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ABSTRACT
A modification of Watson’s lemma for Laplace transforms

∫ ∞
0 f (t)

e−zt dt was introduced in [Nielsen, 1906], deriving a new asymptotic
expansion for large |z| with the extra property of being conver-
gent as well. Inspired in that idea, in this paper we derive asymp-
totic expansions of two-dimensional Laplace transforms F(x, y) :=∫ ∞
0

∫ ∞
0 f (t, s) e−xt−ys dt ds for large |x| and |y| that are also conver-

gent. The expansions of F(x, y) are accompanied by error bounds.
Asymptotic andconvergent expansionsof somespecial functions are
given as illustration.
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1. Introduction

The double Laplace transform of a function f (t, s) of two real positive variables t and s is
defined by means of the double integral∫ ∞

0

∫ ∞

0
f (t, s) e−xt−ys dt ds,

for the values of x and y for which the integral exits.
The double Laplace transformhas important applications in the resolution of functional,

integral and partial differential equations. We can find several examples that prove its util-
ity to solve a wide class of equations of the Mathematical Physics. Eltayeb and Kiliçman
applied double Laplace transform to solve wave, Laplace’s and heat equations with convo-
lutions terms, and general linear and partial integro-differential telegraph equations [1].
Debnath discussed the properties and convolution theorem of the double Laplace trans-
form, and applied this theorem to functional, integral and partial differential equations
[2]. Futher, in [3] the authors applied the double Laplace transform technique for solving
linear partial integro-differential equations with a convolution kernel, and in [4] for solv-
ing linear partial differential equations subject to initial and boundary conditions, like the
advection-diffusion equation, the reaction-diffusion equation, the Klein-Gordon and the
Euler-Bernoulli equations.More recently, these authors have proposed an iterativemethod
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based on the double Laplace transform for solving nonlinear partial differential equations
[5].

On the other hand, the double Laplace transform is not just a problem-solving tech-
nique, but also a representation form of special functions; as several special functions or
combinations of special functions can be written in the form of a double Laplace transform
[6, Chapter 3].

For the sake of generality, we include the possibility of a branch point of the integrand
at the origin, and consider the more general double Laplace transform

F(x, y) :=
∫ ∞

0

∫ ∞

0
e−xt−ystα−1sβ−1f (t, s) dt ds, �α > 0, �β > 0, (1.1)

with�x > x0, �y > y0 for certain x0, y0 ∈ R. This integral is well-defined for locally inte-
grable functions f (t, s) on [0,∞) × [0,∞) that grow, at the infinity, not faster than an
exponential (and then the integral exists for appropriate values of x0 and y0). When f (t, s)
is analytic at (0, 0), it has an asymptotic expansion at (0, 0) of the form

f (t, s) =
n−1∑
k=0

k∑
l=0

ak−l,ltk−lsl + fn(t, s), ak,l := 1
k!l!

∂k+lf (0, 0)
∂tk∂sl

, (1.2)

with fn(t, s) = O((t + s)n) when (t, s) → (0, 0). This expansion converges in the product
of disks Dr(0) × Dr(0) := {(t, s); |t| < r, |s| < r} for a certain r>0. When we replace this
expansion in the above integral (1.1) and interchange sum and integral we obtain

F(x, y) =
n−1∑
k=0

k∑
l=0

ak−l,l
�(k − l + α)�(l + β)

xk−l+αyl+β
+ Rn(x, y), (1.3)

with

Rn(x, y) :=
∫ ∞

0

∫ ∞

0
e−xt−ystα−1sβ−1fn(t, s) dt ds = O((x−1 + y−1)nx−αy−β)

as |x| and |y| → ∞. The terms of the expansion (1.3) are of the order O((x−1 +
y−1)kx−αy−β). Therefore, the right hand side of (1.3) is an asymptotic expansion of
F(x, y) for large |x| and |y|. This is a straightforward generalization of the well-known
one-dimensional Watson lemma [7, Chapter 2], [8, Chapter 1] to two variables [8, Chap-
ter 8]. The key point is that, for large positive �x and �y, the dominant contribution to
the integral (1.1) comes from the corner point (t, s) = (0, 0) of the integration domain
[0,∞) × [0,∞). Then, only the value of f (t, s) around the asymptotically relevant point
(t, s) = (0, 0), that is, the approximation (1.2), is relevant for the asymptotic behaviour of
F(x, y) when �x and �y are large.

In general, expansion (1.3) in not convergent, as we have derived the expansion by inter-
changing a series with an integral. Take for example the following integral representation
of a certain combination of the sine and cosine integrals given in [6, Chapter 3, Section 1.5,
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Equation (45)],

sin(xy)ci(xy) − cos(xy)si(xy) =
∫ ∞

0

∫ ∞

0
e−xt−ys cos(ts) ds dt,

where ci(z) and si(z) are the cosine and sine integrals functions respectively [7, Section 6.2,
Equations (6.2.9), (6.2.11)]. We have that f (t, s) = cos(ts) = ∑∞

n=0(−1)n(ts)2n/(2n)!, and
formula (1.3) becomes

sin(xy)ci(xy) − cos(xy)si(xy) ∼
∞∑
n=0

(−1)n(2n)!
(xy)2n+1 . (1.4)

The series on the right hand side of (1.4) is not convergent for any value of (x, y) ∈ C2,
although it is an asymptotic expansion of sin(xy)ci(xy) − cos(xy)si(xy) for large |x| and
|y|. Despite the fact that the function f (t, s) is an entire function, the interchange of series
and integral gives an expansion (1.4) of the function sin(xy)ci(xy) − cos(xy)si(xy) that is
not convergent.

