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Abstract: The aim of this study is to optimize the adsorption of pentachlorophenol (PCP) using an
organo-clay under the response surface methodology. The adsorbent was selected from a mont-
morillonite exchanged by various cations, such as Fe3+, Al3+, Zn2+, Mg2+, Na+, and modified by
bromide cetyltrimethylammonium (CTAB) as surfactant. The obtained organo-montmorillonite was
characterized using several techniques, such as Fourier-transform infrared spectroscopy (FTIR), X-ray
diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and
nitrogen adsorption, performed at −196 ◦C. The results showed an increase in basal space from 1.65
to 1.88 nm and a decrease in the specific surface and pore volume, with an increase in pore diameter,
including the presence of characteristic bands of -CH2- and -CH3- groups at 2926 and 2854 cm−1 in
the FTIR spectrum after the modification. The optimization of PCP removal by clay adsorbents is
achieved using the response surface methodology (RSM) with a four-factor central composite model,
including pH of solution, mass of adsorbent, contact time, and initial concentration. The results
proved the validity of the regression model, wherein the adsorption capacity reaches its maximum
value of 38 mg/g at a lower adsorbent mass of 20 mg, pH of 6, contact time (tc) of 5 h, and initial
concentration of 8 mg/L.

Keywords: adsorption; montmorillonite; organo-clay; pentachlorophenol; response surface
methodology

1. Introduction

Phenolic compounds, one type of priority pollutants in the aquatic environment, have
attracted the attention of researchers as they have many harmful effects on human health
even in low concentrations [1]. Pentachlorophenol (PCP) is one of the most commonly
used chlorinated phenols, serving as a pesticide, herbicide, and preservative for wood and
leather [2]. The environmental protection agency has classified chlorophenols, especially
PCP, as priority pollutants due to their toxicity in the environment [3,4]. According to
The Indiana Department of Environmental Management Bureau of Water—Water Quality
Standards Section cancer criterion for human health, the acceptable amount of PCP in
drinking water sources is 2.8 µg/L [5]. Therefore, it is essential to eliminate these toxic
elements present in natural environments (soil and water) or to reduce their quantity below
the admissible thresholds defined by the standards.

A promising technique to remove pesticides from an aqueous solution is adsorption on
low-cost materials [6,7]. Adsorption is an effective wastewater treatment procedure applied
by industries to decrease hazardous organic/inorganic contamination in effluents. Clay
minerals have been employed as low-cost adsorbents for water cleaning and many efforts
have been focused on heavy metals and dye [8–10], especially on montmorillonite for the
adsorption of pesticides [11]. These adsorbents are considered efficacious and cost-effective,
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and their regeneration possibility after use is satisfactory. Natural clays are used after a
previous purification step, which results in a material with advanced physico-chemical
properties [12,13]. These materials, once in the water, form a suspended colloidal matter
endowed with interesting sorption properties. Moreover, clay minerals are increasingly
used as natural nanomaterials as they have no negative effects on the environment. The
extensive use of clay is due to the octahedral (Al or Mg) or tetrahedral layers [14]. Nano-clay
is used in different matrices to prepare nanocomposite materials and its addition leads to
different enhanced properties of the obtained nanocomposite material. For example, the
addition of nano-clay in the polymer matrix results in enhanced mechanical, diffusional
barrier, fire retardant, and ultraviolet (UV) resistance properties of the material as well as
thermal resistance [15,16].

Clays have an hydrophilic surface in their natural state [17]. The modification by
cationic surfactants improves the surface hydrophobic character and leads to surface charge
reversal from negative to positive [18,19]. Organophilic clay can be obtained by a simple
cation exchange, which serves to fix the molecules of surfactant in the interlayer space [20].
The organically modified montmorillonite synthesized with the surfactant had a larger
interlayer space and higher values of wetting contact angles, which could have a potential
for adsorption of organic contaminant [21].

Response surface methodology is a technique used to optimize various processes by
quantifying the relationship between one or more measured responses and the vital input
factor [22]. RSM is an appropriate approach and widely used not only for studying PCP,
but also for developing and optimizing a wide range of engineering systems in several
industry processes [23,24]. RSM was effectively used in the pharmaceutical industry [25]
for the optimization and modeling of operating parameters of a wide variety of microbial
products [26]. In addition, it was applied for the modeling and optimization of operating
parameters for water desalination [27] as well as other applications in food processes, such
as extraction, drying, blanching, enzymatic, hydrolysis and clarification, production of
microbial metabolites, and formulation [28–30].

