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Abstract. We investigate the structure of acyclic binary relations from
different points of view. On the one hand, given a nonempty set we study
real-valued bivariate maps that satisfy suitable functional equations, in
a way that their associated binary relation is acyclic. On the other hand,
we consider acyclic directed graphs as well as their representation by
means of incidence matrices. Acyclic binary relations can be extended to
the asymmetric part of a linear order, so that, in particular, any directed
acyclic graph has a topological sorting.
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1 Introduction

Acyclic binary relations are crucial in the mathematical analysis of Decision
Making and Social Choice, as well as in Theoretical Computer Science. To put
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only an example, binary relations that model preferences of agents are often
asked to be compulsorily acyclic, in order to avoid incoherences. By this rea-
son, theoretical studies on the structure, main properties and scope in possible
applications of acyclic binary relations should be welcome as the grounds that
support many aspects of Decision Making.

The origin of the study addressed in the present paper comes from an anal-
ysis of those binary relations R on a nonempty set X that appear through a
bivariate real-valued function F : X × X → R such that xRy ⇔ F (x, y) > 0. In
some appealing particular cases, the special kind of binary relation considered is
characterized by the fact of the function F being the solution of some functional
equation (e.g. the Sincov’s one F (x, y) + F (y, z) + F (z, x) = 0 (x, y, z ∈ X),
see [10], closely related to representable total preorders). Surprisingly as it may
appear at first glance, the types of binary relations that have already been char-
acterized this way correspond either to very simple situations (namely, reflexiv-
ity, irreflexivity and asymmetry) or to sophisticated ones as representable total
preorders, interval orders and semiorders. Intermediate situations as transitivity
or acyclicity among others remain as open problems. At that stage, we did not
have at hand yet any characterization of acyclicity by means of suitable func-
tional equations. Nor we had characterized binary relations that give rise to an
acyclic graph, or to a tree –that is also a directed graph– or to a finite union of
trees among others. Nevertheless, in some particular situations (e.g., on count-
able sets) a few characterizations of acyclicity can actually be encountered in the
literature (see [3,9]). Also, there are techniques that detect if a binary relation
on a finite set is actually an arborescence, as the well-known Kruskal’s algorithm
(see [8]). However, they have not been built in terms of functional equations but
using other techniques (see e.g. [1,3]).
The structure of the manuscript goes as follows: We analyze the relationship
between functional equations and acyclicity in Sect. 3. Next we study particular
situations where the set on which the binary relations are defined is finite. In
that case, alternative mathematical tools to deal with binary relations are graph
theory and incidence matrices (see Sect. 4).

2 Preliminaries

Definition 1. A binary relation R on a nonempty set X is a subset of the
Cartesian product X2 = X × X. Given two elements x, y ∈ X, we will use the
standard notation xRy to express that the pair (x, y) belongs to R.

Naturally associated to a binary relation R on a set X, we will also deal with
the binary relations Rc and R−1 on X, respectively given by Rc = X2 \ R, and
by xR−1y ⇐⇒ yRx, (x, y ∈ X).

A binary relation R defined on a set X is said to be

(i) reflexive if Δ ⊆ R, with Δ = {(x, x) : x ∈ X} (here Δ stands for the
diagonal of X2),

(ii) irreflexive if R ∩ Δ = ∅,
(iii) symmetric if R and R−1 coincide,
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(iv) antisymmetric if R ∩ R−1 ⊆ Δ,
(v) asymmetric if R ∩ R−1 = ∅,
(vi) total (or complete) if R ∪ R−1 = X2,
(vii) transitive if xRy ∧ yRz ⇒ xRz for every x, y, z ∈ X,
(viii) negatively transitive if Rc is transitive.

Given two binary relations R, S on X, its composition R◦S is a new binary
relation on X, defined as follows: For any pair (x, y) ∈ X2, we declare that
x (R ◦ S) y holds true –equivalently, we say that the pair (x, y) belongs to
R ◦ S ⊆ X × X– whenever there exists z ∈ X such that (x, z) belongs to
R ⊆ X × X, whereas (z, y) belongs to S ⊆ X × X. The composition of binary
relations is associative. Given a natural number n, we will use the standard
notation Rn to denote the composition R ◦ . . . (n-times) . . . ◦ R.

