E.T.S. de Ingenieria Industrial,

Informatica y de Telecomunicacidn

Budget inFORM,
a Dynamic Shape Display

Grado en Ingenieria Informatica

Trabajo Fin de Grado

Autor: Yuxiang Xu

Tutor: Asier Marzo

Pamplona, 9 September 2022 U p n a

Universidad Publica de Navarra
Nafarroako Unibertsitate Publikoa

Acknowledgements

| want to thank my director Asier Marzo for the guidance and help, without him | would
have been really lost in the development. Also I'm really grateful for the members of Up-
naLab that helped me on the smallest things and | appreciate their support.

And my thanks to everyone of my friends who encouraged me during the hardships.

Summary

The project consists in the design, assembly and programming of a budget inFORM, a
Dynamic Shape Display of MIT. Each of the pixels of the display will be driven by a micro
servo motor. These motors will be controlled by a PWM controller and the signals will be
send through an Arduino Nano board. The approach will be modular, the minimum size will
be a 2x2 module and each of them can be stacked up and scale up. All the components can
either be printed with a 3d Printer or purchased cheaply.

With this device the user will be able to control the pixels and create patterns to interact
with the physical world.

Figure 1: Budget inFORM displaying UPNa

Key words

InForm, Dynamic Shape Display, servo motor, PWM controller, Arduino, modular, Python,
3d Printer

1
2
3

Contents

Motivationand Objective. ..., 1
Stateofthe Arll. e e 2
Mechanical parts.co it i 3
3.1 BErUCEUNE . .o 3
301 JErafion O . ..ot 4
302 Eerafion Tot 4
3.1.3 Jteration 2 e 6
3.1.4 Jteration 3 o e e e e e e 9
315 Jteration 4 e e e e e e e e 11
3.1.6 FINATVEISION. . . o oo oe et e e e e e e e e e 12
3.2 Rack and PINIONot e e 13
321 RACR. . oo 13
322 PINOM oo oo ottt 14
3.3 TOP COTUMM. . o oottt ettt 16
IS =Y 17
341 NerficlTeSg oo e e e e e e e 17
3.4.2 HOMZONATIEZY o v oo e e e e 18
Electromechanical. i 19
CC I ONICS ... ittt i e e e e 21
PrOgramMMING ...ttt ittt e e 24
6.1 Connecting Pythonwitharduing............ 24
6.2 APPNCATIONGottt 26
6.2.1 FISEGPPICATON « . .« o oo e e e e e e e e e e e 26

6.2.2 Secondapplication e 27

7 Futurework. o i 28
7.0 KINECH . .o e e e 28
7.2 PIOJECEOR. « - - e e e et e e e e e e e 28
7.3 FVBBSEIVICE - - e e v e e e e e e e e e 28
7.4 MOTESRADEY - - e vvve e e e e e e e e e e e 28
7.5 Differenttop CoOlUMNGot i e e 29
7.6 TMPTOVEMENES - -« e v vt e e et e e e e e e e e 29

A L0 . .o e e e 30
AL ANAUING. .« . ettt e e e e e e e 30

ALl MaINToOQ. . . . o oo e 30
A.1.2 nitialisation]. e e 31
AL3 FUNCEiONg oo e 32
A2 PYENON . .. e e 33
A.2.1 |mports and functions for sending commands. 33
A.2.2 Firstapplication e e 34
A.2.3 Becondapplication e 36

List of Figures

B UPNG . . i
2.1 InFORMexampleso 2
8.1 Servo structure PotentPrintableg 3
B.2 ServostructurevQ e e e e e e 4
B.3 Servostructurevll e e e e 5
B.4 Dovetalljoinff e e 7
B.5 JointsEnder3Prd e 8
B.6 ServostructurevZ e e e e 8
B.7 Servostructurev3 e e e e e e 10
B.8 Servostructurev4l e e e e e 11
B.9 Servostructurevs e 12
B.10 Rack McMaster-Carrl e e e e 13
...................................... 14
B.12 Spurgearn i i e e e e e e e e e e e e e e e e e 15
B.13 Topcolumn e e e 16
B.14 Verticallegs oo 17
B.15 Horizontallegd 18
B.1 Microservomotorn e e e e e e e 19
4.2 Diagram PWM timingservomotors 20
5.1 WIringPWM e e e e e e e e e e 21
5.2 Address Jumpery e e e e e e e e e e e e e 22
B.3 Chainingdrivery o e e e e e e e e e e e e e e e e 22
5.4 Powersupplyl e e e e e e 23
6.1 Firstapplication oo 26
6.2 Secondapplication e e e e e 27

List of Code Listings

6.1 Stabilising serial connectioninPython 24
6.2 Mapping matrixtocommand e e 25
6.3 Functionin arduinotomoveeachservg 25
A1 ArduinO MaiN Programl v v v e e e e e e e e e e e e e e e 30
A.2 Arduinoinitialisation oo 31
A.3 Arduinofunctiony e e e e e e e 32
A.4 Imports and functions for sendingcommandy 33
A.5 First application, paintingtheboard 34
A.5 First application, paintingtheboard 35
A.6 Second application, showing mathfunctiong 36
A.6 Second application, showing mathfunctiony 37

vi

1. Motivation and Objective

The main objective is to replicate the MIT inFORM in a budget friendly and simple to assem-
ble.