In Section 4 we introduce an asymptotic method for double Laplace transforms (1.1)
that, in contrast to the standard method, gives an asymptotic expansion of the double
Laplace transform that is also convergent. Themethod is inspired in the idea introduced in
[7, Section 17.3], that justifies the use of inverse factorial series in [9] to derive an asymp-
totic expansion of the one-dimensional Laplace transform that is also convergent. In order
to pave the way for the analysis of Section 4, in the next section we design a convergent
and asymptotic method for double Mellin transforms of analytic functions on the square
[0, 1] × [0, 1]. In Section 3 we show that we can relax the conditions required in Section 2
for the integrand of the double Mellin transform and allow an integrable singularity at
the boundary of the integration square [0, 1] × [0, 1]. Then, in Section 4, we introduce a
change of the integration variables that transforms the double Laplace integral (1.1) into
the double Mellin transform considered in Section 3, deriving in this way an asymptotic
and convergent method for double Laplace transforms.

In the remaining of the paper, when we state |x| and |y| → ∞, we assume that they go
at the same speed, that is, |x| = γ |y|, with fixed positive γ ; also, we assume that they go
along fixed rays in the half complex plane�x > 0, �y > 0. Unless stated otherwise, all the
disks Dr(u0) centred at the point u0 and of radius r mentioned throughout the paper are
considered closed disks: Dr(u0) := {u ∈ C, |u − u0| ≤ r}. We also consider the principal
value arg(z) ∈ (−π ,π] for the argument of any complex variable z.

2. A convergent and asymptotic method for compact double Mellin
transforms of analytic functions

In this section we considerMellin transforms on the compact region [0, 1] × [0, 1] of func-
tions of the form (1 − u)α−1(1 − v)β−1g(u, v), where g(u, v) is analytic in the cartesian
product of two disks Dr(1) × Dr(1) of radius r>1:

F(x, y) =
∫ 1

0

∫ 1

0
ux−1vy−1(1 − u)α−1(1 − v)β−1g(u, v) du dv, �x,�y,�α,�β > 0.

(2.1)
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The integral (2.1) may be interpreted as the double Mellin transform of a func-
tion of compact support on the positive first quadrant of the plane: (1 − u)α−1(1 −
v)β−1g(u, v)χ[0,1]×[0,1](u, v). For the sake of generality, and for later convenience, we allow
branch point singularities in the integrand of the form (1 − u)α−1(1 − v)β−1.

The asymptotic features of the integral (2.1) for large |x| and |y| are similar to those of
the integral (1.1): the dominant contribution of the integrand to the integral comes from
the top right corner of the integration region (u, v) = (1, 1); and the branch point at (1, 1)
introduced by the factor (1 − u)α−1(1 − v)β−1 has not any influence in the asymptotic
analysis. But the integration region here is compact, and this fact has an important conse-
quence on the convergence of the asymptotic expansion of the integral (2.1) that we detail
in the following theorem.

Theorem 2.1: Assume that g(u, v) is analytic in the cartesian product of two disks Dr(1) ×
Dr(1) with r>1, and consider the region D := {(x, y) ∈ C × C : min{�x,�y} ≥ 	} for
arbitrary fixed 	 > 0. Then, for (x, y) ∈ D, �α,�β > 0, and n = 1, 2, 3, . . .,

F(x, y) =
∫ 1

0

∫ 1

0
ux−1(1 − u)α−1vy−1(1 − v)β−1g(u, v) du dv

=
n−1∑
k=0

k∑
l=0

(−1)k

(k − l)!l!
∂kg(1, 1)
∂uk−l∂vl

B (α + k − l, x)B
(
β + l, y

) + Rn(x, y,α,β), (2.2)

where B(u, v) is the beta function [10, Section 5.12]. The remainder term is bounded in the
form

|Rn(x, y,α,β)| ≤ M
rn

n∑
k=0

B (n − k + �α,	)B (k + �β ,	) , (2.3)

where M is a positive constant independent on n, x and y. The right-hand side of (2.2) is
an asymptotic expansion of F(x, y) for large |x| and |y|, as B(α + k − l, x)B(β + l, y) =
O((x−1 + y−1)kx−αy−β) and Rn(x, y,α,β) = O((x−1 + y−1)nx−αy−β) for fixed n. It
is also uniformly convergent for (x, y) ∈ D, with an exponential order of convergence:
Rn(x, y,α,β) = O(n−x−yr−n) when n → ∞ with fixed x and y.

Proof: For large |x| and |y|, the asymptotically relevant point in the integral (2.1) is the
point (u, v) = (1, 1), as it is the point of the integration domain [0, 1] × [0, 1] where |uxvy|
attains its maximum value. Then, only the behaviour of the function g(u, v) at the point
(1, 1) is relevant for the asymptotic analysis of this integral. Therefore, we consider the
Taylor expansion of the function g(u, v) at the point (1, 1),

g(u, v) =
n−1∑
k=0

k∑
l=0

1
(k − l)!l!

