

North American population and the other two in the Ocea-

nian population. The majority of models were developed in

populations with prevalent diabetes; only twowere developed

in populations with incident diabetes. Sixteen studies

included a lower bound for age in their inclusion criteria;

most ranged between 18 and 40 years old, and ten included

an upper bound for age, which ranged between 64 and

84 years old. Follow-up time varied among the studies, rang-

ing from a median of 2 –15 years.

3.1.2. CVD outcomes and predictors
Outcome definitions varied substantially among the models.

Fifteen out of the 19 studies reported using International Clas-

sification of Disease ICD (9 or 10) codes. Fifteen referred to a

general CVD outcome and the last four to a specific subtype

of CVD: two to stroke [18,23], one to cerebrovascular disease

[21] and one to heart failure [26]. Among those referred to

general CVD, three were very restrictive and included only

CVD death [13,14,30], five included only fatal and nonfatal

acute myocardial infarction (AMI), stroke or CVD death

[16,20,22,25,29], and the last seven were inclusive and

accounted for a variety of fatal and nonfatal events

[15,17,19,24,27,28,31], one of which included even peripheral

arterial disease (PAD) [27].

The median number of included predictors was 12, rang-

ing from 6 to 91. Age (as time indicator in one model) and

sex (as a predictor in 15 models and as a stratification variable

in the last four) were presented in all studies and smoking

status, cholesterol (HDL, LDL, total or total to HDL ratio), blood

pressure (total, SBP or DBP) and HbA1c or fasting plasma glu-

cose were presented in more than 75% of the studies. Body

Mass Index (BMI) and diabetes duration were presented in

11 (57.9%) models, and other less common predictors were

glucose lowering medication, presented in eight (42.1%) mod-

els and atrial fibrillation, which was presented in seven

(36.8%) of the models.

3.1.3. Sample size, type of model, predicted horizon and
presentation
The number of participants was presented in all studies, and

all except one also reported the number of events. The total

population in derivation cohorts ranged from 777 to 907,992

participants, and observed events ranged from 164 to 54,365.

The most common predicted horizons were five years (9 stud-

ies) and ten years (6 studies), with the shortest predicted hori-

zon being one year and the longest that of the model



Fig. 1 – Flow chart of systematic review of studies providing cardiovascular risk prediction models that can be applied to

individuals with type 2 diabetes.
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presented in Berkelmans et al. [19] which allows for lifetime

prediction. All studies used survival models except one,

which used a logistic model; Cox proportional hazard models

in 15 cases, Fine-Gray competing risks model in two cases and

Weibull parametric models in one. Eleven studies reported

complete information, coefficient estimates (hazard ratios

or beta coefficients) and baseline hazards to allow individual

estimation. In the remaining studies, four presented risk

charts and four presented information that was insufficient

to obtain individual risk estimations.
3.1.4. Performance and external validation studies
All studies presented a validation study; ten of them (52.6%)

only performed internal validation, one of them (5.3%) pre-

sented only external validation, and eight studies presented

both. Among those with internal validations, discrimination

was reported in all of them, and the c-statistic values ranged

from 0.640 to 0.996. Ten of the internal validations used the

split-sample method, four used the apparent validation

method, and other four used cross validation or bootstrap.

Calibration was assessed in 16 (84.2%) of the models, with

13 of them presenting at least calibration plots, and three

studies computing only Hosmer-Lemeshow or Gronnesby

and Borgan goodness-of-fit statistics.
Nine of the studies (47.4%) validated the prediction model

through evaluation in an external cohort. In addition, five

independent studies [32–36] externally validated three of

the 19 models developed in population with type 2 diabetes

[28,29,31] (see Table A2.1 in Additional file 2). Overall, 11

(57.8%) of the 19 models have been externally validated. Cal-

ibration was assessed in all external studies using calibration

plots and computing calibration slope in four of them. Dis-

crimination in external cohorts showed a high degree of vari-

ation in the c-statistic values, ranging from 0.54 to 0.78. For

the model developed in Hippisley-Cox and Coupland [26],

the external c-statistic value was slightly higher than that

of the internal cohort (women 0.783 and men 0.769 vs women

0.770 and men 0.764). For the model developed in Mukamal

et al. [29], the external validations performed in Read et al.

