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a b s t r a c t

Watson’s lemma and Laplace’s method provide asymptotic expansions of Laplace in-
tegrals F (z) :=

∫
∞

0 e−zf (t)g(t)dt for large values of the parameter z. They are useful
tools in the asymptotic approximation of special functions that have a Laplace inte-
gral representation. But in most of the important examples of special functions, the
asymptotic expansion derived by means of Watson’s lemma or Laplace’s method is not
convergent. A modification of Watson’s lemma was introduced in [Nielsen, 1906] where,
by the use of inverse factorial series, a new asymptotic as well as convergent expansion
of F (z), for the particular case f (t) = t , was derived. In this paper we go some steps
further and investigate a modification of the Laplace’s method for F (z), with a general
phase function f (t), to derive asymptotic expansions of F (z) that are also convergent,
accompanied by error bounds. An analysis of the remainder of this new expansion shows
that it is convergent under a mild condition for the functions f (t) and g(t), namely, these
functions must be analytic in certain starlike complex regions that contain the positive
axis [0,∞). In many practical situations (in many examples of special functions), the
singularities of f (t) and g(t) are off this region and then this method provides asymptotic
expansions that are also convergent. We illustrate this modification of the Laplace’s
method with the parabolic cylinder function U(a, z), providing an asymptotic expansions
of this function for large z that is also convergent.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Consider Laplace integrals of the form

F (z) :=

∫
∞

0
e−zf (t)g(t)dt, ℜz > x0 > 0, (1)

for certain x0 ∈ R, with f (t) and g(t) smooth enough functions, f (t) real. The key point in Laplace’s method is that, for
large positive |z| (with fixed arg z ∈ (−π/2, π/2)), the major contribution of the integrand to the integral occurs around
the absolute minimum t = t0 of the phase function f (t) in the integration interval [0,∞), that we assume to be unique.
Then, only the local behavior of f (t) and g(t) at t = t0 is relevant to derive an asymptotic expansion of F (z) for large
|z| [1], [2, Chap. 2]. In particular, when f (t) = t (in this case Laplace’s method is indeed Watson’s lemma), that minimum
is obviously t0 = 0. When g(t) is analytic at t = 0, it has an asymptotic expansion at t = 0 of the form

g(t) =

n−1∑
k=0

aktk + gn(t), ak :=
g (k)(0)

k!
, (2)
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with gn(t) = O(tn) when t → 0+. This expansion converges in a certain open disk Dr (0) of radius r > 0 centered at t = 0.
hen we replace this expansion in the above integral (with f (t) = t) and interchange sum and integral we obtain:∫

∞

0
e−ztg(t)dt ∼

n−1∑
k=0

ak
k!

zk+1 + Rn(z), (3)

with

Rn(z) :=

∫
∞

0
e−ztgn(t)dt = O(z−n−1). (4)

This last order estimate means that expansion (3) is an asymptotic expansion for large |z|. This is the well-knownWatson’s
lemma [3, Chap. 2], [2, Chap. 1]. The key point is that, for large positive |z|, the dominant contribution to the integral
(1) comes from the left end point t = 0 of the integration interval [0,∞). Then, only the value of g(t) around that
asymptotically relevant point t = 0, that is the sum of the first few terms of the approximation (2), is relevant for the
asymptotic behavior of F (z) when |z| is large.

Typically, in many examples of special functions F (z) (the right hand side of (1) is an integral representation of F (z)),
the function g(t) is not an entire function and then the convergence radius r of the Taylor series (2) is finite. As the
integration interval [0,∞) is not contained in Dr (0), the interchange of series and integral gives an expansion (3) of the
function F (z) that is not convergent.1 Take for example F (z) = ezE1(z), where E1(z) is the exponential integral [4, Sec. 6.2,
eq. (6.2.2)],

F (z) =

∫
∞

0

e−zt

t + 1
dt, g(t) =

1
t + 1

. (5)

Because the singularity of g(t) at t = −1, we have that the expansion

g(t) =
1

t + 1
=

∞∑
k=0

(−1)ktk,

is convergent in any disk Dr (0) with r < 1. Therefore, in this particular example, formula (3) becomes

F (z) ∼

∞∑
k=0

(−1)kk!
zk+1 .

The series in the right hand side above is not convergent for any value of z ∈ C.
For general phase functions f (t), that is, when we consider the more general Laplace’s method, the situation is similar:

n most of the important examples of special functions, the functions f (t) and g(t) are analytic at the asymptotically
elevant point t0 (the absolute minimum of the phase function). But the convergence radius of the Taylor series of these
unctions at t = t0 is finite and then, the convergence disk of these Taylor expansions does not contain the whole
ntegration interval. As a consequence, the asymptotic expansion of the function F (z) is not convergent; see further details
n [1].

For the particular case f (t) = t (Watson’s lemma), it is suggested in [3, Sec. 17.3] a logarithmic change of the integration
variable that transforms the unbounded integration interval [0,∞) into a bounded interval [0, 1). Then, an appropriate
expansion of the integrand, followed by an interchange of series and integral, results into a factorial convergent series [5].
In this paper we combine this idea with the modified Laplace’s method introduced in [1] to design a new Laplace’s method
(for a more general phase function f (t)) that is also convergent.