∂kg(1, 1)
∂uk−l∂vl

(u − 1)k−l(v − 1)l

+ gn(u, v), (u, v) ∈ Dr(1) × Dr(1), (2.4)
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with

gn(u, v) =
n∑

k=0

(u − 1)n−k(v − 1)k

(2π i)2

∮ ∮
g(z,w) dz dw

(z − 1)n−k(w − 1)k(z − u)(w − v)
. (2.5)

In this formula, the integration contours are two circles of radii r>1 centred at z = 1 and
w = 1 respectively, that is, |z − 1| = |w − 1| = r, and traversed once in the positive sense.
The point z = u is inside the first circle and the point w = v is inside the second one.
When we replace the expansion (2.4) into the integral on the right-hand side of (2.1) and
interchange sum and integral, we obtain (2.2) with

Rn(x, y,α,β) :=
∫ 1

0

∫ 1

0
ux−1(1 − u)α−1vy−1(1 − v)β−1gn(u, v) du dv. (2.6)

The function g(u, v) is analytic on the above mentioned circles. Therefore, using that
|z − 1| = |w − 1| = r in the double integral on the right-hand side of (2.5), it is straight-
forward to show that the remainder gn(u, v) may be bounded in the form |gn(u, v)| ≤
Mr−n ∑n

k=0(1 − u)n−k(1 − v)k, with M a positive constant independent on n, u and v.
Using this bound in (2.6) we get

|Rn(x, y,α,β)| ≤ M
rn

n∑
k=0

B(n − k + �α,�x)B(k + �β ,�y).

Using that, for any a>0, the beta function B(a, x) is a decreasing function of the positive
variable x, we obtain (2.3). Finally, from [10, Equation 5.11.12], we have that, when |x| and
|y| → ∞, Rn(x, y,α,β) = O((x−1 + y−1)nx−αy−β) and

k∑
l=0

(−1)k

(k − l)!l!
∂kg(1, 1)
∂uk−l∂vl

B(α + k − l, x)B(β + l, y) ∼ x−αy−β(x−1 + y−1)k.

�

Example 2.1: Consider the second Appell function [11, Equation 16.15.2],

F2(a; x, y; x + α, y + β ; b, c) = �(x + α)�(y + β)

�(x)�(y)�(α)�(β)

×
∫ 1

0

∫ 1

0

ux−1(1 − u)α−1vy−1(1 − v)β−1

(1 − b u − c v)a
du dv, (2.7)

with�α,�β ,�x,�y > 0, large |x| and |y|, and fixed α, β , a, b and c. The above integral has
the form considered in Theorem 2.1 with g(u, v) = (1 − b u − c v)−a. When �b + �c ∈
C \ [1,∞), the function g(u, v) is analytic in [0, 1] × [0, 1], and from (2.2) we derive the
following asymptotic expansion for large |x| and |y| that is also convergent

F2(a; x, y; x + α, y + β ; b, c) =
∞∑
k=0

k∑
l=0

(−1)k

(k − l)!l!
(a)kbk−lcl

(1 − b − c)a+k
(α)k−l(β)l

(x + α)k−l(y + β)l
,

(2.8)
where (a)k is the Pochhammer symbol [10, Section 5.2(iii)]. Table 1 contains some
numerical experiments that illustrate the accuracy of approximation (2.8).



6 C. FERREIRA ET AL.

Table 1. Relative errors (r.e.) in the approximation of the integral given in (2.7) forα = 0.3,β = 2.1, a =
0.95, b = 0.2, c = −1.3, by using (2.8)with the infinite series truncated at k = n (after (n + 1)(n + 2)/2
terms).

n = 1

(x, y)(8ei
π
3 , 12) (70ei

π
3 , 50) (90ei

π
3 , 80) (100ei

π
3 , 100) (200ei

π
3 , 300) (300ei

π
3 , 400) (500ei

π
3 , 600)

r.e. 0.089 0.024 0.015 0.012 4.e−3 3.e−3 1.9e−3

(x, y) = (1.2, 3.1)

n 5 10 15 20 25 30 35 40 45 50

r.e. 4.18e−3 8.3e−5 2.7e−6 1.1e−7 5.28e−9 2.79e−10 1.59e−11 9.6e−13 6.e−14 3.9e−15

Note: The asymptotic and convergent behaviour is shown in the above and below subtables respectively. In this table and
the remaining tables of the paper, the computations have been carried outwith the symbolicmanipulatorWolframMathe-
matica 12.2; in particular, the commandNIntegrate has been used to compute the ‘exact’ value of the double integral
involved in the definition of the Appell function F2 and to compute double integrals in later examples.

3. A convergent and asymptotic method for compact double Mellin
transforms of analytic functions. Amore general case

We consider in this section functions g(u, v) that may have integrable singularities in two
sides of the integration square in (2.1), say in T := {(0, v) ∪ (u, 0)}, u, v ∈ [0, 1]. That is,
we consider functions g(u, v) analytic in D1(1) × D1(1) \ T . This extension is interesting
on its own and is the subject of this section. Butmoreover, it is necessary to derive themain
result of the paper in the next section.