[32] and Dziopa et al. [36] showed similar results to those pre-

sented in the development study, but that conducted in Van

der Leeuw et al. [33] showed worse results in two of the three

cohorts used (see Additional file 2). Calibration, as shown in

the calibration plots, was good in the external validations

presented along with the derivation models [25,26,29], but

external validations presented in independent studies

reported poor calibration when applying models directly

[32,33,36], a problem that did not always completely disap-

pear with simple recalibration techniques, such as adjusting



Table 1 – Cardiovascular prediction models developed in patients with diabetes.

Reference Cohort type Location Age range Population/Events Follow-up/Predicted
Time

Predictors Outcome Model Type

Williams et al.
2021 [13]

Observational
cohort

Canada 51–72 59180/ 6033 Mean 7.5 years/ 1–3-
5 years

Age, heart failure, coronary artery disease,
atrial fibrillation and cerebrovascular
disease, blood urea nitrogen, A1C, albumin,
Pre-existing T2D, Chloride, Red cell
distribution width, sex, Alanine
aminotransferase, Systolic blood pressure,
Lymphocyte, Smoking status, Dementia,
Valve disease, Hyperlipidemia, Glucose level,
Heart rate, Implantable cardioverter-
defibrillator, HDL cholesterol, Chest pain,
Carbon dioxide, Edema, eGFR

Cardiovascular death Cox

Liu et al. 2021
[14]

Observational
Cohort

Taiwan 30–84 6461/560 8.7 years/3–5-10–15 years Age, sex, education years, smoking, BMI,
diabetes treatment, diabetes duration, FPG
variation, HbA1c variation, SBP variation,
triglycerides, peripheral neuropathy

Cardiovascular death Cox

Pylypchuk
et al. 2021 [15]

Observational
Cohort

New Zealand 30–74 46652/ 4114 Median 5.2 years/ 5 years Sex stratified; age; ethnicity; socioeconomic
deprivation index; family history of
cardiovascular disease; smoking status; SBP;
TC-HDL ratio , atrial fibrillation, blood
pressure lowering drugs, lipid lowering
drugs, antithrombotic drugs, HbA1c, diabetes
duration, ACR, eGFR, BMI oral hypoglycaemic
drugs or insulin

Hospitalisations or deaths from
ischaemic heart disease (including
angina), ischaemic or
haemorrhagic cerebrovascular
events (including transient
ischaemic attacks), peripheral
vascular disease, congestive heart
failure, or other ischaemic
cardiovascular disease deaths.

Cox

Choi et.al. 2020
[16]

Register Korea greater than30 933/33 Mean 37.5 months Age, sex, prior stroke, hypertension, diabetes
duration, HbA1c, use of clopidogrel,
abnormal ECG

Major adverse cardiac and
cerebrovascular event (MACCE):
cardiac death, nonfatal MI, or
stroke.

Cox

Davis et.al
2020.[17]

Observational
cohort

Australia Not reported 1296/ 245 5 years follow up Age, sex, heart rate, aboriginal Australian,
HbA1c, diabetes duration, urinary albumin:
creatinine ratio, eGFR , LVH, heart failure,
history of CVD, and presence of PAD

Myocardial infarction, stroke, HF
and CVD death.

Fine-Gray

Kim et. al. 2020
[18]

Observational
Cohort

Korea 40–64 907992/24231 7.1 years / 5 years Age, sex, smoking, regular exercise, BMI,
CKD, CHD, diabetic duration, numbers of oral
hypoglycemic agents or insulin, FBG,SBP, TC
and atrial fibrillation.

Stroke Cox

Quan et. al.
2019 [19]

Observational
Cohort

Hong Kong >=20 623294–610647/
43215–54365

6.3 years/ 5 years Age, sex, diabetes duration, smoking, BMI,
SBP, DBP, HbA1c, LDL, atrial fibrillation, CKD,
history of ischemic heart disease or
cerebrovascular disease

Cerebrovascular disease/Ischemic
Heart disease

Cox

Berkelmans
et al. 2019 [20]

Register Sweden >=18 292024/21910 4.6–14.5/Lifetime risk
age-range 30–95 years

Sex, smoking, SBP, BMI, HbA1c, eGFR, non
HDL-c, albuminuria, diabetes duration,
insulin treatment, previous history of CVD

Non-fatal myocardial infarction,
non-fatal stroke, or vascular
mortality

Fine-Gray

Yu et. al 2018
[21]

