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Abstract: In this paper, we present an approach to fully automate tumor delineation in positron
emission tomography (PET) images. PET images play a major role in medicine for in vivo imaging
in oncology (PET images are used to evaluate oncology patients, detecting emitted photons from
a radiotracer localized in abnormal cells). PET image tumor delineation plays a vital role both
in pre- and post-treatment stages. The low spatial resolution and high noise characteristics of
PET images increase the challenge in PET image segmentation. Despite the difficulties and known
limitations, several image segmentation approaches have been proposed. This paper introduces a new
unsupervised approach to perform tumor delineation in PET images using Atanassov’s intuitionistic
fuzzy sets (A-IFSs) and restricted dissimilarity functions. Moreover, the implementation of this
methodology is presented and tested against other existing methodologies. The proposed algorithm
increases the accuracy of tumor delineation in PET images, and the experimental results show that
the proposed method outperformed all methods tested.

Keywords: PET image segmentation; AIFS-s; tumor delineation

1. Introduction

Segmentation of digital images is the procedure of partitioning an image into disjoint
parts, regions, classes, or subsets so that every part must fulfill an unmistakable and very
characterized property and attribute. Image segmentation is an essential step towards
the analysis of image information. Image segmentation plays an important role in digital
image processing and is used in almost every field of science; for example, digital image
processing, satellite imaging, computer vision, biometrics, medical images and other [1–7].

In this work, we use image segmentation to detect and delineate tumors in PET images.
Positron emission tomography, or PET, is a technique for the imaging of physiological

processes in humans. This technique presents the distribution of a radioactive emitter
monitored by surrounding detectors. With the aid of mathematical algorithms, the image
is constructed based on the distribution of the marker. PET has become an indispensable
tool to ensure more accurate treatment of patients and early diagnosis for the treatment
of cancer [8–17]. PET is heavily used in medicine, biology, neurology, and pharmaceutical
research of brain activity, blood, or glucose.

PET images are known for their high sensitivity and low spatial resolution. Further-
more, PET images have low signal-to-noise ratios and suffer from noise caused by random
and scattered coincidences. With these conditions, the difficulties for a successful image
segmentation increase [9,18–25]. The delineation of tumors in PET images is a crucial step
because the determination of this boundary should be kept as small as possible to minimize
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damage to healthy tissue by future treatments, but the boundary must ensure the inclusion
of the entire extent of the diseased tissue. Different methods have been proposed using
several segmentation techniques [26–30]. Fixed threshold methods do not find a consensus
value to correctly delineate the tumor [3,11]; adaptive threshold methods have better results,
but most of the times the results depend on standardized uptake values (SUV) [20,31–33]
or source-to-background ratio (SBR) [23,34,35] values, and these values are not always
available; the iterative threshold methods depend on knowing ground truth metrics or
limiting the number of iterations, which can change the output values [23,36]. The best
region-based methods are region of interest (ROI)- or seed-dependent, and edge-based
methods do not have good results because of the faded image edges, caused by the noisy
characteristic of PET images. Stochastic-based methods with very different approaches
presented several results [22,37–40]. The use of deep learning-based methods is limited
both by the problem’s nature (precision of the delineation) and the number of labeled
samples needed. Nevertheless, some deep learning-based methods have also been recently
proposed [41–43].

We will introduce a new approach to PET image segmentation, using an iterative
thresholding method based on Atanassov’s intuitionistic fuzzy sets (A-IFSs). Hereupon,
the presented algorithm finds and delineates tumors in PET images in a non-supervised
way. The method is invariant to the images size, seeds position, region shape, and SUV or
SBR values, resulting in a better and more efficient tumor delineation procedure.

2. Fuzzy Logic-Based Image Thresholding Using A-IFSs

Atanassov’s intuitionistic fuzzy sets (A-IFSs) have been successfully used to determine
the optimal threshold value for gray-level image segmentation. Atanassov’s intuitionistic
fuzzy index values are used for representing the hesitance of an expert on determining
whether a pixel of the image belongs to the background or the object of the image [44]
and we use these values to determine if the pixel belongs to a non-healthy tissue or a
healthy tissue.