In this case, we could repeat step by step the proof of Theorem 2.1, considering a region
Dr(1) × Dr(1) with r<1, where g(u, v) is analytic. We would derive the same expansion
that we have obtained in Theorem 2.1, with the same asymptotic property. But we would
not be able to show the convergence of that expansion, as the parameter r in formula (2.3)
would not be large enough: r<1.

Still, it is possible to extend the technique described in the previous section to this kind
of integrand g(u, v), obtaining an asymptotic expansion of the compact Mellin transform
F(x, y) (2.1) that is also convergent. To this end,we have to relax the hypotheses of the above
theorem, at the expense of obtaining a slower speed of convergence of the expansion (2.2).
We have the following theorem.

Theorem 3.1: Consider again the region D := {(x, y) ∈ C × C : min{�x,�y} ≥ 	} for
arbitrary fixed	 > 0 and assume that g(u, v) is analytic in the cartesian product of two disks
D1(1) × D1(1) \ T , with T := {(0, v) ∪ (u, 0), u, v ∈ [0, 1]}. Moreover, we assume that the
singularities of g(u, v) at T are integrable, that is, the function uσ1vσ2g(u, v) is bounded on
T , for certain σ1, σ2 > 0 with max{σ1, σ2} < min{1,	}. Then, the thesis of Theorem 2.1
holds true for (x, y) ∈ D and �α,�β > 0. That is, for n = 1, 2, 3, . . .,

F(x, y) =
∫ 1

0

∫ 1

0
ux−1(1 − u)α−1vy−1(1 − v)β−1g(u, v) du dv

=
n−1∑
k=0

k∑
l=0

(−1)k

(k − l)!l!
∂kg(1, 1)
∂uk−l∂vl

B (α + k − l, x)B
(
β + l, y

) + Rn(x, y,α,β), (3.1)
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but with a different bound for the remainder

|Rn(x, y,α,β)| ≤ M
n∑

k=0

B(n − k + �α,	 − σ1)B(k + �β ,	 − σ2). (3.2)

In this formula, M is a positive constant independent on n, m, x and y. The
right-hand side of (3.1) is an asymptotic expansion of F(x, y) for large |x| and
|y|: B(α + k − l, x)B(β + l, y) = O((x−1 + y−1)kx−αy−β) and Rn(x, y,α,β) = O((x−1 +
y−1)nx−αy−β)when |x|, |y| → ∞with fixed n. But moreover, it is also uniformly convergent
for (x, y) ∈ D, with a power type order of convergence: Rn(x, y,α,β) = O(nσ1+σ2−(x+y))

when n → ∞ with fixed x and y.

Proof: As in Theorem 2.1, the function g(u, v) in the integral (3.1) has the expansion
(2.4), but now with a smaller convergence radius r<1. As in Theorem 2.1, when we intro-
duce this expansion into the integral (3.1) and interchange sum and integral, we obtain
the expansion on the right-hand side of (3.1) with Rn(x, y,α,β) given in (2.6). Therefore,
bound (2.3) also holds true now, but it is useless, as r<1 and then it does not prove the
convergence of the expansion (3.1). To prove convergence, we need a sharper bound for
the remainder Rn(x, y,α,β). To this end we are going to make a more careful analysis of
the Cauchy integral representation of the remainder gn(u, v),

gn(u, v) =
n∑

k=0

(u − 1)n−k(v − 1)k

(2π i)2

∮ ∮
g(z,w) dz dw

(z − 1)n−k(w − 1)k(z − u)(w − v)
,

u, v ∈ (0, 1]. (3.3)

In this formula, the integration paths are the circlesC1 := {w ∈ C; |w − 1| = r} and C2 :=
{z ∈ C; |z − 1| = r} with r = 1 − ε < 1, ε > 0 as small as we wish. These paths encircle
the points z = u and z = 1, andw = v andw = 1 respectively in the positive direction, see
Figure 1(a) for the circle C1; it is similar for the circle C2. The function g(z,w) is analytic
inside C1 × C2, that is, the closed contours C1 and C2 do not contain the points (0,w)

and (z, 0) inside, nor any other singularity of the function g(z,w). On the other hand, by
Cauchy’s theorem, the above integral is a constant function of ε. Moreover, it is defined for
ε = 0 (r = 1) and it is continuous as a function of ε, since it is the integral of an integrable
function. Hence, we can take the limit ε → 0 and consider that r = 1. Moreover, using the
fact that zσ1wσ2g(z,w) is bounded on C1 × C2 we have

|gn(u, v)| ≤ M0

n∑
k=0

(1 − u)n−k(1 − v)k
∮
C1

∮
C2

|z−σ1w−σ2 |
|z − u||w − v| dz dw, u, v ∈ (0, 1],

with M0 independent of u, v, n and m. Consider u, v>0. After the change of variables
z 
→ z u and w 
→ w v we find

|gn(u, v)| ≤ M0

uσ1vσ2

n∑
k=0

(1 − u)n−k(1 − v)k

×
∮
C1/u

∮
C2/v

|z−σ1w−σ2 |
|z − 1||w − 1| dz dw, u, v ∈ (0, 1], (3.4)
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Figure 1. (a) The integration contourC1 in (3.3) is a circle |w − 1| = r centred atw = 1 and radius r< 1;
it encloses the points w = 1 and w = u. The integration contour C2 is similar. Then, the integration
region in (3.3) is contained inside the domain of analyticity of g(z,w). (b) The first integration contour
in (3.4) is a circle |z − 1/u| = 1/u centred at z = 1/u and radius 1/u; it encloses the points z = 1/u
and z = 1, and becomes the imaginary axis traversed downwards when u → 0. The second integration
contour is similar. Therefore, the integration region in (3.4) is contained inside the domain of analyticity
of g(u z, v w).