The binary relation R is said to be acyclic if Rn ∩Δ = ∅ holds true for every
natural number n. The transitive closure R̄ of a binary relation R is defined as
R̄ =

⋃∞
n=1 Rn. It is plain that R̄ is transitive.

In the particular case of dealing with orderings on X, the standard notation
is different. We include it here for sake of completeness.

Definition 2. A preorder � on a nonempty set X is a binary relation on X
which is reflexive and transitive. An antisymmetric preorder is said to be a
partial order. A total preorder � on a set X is a preorder such that if x, y ∈ X
then x � y or y � x holds. An antisymmetric total preorder is said to be a total
order. A total order is also called a linear order.

If � is a preorder on X, then as usual we denote the associated asymmetric
relation by ≺ and the associated equivalence relation by ∼ and these are defined,
respectively, by x ≺ y ⇐⇒ (x � y)∧¬(y � x) and by x ∼ y ⇐⇒ (x � y)∧(y �
x). The asymmetric part of a linear order (respectively, of a partial order, of a
total preorder) is said to be a strict linear order (respectively, a strict partial
order, a strict total preorder).

A total preorder � on a set X is said to be representable if there exists a
real-valued map u : X → R such that, for any x, y ∈ X, we have x � y ⇔ u(x) ≤
u(y). The map u is said to be a utility function or an order-isomorphism.

Definition 3. Let X be a nonempty set. Let F : X × X → R be a real-valued
bivariate function defined on X. The function F satisfies the Sincov functional
equation if F (x, y) + F (y, z) = F (x, z) holds for every x, y, z ∈ X (see [4,10]).

The following easy result arises (see e.g. [10]).

Proposition 1. A bivariate function F : X × X → R satisfies the Sincov func-
tional equation if and only if there exists a real-valued function G : X → R such
that F (x, y) = G(y) − G(x) holds for all x, y ∈ X.

Given a binary relation R on a nonempty set X, we may immediately inter-
pret R through a bivariate real-valued function F : X × X → R. To do so, it is
enough to consider the characteristic function of the binary relation R ⊆ X ×X,
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namely F (x, y) = 1 ⇔ (x, y) ∈ R and F (x, y) = 0 otherwise. However, this F
may fail to satisfy suitable additional properties, as, for instance, to be the
solution of some classical functional equation. Paying attention to the converse
situation, we begin with a bivariate map F : X × X → R, and we define its
associated binary relation RF by declaring that (x, y) ∈ RF holds true if and
only if F (x, y) > 0. It is clear that if F satisfies certain additional properties, its
associated binary relation RF will a fortiori feature some related special char-
acteristics. To put an obvious example, we may notice that if F vanishes on the
diagonal Δ, then RF is irreflexive. In this direction, the following result arises.
Its proof is straightforward and follows from the corresponding definitions.

Proposition 2. Let X denote a nonempty set and F : X × X → R a bivari-
ate map. Let RF the binary relation defined on X by means of F , as follows:
xRF y ⇔ F (x, y) > 0 (x, y ∈ X). The following statements hold true:

(i) If F (x, x) > 0 holds for every x ∈ X then RF is reflexive.
(ii) If F (x, x) ≤ 0 holds for every x ∈ X then RF is irreflexive.
(iii) If F (x, y) + F (y, x) = 0 holds for every x, y ∈ X then RF is asymmetric.
(iv) If F satisfies the Sincov functional equation, then RF is asymmetric and

negatively transitive. It is actually a strict total preorder.

For the particular case of representable total preorders, the following well-
know result stated in Proposition 3 above plays a crucial role (see e.g. [4]).

Proposition 3. Let X be a nonempty set. Let � be a total preorder on X. Then
the following statements are equivalent:

(i) The total preorder � is representable by means of a utility function u : X →
R such that x � y ⇔ u(x) ≤ u(y) (x, y ∈ X).