In this work, we study the main effects that impact PCB adsorption on a montmoril-
lonite modified with bromide cetyltrimethylammonium (CTAB) surfactant using statistical
tools. The traditional method remains limited since it does not consider all of the possible
combinations; however, this is possible using a statistical design, such as response surface
methodology (RSM) [31,32]. RSM employs a group of mathematical and statistical tech-
niques based on the fit of empirical models with experimental data obtained as part of the
experimental design [33]. To achieve this objective, linear or square polynomial functions
are used to describe the system studied and, consequently, to explore the experimental
conditions until optimization is reached.

2. Experimental Procedure
2.1. Materials and Reagents

Throughout this study, montmorillonite K-10 was purchased from Sigma-Aldrich
(Burlington, MA, USA) and used as the starting clay (as received, in the form of pow-
der). Bromide cetyltrimethylammonium (CTAB, purity ≥ 99.0%) was purchased from
Sigma Aldrich (Burlington, MA, USA). Pentachlorophenol (PCP), which was used as an
adsorbate, was obtained from Fluka (Buchs, Switzerland). Moreover, FeCl3·6H2O (98 %)
was purchased from SDFCL (Chennai, India), AlCl3 and MgCl2 were purchased from
Sigma-Aldrich, NaCl (≥ 99.0%) from Fluka (Buchs, Switzerland), and ZnCl2 from SCP
science (Montreal, Canada).

2.2. Preparation of the Adsorbents

The preparation of the various organophilic montmorillonites was carried out accord-
ing to two stages. The first step employs a cation exchanger, and the second step involves
obtaining a clay that presents only one possible exchangeable cation. The cations used in
this study are Mg2+, Na+, Al3+, Fe3+, and Zn2+. The experiments were performed according
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to the method detailed in [34]. Briefly, 5 g of montmorillonite was slowly added to 100 mL
of an aqueous solution of cations and the resulting mixture was stirred for 4 h. Then, the
suspension was centrifuged, and the operation in principle was carried out four times to
optimize the exchange. Thereafter, the clay was rinsed several times to remove the excess
of salt, and chloride ions were removed from the washing solution using silver nitrate.
Next, the clay was dried in an oven at 80 ◦C. The modification by bromide cetyltrimethy-
lammonium was carried out to prepare a suspension of 5 wt% of Mt-cation in distillated
water, with 0.8 g of CTAB added to the solution and stirred for 2 h at 60 ◦C. The resulting
slurry was centrifuged and washed with distillated water until its disappearance in the
foam, then dried at 70 ◦C for 16 h. The solid obtained was denoted as Mt-Cation-CTAB.

2.3. Preliminary adsorption test

To select the best adsorbent material, a preliminary study was carried out in two steps.
The first step involves the adsorption of PCP on various montmorillonites synthesized
under classical conditions and the second step is a comparison of their adsorption capacities
toward PCP. To carry out the adsorption tests, 1 g of each montmorillonite sample (Mt,
Mt-CTAB, Mt-Na-CTAB, Mt-Mg-CTAB, Mt-Fe-CTAB, Mt-Al-CTAB, and Mt-Zn-CTAB)
was introduced into a series of 250 mL Erlenmeyer flasks and 100 mL of PCP with a
concentration of 10 mg/L. These flasks were placed under magnetic stirring at a speed
of 400 rpm for 12 h at room temperature. The adsorption capacity was calculated at an
equilibrium time of 12 h using the following Equation (1):

Qe =
V(Cint − Ce)

m
(1)

where Qe (mg/g) is the amount of PCP adsorbed at equilibrium time, Cint and Ce (mg/L)
are the initial and equilibrium concentrations of PCP in the solution phase, respectively, V
(L) is the solution volume, and m (g) is the mass of adsorbent.

The concentration of the PCP was evaluated by JASCO-750 UV (Tokyo, Japan) spec-
trophotometer at a wavelength of 320 nm [35,36]. The adsorption capacity of each adsorbent
material is summarized in Table 1. From these results, Mt-Fe-CTAB was selected for further
optimization studies by RSM.