In order to do that, we will be designing a modular structure where it will hold the micro
servo motors. To transform the rotational movement of the servo motors into a lineal one,
we will use a rack and pinion linear actuator. These components will be printed using a 3D
printer.

To control the servos, we will be using a PWM (Pulse-width modulation) controller, a
PCA9685 16-Channel Servo Driver, that’s compatible with Arduino. We will use the library
provided by Adafruit.

Lastly, to send the pixels to display, we will be using Python through the serial port to
the Arduino board. There we can develop the applications needed for the user to control.

We are aiming to create a 8x8 board and the project can be divided into 4 sections:
Mechanical, Electromechanical, Electronics and programming.

2. State of the Art

inFORM is a Dynamic Shape Display that can render 3D content physically, so users can in-
teract with digital information in a tangible way. inFORM can also interact with the physical
world around it, for example moving objects on the table’s surface. Remote participants in
a video conference can be displayed physically, allowing for a strong sense of presence and
the ability to interact physically at a distance. [{1]

The replication of all their functionalities is out of the scope of this project due to the
complexity and cost. Figure P.1.

(a) Displaying a miniature car (b) Displaying a math function

Figure 2.1: Some of their project capabilities

3. Mechanical parts

The mechanical parts consists of the modular structure, rack and pinion, top column and the
legs that support the structure. All of these components will be designed using AutoCAD'’s
Fusion 360, a 3D modeling software. In addition, they can be produced using a 3D printer.

3.1. Structure

This is the component where the servos will be installed. At a first approach, we want to
design a structure to hold just one servo and from there keep iterating. Instead of coming
up with the idea from scratch, we got inspired with this design from the youtuber Potent
Printables in one of their videos [2] and we printed and tested a modified version from
their mini version design [3]. The servo is attached using a two M2 10mm bolts and the
corresponding nuts. Figure B.1].

(a) structure in fusion 360 (b) structure printed with a servo attached

Figure 3.1: Modified design from Potent Printables

3. Mechanical parts

3.1.1. Iteration O

As this design fits well with our servo motors, we designed the basic unit of the structure so
that we can modify it and adapt to our needs. This structure is printed in the axis as shown.

Figure B.2.

(a) structure in fusion 360 (b) structure printed

Figure 3.2: Iteration O of the structure

3.1.2. lteration 1

Initially we wanted to make a minimum module of 4x4 servos, as our PWM Controller can
control up to 16 servos. In addition we want to make it as compact as possible so that the
pixels are of a reasonable size.

Therefore we want to make a structure so that it can hold a 4x1 structure and with it try
different configurations to minimize the pixel size. We managed to get a configuration of
4x4 so that the distance between each servo is 28mm, the servos are situated in to levels, a
"top” and "bottom” layer. Figure B.3.

3. Mechanical parts

) T a
B3 Y 5 -
& a4 A B
3 & A [
(c) structure 4x4 merged (d) structure 4x4 merged bottom view

(e) structure 4x4 printed

Figure 3.3: Iteration 1 of the structure

3. Mechanical parts

3.1.3. Iteration 2

With the previous iteration, we realized of 2 problems, the first is that in the middle positions
of the structure is not possible to place the servo in their slot due to parts of the structure
impending it. From here we decided to further split the module of 4x4 into 2 modules of
2x4, this way we can assembly each part before merging them. Figure B.4.

The other problem is that until now we have been using Ender 3 Pro 3D printers, but
these printers does not provide a good enough printing quality (figure B.6d), making hard to
calibrate the sizes of the joints and messy first layer prints due to the elephant foot effect
[4]. Fortunately, a better printer was available, the Original Prusa i3 MK3S. Figure B.6d.

Dovetail joint

In order to merge the 2 modules of 2x4 together, a joint has to be designed, we will be using
a dovetail joint. As well as the clearances needed for a good fit.

As for now, the structures are connected directly with a 6mm wide and 10mm tall union,
we need to separate this union and make a joint to fit them. The first iteration we set that
the maximum wide of the female joint to be less than 6mm and the for the male 4mm, with
this design the printed joints were not strong enough and thus not reliable. This is why we
decided to widen the joints and make modifications in the structure latter on for a reliable
assembly. So in total we have three designs with different tolerances. Figure B.4.

s 6mm Dovetail joint, with tolerances:

e 0.15mm
e 0.2mm

= 10mm Squared dovetail joint, with tolerances:

e 0.1mm

e 0.15mm
0.175mm
e 0.2mm

= 10mm Dovetail joint, with tolerances:

e 0.15mm
e 0.2mm

The best joint and tolerance for the Ender 3 Pro 3D printers were the 10mm Dovetail
joint with 0.2mm. But the result was not satisfactory due to a bad first layer. Although the
first layer can be sanded down, it is not feasible to do it with every component and would
take too much time for it. Figure B.5.

After receiving the Original Prusa i3 MK3S printer, we proceed to print with the same
dovetail joint with 0.2mm tolerance and it was too loose. This will be improved in the next
iteration. Figure B.6d.