(ii) There exists a real-valued bivariate map F : X × X → R that satisfies the
Sincov functional equation and, in addition, x ≺ y ⇔ F (x, y) > 0 holds true
for every x, y ∈ X.

3 Acyclic Binary Relations vs. Functional Equations

Definition 4. Given a nonempty set X endowed with a binary relation R, we
say that another binary relation Q is an extension of R if xRy ⇒ xQy holds
true for every x, y ∈ X. In other words, as subsets of the Cartesian product
X × X, this means that R ⊆ Q ⊆ X × X.

In this direction, a classical extension theorem was obtained by E. Szpilrajn
in 1930. That theorem will be an important key in this Sect. 3.

Lemma 1 (Szpilrajn extension theorem, 1930). Let X be a nonempty set. Let
≺ stand for an irreflexive and transitive binary relation defined on X. Then ≺
can be extended to a strict linear order.

Proof. See [12]. For some related results, see also [11]. ��
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Using Szpilrajn extension theorem as a tool, we may prove now, as a direct
consequence of it, the following result on extension of acyclic binary relations.

Theorem 1. Let X be a nonempty set. Let R be an acyclic binary relation
defined on X. Then R can be extended to a strict linear order.

Proof. Let R̄ be the transitive closure of the given relation R. It is plain that R̄
is transitive, by its own definition, and it is also irreflexive because R is acyclic.
Moreover, R̄ is an extension of R. Since R̄ is irreflexive and transitive, by Lemma
1 (Szpilrajn extension theorem), it can actually be extended to a linear order
defined on X. Obviously, such linear order is also an extension of the former
acyclic binary relation R. ��

Parallel to Szpilrajn extension theorem, the following result is also classical.

Theorem 2 (Hansson extension theorem, 1968). Let X be a nonempty set. Let
� be a preorder defined on X. Then � can be extended to a total preorder defined
on X, so that the asymmetric part of that total preorder is also an extension of
≺, the asymmetric part of �.

Proof. See [5]. For generalizations, see [11]. ��

Remark 1. Matching Hansson extension theorem and Lemma 1 (Szpilrajn exten-
sion theorem) we can prove again Theorem 1. To do so, we may observe that
given an acyclic binary relation R, and R̄ its transitive closure, the binary rela-
tion Q = Δ ∪ R̄ is a preorder whose asymmetric part is R̄. By Theorem 2, Q
can be extended to a total preorder � whose asymmetric part ≺ extends R̄ and
consequently R. Finally, by Lemma 1, ≺ can be extended to a linear order.

Definition 5. Let X be a nonempty set. Let S be a binary relation defined
on X. Associated to S, let T be the binary relation defined as xT y ⇔ xSy ∧
yScx (x, y ∈ X). Given a natural number n ≥ 2, a n-tuple (x1, x2, . . . , xn) ∈ Xn

is called a T S-cycle of order n if we have x1T x2S . . . SxnSx1. Then we say that
S is consistent if no T S-cycle of order n appears, for any natural number n ≥ 2.

Theorem 3 (Suzumura extension theorem, 1976). Let X be a nonempty set.
Let S be a binary relation defined on X. Associated to S, let T be the binary
relation defined as xT y ⇔ xSy ∧ yScx (x, y ∈ X). Then, there exists a total
preorder � on X that extends S, and with its asymmetric part ≺ extending T
too, if and only if the binary relation S is consistent.

Proof. See Theorem 3 in [11]. ��

Remark 2. A weaker version of Theorem 1 appears now as a corollary of
Suzumura extension theorem. As a matter of fact, if P is an acyclic binary
relation on X, the associated binary relation T defined as xT y ⇔ xPy ∧
yPcx (x, y ∈ X) coincides with P since P is acyclic, hence asymmetric. There-
fore, for the relation P, the condition of being consistent directly follows from
acyclicity. So P can be extended to the asymmetric part of a total preorder.
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Moreover, if we use now Szpilrajn extension theorem (Lemma 1) again, it fol-
lows that from this weaker version of Theorem 1 we may retrieve the whole
version, since every asymmetric part of a total preorder is indeed irreflexive and
transitive.