The paper is organized as follows: In the next section we design a convergent and asymptotic method for Mellin
transforms over a compact interval. This analysis is used in Section 3, where we consider the integral (1) for the special
case f (t) = tm, m ∈ N, and we design an asymptotic and convergent generalized Watson’s lemma. The main idea is a
logarithmic change of the integration variable that transforms the unbounded integration interval [0,∞) considered in
the Generalized Watson’s lemma to the bounded integration interval [0, 1) considered in Section 2. Then, in Section 4
we use the results of Section 3 combined with the modified Laplace’s method introduced in [1] to design an asymptotic
method for a general phase function f (t) in (1) that is also convergent. The key point is to invoke the modified Laplace’s
method introduced in [1] that, after splitting the Laplace integral (1) at the critical point t = t0, becomes the sum of two
integrals of the form considered in the generalized Watson’s lemma studied in Section 3. As an illustration, a convergent
and asymptotic expansion of the parabolic cylinder function U(a, z) for large |z| is derived. Some indications for the
computation of the coefficients of the convergent and asymptotic Laplace expansion derived in Section 4 are given in a
separate Appendix.

In the remaining of the paper we consider that |z| → ∞ along fixed rays in the half complex plane ℜz > x0. We
consider the principal value (−π, π] for the argument of any complex variable. The symbol ⌊a⌋ denotes the integer part
of the real number a, that is, the greatest integer less than or equal to a.

1 The convergence of (3) in not assured either when g(t) is an entire function.
2
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2. A convergent and asymptotic method for compact Mellin transforms of analytic functions

The first step in our analysis is the derivation of an asymptotic and convergent expansion of the compact Mellin integral

F (z) :=

∫ R

0
(1 − xm)z−1xs−1f (x)dx, 0 < R ≤ 1, m ∈ N, ℜz ≥ x0 > 0, ℜs > 0. (6)

For the particular case f (x) = 1 and m = 1, the integral (6) becomes the incomplete beta function [6, Sec. 8.17],

BR (s, z) :=

∫ R

0
(1 − x)z−1xs−1dx, 0 < R ≤ 1, ℜz, ℜs > 0.

As a matter of fact, this function is the basic approximant in the expansions that be derive below. If in addition we set
R = 1, then we obtain the well-known Euler’s beta function [7, Sec. 5.12].

We assume the following hypothesis on the function f (x):

Hypothesis 1. Let r > 0 denote the radius of convergence of the Taylor series of f (x) centered at the origin. Assume
either that r > R or that r = R and f (x) = O

(
(R − x)σ−1

)
as x → R, for some σ ∈ (0, 1]. If R = 1 it is also required that

x0 + σ > 1.

We have the following theorem.

Theorem 1. Consider the integral (6) with the above mentioned hypothesis. Then, for n = 1, 2, 3, . . .,

F (z) =
1
m

n−1∑
k=0

f (k)(0)
k!

BRm

(
k + s
m

, z
)

+ Rn(z), (7)

The remainder Rn(z) can be bounded in the form

|Rn(z)| ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

M
Rn
0
BRm

(
n + ℜs

m
,ℜz

)
if r > R,

M(z)B(n + ℜs, σ ) if r = R < 1,

M(z)B(n + ℜs,ℜz + σ − 1) if r = R = 1,

(8)

where M is a certain positive constant independent of n and z, and M(z) > 0 is independent of n. On the other hand, in the
first line of (8) we have that R0 := r −ϵ > R, with ϵ > 0 as small as we wish. Expansion (7) is convergent, with an exponential
rate of convergence for r > R and a power rate for r = R. More precisely, as n → ∞,

Rn(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
O
(
n−1(R/R0)n

)
if r > R, R < 1,

O
(
n−ℜzR−n

0

)
if r > R = 1,

O
(
n−σ

)
if r = R < 1,

O
(
n−(ℜz+σ−1)

)
if r = R = 1.

(9)

xpansion (7) is also an asymptotic expansion of F (z) for large |z|: we have that, as |z| → ∞, the terms of the expansion and
he remainder are of the order

BRm

(
n + s
m

, z
)

= O
(
z−

n+s
m

)
, Rn(z) = O

(
z−

n+s
m

)
, n = 1, 2, 3, . . . . (10)

roof. Consider the Taylor series expansion of f (x) at x = 0,

f (x) =

n−1∑
k=0

f (k)(0)
k!

xk + rn(x), |x| < r.

The key point of the proof is an accurate analysis of the remainder rn(x), similar to the one carried out in [8] in a different
ontext. We consider first the case r > R, then the interval of integration [0, R] is completely contained in the disk D0(r).
Replacing the above expansion of f (x) into (6), and interchanging summation and integration, we find the right hand side
of (7) after a straightforward integration process, with

Rn(z) :=

∫ R

(1 − xm)z−1xs−1rn(x)dx. (11)

0

3
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The Taylor remainder rn(x) can be written in the form

rn(x) =
xn

2π i

∮
C

f (w)dw
wn(w − x)

, x ∈ [0, R), (12)

where C is a simple closed circle around the origin of radius R0 := r − ϵ > R encircling the points w = 0 and w = x in
the positive direction. The function |f (w)| is bounded on C by a certain positive constant independent on x and n, and
then

|rn(x)| ≤
xn

2πRn
0

∮
C

⏐⏐⏐⏐ f (w)dw
w − x

⏐⏐⏐⏐ ≤ M̄
xn

Rn
0
, (13)

here M̄ > 0 is independent of x and n.
Consider now the case r = R; the function f (x) may have an integrable singularity at x = R. We note that integral (12)

s a constant function of ϵ, it is defined for ϵ = 0 (when we set R0 = R), and it is continuous as a function of ϵ, since it
s the integral of an integrable function. Hence, formula (12) is also valid when r = R if we take the limit ϵ → 0 in (12)
nd consider that C is a circle of radius r = R. Moreover, we perform the following translation of the integration variable:
↦→ v + R, so that

rn(x) =
xn

2π i

∮
C̄

f (v + R)dv
(v + R)n(v + R − x)