3. Mechanical parts

N P))
I) L = 90l OC o3¢
(a) 6mm dovetail joint (b) 10mm Squared dovetail joint
S Lt
(c) 10mm Dovetail joint (d) All joints

(e) Ender 3 Pro prints (black), Prusa i3 MK3S
prints (blue)

Figure 3.4: Dovetail joints

3. Mechanical parts

S
>
>
T
C
>
w

M w ww wlhr s a |

a & X X

(b) 2 structures 2x4 bottom view

(c) structure 2x4 Ender 3 Pro (d) structure 2x4 Prusa i3 MK3S

Figure 3.6: Iteration 2 of the structure

3. Mechanical parts

3.1.4. Iteration 3

In this iteration we will be adding joints in the other axis so that the module can scale up
in both of X and Y directions. In addition, with the Original Prusa i3 MK3S printers, the
quality improved and the problem with elephant foot disappeared. Better tolerances can be
achieved, so we deceased the tolerance to 0.1mm. This way the modules can be assembled
directly without the need of glue. Furthermore, we made the joints stronger by elongating

it. Figure B.73a.

After printing it and testing it, the joints worked well. But we encountered a design fault,
when the servos are mounted in the structures, it was not possible to put two modules
together. The "top” servos would hit the "bottom” servos figure B.7€. Luckily, the solution
was simple, and it is to invert the direction where the would be assembled. For this and to
make the design 3d printing friendly, the bottom part of the joints were chamfered by 60°

angle. Figure B.71.

3. Mechanical parts

(a) structure 2x4 (b) structure 2x4 printed

(e) Modules hitting each other (f) Solved with the inverted joints

Figure 3.7: Iteration 3 of the structure

10

3. Mechanical parts

3.1.5. Iteration 4

For the last iteration minor changes were made. The first one is adding an hexagon hole for
the nuts, this makes the process of assembly easier. The other change is adding a guide/hook
for the cable of the servo motors to keep everything in place. Figure B.8.

(a) D
size

(c) structure 2x4 (d) structures 2x4 with 2 servos mounted

Figure 3.8: Iteration 4 of the structure

11

3. Mechanical parts

3.1.6. Final version

In this final iteration, we have decided to make a 2x2 module from the 2x4 module, this way
it would be more versatile and more shapes can be made with the modules. The relative
position of the joints were moved for better fitting. The last version of the 2x4 module is
compatible with the 2x2 module. Figure B.9.

LT |
S g]

-

(a) structure 2x4 compatible with 2x2 (b) structure 2x2

(c) structure 2x2 printed with nuts placed in

Figure 3.9: Final iteration of the structure

12

3. Mechanical parts

3.2. Rack and pinion

The rack and pinion linear actuator is comprised of a circular gear (the pinion) engaging
a linear gear (the rack). In our case the servo will be coupled with the pinion and thus
transform the rotational motion into a lineal motion of the rack.

As done in the structure section, we also took as a first approach with the design from
the youtuber Potent Printables [2]. Then we replicated the design to match our needs.

3.2.1. Rack

For the rack we got a pre-made rack design from McMaster-Carr in Fusion 360. Figure B.10.
We modified it to our needs through different try and errors. The important parameter is
that is has module 1. Figure B.11.

rack x| Q ORDER ORDE

McMASTER-CARR.

Clear All 1 Product How can we improve? | Print | Forward | |8 Viev

Component Plastic Gears and Gear Racks—20° Pressure Angle

v
Gear Rack The current industry standard, these 20° pressure angle gears have thicker, stronger
teeth than 14'4° pressure angle gears. Made of plastic, they run quieter than metal gears

and have good corrosion and chemical resistance. They're also known as spur gears

System of Measurement Combine gears with different numbers of teeth io change speed and forque in your
v Metric assembly. Combine a gear and rack to convert rotary motion into linear motion

For components to mesh correctly, they must have the same pressure angle and
Module pitch/module
v 1

Acetal gear racks absorb less water than nylon racks, so they're less likely to swell

Material Show _:S}D For technical drawings and 3-D models, click on a part number.
v Acetal Plastic

Metric Gear Racks
Face

Height Show Wa
7 12mm ’, ’
Gear Rack Shape AAAA] Pitch
Ht.
% Rectangular

Lg., Pitch Ht., Face

Module mm Ht.mm mm Wd., mm Material Fabrication Color Each
S 1 500 11 12 10 Acetal Plastic Machined White |2662N63| $113.57
)
Spur 1 Module, 500 mm Long, Acetal Gear Rack for Each
20 Degree Pressure Angle Plastic Gear
Color In stock
White

Product Detail _[CAD [3-D Solidworks ¥ | Downtoad |

Pressure Anale

Figure 3.10: Rack from McMaster-Carr

13

3. Mechanical parts

(a) Final versions (b) Different iterations

Figure 3.11: Rack development

3.2.2. Pinion

To make the pinion, we used the SpurGear add-ins from Fusion 360 with module 1 and
the following parameters in the figure B.124. 16 teeth is the number of teeth on the Potent
Printables designs and they are commonly used, however due to the difference between the
original design and the the replicated one, there was too much play. After putting each piece
together in Fusion 360 we figured out that adding 1 more tooth we would get a clearance of
0.1mm with the rack. Therefore, 17 teeth with module 1 is our chosen parameters. Figure

3124,

To couple the gear to the servo motor we used the provided "blades”, the pinion has a
hole to fit the blade, although the blade has to be cut, leaving only 2mm of it. This was the
most secure way to assemble the gear with the servo since the 3D printers we have uses
FDM technology and they are not precise enough. Figure B.12d.