Table 1. Adsorption capacity of the adsorbent materials after 12 h of contact, C0 = 10 mg/L, and
textural properties of the adsorbents.

Adsorbent PCP, Amount Adsorbed
(mg/g)

SBET
(m2/g)

Sext
(m2/g)

dp
(nm)

Vp
(cm3/g)

Mt 13.50 241 130 6.22 0.375

Mt-CTA 21.28 173 123 7.35 0.319

Mt-Fe-CTA 34.57 96 94 8.86 0.213

Mt-Al-CTA 26.15 105 84 8.06 0.213

Mt-Zn-CTA 28.52 98 86 8.25 0.203

Mt-Mg-CTA 24.59 92 82 8.61 0.197

Mt-Na-CTA 26.82 100 84 8.28 0.208

3. Materials Characterization
3.1. Infrared Analysis

The FTIR analysis was recorded at room temperature in the mid-IR range (400–4000 cm−1)
using a Spectrum Two FT-IR Spectrometer apparatus from Perkin Elmer (Waltham, MA,
USA) equipped with ATR accessory with a single reflection diamond crystal. In addition,
the spectra were obtained by collecting four scans using a 4 cm−1 resolution. The FTIR
spectra of raw Mt, Mt-CTAB, Mt-Fe-CTAB, Mt-Al-CTAB, Mt-Zn-CTAB, Mt-Na-CTAB, and
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Mt-Mg-CTAB (see Figure 1) have almost the same appearance. All the FTIR spectra have
a band at 3628 cm−1, which is attributed to the elongation vibration of the OH groups
of the octahedral layer of montmorillonite. Other bands observed at 917 and 847 cm−1

correspond to the bending vibrations of AlOH and MgOH [37]. A very intense band at
1037 cm−1 corresponds to the valence vibrations of the Si-O bond of tetrahedral sheets.
The absorption bands at 523 and 468 cm−1 belong to the bending vibrations of the Si-O-Al
and Si-O-Si bonds. Another band centered around 1630 cm−1 is related to the deformation
vibrations of H2O molecules adsorbed between the sheets.
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Figure 1. FTIR spectra of CTAB and CTAB-modified Mt.

To examine the functional groups of each material studied, the FTIR spectra of mont-
morillonites without CTAB- and CTAB-modified montmorillonites were compared. A few
new bands appeared in the spectra of the CTAB-intercalated MMT showing the existence
of the characteristic functional groups of the surfactant. The first band at 1472 cm−1 corre-
sponds to the shear vibrations of -CH2 and -CH3. Another band at 2926 and 2854 cm−1

corresponds to asymmetric and symmetric stretching vibrations of -CH2 and -CH3. In
addition, a small decrease in the free OH bands of the water molecules and the OH bands at
3450 and 3600 cm−1 was observed, confirming the decrease in the amount of water caused
by the hydrophobic nature of the organo-montmorillonite. These results suggest that CTAB
was well adsorbed on the surface of the montmorillonite.

3.2. Thermogravimetric Analysis

The thermogravimetric analysis was performed with a PerkinElmer TGA 4000 (Waltham,
MA, USA) in a flowing nitrogen atmosphere (20 mL/min) at a heating rate of 10 ◦C/min
from 30 to 800 ◦C. The TGA curves of all the CTAB-modified montmorillonites (see Figure 2)
have overall similar shapes with a difference in the percentage of CTAB loss. The CTAB-
modified montmorillonites showed a moderately low plateau from 50 to 200 ◦C compared
with the raw Mt, indicating that the CTAB-modified Mt had less free water than the raw Mt.
Therefore, the adsorbed CTAB reduced the interfacial free energy of the Mt, indicating the
formation of a hydrophobic surface, which was consistent with the IR results. Two clearly
visible mass losses on the TGA curves of the CTAB-modified Mt at 289 and 467 ◦C were
due to the pyrolysis decomposition of intercalated and adsorbed CTAB between the layers.
In addition, two other mass losses at 603 and 649 ◦C are attributed to the dehydroxylation
of montmorillonite sheets.
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Figure 2. Thermogravimetric analysis of raw Mt, Mt-Fe-CTAB, Mt-Al-CTAB, Mt-Mg-CTAB, Mt-Na-
CTAB, and Mt-Zn-CTAB.