Definition 6. An acyclic binary relation R defined on a nonempty set X is said
to be representable if it is extendable to the asymmetric part of a representable
total preorder.

Definition 7. Given a binary relation R defined on a nonempty set X, a real-
valued function u : X → R is said to be a pseudoutility for R if xRy ⇒ u(x) <
u(y) holds true for every x, y ∈ X.

Representable acyclic binary relations can be characterized in terms of a
suitable modification of Sincov functional equation, as follows.

Theorem 4. Let X be a nonempty set. Let R be an acyclic binary relation
defined on X. The following statements are equivalent:

(i) R is representable,
(ii) there exist bivariate functions F : X × X → R and G : X × X → {0, 1}

such that F satisfies the Sincov functional equation and xRy ⇔ F (x, y) ·
G(x, y) > 0 holds true for every x, y ∈ X,

(iii) there exists a pseudoutility function u for the given binary relation R.

Proof. To prove that (i) ⇒ (ii) we take a representable total preorder � on
X, whose asymmetric part ≺ extends R. By Proposition 3, there is a function
F : X × X → R that satisfies the Sincov functional equation and x ≺ y ⇔
F (x, y) > 0 (x, y ∈ X). Define now G : X × X → {0, 1} as G(x, y) = 1 ⇔ xRy
and G(x, y) = 0 otherwise (x, y ∈ X). We have that xRy =⇒ x ≺ y =⇒
F (x, y) > 0. Also xRy =⇒ G(x, y) = 1. Therefore xRy ⇒ F (x, y) · G(x, y) > 0
holds true for every x, y ∈ X. Conversely, given x, y ∈ X, if F (x, y) · G(x, y) > 0
it follows that G(x, y) = 1 by definition of G, so that xRy holds true. Hence
xRy ⇔ F (x, y) · G(x, y) > 0 (x, y ∈ X).

To prove that (ii) ⇒ (iii), let F : X×X → R and G : X×X → {0, 1} be such
that F satisfies the Sincov functional equation and xRy ⇔ F (x, y) · G(x, y) >
0 (x, y ∈ X). Consider the binary relation � defined on X by declaring that
x � y ⇔ F (x, y) ≥ 0. Since F satisfies the Sincov functional equation, we have
that F (x, x) = 0 = F (x, y) + F (y, x) holds true for every x, y ∈ X. Thus � is
reflexive and total. Moreover, the fact F (x, y) + F (y, z) = F (x, z) (x, y, z ∈ X)
immediately implies that � is transitive, hence it is indeed a total preorder.
By definition, its asymmetric part ≺ satisfies that for any x, y ∈ X, x ≺ y
holds if and only if y � x does not hold. Equivalently, x ≺ y if and only if
F (y, x) < 0. This last fact, jointly with F (x, y) + F (y, x) = 0, is equivalent to
say that F (x, y) > 0. By Proposition 3, the total preorder � is representable
by a utility function u : X → R. Therefore, for any x, y ∈ X we have that
xRy =⇒ x ≺ y =⇒ u(x) < u(y).
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Finally, to prove that (iii) ⇒ (i), we consider a pseudoutility u for R. Observe
now that the binary relation � on X given by x � y ⇔ u(x) ≤ u(y) (x, y ∈ X)
is a total preorder, whose asymmetric part ≺ satisfies that x ≺ y ⇔ u(x) <
u(y) (x, y ∈ X). Hence ≺ is actually an extension of the given binary relation
R. Thus R is representable. ��

Remark 3. An acyclic binary relation R defined on a nonempty set X may fail to
be representable. A clear example is the asymmetric part of a non-representable
linear order. By the way, the structure of non-representable linear orders has
been analyzed in depth in [2]. Whenever X is finite or countable, any acyclic
binary relation defined on X is representable because any total preorder on a
finite or countable set is actually representable (see e.g. Theorem 1.4.8 in [3], or
else [2] for further details).

Consider now a nonempty finite set X.