14

3. Mechanical parts

| @ SPUR GEAR
Module: Size Ratio (Pitch Diameter /
Number of Teeth)
Pitch Diameter

Root Fillet
Radius

Standard Metric -
Pressure Angle 20 deg v
Module 1.00

Number of Teeth 16

Backlash 0.00 mm
Root Fillet Radius 0.55 mm
Gear Thickness 3.70 mm
Hole Diameter 0.00 mm

Pitch Diameter 16.00 mm

(a) parameters 16 teeth

(c) Spur gear 17 teeth

(b) Spur gear 16 teeth

(d) Iterations and example of blade

Figure 3.12: Spur gear

15

3. Mechanical parts

3.3. Top column

The top column is the component that’s connected to the rack. It is the "pixel” that we will
be actuating. We have chosen a rectangular cuboid of dimensions of 26x26x33mm, being
33mm the height.

The first design was to print the rack with the top column attached directly, however this
constrains the rack to be at the bottom of one of the sides of the top column. This is due the
limitations of 3D printing, if placed in the middle it would need supports to keep the rack
in place and printing in other axis was not feasible. The rack being at one side instead of
centered caused undesired play of the top column.

Hence this is why we decided to separate it from the rack. Doing this we got another
benefit of being able to change the top column easily to any other shape. In addition, this
made the assembly process more straightforward. Figure B.133.

To make the printing process faster and be more efficient with the amount of filament
used, the interior of the cuboid was made hollow with the exception of the column that
couples with the rack. Figure B.13B.

772
///ﬂ///”///l///ﬂ
NN

(a) Top columns in fusion 360 (b) Section view

(c) Racks and top columns printed

Figure 3.13: Top column

16

3. Mechanical parts

3.4. Legs

Finally to keep the structure elevated so that the rack have enough travel length and also
for better cable management, some legs were designed.

3.4.1. Vertical legs

In the first place vertical legs were designed. The initial idea was to have the servos drive the
racks and come out at the bottom of our structure, however for better cable management
and easier printing structure we decided to invert the direction the servos will drive the
racks. So lots of different legs were made to fit. The tolerances were hard to deal with as

well. Figure B.14.

There are 2 types of legs, a "female” and "male” leg, since these legs makes use of the
existing joints of the structure.

(a) Iterations of legs (b) All the tries of legs printed

Figure 3.14: Vertical legs

17

3. Mechanical parts

3.4.2. Horizontal legs

The horizontal legs are designed to hold the structure horizontally, the purpose is to display
the structure. After printing the first version, we realized that 90° was not a good angle. So
we made a another version that holds the structure at 70° angle. Figure B.15.

(a) Legs in Fusion 360 (b) All the tries of legs printed

Figure 3.15: Horizontal legs, the last pair at the right are the final version

18

4. Electromechanical

The main component that our system is based on are the micro servo motors figure @.1. They
are a rotary actuator or linear actuator that allows for precise control of angular or linear
position, velocity and acceleration [5]. This device can automatically correct its position
through an error-sensing position encoder. We are using one of the simplest and cheapest
servos on the market, they user a potentiometer to measure the position and the motor will
move to the commanded position to minimize the error. Once they arrived to the desired
position it will stop and maintain.

Figure 4.1: Micro servo motor with blades and screws

With our servo motor we have a rotational movement of around 180° or 7 radians, this
combined with the pitch diameter of our pinion we can calculate the total lineal displace-
ment we will get, as the pitch diameter is 177mm we get 26.69mm of displacement.

diameter x w
2

The micro servos are quite responsive and can manage to go from 0° to 180° in less than
350ms, as a initial test this seems slow. It consumes at a maximum of 400mA at 5V, under
slower loads it averages around 25mA. The currents are taken from observing the display of
a lab power supply.

Displacement =

19

4. Electromechanical

The servo motors are controller through a PWM (pulse-width modulation) signal, a series
of repeating pulses of variable width where either the width of the pulse (most common
modern hobby servos, our servos) or the duty cycle of a pulse train determines the position
to be achieved by the servo [4].

These servos are connected through a standard three-wire connection: two wires for a
DC power supply and one for control, carrying the control pulses:

m signal, yellow wire

m power, VCC, red wire

m ground, GND, black wire

The servo expects to receive a pulse every 20 ms (50Hz), by modifying the width of the
pulse we can control the angle of rotation. Figure §.2.