where the integration contours C1/u and C2/v are, respectively, the scaled circles C1/u =
{z ∈ C; |z − 1/u| = 1/u} and C2/v = {w ∈ C; |w − 1/v| = 1/v} traversed in the positive
direction, see Figure 1(b) for the circle C1/u; it is similar for the circle C2/v. In the limit
u, v → 0 both scaled circles become the imaginary axis traversed downwards, and the
above double integral on these paths is finite. Then, the double integral on the right-hand
side of (3.4) can be bounded uniformly for u, v ∈ (0, 1]. Therefore,

|gn(u, v)| ≤ Mu−σ1v−σ2

n∑
k=0

(1 − u)n−k(1 − v)k,

withM a positive constant independent on n, m, u and v. Introducing this bound in (2.6)
we obtain, after straightforward computations,

|Rn(x, y,α,β)| ≤ M
n∑

k=0

B(n − k + �α,�x − σ1)B(k + �β ,�y − σ2).

From the asymptotic behaviour of the gamma function [10, Equation 5.11.13] and the
definition of the beta function [10, Equation 5.12.1] we immediately derive B(α + k −
l, x)B(β + l, y) = O((x−1 + y−1)kx−αy−β) andRn(x, y,α,β) = O((x−1 + y−1)nx−αy−β)

when |x| and |y| → ∞ with fixed n. An also that Rn(x, y,α,β) = O(n(σ1+σ2)−(x+y)) when
n → ∞ with fixed x, y. Furthermore, since the right-hand side above is a decreasing func-
tion of �x and �y, (3.2) holds true and the expansion (3.1) is also uniformly convergent
for (x, y) ∈ D.

�
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Observation 3.1: When the singularities of g(u, v) at the border T are stronger than what
we have assumed in Theorem 3.1, we can still apply Theorem 3.1 at the expense of reducing
the convergence region D. Suppose that uσ1vσ2g(u, v) is not bounded at T for any 0 <

σ1, σ2 < 1, but uσ1+δvσ2+δg(u, v) is bounded for a certain δ > 0. Theorem 3.1 above can
still be applied at the smaller region Dδ := {(x, y) ∈ C × C : �x,�y ≥ 	 + δ} ⊂ D. To
show this, just write ux−1vy−1g(u, v) = ux̄−1vȳ−1ḡ(u, v), with x̄ := x − δ, ȳ := y − δ and
ḡ(u, v) := uδvδg(u, v). We can apply Theorem 3.1 with (x, y) replaced by (x̄, ȳ) and g(u, v)
replaced by ḡ(u, v).

Example 3.1: Consider the following derivative of the second Appell function,

∂2

∂x∂y

[
�(x)�(y)�(α)�(β)

�(x + α)�(y + β)
F2(a; x, y; x + α, y + β ; b, c)

]
=

∫ 1

0

∫ 1

0
ux−1(1 − u)α−1vy−1(1 − v)β−1 log u log v(1 − b u − c v)a du dv, (3.5)

where�α,�x,�β ,�y > 0. It has the form considered in Theorem 3.1 with g(u, v) = (1 −
b u − c v)−a log u log v, and σ1 and σ2 any positive numbers as close to 0 as we wish. When
�b + �c ∈ C \ [1,∞), the function g(u, v) is analytic in [0, 1] × [0, 1] \ T and, from (3.1),
we derive the following convergent and asymptotic expansion for large |x| and |y|,

∂2

∂x∂y

[
�(x)�(y)�(α)�(β)

�(x + α)�(y + β)
F2(a; x, y; x + α, y + β ; b, c)

]

= 1
�(a)

∞∑
k=0

k+2∑
l=0

(−1)l(l − 1)!cl−1 A(k + 2, l)(1 − b − c)a+l−1

× B (α + k − l + 2, x)B
(
β + l, y

)
, (3.6)

with

A(k, l) :=
k−l−1∑
j=0

(−b)j

j!(l + j − k)
�(a + l + j − 1)

(1 − b − c)j 3F2
(

1, 1, 1 − l
2, 2 − a − l − j

∣∣∣∣ 1 + b − 1
c

)
,

and 3F2 a generalized hypergeometric function [11, Section 16.2]. Table 2 contains some
numerical experiments that illustrate the accuracy of approximation (3.6).

4. A convergent and asymptotic expansion of double Laplace transforms

The main obstruction to the convergence of the expansion (1.3) is that the integration
region [0,∞) × [0,∞) in (1.1) cannot be contained in any convergence region given by
the cartesian product of disksDr(0) × Dr(0) of the expansion (1.2) of f (t, s) regardless how
large r is. Then,whenwe replace f (t, s) in (1.1) by its Taylor expansion (1.2) and interchange
series and integral, the convergence of the resulting series (1.3) is not guaranteed. It is not
guaranteed even when f (t, s) is an entire function of its two variables (and r = ∞).