3.3. Scanning Electron Microscopy Analysis

Scanning electron microscopy analysis for the raw Mt (see Figure 3a) shows a dense,
agglomerated, and smooth structure, while in the Mt-CTAB (Figure 3b), upon addition
of CTAB, a less dense structure was obtained with a rough surface. Similar to the fact
that the cation exchange by iron ions (Figure 3c) leads to a slightly rough surface, the
addition of CTAB leads to a surface rough with the formation of small aggregates compared
with Mt-CTAB and Mt-Fe, which explains their high adsorption capacity. According to the
results, we can conclude that the modification of Mt by the CTAB surfactant leads to a rough
surface with the formation of small size aggregates. Moreover, the ion exchange increased
the surface area of Mt, according to our previous laboratory study [38]. Furthermore, the
SEM analysis confirms that the modification by CTAB was well conducted.

3.4. Point of Zero Charge (pHpzc)

The pHpzc or pH of the point of zero or null charge corresponds to the pH value,
in which the net charge of the surface of the adsorbents is null. This parameter is very
important in adsorption phenomena, especially when electrostatic forces are involved in
the mechanisms. The pHpzc values of Mt and organo-Mt are determined in the method
described by Benhouria et al. [39]. In each Erlenmeyer flask, 50 mg of adsorbent is added
to 50 mL of distilled water for a pH range from 2 to 12. The pH of each solution was
adjusted by the addition of HCl and/or NaOH and stirring for 24 h. Then, the final
pH was measured. The results of the isoelectric point of organo-Mt and raw Mt are
presented as ∆pH = (pHf-pHi) as a function of pHi (see Figure 4). The pHpzc values are
included between 3.89 and 5.97 for the modified Mt and 6.5 for the raw Mt. Therefore, the
modification of raw Mt by the CTAB surfactant changes the surface charge from negative
to positive when the pH is lower than 6.5.
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3.5. Nitrogen Adsorption and Textural Analysis

To study the textural properties of the prepared Mt-M-CTAB, the N2 adsorption
capacity was measured at −196 ◦C using a Micromeritics ASAP 2020 Plus model (Norcross,
GA, USA). The isotherm plot (see Figure 5) represents a type II adsorption behavior,
according to the UPAC classification [40,41]. After desorption of the adsorbed N2, a type-
H3 hysteresis loop characteristic of a mesoporous structure of the organo-clay was obtained
(see the distribution of the pore size obtained from the BJH model, Figure 5). This type
of hysteresis loop characterizes the materials that consist of aggregates generating pores
of non-uniform size. The quantitative results of the textural analysis are summarized in
Table 1. As can be seen, the specific surface area and the pore volume of the organo-clay
decrease after the modification of the clay by CTAB, indicating the occupation of the surface
by the CTAB molecules. Upon the cation exchange with CTAB, the gallery space available
for adsorption was significantly reduced. In addition, the bulky size of CTAB occupied
more potential sorption sites in the inter-gallery space, leading to an increase in pore
diameter [42].
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3.6. XRD Analysis

The X-ray characterization was carried out using a Siemens D 5000 model (Plano, TX,
USA) diffractometer equipped with an Ni-filtered Cu-Kα radiation source (λ = 0.1548 nm).
The X-ray diffractogram of the Mt exhibited a low intensity reflection peak at 2θ = 5.34◦

(see Figure 6), according to the results described by other authors [43,44]. As seen in
Figure 1, Mt possesses a number of sharp peaks that correspond to various impurities:
Quartz between 19.8 and 35◦ and Feldespat between 26.8 and 27.8◦ [45]. The high intensity
basal reflections indicate a large number of repetitive clay platelets, which is visible for
organo-clays. However, the raw Mt used had a low degree of laminar stacking, which
explains the low basal reflection intensity. The basal space increased after the modification
from 1.65 to 1.88 nm, which may explain the successful implementation of intercalation [46].
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3.7. Batch Adsorption Experiments

An adequate choice of the parameter variation domains is an essential condition to
establish an accurate model that perfectly describes the study process. Before organizing
the adsorption tests that will allow us to answer the remaining questions, it is imperative
to define the study domain of each of the factors. This choice was made based on literature
and preliminary tests. As indicated in the majority of literature reports, the solubility of
PCP in water ranges between 10 and 20 mg/L. Since PCP is a weak acid (pKa = 4.35), its
solubility increases significantly with the increasing pH [47]. Therefore, we selected the
experimental study region with 40 spans, a pH range from 5 to 9, a contact time range
from 1 to 13 h, an adsorbate mass from 10 to 50 mg, and an adsorbent concentration
from 2 to 10 mg/L. According to our study, all of the PCP solutions were prepared with
deionized water.