Ve
Center
Position
ov |
1500us 20ms
Pulse width Period
Ve
ov
2000us 20ms
Pulse width Period
Vce
-90°
ov |
1000us 20ms
Pulse width Period

Figure 4.2: Diagram showing typical PWM timing for servo motors [6]

20

5. Electronics

We will be using an Arduino Nano as our microcontroller. We have chosen Arduino for its
open-source electronics platform based on easy-to-use hardware and software, perfect for
quick prototyping and affordable [7].

The arduino will receive the instructions over 12C and send them to the servos through
the PWM controllers. The exact model is PCA9685 16-Channel Servo Driver, which can drive
up to 16 servos over 12C with only 2 pins. This PWM controller will drive the 16 channels
simultaneously with no additional Arduino processing overhead. In addition up to 62 of
these controllers can be chained up to drive a total of 992 servos [8].

This is the wiring Arduino -> PWM controller figure p.1:

m +5v ->VCC (this is power for the BREAKOUT only)
s GND ->GND

= Analog 4 -> SDA

= Analog 5 -> SCL

(a) Diagram from Adafruit [9] (b) Wiring

Figure 5.1: Wiring Arduino with PWM controller

21

5. Electronics

Each PWM controller can be addressed with the address jumpers on the upper right edge
of the board. To program the address offset we need to solder to bridge the corresponding
address jumpers. The 12C base address is 0x40, each of the address jumpers works as binary,
in other words by bridging the rightmost jumper we get the address Ox41 and etc. Figure

54,

: I2C Address ‘
/Closed=%)

Figure 5.2: Soldering of an address jumper [[10]

For chaining the PWM controllers we just need to wire them in series, for our project we
decided to not connect the V+ pin. Figure 5.3.

(a) Diagram from Adafruit [10] (b) Chaining

Figure 5.3: Chaining drivers

When connecting the servos to the PWM controllers we just need to match the wire'’s
colours with the socket’s colours.

22

5. Electronics

For powering the servo motors an external power supply is needed, during the process
of prototyping and testing we used a lab power supply at 5V and 4A max. Nevertheless, for
our project of 8x8 board, we will need to power a total of 64 servos, taking into account the
maximum current of 0.4A per servo, we will need a power supply that can satisfy 25.6A at
5V, even though it is not likely that it will ever require such amount of power. To be safe and
not overheat our components we opted for a 30A, 5V power supply. Figure 5.4.

Figure 5.4: Power supply from Amazon

23

6. Programming

The programming was done in two languages: Arduino and Python. Arduino was needed
evidently for the Arduino Nano board and their IDE was easy to use and intuitive. On the
other hand Python has handy libraries such as OpenCV for computer vision. With Arduino
we set up the board to receive the commands and drive the servos. With Python we will
create said commands. All the code can be found in the code annex section [A.

6.1. Connecting Python with arduino

We used the Adafruit PCA9685 library and used the their servo example file as the base for
programming. The communication between Python and Arduino is done through serial, by
using the Pyserial library in Python. We used Jupyter notebook for the tests. The baurate is
set at 500.000Bd for faster transmission.

import serial
arduino = serial.Serial(port='COM3', baudrate=500000, timeout=.1)
%code

arduino.close ()

Code listing 6.1: Stabilising serial connection in Python

One of the things we needed to solve was how to address each servo. As the PWM
controllers has 16 channels from 0 to 15 and our minimum module size is 2x2, we will arrange
them in groups of 4. The arrangement of 16 servos in a 4x4 module will be as such, each
number corresponding the channel it is connected to.

O 1 4 5
2 3 6 7
8 9 12 13
10 11 14 15

24

6. Programming

With this configuration we can create a recursive algorithm that takes as input a square
matrix that’s multiple of 2x2 and map the positions to their corresponding channel in a com-
mand line.

def createCommand (matrix):
command = ""
delimitator = ","
n = len(matrix)
if n%2 !'= 0:
print ("The matrix size is incorrect, not a multiple of 2x2"
)

return command

if n ==
command += str (matrix[0,0]) + delimitator
command += str (matrix[0,1]) + delimitator
command += str(matrix[1,0]) + delimitator
command += str (matrix[1,1]) +
else:
midpoint = (n//2)
command += createCommand (matrix[0:midpoint ,0:midpoint])
command += createCommand(matrix[0:midpoint ,midpoint:])
command += createCommand(matrix[midpoint:,0:midpoint])
command += createCommand(matrix[midpoint:,midpoint:])

delimitator

return command

Code listing 6.2: Mapping matrix to command

On the Arduino side we just need to read each integer and store it in an array. Since our
project is a 8x8 board, we will need to store 64 values. The first 16 values will correspond to
the first PWM controller and successively with the next groups of 16 values.

void setServoHeight (int values[]) {
for (byte i = 0; i < 16; i++) {
for (int j = 0; j < N_DRIVERS; j++) {
pwm[j].setPWM(i, O, heightToPulselen(values[i + j * 16]1));}

Code listing 6.3: Function in arduino to move each servo

25

6. Programming

Onthe other hand we need to adjust the maximum displacement of each servo changing
the values of pulse length count. We set the minimum value to 90 and maximum to 480 and
these values do not seem to overstrain our servo motors. The caveat is that each unique
servo has its own "perfect” minimum and maximum pulse length values. This was a hard
chore to calibrate each of the 64 servos, so we did not do it. When mounting the servos we
leveled the 0° or ground value with the rack and pinion and not leveled the maximum value.

