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Abstract— A critical issue for a proper energy management 

of a lithium-ion (Li-ion) battery is the estimation of its state-of-

charge (SOC). There are various methods available for the SOC 

estimation, being some of them robust and accurate, but 

requiring high computational power for its applicability, which 

is inconvenient for their use with the usual low-cost 

microcontrollers that build a typical BMS. This contribution 

proposes an SOC estimation algorithm based on a simplified 

Kalman Filter, that combines a high accuracy with reduced 

computational requirements. The proposed simplifications 

result from a careful analysis of the Li-ion battery performance 

and linearization of processes that entail negligible loss of 

accuracy. The proposed algorithm is used to estimate the SOC 

of a second-life Li-ion battery operating in an experimental PV 

self-consumption facility. Its performance, in terms of accuracy, 

robustness and computational requirement, is compared with 

an Extended Kalman Filter (EKF), a Particle Filter (PF) and 

other low-performance estimation algorithms, proving its trade-

off between accuracy and computational cost. 

Keywords— lithium-ion battery; state of charge; Kalman 

Filter; estimation algorithm. 

I. INTRODUCTION

The relevance of energy storage systems based on Li-ion 
batteries (LIBs) is increasing. During the last decades, the 
traditional application of LIBs has been portable electronic 
devices, such as cell phones. Currently, the electro-mobility 
sector and the power sector, mainly related to the integration 
of higher shares of renewable energy in the power grid, are 
relevant consumers of Li-ion batteries [1]. In such high-power 
applications, which many times base their energy 
management strategy on the battery SOC, a suitable SOC 

estimation has a capital relevance [2]. Four characteristics are 
desirable in a SOC estimation algorithm: (i) it should have the 
required accuracy to allow a coherent energy management, (ii) 
it should be robust against measurement inaccuracy, due to the 
typical low-range sensors used in battery BMSs, (iii) it should 
be robust against a wrong estimation of battery parameters, 
since these parameters have a relevant dependency on 
variables such as temperature or battery degradation, and (iv) 
it should demand the minimum computational power to allow 
the use of low-performance microcontrollers. 

Various research contributions have been published 
proposing different SOC estimation algorithms. A trade-off 
between algorithm simplicity and accuracy is achieved 
depending on the application. The proposals range from 
straightforward algorithms based on the measurement of the 
electrical charge absorbed or released by the battery in order 
to compute its SOC by knowing the battery capacity [3]. 
However, such algorithm lacks robustness against current 
measurement inaccuracies and capacity estimation. Other 
authors propose estimation methods based on neural networks 
[4], [5] that achieve a good SOC estimation after an intensive 
training period. The main weaknesses of these methods are the 
required training period as well as the inability of making 
estimations if the operating conditions do not match with the 
training experiments. Regarding filter algorithms, the H-
infinity filter is proposed in many papers, [6], [7], given its 

This work has been supported by the Spanish State Research Agency 
(AEI) under grant PID2019-111262RB-I00 /AEI/ 10.13039/501100011033, 
the European Union under the H2020 project STARDUST (774094), the 
Government of Navarra through research project 0011–1411–2018–000029 
GERA and the Public University of Navarra under project ReBMS 
PJUPNA1904. 

R0 

UOC (SOC) 

RCt 

CCt

UBat 

+

_ _

+

UCt +
_

IBat 

Fig. 1.  Equivalent-circuit model of a LIB used for the EKF. 
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high estimation accuracy. However, it is not suitable for every 
application due to its computational complexity. Other filter 
proposed for the SOC estimation is the particle filter [8], 
which has also the drawback of its mathematical complexity. 
Kalman filters, with many variations, are the most used 
estimation algorithm, given its zero-mean estimation error. 
The most used Kalman filters are the Extended Kalman Filter 
(EKF) [9], Unscented Kalman Filter (UKF) [10] and Sigma-
Point Kalman Filter (SPKF) [11]. 