Observational
Cohort

UK No age bounds 4704/244 2 years/2 years Age, sex, BMI, SBP, DBP, HbA1c, TC ,HDL, LDL Cerebrovascular hospitalisation Logistic

Nowak et. al.
2018 [22]

Observational
Cohort

Sweden 55–65 834/136 6.4 years/5 years Age, diabetes duration, TC/HDL, HbA1c, SBP,
BMI, sex, smoking, microalbuminuria, atrial
fibrillation, previous CVD + 80 proteins

Fatal or non-fatal myocardial
infarction, fatal/non-fatal stroke

Cox gradient
boosted machine

Li et al. 2018
[23]

Observational
Cohort

China 30–84 18750/ 2091 10 years/.3–5-8 years Age, sex, smoking, diabetes duration, BP,
HbA1c, TC-HDL ratio, Abnormal creatinine.,
FPG-CV, Arterial embolism and thrombosis,
retinopathy, Hypoglycemia, Anti-diabetes
medication, cardiovascular medication

Ischemic stroke Cox

d
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Table 1 – continued

Reference Cohort type Location Age range Population/Events Follow-up/Predicted
Time

Predictors Outcome Model Type

Wan et al. 2017 [24] Observational
Cohort

China 18–79 91957 Median 5 years/ 5 years Sex stratified. Age, smoking, diabetes
duration, OHA, AntiHypertensive. Drug,
Insulin drug , BMI, HbA1c, SBP, DBP, eGFR,
HDL ratio, urine ACR

CVD: ischemic heart disease,
myocardial infarction, coronary
deathand sudden death, heart
failure and fatal and non-fatal
stroke

Cox

Kaasenbrood et al. 2016
[25]

Clinical trial UK 40–79 2725/164 Median 3.2 years/
10 years

Age, sex, smoking, SBP, TC-HDL, history o
CVD, FPG, statin-placebo

Nonfatal myocardial infarction,
nonfatal ischemic or hemorrhagic
stroke, cardiovascular death

Cox

Hippisley-Cox et al. 2015
[26]

Observational
cohort

UK 25–84 437806/ 25480 15 years/ 10 years Sex stratified. Age, TC/HDL, Smoking,
Ethnicity, Diabetes Type, Atrial fibrillation
Previous CVD, Chronic renal disease

Heart failure Cox

Piniés et al. 2014 [27] Observational
Cohort

Spain >24 777/ 192 Median 10 years/
10 years

Age, sex, NonHDL/HDL, SBP, HbA1c, smok CHD, stroke, PAD Cox

Kiadaliri et al. 2013 [28] Register Sweden >=18 21775/ 4547 5 years/ 5 years Sex, age, SBP, DBP, TC/HDL, BMI,
macroalbuminuria, microalbuminuria,
smoking, previous disease history

AMI, HF, NAIHD, stroke, sudden
death.

Weibull

Mukamal et al. 2013 [29] Observational
cohort

USA >=65 782/ 265 10 years/ 10 years Sex stratified. Age, former smoker, curren
smoker, SBP, TC, HDL, Creatinine, Insulin
drug or OHA, Creatinine, C-reactive prote
Ankle-Brachial Index, Left ventricular
hypertrophy, Internal carotid intima-med
thickness

Myocardial infarction, stroke and
cardiovascular death

Cox

McEwen et al. 2012 [30] Observational
cohort

USA Not reported 5330/ 448 8 years/ 8 years Age, sex, BMI, diabetes treatment, smokin
LDL, nephropathy, dyslipidemia, history o
previous CVD, medication

Cardiovascular death Cox

Zethelius et al. 2011 [31] Register Sweden 30–74 24288/2488 5 years/5 years Age, diabetes duration, TC/HDL, HbA1c, S
BMI, sex, smoking, microalbuminuria, atr
fibrillation, previous CVD.