Definition 8. Let R be a binary relation on X. We say that R is an arborescence
if the following conditions hold:

(i) R is irreflexive,
(ii) there exists a unique element x0 ∈ X, called root, such that xRx0 does not

hold for any x ∈ X,
(iii) for any x ∈ X with x �= x0, there exists a unique (k + 1)-tuple

(x0, x1, . . . , xk = x) ∈ Xk+1, for some suitable k ∈ N, such that
x0Rx1R. . . Rxk holds true.

Remark 4. Notice that the uniqueness restriction arising in condition (iii), with
respect to the (k + 1)-tuple (x0, x1, . . . , xk = x) ∈ Xk+1, avoids that a given
point x could be reached from x0 by two different “sequences of branches”.

Proposition 4. Any arborescence is acyclic.

Proof. Let R be an arborescence on X. Suppose that there is a n-cycle
y1Ry2R . . . RynRy1 in X as regards R. Then, the condition iii) for x0 and
x = y1 is no longer true, since for any (k + 1)-tuple (x0, x1, . . . , xk = y1)
with x0Rx1R . . . Rxk = y1 we have, repeating now the cycle, that the (k +
n + 1)-tuple (x0, x1, . . . , xk = y1, y2, . . . , yn, y1) also satisfies x0Rx1R . . . Rxk =
y1Ry2R . . . RynRy1, in contradiction with the hypothesis of uniqueness. ��

We introduce another equivalent way to define the notion of arborescence.

Proposition 5. Let R be a binary relation on a nonempty finite set X with
at least two elements. Then R is an arborescence if and only if the following
conditions hold:

(i) R is irreflexive,
(ii) there exists a unique element x0 ∈ X such that xRx0 does not hold for any

x ∈ X (in particular, the relation R is nonvoid),
(iii) for any x, y, z ∈ X, it holds true that (yRx ∧ zRx) ⇒ y = z.
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Proof. Assume that R is an arborescence. If there exist x, y, z ∈ X such that
yRx∧zRx holds true with y �= z, then taking a (k+1)-tuple (x0, x1, . . . , xk = y)
with x0Rx1R . . . Rxk = y and another l + 1-tuple (x0, y1, . . . , yl = z) with
x0Ry1R . . . Ryl = z, we may construct two different tuples from x0 to x, namely
the (k + 2)-tuple (x0, x1, . . . , xk = y, x) for which we have x0Rx1R . . . Rxk =
yRx and the (l+2)-tuple (x0, y1, . . . , yl = z, x) satisfying that x0Ry1R . . . Ryl =
zRx. But this contradicts condition (iii) in Definition 8.

Conversely, suppose now that R satisfies the conditions in the statement of
Proposition 5. Given x ∈ X with x �= x0, by conditions (ii) and (iii) there exists
a unique element y ∈ X such that yRx holds true. If y = x0 we are done. And if
y �= x0, then with the same argument, there exists a unique element z ∈ X for
which zRy holds true. Again if z = x0 we are done. Also, if z �= x0, there exists
a unique element t ∈ X for which tRz holds true. This process goes on until we
arrive at x0. This must compulsorily happen by condition (ii) and the fact of X
being finite. So it is clear that condition (iii) in Definition 8 must hold true, too.
This concludes the proof. ��

Definition 9. Let X be a finite set and R a binary relation on X. Then R is
said to be a forest if X can be split as a union of pairwise disjoint subsets, say
X =

⋃n
i=1 Xn, accomplishing the following conditions:

(i) The restriction of R to Xi is an arborescence, por any i ∈ {1, . . . , n},
(ii) If i �= j then xiRxj does not hold, for any xi ∈ Xi, xj ∈ Xj .

Proposition 6. Any forest –and, in particular, any arborescence– is a repre-
sentable acyclic binary relation.

Proof. The fact of being acyclic is a direct consequence of Proposition 4 and
Definition 9 (of the concept of a forest). Since the support set X is finite, the
results follows now from Remark 3. In addition, a different alternative argument
to prove the representability follows from Theorem 1, since R can be extended
to the asymmetric part of a linear order on X. That linear order is a fortiori
representable because X is finite (see e.g. Theorem 1.2.1 in [3]). Therefore R is
also representable, by Definition 6. ��

Now we analyze which conditions should be added to those in the statement
of Theorem 4 in order to characterize arborescences and forests among acyclic
binary relations, by using some functional equation.