This contribution proposes a simplification of the EKF for 
its application in the computation of the Li-ion battery SOC. 
The usefulness of this simplification remains on maintaining 
the accuracy offered by the EKF algorithm, substantially 
reducing its computational requirements. The remaining of 
this contribution is organised as follows. Section II is devoted 
to the modelling of the battery, presenting an equivalent 
electric circuit that achieves a current – voltage relationship as 
similar as possible to the real battery. The Kalman Filter is 
presented in Section III, where its particularisation to estimate 
Li-ion battery SOC is also detailed. Section IV details the 
performance of the proposed algorithm. Subsequently, the 
results obtained with this simplified Kalman Filter are 
compared with other algorithms proposed in the literature in 
Section V. Finally, Section VI presents the conclusions of this 
contribution. 

II. BATTERY MODELLING 

The estimation of the battery SOC requires the design of 
an equivalent-electric circuit model, which allows a direct 
relationship between electrical variables (voltage UBat and 
current IBat) and the SOC. There are various alternatives for 
such models published in the bibliography [12]. 

The estimation algorithm proposed in this contribution 
requires a model with a low computational cost, even at a cost 
of a slightly reduced accuracy. Therefore, the model shown in 
Fig. 1 is used, which consists in a SOC-dependent voltage 
source UOC, an ohmic resistance R0 and a parallel RC branch 
with the resistance RCt and a capacitance CCt. IBat is the battery 
charging current, while UBat is the voltage between its 
terminals. Both IBat and UBat can be measured during the 
battery operation. The equations that describe the operation of 

this equivalent circuit are shown in (1) in its continuous 
formulation and can be discretised as presented in (2). 
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Note that δt is the time step between measurements k – 1 
and k, while τ is the time constant of the R-C branch, being 
τ = CCt · RCt. In this model, the UOC – SOC relationship is 
represented by a polynomial expression, which coefficients 
depend on the particular battery that wants to be modelled.  

III. PROPOSED KALMAN FILTER ADAPTATION 

Kalman filters are state estimation algorithms based on the 
recursive correlation of the estimation error provided by a 
simpler estimation method. There are various filters available 
for the state estimation (particle filters, Kalman filters, H-
infinity filters, etc.). In particular, the main strength of Kalman 
filters is their robustness against measurement errors, together 
with the computational cost that is not extremely high. 

Various approaches can be taken for the design of a 
Kalman Filter, depending on the algorithm used to correct the 
initial estimation error. The most typical approaches are the 
Extended Kalman Filter (EKF) and Unscented Kalman Filter 
(UKF) among others. [9], [13] and [14] provide detailed 
information about the mathematical background and 
applicability of such estimation algorithms. 
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Fig. 2.  Computation of the variable X in each iteration step for a) Extended Kalman Filter and b) Particularised Kalman Filter proposed in this 
contribution. 
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The algorithm proposed in this contribution is based on an 
EKF, with some of its calculations simplified towards a higher 
computation efficiency when used to estimate the SOC of a 
Li-ion battery with constant model parameters and constant 
characteristics of the measurement devices. Fig. 2 depicts the 
simplifications of the particularised Kalman filter compared 
to the typical EKF. The main computational simplification 
comes to the avoidance of partial derivatives calculations. 

The equations required for a Kalman filter are shown in 
(3), where X is the state matrix, Y is the measurement matrix 
and u is the input: 

0     1� �  2�1���, 3�
4� � 5�1� , 3�
  (3) 

Moreover, matrices A and C are defined, for the correction 
of the measurement error, as shown in (4), (5): 

(� � 61�61��� (4) 

�� �  64�61� (5) 

Particularising the Kalman filter to the Li-ion battery 
proposed in the previous section of this contribution, X and Y 
are defined as: 

1� � 7���,� , ����8�
   (6) 

4� � [����,�] (7) 

 Based on (2), the relationship between Xk and Xk-1 is 
assumed to be linear. Therefore, A is constant (8). Moreover, 
the matrix C, is approximated as shown in (9). 
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Thanks to these simplifications, the filter can be 
programmed avoiding the computation required for partial 
derivatives calculations in each estimation step, being A and 
C matrices input parameters for the algorithm. Therefore, (10) 
is obtained, with the expressions for matrices B, D, and u 
defined in (11)-(13): 
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The value of Y, which is the voltage estimated by the 
equivalent-circuit model, is compared to the real voltage 
measured in the battery, thereby correcting the value of X as 
shown in (14): 

1� � 1� � B� ⋅ �����,� � 4�
 (14) 