CHD, stroke Cox

Reference Model Presentation Validation
Discrimination
c-statistic

Validation
Calibration

Number of
validations in
independent
studies

Williams et al 2021 [13] Betas, HR, Internal (apparent) 0.824, 0.819 (with 15 strongest
predictors)

No 0

Liu et al. 2021 [14] Betas and HR
Risk score chart

Internal (split sample and bootstrap) 0.85, 0.83,
0.80, 0.79 Overall: 0.80 (0.78–0.82)

Hosmer Lemeshow libration plot, calibration in
the large and calib on slope

0

Pylypchuk et al. 2021 [15] Complete Equation in supplementary
material (betas and baseline hazard)

Internal Apparent Women 0.73 (0.72–0.74) Men
0.69 (0.68–0.70)
External Women 0.69 (0.67–0.70 Men 0.67 (0.66–
0.68)

Calibration plot 0

Choi et.al.2020 [16] Betas, HR and S0(10) Internal (split sample) 0.708 (0.619–0.798)
External 0.707 (0.655–0.750

Calibration plot an osmer Lemeshow test 0

Davis et.al 2020 [17] Tree, HR Internal (apparent) 0.82 (0.79–0.85)
External: competing risk four-point MACE -C- 0.81
(0.74–0.89)

Calibration plot, H er-Lemeshow test 0

Kim et. al. 2020 [18] HR
Risk score chart

Internal (split-sample) 0.703 (0.698–0.708) Calibration plot 0

Quan et. al. 2019 [19] Complete Equation in supplementary
material (betas and baseline hazard)

Internal (bootstrap) M1:0.722 (0.720–0.725) M2:
0.700 (0.698–0.702)
External: M1 0.695 (0.690–0.699)
M2: 0.644 (0.640–0.647)

Calibration plot 0
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Table 1 – continued

Reference Model Presentation Validation
Discrimination
c-statistic

Validation
Calibration

Number of
validations in
independent
studies

Berkelmans et. al 2019
[20]

Complete Equation in supplementary
material (betas and baseline hazard)

Internal (split sample):
External:

Calibration plot 0

Yu et. al 2018 [21] Complete Equation (betas and intercept) Internal (bootstrap): 0.9961 (0.9928–0.9995)
External: 0.9853 (0.9756–0.9966)

Calibration plot, calib ion slope 0

Nowak et. al. 2018 [22] – Internal (split sample): 0.825 (0.824, 0.827) No 0

Li et al. 2018 [23] Betas
Supplementary scoring chart

Internal (split sample)
Development sample: 0.72, 0.71, and 0.67
Validation sample: 0.72, 0.71, and 0.68

No 0

Wan et. al. 2017 [24] Hazard ratio (HR)
Risk score chart

Internal (split sample)
Validation sample:
M1 Male 0.705 Female 0.719
M2 Male 0.689 Female 0.708

Calibration plot 0

Kaasenbrood et al. 2016
[25]

Complete equation
Betas and baseline hazard
HR in suppl.

External cohorts: 0.64 and 0.68 Calibration plot, expe d-observed risk ratio and
Gronnesby and Borga est.

0

Hippisley-Cox et. al. 2015
[26]

HR and spline graph
Complete equation and calculator
published

Internal (split sample): Validation sample: Women
0.770 Men 0.764
External cohort Women 0.783, Men 0.769

Calibration plot 0

Piniés et. al. 2014 [27] Complete equation in supplementary
material

Internal (cross-validation) 2–5- 10 years 0.75, 0.64,
0.63.

Hosmer-Lemeshow te 0

Kiadaliri et. al. 2013 [28] Weibull complete equation reported Internal (split-sample)
Development sample: AMI 0.78 HF0.84 Stroke 0.80
NAIHD 0.76
Validation sample: AMI 0.79 HF 0.84 Stroke 0.79
NAIHD 0.75

Gronnesby and Borga est 1

Mukamal et. al. 2013 [29] HR Internal (apparent) M1 0.64, M2 0.64, M3 0.68
External M1 0.65, M2 0.66, M3 0.68

Hosmer-Lemeshow te Calibration plot 2

McEwen et. al. 2012 [30] HR and complete equation published
(for 8 years)

Internal (Cross-validation) 0.84 Hosmer-Lemeshow te 0

Zethelius et. Al. 2011 [31] Complete equation Internal (split sample)
Development sample: 0.71
Validation sample: 0.72

Calibration plot, expe d-observed risk ratio and
Hosmer-Lemeshow te

2

BP = Blood pressure, SBP = Systolic blood pressure, DBP = Diastolic blood pressure, TC = Total cholesterol, HDL = High density lipoprotein, LDL = Lo density lipoprotein, FPG: Fasting plasma glucose,

FPG-CV = Fasting plasma glucose coefficient of variation, eGFR = Estimated glomerular filtration rate, Hba1C = Glycated hemoglobin, BMI = Bod mass index, OHA = Oral hypoglycaemic agents,

ACR = Albumin to creatinine ratio, CVD = Cardiovascular disease, CHD = Coronary heart disease, PAD = Peripheral artery disease, AMI = acute myo dial infarction, HF = Heart Failure, NAIHD = non-

acute ischaemic heart disease.
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the intercept, requiring more advance recalibration tech-

niques [32].