Inspired by the idea introduced in [7, Section 17.3], we consider a change of integra-
tion variables t → u, s → v on the right-hand side of (1.1) that compacts the unbounded
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Table 2. Relative errors in the approximation of the integral given in (3.5), for α = 0.3,β = 2.1, a =
1.05, b = −1.1, c = −0.5, by using (3.6) with the infinite series truncated at k = n.

n = 1

(x, y) (5.2, 4.5) (10, 16) (25, 30) (40, 50) (60, 75) (100, 100) (200, 300)

r.e. 0.46 0.23 0.1 0.07 0.048 0.03 0.013

(x, y) = (15.2, 13.5)

n 5 10 15 20 25 30 35 40 45 50

r.e. 8.67e−3 2.39e−5 4.55e−7 2.27e−8 2.e−9 2.58e−10 4.38e−11 9.15e−12 2.25e−12 6.25e−13

Note: The asymptotic and convergent behaviour is shown in the above and below subtables respectively.

region [0,∞) × [0,∞) into a bounded region for the new variables u, v. More precisely,
we consider the change of variables t = − log u, s = − log v that gives rise to the bounded
integration region (0, 1] × (0, 1] in the variables u, v considered in the previous sections.
After this change of variables, the integral (1.1) has the form considered in Theorem 3.1:

F(x, y) :=
∫ 1

0

∫ 1

0
ux−1(1 − u)α−1vy−1(1 − v)β−1g(u, v) du dv, (4.1)

with

g(u, v) :=
(
log u
u − 1

)α−1 (
log v
v − 1

)β−1
f (− log u,− log v).

With this change of variables, we are introducing logarithmic singularities in the set
T = {(0, v) ∪ (u, 0), u, v ∈ [0, 1]}. But, as we have seen in Section 3, the effect of integrable
singularities on the set T is not very painful. The effect is a slower speed of convergence
of the expansion with respect to the regular case analysed in Section 2. In order to better
understand the effect of these logarithmic singularities on T , it is necessary to take a closer
look to themappings u → t = − log u, v → s = − log v. Under these transformations, the
u, v−disks Dr(1), 0 < r ≤ 1, become the respective t, s− regions

Sr := {t, s = − log(1 + ρ eiθ ), 0 ≤ ρ ≤ r,−π < θ ≤ π}

(see Figure 2 for r = 1 and Figure 3 for r<1).
Under the inversemaps u = e−t , v = e−s, the end t, s−points t, s = ∞ in (1.1) are trans-

formed into the singular u, v−points u, v = 0 in (4.1). More generally, the unbounded
region Sr around the t, s−integration region [0,∞) × [0,∞) is transformed into the carte-
sian product of two u, v-disks: {|u − 1| ≤ 1} × {|v − 1| ≤ 1}. This means that, if the
function f (t, s) is analytic in the region S1 × S1, then the function g(u, v) is analytic in
the region D1(1) × D1(1) \ T (with logarithmic branch points at T ). Then, we can use
Theorem 3.1 for the integral (4.1) if f (t, s) is analytic in the region S1 × S1 and does not
grow too fast at the infinity. This idea is summarized in the following theorem.

Theorem 4.1: Consider the region D := {(x, y) ∈ C × C : min{�x,�y} ≥ 	} for arbi-
trary fixed 	 > 0. Assume that f (t, s) is analytic in the region S1 × S1, with Sr defined
above and that f (t, s) = O(eσ1t eσ2s), for certain σ1, σ2 > 0 withmax{σ1, σ2} < min{1,	}
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Figure 2. The image under themap t = − log u of the disk |u − 1| ≤ 1 depicted on the left figure is the
unbounded t−region S1 depicted on the right figure, whose contour is the curve t = − log(1 + eiθ ),
−π < θ < π .

Figure 3. The image under the map t = − log u of the disk |u − 1| ≤ r < 1 depicted on the left figure
is the t−region Sr depicted on the right figure, whose contour is the curve t = − log(1 + r eiθ ),−π <

θ ≤ π .

as t, s → ∞. Then, for (x, y) ∈ D, �α > 0,�β > 0, and n = 1, 2, 3, . . .,

F(x, y) =
∫ ∞

0

∫ ∞

0
e−xt−ystα−1sβ−1f (t, s) dt ds

=
n−1∑
k=0

k∑
l=0

Ak−l,l(α,β)B (k − l + α, x)B
(
l + β , y

) + Rn(x, y,α,β), (4.2)

where

A0,0(α,β) := a0,0 = f (0, 0), A1,0(α,β) := α − 1
2

a0,0 + a1,0,

A0,1(α,β) := β − 1
2

a0,0 + a0,1
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and, for n,m = 1, 2, 3, . . ., the remaining coefficients of the expansion are

An,m(α,β) :=
n∑

k=0

m∑
l=0

(k + α − 1)(l + β − 1)
(n + α − 1)(m + β − 1)

ak,l(−1)n+m−k−l

× B̃n−k(n + α − 1)̃Bm−l(m + β − 1). (4.3)

In this formula, ak,l := ( 1
k!l! )

∂k+lf (0,0)
∂tk∂sl and B̃m(α) are the normalized Nörlund polyno-

mials B̃m(α) := Bm(α)/m!, where Bm(α) denote the standard Nörlund polynomials [12,
Section 24.16].