The matrix L, with a size of 2x2, is named Kalman gain, 
and weights the relevance of the direct SOC calculation based 
on the ampere-hour counting method with the estimation 
based on the equivalent-circuit model using the measured 
battery current and voltages at each time step. The matrices 

involved in the computation of L are P, Q and R, being P (2x2) 
the covariance of X; Q (2x2) is the covariance of the 
estimation error and R (1x1) is the covariance of the 
measurement error. Note that the value of P is updated in each 
iteration of the algorithm, while Q and R have constant values 
that need to be determined for the proper particularisation of 
the estimation algorithm. The equations that determine the 
value of L in each algorithm iteration are detailed in 
Section IV. 

IV. ALGORITHM IMPLEMENTATION 

Table I summarises the three types of matrices involved in 
a Kalman Filter. The application of such algorithm, which 
requires the computation of these matrices, is divided in three 
steps, each of them detailed in a subsection as stated below: 

• Particularisation of the equivalent-circuit model 
(subsection A) 

• Initialisation of parameters (subsection B) 

• Computation algorithm (subsection C) 

A. Battery Modelling 

The first step required for the programming of an 
estimation algorithm is the computation of the battery 
equivalent-circuit parameters, specifically the parameters 
shown in (2). The battery used for the experimental validation 
of this contribution is a second-life Li-ion battery pack 
extracted from a Nissan Leaf. The model parameters obtained 
by means of an accurate characterisation of such battery 
presented in a previous contribution [15] are used for this 
estimator. These parameters are assumed to be constant during 
the battery operation, which requires a robust behaviour of the 
estimation algorithm against parameter estimation errors. 

B. Initialisation of Algorithm Parameters  

An initial value for matrix X, which value is actualised in 
each iteration, is required. The first element of this matrix is 
the voltage UCt,1, which is initialised to 0 assuming no current 
flow prior to the estimation. The second element of this matrix 
is SOC, which is the variable that wants to be estimated. Even 
being SOC the estimated variable, an initial value, in per unit, 
is required. Therefore, X is initialised as shown in (15): 

1� � [0, ����]� (15) 

An error in SOC1 leads to inaccurate estimations during 
the first iterations. However, this error is reduced with the 
iterative estimations, as will be shown in the following 
sections. Therefore, if no estimation for SOC1 is available, a 
general initial estimation of 0.5 can be used.  

The measurement matrix Y, being part of the estimation 
algorithm, does not require an initialisation, given that its 
value is computed in the first iteration based on the remaining 

Variables Constant arrays 
Arrays modified in 

each iteration 

X: state matrix 
A: relationship 

between Xk and Xk-1 

C: relationship 
between Yk and Xk 

Y: measurement 
matrix 

B: relationship 
between Xk and IBat 

P: covariance of X 

 
D: relationship 

between Yk and IBat 
L: Kalman gain 

 
Q: covariance of the 

estimation error 
 

 
R: covariance of the 

measurement error 
 

 

TABLE I. MATRICES INVOLVED IN THE KALMAN FILTER 



parameters. Regarding matrices A, B and D, its parameters 
need to be calculated based on eqs. (8), (11) and (12). 
Assuming a proper characterisation of the battery that leads to 
accurate measurement of its internal parameters, these 
matrices are accurate enough to lead to no mathematical error 
in the computation of the estimated SOC.  

The matrices Q (covariance of the estimation error) and R 
(covariance of the measurement error) are key for the 
computation of L and are proposed in this contribution as 
tuning parameters for the filter. In our case, the following 
values are chosen:  

C �  D10�E 10�E10�E 10�EF (16) 

� � [10G] (17) 

Pk is the covariance of Xk, being its value computed in each 
iteration. Therefore, even though an initial value is required 
for the calculation of L1, this initialisation is not relevant for 
practical applications. In this contribution this initialisation 
was set to the identity matrix. 

The matrices C and L are calculated in each iteration. 
Therefore, they do not require an initialisation. 

C. Proposed Computation Algorithm 

The estimation algorithm proposed in this contribution 
repeats the following computations in each iteration step: 

• A priori estimation of Xk based on 1� � ( ⋅ 1��� �= ⋅ ����,�. 

• Computation of Ck applying the relationship UOC – 
SOC using the SOC value estimated in the previous 
step. 