3.1.5. Risk of bias and applicability
The results of the risk of bias and applicability assessment

based on PROBAST guidelines are presented in Table 2, and

the detailed information by domain in Additional file 3. Low

risk of bias was assigned to five studies, one was unclear

and the rest (68%) were classified as having high risk of bias.

By domain, all studies scored a low risk of bias in predictor

and outcome assessments. In the participant domain, 16

(84.2%) scored a low risk of bias and one was rated as unclear

risk of bias, remaining two as high risk of bias, whereas in the

analysis domain one study was classified as unclear risk of

bias and only five studies (26.3%) scored low risk of bias.

The main reasons for this poor compliance with analysis

requirements were dichotomization of variables, inadequate

handling of missing data, selection of predictors based on

univariate analysis and lack of accounting for optimism and

overfitting. Regarding the domain ‘concern for applicability’,

low concern was assigned to 17 (89.5%) studies, one was clas-

sified as having high concern of applicability because data

were gathered from a clinical trial, and for the remaining

study, there was not enough information to rate the partici-

pants item, so it was classified as unclear concern for

applicability.

3.2. Models developed in the general population while
using diabetes as a covariate

3.2.1. Design, population, follow-up
All 46 studies used observational cohort data (see Additional

file 4 for the summary of the models developed and Addi-

tional file 5 for the list of references [S1-S46]). Seventeenmod-

els were developed in North American cohorts (15 in the US

and two in Canada), and 15 were developed in different Euro-

pean countries: 13 in one country (Netherlands, France, Den-

mark, UK, Norway and Spain), one in two (UK and Finland)

and the other in four (Italy, Belgium, Denmark, Norway). Eight

models were developed in an Asian population (five in Japan,

two in Korea and one in Iran), four were developed in Ocea-

nian population and two in a set of worldwide cohorts. The

median follow-up time ranged from 3.1 to 28 years, but most

of the studies were between 10 and 15 years, with a median of

10 years.

3.2.2. Outcome and predictors
Outcome definitions and reporting varied among the studies.

Eighteen models (39.1%) were developed with outcomes

defined as an inclusive combination of fatal and nonfatal

events, 20 models (43.5%) considered a more restrictive com-

bination of events, such as CVD mortality events, stroke or

CHD, seven models (15.2%) were developed with a specific

outcome, such as sudden cardiac death, heart failure or

peripheral arterial disease and in one study the outcome

was not specified.

The median number of predictors was nine, ranging from

four to 473. Sex appeared as covariate in 25 (54.3%) models,

and in other five models, this variable was used for stratifica-

tion purposes. A set of four common predictors (age, blood
pressure indicators, smoking status and cholesterol indica-

tors) was included in 28 (60.1%) of the models. Other common

predictors were BMI (n = 13, 28.3%) and chronic kidney disease

or urine parameters, such as albumin to creatinine ratio,

microalumin, or estimated glomerular filtration rate (n = 14,

30.4%).

3.2.3. Sample size, type of model, predicted horizon and
presentation
The number of participants was provided in all studies and

the number of events in all but one. The median development

cohort size was 22,199 (range 824–7,889,803), and the median

number of events was 982 (range 76–640,804). Four studies

were developed in cohorts of over a million people and more

than 60,000 events. In contrast, 14 studies used cohorts of less

than 10,000 people, and four of them were developed in

cohorts with fewer than 200 events. All models used survival

methods, except one that used logistic regression analysis,

one that used the patient rule-induction method (PRIM) and

two that fitted a set of machine learning methods. More pre-

cisely, Cox proportional hazard modelling was used in 35

models (76.1%), competing risk models were used in six

(13.0%), and Weibull parametric modelling was used in one

model (2.2%). The majority of models (52.2%) predicted 10-

year risk, with a minimum of five-year risk and a maximum

of 30-year risk, one model predicted lifetime-risk and in eight

studies (17.4%) the prediction horizon was not specified.