, x ∈ [0, R),

where the new integration path C̄ is a circle of center v = −R and radius R: C̄ = {v ∈ C : |v + R| = R}. We make use of
he fact that (R − x)1−σ f (x) is bounded as x → R, that is, v1−σ f (v + R) is bounded as v → 0. We find

|rn(x)| ≤
xn

2π

∮
C̄

⏐⏐v1−σ f (v + R)
⏐⏐

|v + R|n
|vσ−1

|

|v + R − x|
dv ≤ M̃

xn

Rn

∮
C̄

|vσ−1
|

|v + R − x|
dv, x ∈ [0, R), (14)

ith M̃ > 0 independent of n and x. After the further change of variable v ↦→ u defined in the form v = (R − x)u, x ̸= R,
e find

|rn(x)| ≤ M̃
xn(R − x)σ−1

Rn

∮
C̄/(R−x)

|u|σ−1

|u + 1|
du, (15)

here the integration contour C̄/(R − x) is a scaled circle of center u = −R/(R − x) and radius R/(R − x): C̄/(R − x) =

|u +
R

R−x | =
R

R−x } traversed in the positive direction. In the limit x → R this scaled circle becomes the imaginary axis
raversed upwards and the integral along this path in formula (15) is finite. Then the right hand side of (15) can be
ounded in the form

|rn(x)| ≤ M̄
xn(R − x)σ−1

Rn , x ∈ [0, R), (16)

ith M̄ > 0 independent of n and x.
From bounds (13) (for r > R) and (16) (for r = R) for rn(x), we find two different possibilities for the remainder Rn(x)

efined in (11), according to whether r > R or r = R:

• r > R:

|Rn(z)| ≤
M̄
Rn
0

∫ R

0
(1 − xm)ℜz−1xn+ℜs−1dx =

M̄
Rn
0

1
m

BRm

(
n + ℜs

m
,ℜz

)
=

M
Rn
0
BRm

(
n + ℜs

m
,ℜz

)
, (17)

with M := M̄/m, and the first line of (8) follows.
• r = R:

|Rn(z)| ≤
M̄
Rn

∫ R

0
(1 − xm)ℜz−1xn+ℜs−1(R − x)σ−1dx. (18)

We distinguish two further sub-cases, depending on whether R < 1 or R = 1.

– If R < 1 we use the bound (1 − xm)ℜz−1
≤ M̃(z) := max{1, (1 − Rm)ℜz−1

} independent of x, and we find

|Rn(z)| ≤
M̄ M̃(z)

Rn

∫ R

0
xn+ℜs−1(R − x)σ−1dx = M̄M̃(z)Rℜs+σ−1B(n + ℜs, σ ) = M(z)B(n + ℜs, σ ), (19)

with M(z) := Rℜs+σ−1M̄M̃(z), and the second line of (8) follows.
– If R = 1 we find

|Rn(z)| ≤ M̄
∫ 1

xn+ℜs−1(1 − x)ℜz+σ−2(1 + x + · · · + xm−1)ℜz−1dx.

0

4



J.L. López, P.J. Pagola and P. Palacios Journal of Computational and Applied Mathematics 422 (2023) 114897

T

F
O

E

p

3

t
p
t

w

When ℜz > 1 we have the bound (1+x+· · ·+xm−1)ℜz−1
≤ mℜz−1. When ℜz ≤ 1 we have (1+x+· · ·+xm−1)ℜz−1

≤

1. Therefore, (1 + x + · · · + xm−1)ℜz−1
≤ m̃(z) := max{1,mℜz−1

} independent on n and then

|Rn(z)| ≤ M̄m̃(z)
∫ 1

0
xn+ℜs−1(1 − x)ℜz+σ−2dx = M(z)B(n + ℜs,ℜz + σ − 1),

with M(z) := M̄m̃(z), and the third line of (8) follows.

From (8) and the asymptotic behavior for large n of the complete and incomplete beta functions involved in that
formula [7, eqs 5.12.1 and 5.11.12], [6, eqs. 8.17.2 and 8.18.1] we obtain the convergence rate (9) of expansion (7).

On the other hand, using again [7, eqs 5.12.1 and 5.11.12], [6, eqs. 8.17.2, 8.17.4 and 8.18.1], for the sequence
Fk(z) := BRm

( k+s
m , z

)
we have that Fk+1(z)

Fk(z)
= O

(
z−1/m

)
as z → ∞, and then the expansion (7) is formally asymptotic.