The coefficients An,m(α,β) and the remainder Rn(x, y,α,β) are bounded in the form
|An,m(α,β)| ≤ M and

|Rn(x, y,α,β)| ≤ M
n∑

k=0

B(n − k + �α,	 − σ1)B(k + �β ,	 − σ2), (4.4)

where M is a positive constant independent on n, m, x and y. The right-hand side of for-
mula (4.2) is an asymptotic expansion of F(x, y) for large |x| and |y| and fixed n, as
we have that B(k − l + α, x)B(l + β , y) = O((x−1 + y−1)kx−αy−β) and Rn(x, y,α,β) =
O((x−1 + y−1)nx−αy−β). Moreover it is also uniformly convergent for (x, y) ∈ D with a
power type order of convergence: Rn(x, y,α,β) = O(nσ1+σ2−x−y) when n → ∞ and fixed
x, y.

Proof: After the change of variables t = − log u, s = − log v, the integral in formula (4.2)
becomes the integral (4.1) considered in Theorem 3.1 with g(u, v) given also in (4.1). Then,
formulas (4.2) and (4.4) follow from Theorem 3.1 with

An,m(α,β) := (−1)n+m

n!m!
∂n+mg(1, 1)

∂un∂vm
,

g(u, v) :=
(
log u
u − 1

)α−1 (
log v
v − 1

)β−1
f (− log u,− log v).

Therefore we have that

An,m(α,β) := (−1)n+m

n!m!
∂n+m

∂un∂vm

[(
log u
u − 1

)α−1 (
log v
v − 1

)β−1
f (− log u,− log v)

]
u=1,v=1

= (−1)n+m

(2π i)2

∮ ∮
g(u, v)

(u − 1)n+1(v − 1)m+1 du dv,

where the integration paths are two circles of a certain radius r centred at u = 1 and v = 1
respectively: |u − 1| = |v − 1| = r, traversed once in the positive sense. After the change
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of integration variables u → t, v → s given by u = e−t , v = e−s we have that

An,m(α,β) = (−1)n+m

(2π i)2

∫
�r

∫
�r

(−t)α−1(−s)β−1f (t, s) e−t−s

(e−t − 1)n+α(e−s − 1)m+β
dt ds,

where the integration contour �r is the path |e−t − 1| = |e−s − 1| = r depicted in Figure
3(b). Then we have that

An,m(α,β) = 1
n!m!

∂n+m

∂tn∂sm

[(
t

1 − e−t

)n+α (
s

1 − e−s

)m+β

f (t, s) e−t−s

]
t=0,s=0

.

From this formula, using

(
u

1 − e−u

)n+α

e−u =
(

u
1 − e−u

)n+α

−
(

u
1 − e−u

)n+α−1
u,

and [12, Section 24.16, Equation 24,16.9] we find

An,m(α,β) =
n∑

k=0

m∑
l=0

(−1)n+m−k−lak,l [̃Bn−k−1(n + α − 1) + B̃n−k(n + α)]

× [̃Bm−l−1(m + β − 1) + B̃m−l(m + β)], (4.5)

with B̃−1(α) := 0.
On the other hand, integrating by parts in the integral representation of the generalized

Nörlund polynomials (that follows from [5, Section 24.16, Equation 24.16.9]),

B̃m(α) = 1
2π i

∮ (
t

et − 1

)α dt
tm+1 ,

we find that, form = 1, 2, 3, . . . ,

mB̃m(α) = α
[̃
Bm(α) − B̃m−1(α) − B̃m(α + 1)

]
.

Formula (4.3) follows from this one and (4.5). �

Example 4.1: Consider the function given in the introduction section [6, Chapter 3,
Section 1.5, Equation (45)]

sin(xy)ci(xy) − cos(xy)si(xy) =
∫ ∞

0

∫ ∞

0
e−xt−ys cos(ts) ds dt, �x > 0, �y > 0.

(4.6)
This integral is the double Laplace transform of f (t, s) = cos(ts) and has the form con-
sidered in Theorem 4.1 with α = β = 1. From (4.2) we derive the following asymptotic
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Table 3. Relative errors in the approximation of the integral (4.6) by using (4.7) with the infinite series
truncated after n terms.

n = 1

(x, y) (5.3, 4.1) (7.5, 6.2) (15, 22) (30, 30) (50, 60) (110, 120) (200, 300)

r.e. 4.15e−3 9.2e−4 1.8e−5 2.47e−6 2.22e−7 1.15e−8 5.55e−10

(x, y) = (9.2, 7.5)

n 5 10 15 20 24 30 35 40 45 50

r.e. 2.e−4 3.3e−6 1.14e−7 1.15e−8 2.27e−9 7.28e−10 2.52e−10 9.79e−11 4.2e−11 1.9e−11

Note: The asymptotic and convergent behaviour is shown in the above and below subtables respectively.

expansion for large |x| and |y| that is also convergent,

sin(xy)ci(xy) − cos(xy)si(xy) =
∞∑
n=0

n∑
k=0

An−k,kB(n − k + 1, x)B(k + 1, y), (4.7)

where A0,0 = 1, A1,0 = A0,1 = 0 and, for n,m = 1, 2, 3, . . .,

An,m =
�min(n,m)

2 ∑
j=0

(2j)2

(2j)!
(−1)n+m+j

nm
B̃n−2j(n)̃Bm−2j(m),

where �a represents the integer part of the real number a (Table 3).