3.2.4. Performance and external validation studies
Of the 46 studies included, 44 (95.7%) conducted internal or

external validation using discrimination measures such as

the c-statistic, whereas two did not report any discrimination

measure. Apparent validation (24.4% of the internal valida-

tion studies), split sampling (26.8%), cross-validation (22.0%)

and bootstrapping (26.8%) were the applied internal valida-

tion techniques. C-statistic values ranged from 0.65 to 0.91

in internal validation studies and from 0.63 to 0.88 in external

validation studies. Calibration performance, presented in 40

studies (87.0%), was assessed with a goodness of fit test

(Hosmer-Lemeshow, Nam-D’Agostino or Grønnesby–Borgan)

in 21 (45.7%) studies, and calibration plots were presented in

30 (65.2%) of them.

A total of 15 out of the 46 models (32.6%) presented an

external validation of the prediction model along with model

development, and 12 studies were externally validated in

independent studies [36, S47-S68] (see Table A2.2 in Addi-

tional file 2). Overall, 23 studies (50.0%) were validated in a dif-

ferent cohort than the cohort used for model development.
4. Discussion

This review shows all cardiovascular prediction models devel-

oped in patients with type 2 diabetes or in the general popu-

lation with diabetes included as a covariate presented in

recent years; the external validation and the risk of bias and

concern of applicability were analyzed for the models devel-

oped in patients with diabetes. We found 65 prediction mod-

els applicable to patients with type 2 diabetes, 19 of them

developed in a diabetes-specific population and the remain-



Table 2 – Risk of bias and applicability of models developed in patients with Type 2 Diabetes.

Study Risk of Bias (ROB) Concern of Applicability Overall

Participants Predictors Outcome Analysis Participants Predictors Outcome ROB Applicability

Williams et al. [13] + + + � + + + � +
Liu et al. [14] + + + � + + + � +
Pylypchuk et al. [15] + + + + + + + + +
Choi et.al. [16] + + + � + + + � +
Davis et.al. [17] + + + + + + + + +
Kim et. al. [18] � + + � + + + � +
Quan et al. [19] + + + + + + + + +
Berkelmans et al. [20] + + + + + + + + +
Yu et. al [21] + + + ? + + + ? +
Nowak et. al. [22] + + + � + + + � +
Li et al. [23] + + + � + + + � +
Wan et al. [24] + + + � + + + � +
Kaasenbrood et al. [25] + + + � � + + � �
Hippisley-Cox et al. [26] + + + + + + + + +
Piniés et al. [27] ? + + � ? + + � ?
Kiadaliri et al. [28] � + + � + + + � +
Mukamal et al. [29] + + + � + + + � +
McEwen et al. [30] + + + � + + + � +
Zethelius et al. [31] + + + � + + + � +

+: low ROB/low concern regarding applicability; �: high ROB/high concern regarding applicability; ?: unclear ROB/unclear concern regarding applicability.
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ing 46 developed with diabetes specified as one of the covari-

ates. These figures are higher than those obtained in the pre-

vious revision [7], which found 12 models developed in

patients with type 2 diabetes and 33 in the general population

using a similar search strategy and inclusion criteria as ours,

even though the time window in our research was much

smaller (a ten-year vs a 45-year time window). Our research

confirms that the overabundance of CVD riskmodels detected

in Damen et al. [5] still stands.

All the studies were developed in Europe, North America,

Asia and Oceania, and almost all of them were conducted in

high-income countries. The absence of models for diabetes

populations developed and validated in low- or middle-

income countries is an obstacle to tailored risk estimation

because socioeconomic status is an important factor for both

cardiovascular disease and diabetes [37,38] and because

outcome-predictor associations may differ between different

ethnic groups [39]. Regarding outcome definitions, there was

notable variability among studies. This is, in part, because

studies with the same intended outcome used different codes

and different intensities, with some including a wide range of

CVD codes regardless of fatality, while others included only

fatal cases or very specific codes.