• Computation of Yk using  4� � �� ⋅ 1� � > ⋅ ����,�. 

• A priori estimation of Pk based on (18). H� � ( ⋅ H��� ⋅ (� � C (18) 

• Computation of Lk based on (19). B� � H� ⋅ ��� ⋅ ��� ⋅ H� ⋅ ��� � �
�� (19) 

• Correction of Xk based on (14). 

• Correction of Pk based on (20), where Id is the 
identity matrix with a size 2x2. H� � ��� � B�
 ⋅ H� (20) 

With this procedure, after the application of (14), the value 
of X at the time point k is obtained, and (20) is used to calculate 
the value of P at the time k, which is required for the following 
iteration.  

V. EXPERIMENTAL VALIDATION 

A. Description of the Experimental PV Self-Consumption 

System 

The SOC estimator proposed in this contribution has been 
experimentally validated and contrasted with other estimation 
algorithms by means of a research grid-tied PV self-
consumption facility shown in Fig. 3. The battery used to 
achieve the maximum self-consumption rate is a second-life 
battery discarded from a Nissan Leaf. This battery is built by 
the series-connection of 96 cells with a capacity of 66 Ah. 
Given the advanced degradation stage of the battery, the 
current capacity has decreased to 39 Ah. The following 

subsection shows the performance of different SOC 
estimation algorithms in this type of batteries. 

Besides the battery, the PV self-consumption system 
includes a 7 kWp PV installation, a 6 kW power electronics 
converter with two DC inputs for the PV field and for the 
battery, a connection to the power grid that guarantees the 
power availability during the whole year and the domestic 
power consumption of a 4-member family home. Given that 
the facility is in a research building, the power demand is 
measured in a near-by home and emulated on-site by means 
of a controllable load. This system is monitored and controlled 
by means of a real-time computer that includes a database 
used to store the relevant variables with a sampling frequency 
of 1 Hz. The SOC estimation algorithms compared in the 
following subsection are programmed in this computer, which 
also computes the control variables to be fed to the inverter. 

B. Comparison of Various SOC-Estimation Algorithms 

The proposed modification of the Kalman filter (labelled 
as PKF) is compared with the following estimators: 

• Ampere-hour counting (Ah c), which makes the SOC 
estimation based on (21). 

���� � ������  � ;���,����� ⋅ �	   (21) 

• Electric model shown on Fig. 1 (Model). 

• Adaptive particle filter presented in [16] (PF). 

• EKF available in Matlab (EKF). 

Accurate measurements of electrical variables and battery 
parameters are available for this comparison. However, 
realistic scenarios are emulated by introducing a current 
measurement offset of 0.5 A, a 20% deviation in the battery 
capacity value and a 35% deviation in the initial SOC. The 
real SOC value, used to compute the error of each estimation 
algorithm, is assumed to be that calculated by the Ah counting 
method using the most accurate battery parameter values and 
electrical variables measurements. The validation experiment 
consists of 30 hours of battery operation under the PV self-
consumption profile. The initial SOC is 13%, it goes down to 
0% at t ≈ 2 h, reaching its maximum value of 100 % at t ≈ 
17 h, as can be seen in Fig. 4a. 
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Fig. 3. Schematic representation of the experimental PV self-consumption 
system based on a second-life battery pack. 



Fig. 4 shows the estimation results obtained by the five 
contrasted algorithms assuming that the current and voltage 
measurements are totally accurate and that the battery 
parameters (capacity, impedance, and VOC – SOC relationship) 
are known, which is not a realistic scenario for a battery 
application. Given the perfect knowledge of measured 
variables and battery parameters, the ampere-hour counting 
method (Ah c) achieves a perfect estimation. As shown in the 
figure, the proposed particularised Kalman filter (PKF), as 
well as the extended Kalman filter (EKF) and the particle filter 
(PF) have a similar accuracy. The RMSE achieved by these 
filters is around 2%, as shown in Table II. The method based 
on the electrical model achieves the worst estimation 
accuracy, providing a RMSE of 4.3%. This lower accuracy is 
because a simple electrical circuit is not able to accurately 
model the battery performance. 