Moreover, for r > R, the asymptotic behavior (10) follows from (17) and [7, eqs 5.12.1 and 5.11.3] or [6, eqs. 8.17.2 and
8.18.1]. For r = R we split the integral in the right hand side of (18) in the form∫ R

0
(1 − xm)ℜz−1xn+ℜs−1(R − x)σ−1dx =

∫ ϵR

0
(1 − xm)ℜz−1xn+ℜs−1(R − x)σ−1dx+∫ R

ϵR
(1 − xm)ℜz−1xn+ℜs−1(R − x)σ−1dx,

(20)

for any 0 < ϵ < 1. Now, in the first integral in the right hand side above we use that (R − x)σ−1
≤ [R(1 − ϵ)]σ−1

∀

x ∈ [0, ϵR]. In the second integral we use that, for ℜz ≥ 1, (1 − xm)ℜz−1
≤ (1 − (ϵR)m)ℜz−1

∀ x ∈ [ϵR, R]. Then,∫ R

0
(1 − xm)ℜz−1xn+ℜs−1(R − x)σ−1dx ≤[R(1 − ϵ)]σ−1

∫ ϵR

0
(1 − xm)ℜz−1xn+ℜs−1dx+

[1 − (ϵR)m]
ℜz−1

∫ R

ϵR
xn+ℜs−1(R − x)σ−1dx.

(21)

he last integral above is bounded by a positive constant, say C , independent on z, and the first integral in the right hand
side is an incomplete beta function. Therefore,∫ R

0
(1 − xm)ℜz−1xn+ℜs−1(R − x)σ−1dx ≤

[R(1 − ϵ)]σ−1

m
B(ϵR)m

(
n + ℜs

m
,ℜz

)
+ C[1 − (ϵR)m]

ℜz−1.

or large |z|, the second term in the right hand side is exponentially small compared to the first one, that is of the order
(z−(n+s)/m). Therefore, the asymptotic behavior (10) also follows for r = R. □

xample 1. Consider the integral representation of the Bessel Jν(z) function [9, eq. (10.9.4)]: Jν(z) =
2(z/2)ν

π1/2Γ (ν+1/2)

∫ 1
0 (1 −

t2)ν−1/2 cos(zt)dt . Applying the above theorem with m = 2 and r > R = 1 and after some manipulations we find the
ower series definition of Jν(z) [9, eq. (10.2.2)], which is a convergent series that is also asymptotic for large |ν|.

. A convergent version of the generalized Watson’s lemma

The second step of our analysis is the derivation of an asymptotic and convergent expansion of generalized Laplace
ransforms. For the sake of generality, when the integration interval is bounded, we let possible branch points at the end
oints of the integration interval. When the integration interval is unbounded, we let a possible exponential growth of
he integrand at the infinity. More precisely, we consider generalized Laplace transforms of the form

F (z) :=

∫ b

0
e−ztm ts−1(1 − t/b)σ−1h(t)dt, ℜz ≥ x0 > 0, 0 < ℜσ ≤ 1, ℜs > 0, (22)

With m ∈ N and 0 < b ≤ ∞. We assume that the factor (1 − t/b)σ−1 is replaced by 1 when b = ∞. We also need to
define the following complex region.

Definition 1. For any 0 < b ≤ ∞ we define the open complex region

Sm(b, 0) := {t ∈ C :

⏐⏐⏐1 − e−tm
⏐⏐⏐ < R}, R := 1 − e−bm

≤ 1, (23)

here only the branch that contains the integration interval [0, b) is considered (see Fig. 1). (The ‘‘extra’’ argument 0 in
the notation of the region Sm(b, 0) will be clear later.) Observe that R < 1 when 0 < b < ∞ and R = 1 when b = ∞.

We assume the following hypothesis for the function h(t):

Hypothesis 2. Assume that the function h(t) is analytic in the region Sm(b, 0) or in a larger region Sm(b0, 0) for some b0 > b
and, if b = ∞, we let h(t) be of exponential order at the infinity: h(t) = O(eαt

m
) when t → +∞, with 0 < α < min{1, x }.
0

5
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Fig. 1. Region Sm(b, 0) for m = 2 (left), m = 3 (middle) and m = 4 (right) with b = ∞ (larger blue unbounded regions, including green
reas) and finite b (inner green bounded figures). For any value of b, finite or infinite, the boundary of these figures is comprised by the

curve t(θ ) parametrized in the form t(θ ) = [− log(1 − Reimθ )]1/m , −π < θ ≤ π , selecting the continuous branch for which t > 0 for
= 0; that is, t(θ ) = | log(1 − Reimθ )|1/meiθ , −π < θ ≤ π . In these figures we have highlighted four points of the boundary of Sm(b, 0):
:= t(0) = [− log(1 − R)]1/m > 0, B := t(π/2) = [− log(1 − Reimπ/2)]1/m = i|B|, C := t(π/m) = [− log(1 + R)]1/m = eiπ/m|C |, P := t(2π/m) = e2iπ/mA.

In this figures we have depicted these points for R < 1 (green region with b < ∞). When b → ∞ (R → 1) we have that A → +∞, P → e2iπ/m∞

and C → (log 2)1/meiπ/m ∀ m. Roughly speaking, the region Sm(b, 0) is a circle around the origin of radius |C | = | log(1 + R)|1/m spiked along the m
rays determined by the mth roots of the unity e2π ik/m, k = 0, 1, . . . ,m − 1 (the point A is on the first ray, the point P is on the second one, the
point C is on the middle angle between A and P). For b = ∞ the (blue + green) regions are unbounded, as those spikes go up to the infinity. For
b < ∞ the (green) regions are similar, but bounded, as those spikes are bounded, and contained in Sm(∞, 0): observe that Sm(b1, 0) ⊂ Sm(b2, 0) for
b1 < b2 .