Some heterogeneity in model discrimination performance

was observed; some studies had c-statistic values below 0.70,

others had values close to 0.90 and even one study reported a

value of 0.996. The degree of heterogeneity was lower in stud-

ies developed in patients with type 2 diabetes than in models

developed in the general population, as was already noted in

Chowdhury et al. [8]. Most models derived for patients with

type 2 diabetes presented only modest discrimination ability

in internal and external validation analyses. Although the

included studies generally claimed good calibration perfor-

mance analysed in the derivation or external cohorts, inde-

pendent studies that externally validated these

cardiovascular prediction models reported suboptimal cali-

bration performance even after simple model recalibration

such as adjusting the intercept [32], which suggest that more

advanced recalibration techniques are sometimes needed.

This is a generalized problem, mainly caused by population

differences not explained by predictor variables or method-

ological problems, such as statistical overfitting [40]. This con-

firms the need to externally validate the models in different

cohorts to assess their adequacy in different populations

and to improve the methodological quality of model

development.

Regarding model development quality, according to our

classification of studies following the PROBAST guidelines,

only 26% of the studies developed from a population with dia-

betes showed a low risk of bias, with the remaining models

failing to comply with the requirements regarding the statis-

tical analysis. Several statistical procedures or techniques

that have been shown to be nonoptimal, such as

dichotomization of predictor variables [41], use of complete

case data without multiple imputation [42], selection of pre-

dictors based on univariate analysis [43] and no correction

for optimism and overfitting [44] are still common. These pro-

cedures could lead to model overfitting and poor performance

of the models in external cohorts [44], questioning their appli-
cability. The introduction of the PROBAST risk of bias and

applicability tool could improve the methodological quality

of the studies, correct these problems and generalize optimal

techniques. In fact, recent studies show better methodologi-

cal quality than older ones, with four of the five studies clas-

sified as low risk of bias published since 2019.

Eight out of 19 of the models developed in the diabetes

population and 50.0% of those developed in the general pop-

ulation had not been validated in an external cohort in the

time window assessed. This proportion is similar to that

obtained in [8]; of the 13 studies analysed, seven had been

externally validated. These results reflect that there is still a

great lack of validation of these studies and confirm the

importance of having multiple external validations in diverse

populations with differing age ranges, ethnicities, sexes and

cardiovascular risks, as stated in Beswick et al. [45].

The lack of validation studies was already pointed out in

Damen et al. [5], who concluded that researchers dedicate

more efforts to developing new models than to validating

those that are most promising. In addition to this reality,

the difficulty of easily reproducing the existing models could

be another important reason for the lack of validation studies.

Poor reporting of the derived model, without the estimated

parameters or in the absence of a baseline hazard or with a

baseline hazard referred to a different time horizon, makes

it difficult or even impossible to apply the model. The variety

and poor reporting of the outcome of interest is also a big pit-

fall for the reproducibility of the models. Presenting the ICD

codes used in the outcome definition would make it easier

to replicate the models in different cohorts. Further, it would

be of interest to establish, by consensus, a reduced list of pos-

sible outcomes with a clear set of codes for assessing CVD

risk, such as one to be used when the outcome of interest is

hard CVD events and another to use when we want to focus

on more broad CVD events. This simplification in the out-

come definition is not expected to have a negative effect on

health decision making because the model behaviour does

not appear to be greatly affected by the specific outcome def-

inition, and in contrast, it would be very helpful for reproduc-

tion of the models and facilitation of their comparability,

which in turn would make the models much more applicable.

This review includes a comprehensive search with a

detailed study selection procedure and extensive data extrac-

tion. Furthermore, this is the first global review of cardiovas-

cular risk models that includes risk of bias and applicability

assessment using the PROBAST tool. This study has also some

limitations. First, the search was carried out on a single data-

base. Second, we focused on identifying validation studies of

the presented models, and we did not perform a comprehen-

sive search of all published validation studies or for studies

analysing the impact of applying a CVD prediction model in

clinical practice.
5. Conclusion

This review shows that there is a great abundance of cardio-

vascular risk models applicable to patients with diabetes

but identifies several important gaps among them: many
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have a high risk of bias regarding methodological aspects,

most are not validated, and many present barriers to their

application, mainly because there is no complete specifica-

tion of the parameters and because there is a high variability

in the outcome definition. There exists a clear need to vali-

date the existing prediction models applicable to patients

with type 2 diabetes, providing modifications to adapt them

to local features or to include new predictors that add signif-

icant value to the model performance. Validating these mod-

els, together with assessing the impact of implementing them

on clinical and treatment decisions, should be priority issues

ahead of developing more new models with different CVD

codes and unknown parameter specifications.
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