Code A.2.

6.2. Applications

We developed 2 applications. All of them requires the functions and imports from code A.4.

6.2.1. First application

This is the first application, with this we can paint our module with a image interface. Press-
ing the keys ['1')2',/3")4''5'6’)7'8'] will save the files in each slot. To show the saved files

140

press ['q’)w’)e’)r' 'ty u’)i’], each corresponding to the order. Code A.5. Figure B.1.

(a) Image interface (b) Shape in the module

Figure 6.1: Heart shape

26

6. Programming

6.2.2. Second application

The second application will show predefined math function in loop. Pressing A or D key will
change the functions shown. Code [A.4. Figure 6.2.

Figure 6.2: Displaying a sin wave diagonally

27

7. Future work

Due to the lack of time, these are some of the applications that are not done.

7.1. Kinect

The first thing we wanted to add was a kinect device, a motion sensing input device that can
map depth. This is one of the main features shown in the inFORM project. This would be the
most intuitive interface for our user to manipulate our device and showcase its potential.
Using the kinect the user could move objects remotely.

7.2. Projector

A projector mounted on top could be used to display a map with different relief levels or any
other object.

7.3. Web service

ESP32 could be used to create a web interface so the user can connect to the different ap-
plications and control our device.

7.4. More shapes

With the modular approach, we could have built any shape we wanted for other applica-
tions. For instance it is possible to make a "belt” of the servos so it can move things around.
Also as it is essentially lineal actuators, it can be used to play the piano when configures in
a straight line.

28

7. Future work

7.5. Different top columns

As the top column can be changed, other shapes can take place as well as placing other
types of material such a square mirror. We could attach one mirror to a group of 4 servos to
create different planes to reflect light.

7.6. Improvements

And lastly, many things can be improved. Such as the noise level, the durability of the servos
and the travel distance by using better servos. A better design can also be made to make
the pixel more compact. The coding used for this prototyping is rushed, better and more
efficient coding could be made.

29

A. Codes

A.1. Arduino

A.1.1. Main loop

This loop reads through serial the commands and drives the servos.

const int N_VALUES = 64;
int values [N_VALUES];
void loop() {

if (Serial.available() > 1) {
for (byte i = 0; i < N_VALUES; i++) {

values[i] = Serial.parselnt();
}
while (Serial.read() !'= '\n'); //we skip until the end of
line

#i1fdef ENABLE_DRIVERS
setServoHeight (values);
#endif
for (byte i = 0; i < N_VALUES; i++) {
Serial.print(values[i]);
Serial.print(" ");
}
Serial.println();

}

Code listing A.1: Arduino main program

30

A. Codes

A.1.2. Initialisation

#include <Wire.h>
#include <Adafruit_PWMServoDriver.h>
#define N_DRIVERS 4
Adafruit_PWMServoDriver pwm[N_DRIVERS] = {
Adafruit PWMServoDriver (0x40),
Adafruit_PWMServoDriver (0x41),
Adafruit PWMServoDriver (0x42),
Adafruit_PWMServoDriver (0x43)
s
#define ENABLE_DRIVERS 1
#define SERVOMIN 90 // This is the 'minimum' pulse length count (
out of 4096)
#define SERVOMAX 480 // This is the 'mazimum' pulse length count (
out of 4096)
#define USMIN 600 // This is the rounded 'minimum' microsecond
length based on the minimum pulse of 150
#define USMAX 2400 // This is the rounded 'maxzimum’' microsecond
length based on the mazimum pulse of 600
#define SERVO_FREQ 50 // Analog servos run at ~50 Hz updates
#define HEIGHTMAX 255 // Mazimun height wvalue
#define ANGLEMAX 180 // Mazimun angle value
void setup() {
Serial.begin (500000) ;
Serial.setTimeout (10);
#1fdef ENABLE_DRIVERS
for (int i = 0; i < N_DRIVERS; i++) {
pwm[i] .begin();
pwm[i].setOscillatorFrequency (27000000) ;
pwm[i] . setPWMFreq (SERVO_FREQ) ;
}
#endif
delay (10);
}

Code listing A.2: Arduino initialisation

31

A. Codes

A.1.3. Functions

void setAllServoHeight(int height) {
for (int j = 0; j < N_DRIVERS; j++) {
for (byte i = 0; i < 16; i++) {
pwm[j]l.setPWM(i, O, heightToPulselen(height));
}

}
void setAllServoAngle(int angle) {
for (int j = 0; j < N_DRIVERS; j++) {
for (byte i = 0; i < 16; i++) {
pwm[j].setPWM(i, O, angleToPulselen(angle));
}

}
void setServoAngle(int values[]) {
for (byte i = 0; i < 16; i++) {
for (int j = 0; j < N_DRIVERS; j++) {
pwm[j].setPWM(i, 0, angleToPulselen(values[i + j * 16]));
}