We have the following theorem.

Theorem 2. Consider the integral (22) with the above mentioned hypothesis. Then, for n = 1, 2, 3, . . .,

F (z) =
1
m

n−1∑
k=0

Ak BR

(
k + s
m

, z
)

+ Rn(z), (24)

where R := 1 − e−bm
≤ 1 and Ak are the Taylor coefficients of the function

h̃(x) :=

(
−

log(1 − xm)
xm

) s
m −1

(
1 −

x
b

[
−

log(1 − xm)
xm

]1/m)σ−1

h

(
x
[
−

log(1 − xm)
xm

]1/m)
(25)

t x = 0; assuming that, when b = ∞, the middle factor is replaced by 1. The Taylor coefficients Ak can be computed, either
irectly by using an algebraic manipulator, or by means of the following formula (see Lemma 1 in the Appendix):

Ak =

⌊
k
m ⌋∑

j=0

(−1)j

j!

B

(
k+s
m

)
j (1)

(k − jm)!
dk−jm

dtk−jm

[(
1 −

t
b

)σ−1

h(t)

]
t=0

, (26)

here B(α)
n (x) are the generalized Bernoulli polynomials of order α [10, Sec. 24.16], [11, Ch. VI], [12] and the factor (1 −

t
b )
σ−1

is replaced by 1 if b = ∞. The remainder term is bounded in the form

|Rn(z)| ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

M
Rn
0
BR

(
n + ℜs

m
,ℜz

)
if b < ∞ and σ = 1,

M(z)B(n + ℜs,ℜσ ) if b < ∞ and σ ̸= 1,

M(z)B(n + ℜs,ℜz − α) if b = +∞,

(27)

for a certain R0 > R > 0, M > 0 independent on z and n, and M(z) > 0 independent on n. Expansion (24) is convergent, with
an exponential rate of convergence for b < +∞ and ℜσ = 1, and a power rate otherwise. More precisely, as n → ∞,

Rn(z) =

⎧⎪⎨⎪⎩
O
(
n−1(R/R0)n

)
if b < +∞ and σ = 1,

O
(
n−σ

)
if b < +∞ and σ ̸= 1,

O
(
n−(ℜz−α)

)
if b = +∞.

(28)

Expansion (24) is also an asymptotic expansion of F (z) for large |z|: the terms of the expansion (24) and the remainder are of
the order specified in (10).
6
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Proof. Consider the change of integration variable t ↦→ x defined in the form

t = x
[
−

log(1 − xm)
xm

]1/m
, (29)

here the logarithm and the fractional power are assumed to take their principal value. The inverse is given by the
ormula

x = t

(
1 − e−tm

tm

)1/m

, (30)

ith x > 0 for t > 0. Under this transformation, the region Sm(b, 0) for the variable t is transformed into the open disk
0(R1/m) for the variable x. Then, we find

F (z) =

∫ R1/m

0
(1 − xm)z−1xs−1h̃ (x) dx, (31)

with h̃(x) given in (25). Now, we can apply Theorem 1 to this integral with f (x) replaced by h̃ (x) to find (24) and (27):

• When b < +∞ and σ = 1, we have that R < 1. Moreover, the function h̃ (x) is analytic in a certain open disk D0(r)
with r > R1/m

0 > R1/m, R0 := 1 − e−bm0 , and the first line of the bound (8) implies the first line of the bound (27).
• When b < +∞ and σ ̸= 1, we have that R < 1. The function h̃ (x) is analytic in the open disk D0(r) with r = R1/m < 1

and the third line of the bound (8) implies the second line of the bound (27).
• When b = +∞ (the middle factor in (25) is replaced by 1), we have that R = 1. The function h̃ (x) is analytic in the

open disk D0(r) with r = R = 1 and satisfies the growth condition h̃(x) = O
(
(x − 1)−α

)
as x → 1. Therefore, the

fourth line of the bound (8) implies the third line of the bound (27) with σ replaced by 1 − α. □

We illustrate Theorem 2 with the following example. This example, and also Example 3, will be used in the analysis
f the Parabolic Cylinder function in Section 4.

xample 2. Consider the function

Ū1(a, z) :=

∫ 1

0
(1 − t)a−1/2e−zt2dt, ℜa > −1/2. (32)

t has the form of integral (22) with b = 1 (and then R = 1 − e−1), m = 2, s = 1, σ = a − 1/2 − ⌊ℜa − 1/2⌋, and
(t) = (1 − t)a−σ+1/2

= (1 − t)⌊ℜa−1/2⌋+1. The function h(t) is analytic in the region S2(1, 0) and we can apply Theorem 2
o find

Ū1(a, z) =
1
2

∞∑
k=0

AkB1−e−1

(
k + 1
2

, z
)
. (33)

he coefficients Ak are the Taylor coefficients at x = 0 of the function

h̃(x) =

[
−

log(1 − x2)
x2

]−
1
2

⎡⎣1 − x
(

− log(1 − x2)
x2

) 1
2

⎤⎦a−1/2

,

hich can be computed using formula (26):

Ak =

⌊
k
2 ⌋∑

j=0

(−1)j

j!

B

(
k+1
2

)
j (1)

(k − 2j)!
dk−2j

dtk−2j

[
(1 − t)a−1/2]

t=0 =

⌊
k
2 ⌋∑

j=0

(−1)j

j!