4. Statistical Analysis

Optimization of PCP removal by clay adsorbents is achieved using RSM with a
central composite model. A rotatable central composite design uniform with rotational
isovariance and uniform accuracy was used to investigate the empirical relationships
between two responses (PCP removal efficiency and adsorbed amount). This matrix has
many advantages, particularly high resolution and minimal number of trials [33]. For four
factors (pH of solution, mass of adsorbent, contact time, and initial concentration), a full five-
level factorial design requires 54—625 experiments, while the centered composite design
with rotational isovariance requires only 31 experiments. The number of experiments for
this design is obtained from the following equation [22]:

N = k2 + 2k + Cp (2)

where k represents the number of factors, and Cp represents the number of replicates of the
central point.

Design expert statistical software (JMP 2013, v.13.0.0, Brie Comte Robert, France) was
used for model fitting as well as the significance for adsorption efficiency and adsorbed
quantity of PCP. The four factors were evaluated at five levels (−α, −1, 0, +1, +α) and the
coded values were calculated according to Equation (3), as shown in Table 2.

Table 2. Experimental areas of the factors studied in the optimization of PCP adsorption capacity
on Mt-Fe-CTAB.

Variables (Xi) −2 −1 0 +1 +2 ∆x

X1 = pH 5 6 7 8 9 1

X2 = tc (h) 1 4 7 10 13 3

X3 = m (mg) 10 20 30 40 50 10

X4 = Cint (mg/L) 2 4 6 8 10 2
X1 = (x1 − 7)/1; X2 = (x2 − 7)/3; X3 = (x3 − 30)/10; and X4 = (x4 − 6)/2.

Xi =
xi − x0

∆x
(3)

where Xi is the dimensionless value of an independent variable, xi is the real value of an
independent variable, x0 is the value of Xi at the center point, and ∆x is the step range.

Each response can be expressed as a quadratic equation as follows [48,49]:

Y = β0 + ∑k
i=1 βiXi + ∑k

i=1 βiiX2
i + ∑k

i=1 ∑k
j=1 βijXiXj + ε (4)

where Y denotes the response, β0 denotes the constant coefficient, Xi and Xj represent the
coded values for independent variables, and βij, βii, βi, k, and ε denote the interaction,
quadratic, linear coefficients, the number of factors studied and optimized in the experiment,
and the random error, respectively [50].
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The resulting model in terms of coded values versus response is summarized in the
following equation [51]:

Y = β0 + β1X1+ β2X2 + β3X3 + β4X4 + β11X12 + β22X22 + β33X32 + β44X42
+β12X1X2 + β13X1X3 + β23X2X3 + β14X1X4 + β24X2X4
+β34X3X4 + ε

(5)

The first part (experiments 1 to 16, see Table 3) is the factorial part, which constitutes
the eight vertices of the unit cube. The second part (experiments 17 to 24) is the axial
part, which constitutes the points on the axes of the reference frame used. Each of these
experiments is used for one of the factor levels outside of the usual operating values. Finally,
the last part of the composite design (experiments 24 to 31) is constituted by a repetition
(Cp = 7 times) of the experiment that is qualified as central (with all the factors fixed at their
average level). In a statistical context, it is interesting to repeat some experiments several
times since the random nature of the phenomenon will lead to the fact that the observed
responses will not be equal.

Table 3. Experimental design of the optimization of the PCP adsorption capacity on the Mt-Fe-CATB
with the responses recorded for each trial.