}
void setServoHeight (int values[]) {
for (byte i = 0; i < 16; i++) {
for (int j = 0; j < N_DRIVERS; j++) {
pwm[j].setPWM(i, O, heightToPulselen(values[i + j * 16]));
}

}

int heightToPulselen(int height) {
int pulselen = map(height, 0, HEIGHTMAX, SERVOMAX, SERVOMIN);
return pulselen;

}

int angleToPulselen(long angle) {
int pulselen = map(angle, O, ANGLEMAX, SERVOMAX, SERVOMIN);
return pulselen;

¥

Code listing A.3: Arduino functions

32

A. Codes

A.2. Python

A.2.1. Imports and functions for sending commands

import numpy as np

import cv2

import serial

import time

import math

def write(data):
arduino.write(data.encode('utf-8'))
arduino.flush()

def read():
data = arduino.readline ()
data = data.decode('utf-8')[:-1]

response = np.array(data.split())
return response
def createCommand(matrix):

command = ""

delimitator = ","

n = len(matrix)

if n¥2 != 0:
print ("The matrix size is incorrect, not a multiple of 2x2"

)

return command

if n ==
command += str (matrix[0,0]) + delimitator
command += str(matrix[0,1]) + delimitator
command += str(matrix[1,0]) + delimitator
command += str (matrix[1,1]) + delimitator

else:
midpoint = (n//2)
command += createCommand(matrix[0:midpoint ,0:midpoint])
command += createCommand(matrix [0:midpoint,midpoint:])
command += createCommand(matrix[midpoint:,0:midpoint])
command += createCommand (matrix[midpoint:,midpoint:])

return command

def sendCommand (matrix):
command = createCommand (matrix.transpose()) + "\n"
write (command)

Code listing A.4: Imports and functions for sending commands

33

A. Codes

A.2.2. First application

arduino = serial.Serial(port='COM3', baudrate=500000, timeout=.1)
N_COLUMNS, N_ROWS = 8,8
CELL_PX = 64

def repaintImage():
for x in range (0, N_COLUMNS):
for y in range (0, N_ROWS):
sx = x * CELL_PX
sy = y * CELL_PX
height (int) (heights[x,yl)
cv2.rectangle (img, (sx, sy), (sx+CELL_PX, sy+CELL_PX),
(height, height, height), -1)

def onClick(event,x,y,flags,param):

if event == cv2.EVENT_LBUTTONDOWN:
column = (int)(x / CELL_PX)
row = (int)(y / CELL_PX)
#toggle from O to 255
heights[column, row] = 255 - heights[column, row]
repaintImage ()
sendCommand (heights)

elif event == cv2.EVENT_RBUTTONDOWN:
heights[:, :] = np.zeros((N_COLUMNS,N_ROWS),np.uint8)
repaintImage ()
sendCommand (heights)

[l1I’|2l,|3l’l4l,|5l’16l,l7|,l8|]
[Iql,|wl’lel’lrl’ltl’Iyl’lu|,li|]

saveFiles
showFiles

Code listing A.5: First application, painting the board

34

A. Codes

heights = np.zeros ((N_COLUMNS,N_ROWS) ,np.uint8)

time.sleep (0.1)

sendCommand (heights)

img = np.zeros((N_COLUMNS*CELL_PX,N_ROWS*CELL_PX,3), np.uint8)
cv2.namedWindow ('image"')

cv2.setMouseCallback('image',onClick)

while (1) :
cv2.imshow('image',img)

keyPressed = cv2.waitKey(20) & OxFF
character = chr(keyPressed)
if character in saveFiles:
imagePath = './images/'+character+'. jpg'
cv2.imwrite (imagePath, heights)
elif character in showFiles:

imageName = saveFiles[showFiles.index(character)]
imagePath = './images/'+imageName+'. jpg'

saved = cv2.imread(imagePath,0)

heights[:, :] = saved[:, :]

repaintImage ()
sendCommand (heights)

elif keyPressed == 27:
break

cv2.destroyAllWindows ()
arduino.close ()

Code listing A.5: First application, painting the board

35

A. Codes

A.2.3. Second application

This second application will show math function in loop. Press A or D key to change the
functions shown.

arduino = serial.Serial(port='COM3', baudrate=500000, timeout=.1)
N_COLUMNS, N _ROWS = 8,8
CELL_PX = 64

def repaintImage():
for x in range (0, N_COLUMNS):
for y in range (0, N_ROWS):
sx = x * CELL_PX
sy = y * CELL_PX
height (int) (heights[x,y])
cv2.rectangle (img, (sx, sy), (sx+CELL_PX, sy+CELL_PX),
(height, height, height), -1)

#expect the range -1 to 1 for z,y. return from 0 to 1
def evalFuncAt(x,y):

fr = timeStamp / 32

if functionToUse ==

return np.sin(fr) * 0.5 + 0.5

[

elif functionToUse == 2:

return np.sin(fr + x*math.pi) * 0.5 + 0.5
elif functionToUse == 3:

return np.sin(fr + y*math.pi) * 0.5 + 0.5
elif functionToUse == 4:

return np.sin(fr + (x+y)*math.pi) * 0.5 + 0.5
elif functionToUse == b5:

dist = math.sqrt(x*x + y*y)
return np.sin(fr + dist*math.pi) * 0.5 + 0.5

def updateHeights():
for x in range (0, N_COLUMNS):
for y in range (0, N_ROWS):

nx = 2.0*xx/N_COLUMNS - 1.0
ny = 2.0xy/N_COLUMNS - 1.0
height evalFuncAt (nx, ny)
height = min(max(height, 0), 1)
heights([x,y] = (int)(height*255)