B

(
k+1
2

)
j (1)

(k − 2j)!

(
1
2

− a
)

k−2j
,

here (a)k := Γ (a + k)/Γ (a) denotes the Pochhammer’s symbol [7, Sect. 5.2.(iii)]. The first few coefficients are

A0 = 1; A1 =
1
2

− a; A2 =
1
2

(
a2 − 2a +

1
4

)
; A3 =

−1
6

(
a3 −

9
2
a2 +

23
4

a −
15
8

)
.

able 1 contains a numerical experiment about approximation (33) that shows the rate of convergence of expansion (33)
nd its asymptotic character for large |z|.

Theorem 2 requires the analyticity of the function h(t) in the region Sm(b, 0) defined in (23) and depicted in Fig. 1 for
everal values of m. From a practical point of view, this region may be ‘‘too large’’, as the integral representations of some
pecial functions do not satisfy this requirement (see Example 3). But, after a certain manipulation of the integral that we
escribe below, this condition may be relaxed, requiring the analyticity of h(t) in a smaller region, enlarging in this way
he range of applicability of Theorem 2.
7
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Table 1
Absolute value of the relative error provided by the right hand side of (33) when we truncate the series after n terms,
for different values of z and a = 1.8.
n z = 0.5 z = 2 z = 10 z = 30 z = 100

0 1.26 8.18474 × 10−1 3.0011 × 10−1 1.54866 × 10−1 7.93323 × 10−2

5 8.46202 × 10−3 3.1662 × 10−3 5.92959 × 10−5 1.44491 × 10−6 2.77723 × 10−8

10 3.15303 × 10−3 1.06383 × 10−3 6.64822 × 10−6 1.88215 × 10−8 2.5038 × 10−11

15 1.34204 × 10−3 4.25023 × 10−4 1.27042 × 10−6 4.3148 × 10−10 7.86635 × 10−14

20 7.06936 × 10−4 2.15652 × 10−4 4.16676 × 10−7 2.36881 × 10−11 4.40583 × 10−14

25 4.2018 × 10−4 1.24947 × 10−4 1.81634 × 10−7 2.31511 × 10−12 4.38895 × 10−14

Fig. 2. Region sm(b, 0) for m = 2 (left), m = 3 (middle left), m = 4 (middle right) and m = 6 (right). In every picture, the m rays in the directions
e2ikπ/m , k = 0, 1, 2, . . . ,m − 1, have width 2ε and length bε/

⏐⏐ m√log 2
⏐⏐.

In order to understand what manipulation we need, we must first give some insight into the geometry of the
transformation t → x defined in (29). The key point is that, after the change of variable t ↦→ x, with inverse (30), the
original integration interval t ∈ [0, b) in (22) is transformed into a new integration interval in (31): x ∈ [0, R1/m) ⊂ [0, 1)
b > 0, with R := 1 − e−bm . Now, expansion (24) follows after a Taylor expansion of the function h̃(x) given in (25) at
= 0 and an interchange of summation and integration in (31). The resulting expansion (24) is convergent whenever

˜(x) is analytic in the disk D0(R1/m). And h̃ is analytic there whenever h(t) is analytic in the image of the disk D0(R1/m)
nder the transformation (30), that is the region Sm(b, 0).
Then, the trick to relax the analyticity condition of Theorem 2 is a dilatation of the original integration variable t ∈ [0, b)

hat squeezes the region Sm(b, 0) into a smaller region sm(b, 0). (Again, the ‘‘extra’’ argument 0 in the notation will be clear
n a moment.) Such a region sm(b, 0) may be the following: a starlike domain with center at t = 0 and with m arbitrarily
arrow spikes of width 2ε and length bε/

⏐⏐ m√log 2
⏐⏐ in the directions defined by the mth roots of the unity, with ε > 0

rbitrarily small (see Fig. 2).

sm(b, 0) :=

{
t ∈ C : t = (r + iy)e2iπk/m; 0 ≤ r <

bε⏐⏐ m√log 2
⏐⏐ ; k = 0, 1, . . . ,m − 1; −ε < y < ε

}
. (34)

Consider a certain dilatation parameter Λ > 1. After the dilatation u ↦→ t = Λu, the region sm(b, 0) for the variable u
ecomes the larger region sm(b, 0) → Λsm(b, 0) for the new variable t . The region Λsm(b, 0) contains the region Sm(b, 0)
or any b > 0 whenever εΛ is larger than the distance from the origin t = 0 to the complementary of the region Sm(∞, 0)
see Fig. 3). That distance is attained at the intersection of the boundary of Sm(∞, 0) with the rays t = rei(2k+1)π/m, r > 0,
= 0, 1, 2, . . . ,m−1, which occurs at a distance C =

⏐⏐ m√log(2)
⏐⏐ (see Fig. 3). Therefore, the region Λsm(b, 0) contains the

egion Sm(b, 0) for any b > 0 whenever Λ >
⏐⏐ m√log(2)