Fig. 5 shows the performance of the algorithms assuming 
a current measurement offset of 0.5 A, and a battery capacity 
error of 20%. The method based on the equivalent circuit, as 
well as both Kalman filters are robust against current offset 
and capacity estimation errors, given that they keep an 
accuracy similar to the previous scenario, keeping RMSE 
values below 5%. On the other hand, the error provided by the 
particle filter increases in the last part of the experiment, 
showing its reduced robustness compared to the Kalman 
filters. Finally, this scenario is especially hard for the Ampere-
hour counting method, given that an offset in the current 
measurement leads to a cumulative integrating error, 
enlarging the estimation error as time increases. This proves 
that the ampere-hour method cannot be used by itself in real 
applications. 

Finally, Fig. 6 shows the comparison of the estimation 
algorithms in the event of having a wrong value for the initial 
SOC. On the one hand, the estimator based on the equivalent 
circuit has the highest robustness against this issue, given that 
the initial SOC is not used as input parameters. On the other 
hand, the estimators based on a filter, either Kalman filter or 
particle filter, have an initial estimation error that is detected 
and corrected during the first operating hours. Note that the 
correction of the Kalman filters is faster, reaching the actual 
SOC in around 2 hours. Finally, the Ampere-hour counting 
method is unable to correct this initialisation error and remains 
with the same offset during the whole experiment. 

VI. CONCLUSIONS 

The proposed algorithm, based on a particularisation of an 
Extended Kalman Filter for a second-life Li-ion battery 
represents a trade-off between a high estimation accuracy and 
a low computational requirement. Table II shows the main 
figures of merit of the proposed PKF and other estimation 
algorithms. Especially remarkable is the column concerning 
computation times, which is the time required by a regular 
desktop computer to simulate the 30-hour test presented in this 
contribution with a time step of 1 second. In order to provide 
trustworthy values, 5 simulations were made, providing in the 
table the average computation time. 

It is shown in Table II that the highest accuracy is achieved 
by the estimators based on Kalman filter and on the battery 
equivalent circuit. Even though the RMSE of the equivalent-
circuit method is the lowest one in columns 2 and 3, it should 
be noted that no misestimation of the impedance parameters 

Fig. 4. SOC estimation with accurate measurements and parameter values: a) Estimated SOC for 30 hours and b) absolute error. 
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has been analysed, and that in the comparison summarised in 
column 3 the Kalman filters have a high initial error that is 
corrected in a few hours, achieving a higher accuracy from 
that moment on. The accuracy achieved by the PF is slightly 
lower than that of PKF and EKF in columns 2 and 3, while the 
Ampere-hour method has been proved to be useless for a real 
application. 

Regarding the computation time, shown in column 4 of 
Table II, the EKF shows the highest computing demand, 
requiring 26.7 s for the 30-hour simulation. The second most 
demanding algorithm is the proposed PKF, which takes 1.3 s 
for the same simulation. This means a 20-times reduction in 
the computational requirements keeping a similar accuracy in 
the SOC estimation. Even more light are the methods based 
on Ah-counting, the equivalent-circuit model and particle 
filter, which require a time of 0.02 s, 0.12 s and 0.15 s, 
respectively.   

To sum up, the proposed estimation algorithm has been 
validated by means of experimental results in a PV self-
consumption system with a second-life Li-ion battery as 
energy storage system. Its low computational requirements 
have been proved to be combined with a good robustness 
against current measurement offset, wrong estimation of 
battery parameters and wrong initial SOC. These 
characteristics make this algorithm a good candidate to be 
used by the BMS of a second-life Li-ion battery. 
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Method 
RMSE 

No error 

RMSE 

Error: C, I 

RMSE 

 Error: SOC0 

Computation 

time 

PKF 2.4% 4.2% 6% 1.3 s 

Ah c -- 17.0% 36.6% 0.02 s 

Model 4.3% 4.3% 4.3% 0.12 s 

PF 2.1% 7.4% 11.9% 0.15 s 

EKF 2.2% 4.0% 5% 26.7 s 

 

TABLE II. FIGURES OF MERIT OF THE COMPARED SOC ESTIMATION 

ALGORITHMS: RMSE IN THREE SCENARIOS AND COMPUTATION TIME 

Fig. 6. SOC estimation with an initial SOC error: a) Estimated SOC during 30 hours and b) abolute error. 
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