Melo-Pinto et al. [44] proposed the following membership functions to represent the
relationship between each pixel to the background Q̃Bt or the object Q̃Ot:

µQ̃Bt
= F

(
d
(

q
L− 1

,
mB(t)
L− 1

))
(1)

µQ̃Ot
= F

(
d
(

q
L− 1

,
mO(t)
L− 1

))
(2)

For each t, the mean of the intensities of the pixels that belong to the background mBt
and the mean of the intensities of gray of the pixels that belong to the object mot are given
by the following expressions:

h(q) being the number of pixels of the image with the intensity q, and the function
F(x) = 1− 0.5x and the restricted dissimilarity function d(x, y) = |x − y|, constructed
from the automorphisms ϕ1(x) = ϕ2(x) = x for all x ∈ [0, 1], where mBt and mOt are
represented as follows:

mB(t) =
∑t

q=0 qh(q)

∑t
q=0 h(q)

(3)

mO(t) =
∑L−1

q=t+1 qh(q)

∑L−1
q=t+1 h(q)

(4)

With the proposal to split the object from the background, it is essential to accurately
determine the property that must be fulfilled by the pixels that belong to the object. This
property establishes the form of the membership function associated with the set that
represents the object. Usually, this property is not positively known, and the selection of
membership function is conditioned by the missing knowledge/ignorance of the expert
who constructs the membership function.
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Considering that we need a multi-thresholding algorithm to refine the threshold
selection in tumor delineation in PET images, we will use the following expression to
calculate the Atanassov’s intuitionistic index π.

π(q) = ∧
(

1− µQ̃Bt
(q), 1− µQ̃Ot

(q)
)

(5)

Atanassov’s intuitionistic index π represents the missing knowledge/ignorance of the
expert in determining the membership value of a specific pixel to the background or the
object of the image.

3. PET Image Segmentation with Iterative Thresholding Using A-IFSs

In this section, we present a general A-IFSs-based multi-level image thresholding that,
besides its low computational cost, autonomously determines the thresholds based on the
image pixels’ gray-levels homogeneity. The method selects iteratively, using the images
characteristic, the best threshold value to identify the damaged tissues in PET images.

In order to compute the threshold, the proposed algorithm is applied an unspecified
number of times to the image using a divide and conquer strategy. First, the algorithm is
applied to the original image Q with its pixels’ gray-levels ∈ [0, L− 1], determining the
threshold value ti corresponding to the smallest entropy of the image Q. This threshold
value is then used to create two sub-images: the sub-image with intensities lower than
ti with its pixels’ gray-levels ∈ [0, ti − 1], and the sub-image with intensities greater than
ti with its pixels’ gray-levels ∈ [ti + 1, L− 1]. Finally, the algorithm is applied to the sub-
image, which has a higher amplitude between gray-level entropy values. Each sub-image
processed is marked and cannot be processed again.

In Figure 1 we represent the computational process resulting from the application of
the algorithm to a given image, employing a binary tree where each tree node contains
the description of the images’ gray-scale and the threshold value obtained through the
application of the algorithm to that image.

[0, L− 1]

[0, t1 − 1] [t1 + 1, L− 1]

[0, t2 − 1] [t2 + 1, L− 1]

[0, t3 − 1] [t3 + 1, L− 1]

t1

t2

t3

Figure 1. Computational process.

The proposed algorithm consecutively divides the resulting sub-images by means
of the threshold value ti obtained through the application of the general algorithm to
each one of them. To enhance the algorithm with the capability to self-stop the process
of determining new thresholds and consequently sub-dividing the images, we use the
region’s homogeneity introduced by the following algorithm.

A New Approach to Perform Tumor Delineation in PET Image with Iterative Thresholding
Using A-IFSs

Tumor delineation in PET images is a crucial step because the boundary has to ensure
the inclusion of all of the damaged cells, but if the boundary is too large, it will endanger
healthy tissues during future treatments [11]. A-IFSs find the best threshold value to split
the object from the background, and therefore to refine the threshold to match the small
tumor region, we apply the A-IFSs to a selected sub-image until we obtain the pretended
pixel gray-scale intensities’ homogeneity.
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In our iterative threshold algorithm, we use the homogeneity (H) value of the sub-
image to determine when the algorithm stops searching for another threshold. We define
H as:

H = ∑
i,j

p(i, j)
1 + |i− j| (6)

We also define the entropy amplitude C with a value that will determine which sub-
image will be processed in the next iteration. To determine the value of C we need to
sub-divide the image Qi into two sub-images Qi+1 with gray-levels q(x, y) ∈ [Lowi, ti − 1]
and Qi+2 with gray-levels q(x, y) ∈ [ti + 1, Highi] and check if the image Qi was processed
to prevent reprocessing the same image again. Then, for all of the sub-images Qi+1 and
Qi+2 the value C is calculated as:

CQi = MAXQi −MINQi (7)

with
MAXQi = max{εT(q)}, ∀q(x, y) ∈ [Lowi, Highi], (8)

and
MINQi = min{εT(q)}, ∀q(x, y) ∈ [Lowi, Highi], (9)

The sub-image with the highest CQi is selected for forward processing.
The algorithm stops when H achieves the desired value. For tumor delineation in

PET images, the algorithm stops when H is greater than or equal to 0.999. This value was
obtained experimentally. We tested several numbers of iterations and from H ≥ 0.999 there
were no significant improvements in the sub-image homogeneity (Figure 2). The PET 1–4
images issued in Figure 2 correspond to the PET 1–4 breast cancer images presented in
Figure 3. These images were selected due to the different tumor-adjacent tissue characteris-
tics they present, resulting in significant homogeneity differences after the first iteration.
Despite these differences, after some iterations the method converges for all images and,
since we used the maximum entropy amplitude to select the sub-image to be processed,
the algorithm stops, and no other sub-image needs to be processed.