Theorem 5. Let X be a nonempty finite set. Let R be an acyclic binary relation
defined on X. The following statements are equivalent:

(i) R is an arborescence,
(ii) there exist bivariate functions F : X × X → R and G : X × X → {0, 1}

such that the following conditions are met:
– (a) F satisfies the Sincov functional equation and xRy ⇔ F (x, y) ·

G(x, y) > 0 holds true for every x, y ∈ X,
– (b) there exists a unique x0 ∈ X such that F (x, x0) · G(x, x0) ≤ 0 for

every x ∈ X,
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– (c) for every x, y, z ∈ X we have that F (y, x) ·F (z, x) ·G(y, x) ·G(z, x) =
[F (y, x) · G(y, x)]2 · δ(y, z), where δ stands here for the Kronecker delta
function, that is, given (a, b) ∈ X2, we have that δ(a, b) = 1 if a = b,
whereas δ(a, b) = 0 otherwise.

Proof. To prove that (i) =⇒ (ii) we argue as in Theorem 4, so that again
we consider a representable total preorder � on X, whose asymmetric part ≺
extends R. Once more, by Proposition 3, there is a function F : X ×X → R that
satisfies the Sincov functional equation and x ≺ y ⇔ F (x, y) > 0 (x, y ∈ X).
Let now G : X × X → {0, 1} be given as G(x, y) = 1 ⇔ xRy and G(x, y) = 0
otherwise (x, y ∈ X). Since R is acyclic, condition (ii)-(a) directly follows from
the proof of Theorem 4. In addition, since R is an arborescence, there exists x0 ∈
X such that xRx0 never holds, for any x ∈ X. In other words, by definition of G,
we have G(x, x0) = 0 for every x ∈ X, so that condition (ii)-(b) is also satisfied.
Finally, given x, y, z ∈ X, if y = z the condition (ii)-(c) trivially follows. If y �= z,
we have that δ(y, z) = 0. By condition (iii) in the statement of Proposition 5 we
have that yRx or zRx fails to be true, so that G(y, x).G(z, x) = 0. Therefore
the condition (ii)-(c) is always met.

Let us prove now that (ii) =⇒ (i): The binary relation R is obviously
irreflexive, since it is acyclic. By condition (ii)-(b) we have that there exists a
unique x0 such that F (x, x0) · G(x, x0) ≤ 0 holds for every x ∈ X. Equivalently,
there exists a unique element x0 ∈ X, for which xRx0 does not hold for any
x ∈ X.

Finally, given any x, y, z ∈ X such that both yRx and zRx hold true, we have
that F (y, x) ·G(y, x) > 0 and also F (z, x) ·G(z, x) > 0. Hence, by condition (ii)-
(c) it follows that F (y, x)·F (z, x)·G(y, x)·G(z, x) = [F (y, x)·G(y, x)]2 ·δ(y, z), so
that by simplifying we arrive at F (z, x) · G(z, x) = F (y, x) · G(y, x)δ(y, z). Thus
δ(y, z) = 1 a fortiori, since F (z, x) · G(z, x) > 0. So we conclude that y = z.
Therefore R is an arborescence by Proposition 5. ��

4 Directed Acyclic Graphs and Incidence Matrices

Each result on binary relations of a finite set can immediately be interpreted in
terms of Graph Theory, a branch of Discrete Mathematics. Basically, a graph
consists of a finite set of vertices or points –also known as nodes– that are
connected by arcs or lines –also known as edges–. In fact, some of the nodes
can be pairwise related (or not), and we say that each pair of related nodes
constitutes an edge of the graph. In addition, the edges may be directed or
undirected, giving rise to the so-called directed graphs, where the edges have
an orientation and are also said to be directed edges or arrows, as well as to
undirected graphs, in which edges have no orientation at all.

Now we may observe that if X is a nonempty finite set and R is a binary
relation on X, we can schematically represent R as a graph in which each node
corresponds to each element in X, and an arrow is drawn from the node that
represents the element x ∈ X to the node that corresponds to y ∈ X if and only
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if xRy holds true. Conversely, if we are given a directed graph, we immediately
can interpret it as a binary relation on a finite set.