Order pH tc m Cint pH tc m Cint Qe

1 −1 1 −1 1 (6) (10) (20) (8) 35.0000

2 1 −1 −1 −1 (8) (4) (20) (4) 18.0000

3 0 0 0 0 (7) (7) (30) (6) 19.0850

4 −1 −1 −1 −1 (6) (4) (20) (4) 18.3660

5 1 1 1 −1 (8) (10) (40) (4) 1.9935

6 0 0 0 2 (7) (7) (30) (10) 19.2810

7 0 −2 0 0 (7) (1) (30) (6) 15.2723

8 −1 −1 1 1 (6) (4) (40) (8) 15.5229

9 0 0 0 0 (7) (7) (30) (6) 18.9107

10 0 0 0 −2 (7 (7) (30) (2) 6.1002

11 0 0 0 0 (7) (7) (30) (6) 19.0414

12 −1 −1 −1 1 (6) (4) (20) (8) 38.0392

13 0 0 −2 0 (7) (7) (10) (6) 37.8431

14 0 2 0 0 (7) (13) (30) (6) 19.0414

15 −1 1 1 1 (6) (10) (40) (8) 18.4314

16 1 −1 −1 1 (8) (4) (20) (8) 21.9281

17 1 1 1 1 (8) (10) (40) (8) 18.1209

18 2 0 0 0 (9) (7) (30) (6) 17.9303

19 0 0 0 0 (7) (7) (30) (6) 19.1939

20 0 0 2 0 (7) (7) (50) (6) 11.5817

21 −1 1 1 −1 (6) (10) (40) (4) 8.7255

22 0 0 0 0 (7) (7) (30) (6) 19.2157

23 −2 0 0 0 (5) (7) (30) (6) 19.4336

24 1 −1 1 −1 (8) (4) (40) (4) 2.9248

25 0 0 0 0 (7) (7) (30) (6) 19.0632
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Table 3. Cont.

Order pH tc m Cint pH tc m Cint Qe

26 1 1 −1 −1 (8) (10) (20) (4) 13.9869

27 −1 1 −1 −1 (6) (10) (20) (4) 18.9869

28 1 1 −1 1 (8) (10) (20) (8) 25.4248

29 1 −1 1 1 (8) (4) (40) (8) 18.1209

30 −1 −1 1 −1 (6) (4) (40) (4) 9.3954

31 0 0 0 0 (7) (7) (30) (6) 19.2375
Qe: Equilibrium adsorption.

The effects of all the factors studied along with the statistical values of t-student and
the observed probability (p-value) are grouped in the coefficient effects (see Table 4). The
t-student values are used to determine the significance of the coefficients for each parameter.
In general, the larger the magnitude of t, the smaller the p-value, and the more significant
the corresponding coefficient term. From these results, the following Equation (6) can
be proposed:

Qe = 19.106754 − 1.873911pH − 6.20915m + 5.1904503Cint − 1.708197Cint2 (6)

Table 4. Effects of model coefficients relating response to factors.

Term Coefficient Estimation Standard
Error t Ratio prob. > |t|

Constant β 0 19.106754 1.279135 14.94 <0.0001*

pH β 1 −1.812364 0.690812 −2.62 0.0184 *

T β 2 0.1847313 0.690812 0.27 0.7926

m β 3 −6.270697 0.690812 −9.08 <0.0001 *

Cinit β 4 5.1289034 0.690812 7.42 <0.0001 *

pH × tc β 12 −0.171569 0.846068 −0.2 0.8419

pH × m β 13 1.1662582 0.846068 1.38 0.187

t × m β 23 0.3574346 0.846068 0.42 0.6783

pH × Cinit β 14 −0.394199 0.846068 −0.47 0.6476

t × Cinit β 24 0.6147876 0.846068 0.73 0.4779

m × Cinit β 34 −0.151144 0.846068 −0.18 0.8605

pH × pH β 11 −0.194989 0.63287 −0.31 0.762

tc × tc β 22 −0.576253 0.63287 −0.91 0.3761

m × m β 33 1.3126362 0.63287 2.07 0.0546

Cinit × Cinit β 44 −1.69281 0.63287 −2.67 0.0166 *

According to the results included in Table 4, the second-order response surface model
fitting in the form of the analysis of variance (ANOVA) is summarized in Table 5. The
significance of the regression model was evaluated using the Fisher distribution. A larger
F-value indicates a better fit of model to the experimental extraction efficiency. In addition,
the null-hypothesis test (p-value) is considered, where a p-value less than 0.05 indicates the
design variable of a model contributing less than 5% change in the response. Therefore, the
variable with a larger F-value and p < 0.05 was considered significant.
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Table 5. Estimated regression coefficients and corresponding F- and p-values for adsorbed PCP.