Figure 2. Evolution of Homogeneity in four examples of PET images through the iterations.
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Original A-IFSs Ground
Image truth

PET 1

PET 2

PET 3

PET 4

Figure 3. Example of original images, A-IFSs result and the ground truth.

4. Performance Evaluation

In order to test the performance of the proposed methodology, we applied the pro-
posed algorithms to a set of images available from the Cancer Image Archive (TCIA).
TCIA is a service that de-identifies and hosts an extensive archive of medical images of
cancer accessible for public download. The images are available on the TCIA website:
http://www.cancerimagingarchive.net/, accessed on 1 March 2019. The data are organized
as “Collections”, typically patients related by a common disease (e.g., lung cancer), image
modality (MRI, CT, PET, etc.) or research focus. In this work, we used 40 gray-scale images
with 512 × 512 pixels each. Some examples are shown in Figure 4. Other examples and
respective ground truth results, obtained by medical experts, are shown in (Figure 5).

http://www.cancerimagingarchive.net/
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(a) (b)

(c) (d)

Figure 4. Examples of images (a–d) from different patients.

(a) (b) (c)

(d) (e) (f)

Figure 5. (a–c) Examples of original images, (d–f) corresponding experts’ delineation.

To evaluate the different segmentation methods, we use the intersection over union
(IoU) and pixel accuracy measures. The IoU measures the intersection over the union of
the labeled segments and reports the average. The IoU value can be calculated as follows:

IoU =
target ∩ prediction
target ∪ prediction

(10)

Pixel accuracy is the ratio of the correctly classified elements over all available elements
and can be calculated as follows:
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accuracy =
TP + TN

TP + TN + FP + FN
(11)

Although the accuracy measure is more prone to misleading high values due to the
classes’ imbalance (tumor background), it was used to establish the differences in the
resulting evaluation when using IoU.

5. Results

The A-IFSs algorithm was tested with the data set introduced previously. Figure 3
shows examples of some original images, their corresponding results produced by the
proposed A-IFSs-based methodology, and their corresponding ground truth. Using the
IoU and the pixel accuracy values to evaluate the segmentation results, we confirmed that
the use of the homogeneity value, with H ≥ 0.999, to obtain the threshold value, resulted
in the best segmentation for each image.

5.1. Fixed Threshold Comparison

Over the last years, several studies from different authors confirmed that the most
accepted global threshold values, in lesion delineation, and the most suitable for segmenting
lesions, are between 34% and 50% of the image max intensity plus the best threshold 58%
value from the fixed-threshold experimental evaluation performed. The results of the
comparison of different fixed threshold values with the ground truth show that the best
fixed threshold value is image-dependent (Table 1). Therefore, we used the most-used
values in the literature (40% and the 50%) in our comparison studies [19,24,25,45–49].

Table 1. Fixed threshold IoU results.

T Max PET 1 PET 2 PET 3 PET 4 ... Average

30% 0.33777 0.82292 0.21323 0.72679 ... 0.29735
32% 0.39137 0.87486 0.24328 0.76301 ... 0.32694
34% 0.47370 0.92075 0.2837 0.8021 ... 0.36072
36% 0.57546 0.96107 0.33012 0.84333 ... 0.40531
38% 0.65011 0.99367 0.38675 0.87995 ... 0.46184
40% 0.72352 0.92911 0.45873 0.93108 ... 0.52214
42% 0.77205 0.89241 0.49902 0.97316 ... 0.56530
44% 0.79987 0.84684 0.53415 0.98113 ... 0.60077
46% 0.82646 0.80127 0.57098 0.93904 ... 0.63505
48% 0.86802 0.76456 0.60362 0.88824 ... 0.66256
50% 0.90863 0.72911 0.63573 0.84615 ... 0.68626
52% 0.95322 0.67975 0.66405 0.80697 ... 0.69683
54% 0.99361 0.64684 0.68339 0.76633 ... 0.70175
56% 0.96299 0.59494 0.70585 0.73295 ... 0.70384
58% 0.91231 0.54937 0.73068 0.69231 ... 0.70475
60% 0.86323 0.47722 0.75642 0.64586 ... 0.70115

5.2. Comparison with Different Segmentation Algorithms

In this section, the proposed algorithm is compared to existing algorithms using the
IoU and pixel accuracy measures.