Definition 10. A cycle in a directed graph is an ordered tuple of nodes (x1, . . . ,
xk) such that there is an arrow from xi to xi+1 for every i < k and there is also
one arrow from xk to x1. In the particular case in which k = 1 a 1-cycle is said
to be a loop. A directed acyclic graph is a directed graph with no cycles.

(Notice that every directed acyclic graph can be interpreted as an acyclic
binary relation on a nonempty finite set, and viceversa).

Definition 11. We say that a directed graph admits a topological ordering (also
known as a topological sorting in this literature) if there exists a suitable linear
order ≺ on the nodes of the graph such that it preserves the existing arrows.
That is, if there is in the graph an arrow from the node xi to the node xj , then
xi ≺ xj must hold true.

The following classical theorem is just a rephrasal of Theorem 1. It is a
classical in Graph Theory, where several sorting algorithms have been introduced
to get a topological sorting on a directed acyclic graph (see e.g. [6,7]). We should
notice that the topological sorting on a directed acyclic graph is not unique, in
general.

Theorem 6. Any directed acyclic graph admits a topological sorting.

It is a classical in Graph Theory, where sorting algorithms have been introduced
to get a topological sorting on a directed acyclic graph (see e.g. [6,7]).

Another alternative way to deal with binary relations on nonempty finite
sets comes from Matrix Theory. Thus, given a binary relation R on a set
X = {x1, . . . , xn}, we can visualize R by means of a suitable square matrix
n × n, called its incidence matrix. Needless to say, from such a matrix we can
retrieve the binary relation R as well as its corresponding directed graph, already
considered above. Conversely, from the graph we can easily get the corresponding
matrix.

Definition 12. A n × n square matrix each of whose entries is either 0 or 1
is said to be an incidence matrix. Given a nonempty finite set X and a binary
relation R on X, the incidence matrix relative to the binary relation R is the
n × n matrix MR = (mij) with mij = χR(xi, xj) (i, j ∈ {1, . . . , n}). (Here
χR(xi, xj) = 1 ⇔ xiRxj . Otherwise χR(xi, xj) = 0.)

Let us analyze now how some properties of a binary relation R defined on a
nonempty set can directly be observed by looking at its corresponding incidence
matrix MR.

Proposition 7. Let R be a binary relation defined on a nonempty finite set X.
Let MR be incidence matrix relative to R. The following properties hold true.
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(i) R is reflexive if and only if mii = 1 for every 1 ≤ i ≤ n.
(ii) R is irreflexive if and only if mii = 0 for every 1 ≤ i ≤ n.
(iii) R is asymmetric if and only if all the entries in the main diagonal of M2

R
are zeroes.

(iv) If the cardinality of X (henceforward denoted #X) is n, R is acyclic if and
only if for any natural number k with 1 ≤ k ≤ n, all the entries in the main
diagonal of Mk

R are zeroes.
(v) If #X = n, and R is acyclic, then Mn

R is the null matrix.
(vi) If #X = n and R is acyclic, then I − MR is a regular matrix such that

(I − MR)−1 = I + MR + . . . + Mn−1
R .

Proof. Parts (i) and (ii) directly follow from the corresponding definitions.
Let us prove part (iii). Assume first that R is asymmetric. Then for every

i, j ∈ {1, . . . , n} we have that χR(xi, xj) · χR(xj , xi) = mijmji = 0. Hence the
sum Σn

j=1mijmji = 0. But this sum is the i-th element in the main diagonal of
M2

R. Conversely, if Σn
j=1mijmji = 0 then it is plain that χR(xi, xj)·χR(xj , xi) =

0 for every i, j ∈ {1, . . . , n} so that xiRxj forces the negation of xjRxi. Hence
R is asymmetric.