Code listing A.6: Second application, showing math functions

36

A. Codes

timeStamp = O
step = 2
functionToUse = 1
N_FUNCTIONS = 5
heights = np.zeros ((N_COLUMNS,N_ROWS) ,np.uint8)
img = np.zeros((N_COLUMNS*CELL_PX,N_ROWS*CELL_PX,3), np.uint8)
cv2.namedWindow ('image"')
while (1) :
time.sleep (0.03)
updateHeights ()
timeStamp += step
sendCommand (heights)
repaintImage ()
cv2.putText (img, 'Esc exit, a/d change function', (0,50), cv2.
FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 1, cv2.LINE_AA)
cv2.imshow('image',img)
keyPressed = cv2.waitKey (20) & OxFF

if keyPressed == ord('a'):
functionToUse = functionToUse + 1
elif keyPressed == ord('d'):
functionToUse = functionToUse - 1
functionToUse = min(max(functionToUse, 1), N_FUNCTIONS)
if keyPressed == 27:
break

cv2.destroyAllWindows ()
arduino.close ()

Code listing A.6: Second application, showing math functions

37

Bibliography

[1] S. Follmer, D. Leithinger, A. Olwal, A. Hogge, and H. Ishii, “inform: dynamic physical af-
fordances and constraints through shape and object actuation.” in Uist, vol. 13, no. 10,
2013, pp. 2501-988.

[2] Potent Printables, “Diy linear servo actuator, 3d printed,” 2018. [Online]. Available:
https://youtu.be/2vAoOYF3m8U

[3] ——, “Diy linear servo actuator, 3d printed,” 2018. [Online]. Available: https:
//www.thingiverse.com/thing:3170748

[4] B. Zhang, “3d printing tips: How to fix elephant foot?” 2021. [Online]. Available:
https://ecoreprap.com/3d-printing-elephant-foot/

[5] Wikipedia contributors, “Servomotor — Wikipedia, the free encyclopedia,” 2022,
[Online; accessed 5-September-2022]. [Online]. Available: https://en.wikipedia.org/
w/index.php?title=Servomotor&oldid=1066310615

[6] ——, “Servo control — Wikipedia, the free encyclopedia,” 2021, [Online; accessed
7-September-2022]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=
Servo_control&oldid=1017828885

[7]1 ——, “Arduino — W.ikipedia, the free encyclopedia,” 2022, [Online; accessed
6-September-2022]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=
Arduino&oldid=1107764546

[8] B. Earl, “Adafruit pca9685 16-channel servo driver,” 2012. [Online]. Available:
https://learn.adafruit.com/16-channel-pwm-servo-driver/overview

[9] ——, “Adafruit pca9685 16-channel servo driver, hooking it up,” 2012. [Online].
Available: https://learn.adafruit.com/16-channel-pwm-servo-driver/hooking-it-up

[10] ——, “Adafruit pca9685 16-channel servo driver, chaining drivers,” 2012. [Online].
Available: https://learn.adafruit.com/16-channel-pwm-servo-driver/chaining-drivers

38

https://youtu.be/2vAoOYF3m8U
https://www.thingiverse.com/thing:3170748
https://www.thingiverse.com/thing:3170748
https://ecoreprap.com/3d-printing-elephant-foot/
https://en.wikipedia.org/w/index.php?title=Servomotor&oldid=1066310615
https://en.wikipedia.org/w/index.php?title=Servomotor&oldid=1066310615
https://en.wikipedia.org/w/index.php?title=Servo_control&oldid=1017828885
https://en.wikipedia.org/w/index.php?title=Servo_control&oldid=1017828885
https://en.wikipedia.org/w/index.php?title=Arduino&oldid=1107764546
https://en.wikipedia.org/w/index.php?title=Arduino&oldid=1107764546
https://learn.adafruit.com/16-channel-pwm-servo-driver/overview
https://learn.adafruit.com/16-channel-pwm-servo-driver/hooking-it-up
https://learn.adafruit.com/16-channel-pwm-servo-driver/chaining-drivers

	Motivation and Objective
	State of the Art
	Mechanical parts
	Structure
	Iteration 0
	Iteration 1
	Iteration 2
	Iteration 3
	Iteration 4
	Final version

	Rack and pinion
	Rack
	Pinion

	Top column
	Legs
	Vertical legs
	Horizontal legs

	Electromechanical
	Electronics
	Programming
	Connecting Python with arduino
	Applications
	First application
	Second application

	Future work
	Kinect
	Projector
	Web service
	More shapes
	Different top columns
	Improvements

	Codes
	Arduino
	Main loop
	Initialisation
	Functions

	Python
	Imports and functions for sending commands
	First application
	Second application

	Bibliography