Source Degree of Freedom Sum of Squares Mean Square F-Value p-Value

Model 14 1843.1399 131.6530
11.4947 <0.0001

Residual 16 183.2532 11.4530

Total 30 2026.3931

The relation between the actual and predicted adsorbed amount of PCP was included
in Figure 7. The results show evidence of the validity of the regression model. Finally, as
shown in Figure 8a, it was clear that the adsorption capacity increased gradually with the
increase in pH, and the optimal adsorption capacity was observed at a pH of 6. This result
can be explained by the electrostatic interaction between the negatively charged PCP (the
PCP is a weak acid and its pKa is 4.7, which indicates that at pH > 4.7, it deprotonates as
negatively charged species PCP [52]) and the positively charged surface of the modified
clay. On the other hand, the initial concentration proved to have a significant effect on the
adsorption capacity. As can be seen in Figure 8a, the adsorption capacity increases with
the increase in the initial concentration. This increase may be due to the increase in the
mass transfer driving force upon increasing the initial PCP concentration, which leads to
the increase in the diffusion of PCP molecules in the solution to the surface of Mt-Fe-CTAB.
In addition, increasing the initial PCP concentration increases the probability of collision
between the PCP molecules and the adsorption sites of the Mt-Fe-CTAB. The effect of the
mass of adsorbent present in Figure 8b shows that the highest adsorption capacity was
reached when the mass is lower than 20 g. The PCP removal rate is affected by the mass of
adsorbent, which is due to the fact that when the mass of the Mt-Fe-CTAB decreases, the
crystallite tends to disperse, which leads to an increase in the total surface area of adsorbent
particles available for PCP fixation. This behavior can be explained by the fact that at higher
adsorbent mass, the available number of PCP molecules in the solution is not sufficient to
combine completely with all the effective adsorption sites on the Mt-Fe-CTAB, resulting in
a state of surface equilibrium, and consequently in a decrease in the adsorption capacity
of PCP.
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The predicted optimal conditions based on the RSM were: An initial pH of 6, a
mass of adsorbent of 20 g, an initial concentration of 8 mg/L, and a contact time of
5 h. The maximum adsorption capacity of PCP was 33.7 ± 4.54 mg/g. Confirmatory
experiments were conducted with the parameters to check the accuracy of the optimum set
of parameters and the adsorption capacity was found to be 38 mg/g. The experimental
value was close to the results obtained from RSM, which validated the findings of response
surface optimization.

5. Conclusions

In this work, the preparation of organo-clay from a montmorillonite modified with
CTAB as a surfactant through intercalation processes was confirmed by the performed
analyses. FTIR analysis confirmed the presence of CTAB in Mt using the existing character-
istic functional groups of CTAB. XRD analysis was successfully carried out to prove the
intercalation of CTAB in the interlayer space. Herein, the analysis resulted in an increase in
basal space from 1.65 to 1.88 nm, which confirms that the intercalation was carried out and
lead to an increase in basal space. Moreover, TGA analysis confirmed the modification of Mt
by CTAB, through the loss of mass at 289 and 467 ◦C due to the pyrolysis decomposition of
intercalated and adsorbed CTAB. Furthermore, SEM analysis presented the surface change
after intercalation from a dense, agglomerated, and smooth structure to a rough surface
with the formation of small aggregates. This modification resulted in a decrease in the
specific surface and pore volume as well as an increase in the pore diameter. In conclusion,
the metal ion led to an increase in the pH range of the positive charge of intercalated Mt.

The optimal condition for high adsorption capacity was obtained with a minimum
number of experiments using the RSM central composite model, for four factors: Solution
pH, adsorbent mass, contact time, and initial concentration. The results proved the validity
of the regression model, wherein the adsorption capacity reached its maximum value of
38 mg/g at a lower adsorbent mass of 20 g, pH of 6, initial concentration of 8 mg/L, and
contact time of 5 h.
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