⏐⏐ /ε. Then,
F (z) :=

∫ b

0
e−zumus−1

(
1 −

u
b

)σ−1
h(u)du =

1
Λs

∫ Λb

0
e−(z/Λm)tm ts−1

(
1 −

t
Λb

)σ−1

h̄(t)dt,

ith h̄(t) := h (t/Λ). Whenever h(u) is analytic in sm(b, 0), h̄(t) is analytic in Sm(b, 0) ⊂ Λsm(b, 0) and Theorem 2 may be
pplied to this last integral with z replaced by z/Λm and h by h̄.
With this dilatation, we may avoid all the singularities of h(t) off the rays arg t = 2kπ/m, k = 0, 1, 2, . . . ,m−1, but not

hose located on these rays, as the axes of the starlike region sm(b, 0) remain invariant under the dilatation u ↦→ t = Λu
o matter how largeΛ is. We still can use a second trick to avoid these singularities over the axes of sm(b, 0) when b = ∞:
n appropriate rotation of the original integration path [0,∞) whenever the function h is analytic in an appropriate sector.
he effect of this rotation is a rotation of those axes that may avoid the singularities located there. Choose an angle θ
atisfying | arg z + mθ | < π/2 (optimally θ = −

arg(z)
m if arg z ̸= 0). Now, if e−αtmh(t) is bounded as t → ∞ in the sector

arg t ∈ [0, θ] (and not only for t > 0 as it is required in H2.2) and h(t) is analytic in that sector, we can invoke Cauchy’s
8
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Fig. 3. The thick red star-like regions Λsm(∞, 0) contain the corresponding regions Sm(∞, 0) limited by the blue curves; for m = 2 (left), m = 3
middle) and m = 4 (right). In these figures C1 , C2 , . . . , Cm are the m different mth roots of − log(2), that is, Ck = |C |ei(2k+1)π/m , k = 0, 1, 2, . . . ,m−1,
|C | :=

⏐⏐ m√log(2)
⏐⏐ and Λ =

⏐⏐ m√log(2)
⏐⏐ /ε for the given ε > 0 used in the definition (34) of sm(b, 0).

heorem to rotate the path of integration that angle θ . Then

F (z) = eisθ
∫

∞

0
e−zeimθ tm ts−1h(eiθ t)dt,

and we can apply Theorem 2 to this integral with h(t) replaced by h(eiθ t) and z replaced by zeimθ . We can combine
he above two tricks to enlarge the range of applicability of Theorem 2. Then, consider again the integral (22) with the
ollowing hypotheses instead of H2:

ypothesis 3.

• H3.1. The function h(t) is analytic in the starlike region sm(b, 0) defined in (34). If b = +∞, then e−αtmh(t) is bounded
as t → +∞ for a certain α < min{1, x0},
or

• H3.2. b = +∞ and the function h(t) is analytic in a sector arg t ∈ [0, θ], with | arg z + mθ | < π/2, and also in the
starlike region sm(∞, 0) defined in (34) rotated an angle θ :

sm(∞, θ ) := {t ∈ C : t = (r + iy)ei(θ+2πk/m)
; r ≥ 0; k = 0, 1, 2, . . . ,m − 1; −ε < y < ε}, (35)

for a certain ε > 0. And e−αtmh(t) is bounded as t → ∞ in this sector for a certain α < min{1, x0}.

We obtain the following theorem.

Theorem 3. Consider the integral

F (z) :=

∫ b

0
e−ztm ts−1(1 − t/b)σ−1h(t)dt, ℜz > x0 > 0, m ∈ N, ℜs > 0, (36)

and 0 < ℜσ ≤ 1, with 0 < b ≤ +∞. If b = ∞, we assume that the factor (1 − t/b)σ−1 is replaced by 1. Assume that
Hypotheses 3 hold. Then, for n = 1, 2, 3, . . .,

F (z) =
1

mΛs

n−1∑
k=0

AkBR

(
k + s
m

,
z
Λm

)
+ Rn(z), (37)

or any Λ ∈ C with |Λ| >
⏐⏐ m√log(2)

⏐⏐ /ε and arg(Λ) = θ , with θ = 0 if h(t) is analytic in sm(b, 0), and R := 1− e−(|Λ|b)m . The
coefficients Ak are the Taylor coefficients of

h̃(x) :=

(
−

log(1 − xm)
xm

) s
m −1

(
1 −

x
bΛ

[
−

log(1 − xm)
xm

]1/m)σ−1

h

(
x
Λ

[
−

log(1 − xm)
xm

]1/m)
t x = 0, with the middle factor replaced by 1 when b = +∞. The Taylor coefficients Ak can be computed either, directly by
sing an algebraic manipulator, or by using the following formula (see Lemma 1 in the Appendix):

Ak =

⌊
k
m ⌋∑ (−1)j

j!

B

(
k+s
m

)
j (1)

(k − mj)!Λk−mj

dk−mj

dtk−mj

[(
1 −

t
b

)σ−1

h(t)

]
, (38)
j=0 t=0

9
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Table 2
Absolute value of the relative error provided by the right hand side of (40) when we truncate the series after n terms,
for different values of z and a = 2.6. We have taken Λ = 2eiπ/6 .
n z = 0.5 z = 2 z = 30 z = 100 z = 250

0 6.07615 × 10−1 4.77225 × 10−1 1.84414 × 10−1 1.08389 × 10−1 7.08001 × 10−2

5 1.31198 × 10−1 3.68296 × 10−2 1.21413 × 10−4 3.98426 × 10−6 2.72387 × 10−7

10 1.18385 × 10−1 2.50816 × 10−2 4.67633 × 10−6 7.70153 × 10−9 4.13833 × 10−11

15 1.14372 × 10−1 2.18815 × 10−2 1.08835 × 10−6 2.78716 × 10−10 2.68262 × 10−13

20 1.10831 × 10−1 1.92642 × 10−2 2.4277 × 10−7 9.90124 × 10−12 6.95367 × 10−15

where the factor (1 − t/b)σ−1 is replaced by 1 if b = +∞ and B(α)
k (x) are the generalized Bernoulli polynomials.