To prove part (iv), first we assume that R is acyclic. Let k ∈ be such that
1 ≤ k ≤ n. Observe now that the i−th term in the main diagonal of Mk

R consists
of sums of products of the kind mi1i2 · mi2i3 · . . . · mikik+1 with i = i1 and also
ik+1 = i. But, being R is acyclic, it is clear that all these products are null.
Conversely, we may notice that the existence of a cycle on k elements, where
1 ≤ k ≤ n, {xi1, . . . , xik} ⊆ Xk such that xi1Rxi2R . . . RxikRxi1 forces the
i1-th element in the main diagonal of Mk

R to be different from zero, in contra-
diction with the hypothesis of the statement.

To prove (v), notice that any entry in Mn
R consists of sums of products of

the type mi1i2 ·mi2i3 · . . . ·minin+1 . Since #X = n in the tuple (i1, i2, . . . , in+1) a
repetition occurs, so giving rise to a part of that tuple of the kind (j1, j2, . . . , jk)
with k ≤ n and j1 = jk. Therefore the product mj1j2 ·mj2j3 · . . . ·mjk−1jk is zero,
and so is mi1i2 · mi2i3 · . . . · minin+1 .

Let us conclude by proving part (vi). Since Mn
R is the null matrix by part

(v), it follows that (I −MR) · (I +MR + . . .+Mn−1
R ) = (I +MR + . . .+Mn−1

R )−
(MR + . . . + Mn−1

R + Mn
R) = I − Mn

R = I. So I − MR is a regular matrix whose
inverse equals I + MR + . . . + Mn−1

R . ��

Theorem 7. Let R be an acyclic binary relation defined on a nonempty finite
set X. Then R is an arborescence if an only if there is a unique i ∈ {1, . . . , n}
such that all the entries in the i-th column of MR are zeroes, while all the entries
in the i-th row of (I − MR)−1 equal 1.

Proof. Assume first that R is an arborescence. Let X = {x1, . . . , xn}. By
Definition 8, there exists an element xi ∈ X such that xjRxi does not hold
for any xj ∈ X. Therefore mji = 0 for every 1 ≤ j ≤ n, so that the i-th
column of MR is null. Moreover, given j �= i, there is a unique k + 1-tuple
(xi = xi0, xi1, . . . , xik = xj) ∈ Xk+1, for some suitable k ∈ N, such that
xi = xi0Rxi1R . . . Rxik = xj holds true. Therefore the entry in the row i and
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column j of Mk
R must be 1 by the uniqueness hypothesis. Since that k is also

unique, we have that all the entries in the i-th row of (I + MR + . . . + Mn−1
R )

are 1, so that by parts (v) and (vi) of Proposition 7 we conclude that the all the
terms in the i-th row of (I − MR)−1 equal 1.

To prove the converse, first we notice that condition (i) in Definition 8 is
trivially met because R is acyclic and, in particular, irreflexive. In addition, since
all the entries in the i-th column of MR are zeroes for a unique i ∈ {1, . . . , n},
the condition (ii) in Definition 8 is accomplished by taking x0 = xi. Moreover,
because all the entries in the in the i-th row of (I − MR)−1 equal 1, and taking
into account that, by part vi) in Proposition 7, the equality (I − MR)−1 =
I + MR + . . . + Mn−1

R holds true, we observe that being x0 = xi and xj = x,
there exists a unique 1 ≤ k ≤ n such that the entry in the i-th row and j-th
column of Mk

R equals 1, whereas for any other l �= k the entry in the i-th row
and j-th column of Mk

R equals 0. Hence, there exists a unique (k + 1)-tuple
(xi = xi0, xi1, . . . , xik = xj) ∈ Xk+1, with xi0Rxi1R. . . Rxik holding true. So
the condition iii) in Definition 8 is also accomplished. ��

5 Concluding Remarks

Acyclic binary relations have been considered under different points of view,
paying an special attention to the use of some suitable functional equation.
When the set on the relations are considered is finite, the parallelism between
binary relations, graphs and incidence matrix has been shown. Here, any result
arising in one of those approaches –namely: abstract binary relations, directed
acyclic graphs, and incidence matrices– immediately has a translation into any
other one of those settings.

Among open problems within this theory, we point out that, as far as we
know, the question of characterizing all those acyclic binary relations on a set
that fail to admit a pseudoutility representation has not been solved yet.
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