Example 4.2: Consider the integral

H(x, y) :=
∫ ∞

0

∫ ∞

0

tα−1sβ−1 e−xt−ys

a + t + s
ds dt, �α > 0, �β > 0, a > 0, (4.8)

for �x > 0 and �y > 0. It has the form considered in Theorem 4.1 with f (t, s) = 1/(a +
t + s). From (4.2) we derive the following asymptotic expansion for large |x| and |y| that is
also convergent,

H(x, y) =
∞∑
k=0

k∑
l=0

Ak−l,lB (k − l + 1, x)B
(
l + 1, y

)
, (4.9)

where A0,0 = 1,A1,0 = (a(α − 1) − 2)/2a2,A0,1 = (a(β − 1) − 2)/2a2, and for
n,m = 1, 2, 3, . . . (Table 4),

An,m = (−1)n+m

a

n∑
k=0

m∑
l=0

(k + l)!
k!l!ak+l

(k + α − 1)(l + β − 1)
(n + α − 1)(m + β − 1)

× B̃n−k(n + α − 1)̃Bm−l(m + β − 1).
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Table 4. Relative errors in the approximation of the integral (4.8) for α = 2.3, β = 1.1, a = 1.5, by
using (4.9) with the infinite series truncated after n terms.

n = 1

(x, y) (3.5ei
π
4 , 2.2) (15ei

π
4 , 20) (30ei

π
4 , 40) (50.5ei

π
4 , 50) (90ei

π
4 , 80) (100ei

π
4 , 100) (200ei

π
4 , 300)

r.e. 0.187 0.032 0.017 0.014 8.6e−3 6.9e−3 2.4e−3

(x, y) = (5.2, 4.5)

n 5 10 15 20 24 30 35 40 45 50

r.e. 1.9e−4 1.3e−4 1.85e−5 5.3e−6 1.8e−6 7.6e−7 3.5e−7 1.8e−7 1.e−7 6.e−8

The asymptotic and convergent behaviour is shown in the above and below subtables respectively.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

Open access funding provided by Universidad Pública de Navarra.

ORCID

Chelo Ferreira http://orcid.org/0000-0002-3698-6719
José L. López http://orcid.org/0000-0002-6050-9015
Ester Pérez Sinusía http://orcid.org/0000-0002-8021-2745

References

[1] Eltayeb H, Kiliçman A. A note on double Laplace transform and telegraphic equations. Abstr
Appl Anal. 2013;2013:1–6.

[2] Debnath L. The double Laplace transforms and their properties with applications to functional,
integral and partial differential equations. Int J Appl Comput Math. 2016;2:223–241.

[3] DhundeRR,WaghmareGL. Solving partial integro-differential equations using double Laplace
transform method. Amer J Comput Appl Math. 2015;5(1):7–10.

[4] Dhunde RR, Waghmare GL. Double Laplace transform in mathematical physics. Int J Theor
Math Phys. 2017;7:14–20.

[5] Dhunde RR, Waghmare GL. Double Laplace iterative method for solving nonlinear partial
differential equations. New Trends Math Sci. 2019;7(2):138–149.

[6] Prudnikov AP, Brychkov YA, Marichev OI. Integrals and series. Amsterdam: OPA; 1986.
[7] Temme N. Asymptotic methods for integrals. London: World Scientific; 2015.
[8] Wong R. Asymptotic approximations of integrals. New York: Academic Press; 1989.
[9] Nielsen N. Handbook der Theorie der Gammafunktion. Leipzig: B. G. Teubner; 1906.
[10] OlverWJ, Lozier DW, Boisvert RF, et al. Gamma function. In: Olver FWJ, Lozier DW, Boisvert

RF, et al., editors. NIST handbook ofmathematical functions. NewYork: CambridgeUniversity
Press; 2010. Chapter 5.

[11] Askey RA,OldeDaalhuis AB.Generalized hypergeometric function andmeijerG-function. In:
Olver FWJ, Lozier DW, Boisvert RF, et al., editors. NIST handbook of mathematical functions.
New York: Cambridge University Press; 2010. Chapter 16.

[12] Dilcher K. Bernoulli and Euler polynomials. In: Olver FWJ, Lozier DW, Boisvert RF, et al.,
editors. NIST handbook of mathematical functions. New York: Cambridge University Press;
2010. Chapter 24.

http://orcid.org/0000-0002-3698-6719
http://orcid.org/0000-0002-6050-9015
http://orcid.org/0000-0002-8021-2745

	1. Introduction
	2. A convergent and asymptotic method for compact double Mellin transforms of analytic functions
	3. A convergent and asymptotic method for compact double Mellin transforms of analytic functions. A more general case
	4. A convergent and asymptotic expansion of double Laplace transforms
	Disclosure statement
	Funding
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