We evaluated our algorithm against existing similar methodologies, fuzzy C-means
(FCM), K-means, and the affinity propagation (AP) algorithms. Since our algorithm detects
and delineates the tumor, having as a final result a binary image, we adapted the existing
algorithms to produce similar results. In each method, we also used different parameter
values in order to choose the best performance setup.

The FCM and K-means algorithms need to define a seed and a number of clusters to
perform the segmentation. With the objective to have a binary image as a result, we set the
number of clusters at 2 and handcrafted the seed position to the max intensity of the image
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(assuming the best possible seed position), resulting in a binary image. To achieve a binary
image using the AP, we tested different weighting parameters, m and n, achieving the best
result when m = 1 and n = 6.

Figure 6 shows the results obtained with the IoU method, and Figure 7 shows the
pixel accuracy. Each algorithm output result is compared to the ground truth.

Figure 6. Algorithm comparison with IoU.

The obtained results show that the fixed threshold t50% had better performance
than the fixed threshold t40% considering any of the two evaluation measures, and the
fixed threshold t40% had the worst segmentation results of the tested methods. The fixed
threshold t58% obtained the second-best IoU and accuracy values (Tables 2 and 3). These
are expected results because this threshold was obtained for our data set. According to
both measurement values, the FCM had the highest distribution of values (as can be seen
in Figure 6) and the lowest IoU values. The K-means and AP methods showed similar
performance, with AP achieving better IoU scores despite the higher distribution of the
accuracy results. The proposed algorithm outperformed all of the other methodologies, and
this result is even more noticeable (around at least 10% increase in performance) when using
an evaluation measure (IoU) not biased by the numerous background pixels, and with a
low distribution of values in accuracy. Considering that our methodology is unsupervised,
in the 40 images, some produced a wide range of IoU values. However, it is the method
that obtained the best global results. The observed results indicate that A-IFSs has more
precision and repeatability.
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Figure 7. Algorithm comparison with pixel accuracy.

Table 2. IoU algorithm comparison results.

Number of Images: 40

Min Average Max

t40% 0.16199 0.52214 0.96322
t50% 0.28319 0.68626 0.98023
t58% 0.31577 0.70475 0.98688
K-Means 0.04167 0.65334 0.98688
FCM 0.02005 0.46292 0.98586
AP 0.28319 0.69397 1
A-IFSs 0.09229 0.76492 1

Table 3. Pixel accuracy algorithm comparison results.

Number of Images: 40

Min Average Max

t40% 0.97498 0.99223 0.99988
t50% 0.98842 0.99693 0.99995
t58% 0.99693 0.99777 0.99997
K-Means 0.99092 0.99732 0.99997
FCM 0.86800 0.97388 0.99996
AP 0.98847 0.99696 1
A-IFSs 0.99235 0.99843 1

6. Discussion

In this paper, a new A-IFSs-based segmentation algorithm is proposed to increase the
accuracy of tumor delineation in PET images. This is a crucial step in order to minimize the
damage by future treatments, but optimally including the entire extent of the diseased tissue.
In the proposed methodology, we introduced an A-IFSs-based segmentation approach
that, unlike the existing methodologies, works without any previous processing or human
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interaction defining a ROI, any seed position, or SBR value. Moreover, being an AIFSs-
based methodology, and considering that AIFSs were proven to efficiently deal with image
uncertainties in the past, the proposed methodology was able to better deal with the PET
images’ uncertain tumor boundaries. Atanassov’s intuitionistic fuzzy index values are
used for representing the hesitance of an expert on determining whether a pixel of the
image belongs to a non-healthy tissue or a healthy tissue. In order to verify its effectiveness,
five existing representative methods were used for comparison [25,45,50–52]. Considering
solely the fixed thresholds methods, the fixed threshold t58%, having been experimentally
selected for our data set, obtained the second-best IoU and accuracy values. Regarding
the other tested methods, FCM had the highest distribution of values and the lowest
IoU values while the K-means and AP methods showed similar performance, with AP
achieving better IoU scores despite the higher distribution of the accuracy results. Overall,
the experimental results show that, despite not using previous information or making use
of human interaction, the proposed method has achieved the best performance among all
methods tested showing more precision and repeatability. Notably, the overlapping of the
target area and the predicted area increases significantly with this method, representing an
improvement, outperforming all of the other methodologies tested for tumor delineation in
PET images. The hierarchical partition of the pixel intensity classes of the method together
with a non-binary definition of class membership seems to be the main reason for the
superior performance over the other methods. However, since the method relies on image
intensity clustering, this may be understood as a limitation, and future work should include
spatial feature information.

7. Conclusions

In this work a new A-IFSs-based segmentation algorithm is proposed for tumor
delineation in PET breast cancer images. The proposed methodology is a low computational
cost, fully unsupervised, and effective tool for tumor delineation in PET images. Future
work is intended for tumor delineation of different human cancer types.
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