The remainder Rn(z) is bounded as in (27) and (28) with z replaced by z/Λm. Therefore expansion (37) is convergent. It is
lso an asymptotic expansion of F (z) for large |z|, with the same order behavior as in Theorem 2.

xample 3. Consider the function

Ū2(a, z) :=

∫
∞

0
(t + 1)a−1/2e−zt2dt, ℜa > −1/2, ℜz > 0. (39)

It is of the form (22) or (36) with m = 2, b = +∞ (and then R = 1), s = 1 and h(t) = (t + 1)a−1/2. However, we
annot apply Theorem 2, as the branch point t = −1 is inside the region S2(∞, 0). Nevertheless, h(t) is analytic in
2(∞, θ ) for any θ satisfying | arg z ± 2θ | ≤ π/2 and ε = sin θ . Then, we can apply Theorem 3 with any Λ satisfying

| arg(z) + 2 arg(Λ)| ≤ π/2 or | arg(z) − 2 arg(Λ)| ≤ π/2, argΛ ̸= 0 and |Λ| > |
√
log 2|/ sin(arg(Λ)).

We find

Ū2(a, z) =
1
2Λ

∞∑
k=0

AkB
(
k + 1
2

,
z
Λ2

)
. (40)

he coefficients Ak are the Taylor coefficients of

h̃(x) :=

(
−

log(1 − x2)
x2

)−
1
2

⎡⎣1 +
x
Λ

(
− log(1 − x2)

x2

) 1
2

⎤⎦a−1/2

t x = 0. They can be computed using formula (38) in the form

Ak =

⌊
k
2 ⌋∑

j=0

(−1)k+j

j!

B

(
k+1
2

)
j (1)

(k − 2j)!

( 1
2 − a

)
k−2j

Λk−2j ,

where we have used that dn
dtn [h(t)]t=0 = (−1)n

( 1
2 − a

)
n. The first few coefficients are

A0 = 1, A1 =
(a − 1/2)

Λ
, A2 =

(1/2 − a)2
2Λ2 −

1
4
, A3 =

−(1/2 − a)3
6Λ3 .

We may choose for example arg(Λ) = π/6 and |Λ| = 2. With this election of Λ we obtain the numerical experiment
etailed in Table 2, that shows the convergent and asymptotic character of expansion (40).

. A convergent Laplace method

Finally, we consider Laplace integrals of the form

F (z) :=

∫
∞

0
e−zf (t)g(t)ta−1dt, ℜz > x0 > 0, ℜ(a) > 0, (41)
10
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w

and assume the following hypotheses:

Hypothesis 4.

• H4.1. The function f (t) has only one absolute minimum in the positive real axis at a certain point t0 ≥ 0.
Then, there exists a number m ∈ N such that f (m)(t0) > 0 and f (k)(t0) = 0 for k = 1, 2, . . . ,m− 1. If t0 > 0 then m is
even. Then, following the ideas of the modified Laplace method introduced in [1], we consider the Taylor polynomial
of f (t) of degree m at t = t0:

p(t) := f (t0) + η(t − t0)m, η :=
f (m)(t0)

m!
> 0.

We write f (t) = p(t) + fm(t) with

fm(t) := f (t) − p(t) =

∞∑
k=m+1

f (k)(t0)
k!

(t − t0)k, |t − t0| < r,

for a certain r > 0. Roughly speaking, p(t) is the asymptotically dominant part of the phase function f (t), whereas
fm(t) is subdominant (see [1] for further details on the convenience of this splitting of the phase function).

• H4.2. The function f (t) is real for real t and both, f (t0 − t) and g(t0 − t) are analytic in the region t0 − Sm(t0, 0), with
Sm(t0, 0) defined in (23).

• H4.3. Both functions, f (t0 + t) and g(t0 + t) are analytic in a sector arg(t0 + t) ∈ [0, θ], for a certain angle θ
satisfying | arg(z) + mθ | < π/2, and also in the starlike region t0 + sm(∞, θ ) defined in (35). And there exists a number
0 < α < min{1, x0} such that e−αtme−zfm(t0+t)g(t0 + t) is bounded as t → ∞ in the above mentioned sector.

• H4.4. The function e−zf (t)g(t)ta−1 is absolutely integrable on [0,∞) for ℜz > x0.

Then, from H4.1, the integral in (41) can be written in the form

F (z) = e−zf (t0)
∫

∞

0
e−zη(t−t0)mh(t, z)ta−1dt, h(t, z) := e−zfm(t)g(t). (42)

In this integral, the exponent of the asymptotically dominant exponential consists only of the asymptotically dominant
part of the phase function, whereas the subdominant part is included in h(t, z). We split up the integral at t = t0 and
write:

F (z) = e−zf (t0)
∫ t0

0
e−zη(t−t0)mh(t, z)ta−1dt + e−zf (t0)

∫
∞

t0

e−zη(t−t0)mh(t, z)ta−1dt

= e−zf (t0)
(
F−(z) + F+(z)

)
,

(43)

where we have defined

F±(z) :=

∫ b±

0
e−zηtmh(t0 ± t, z)(t0 ± t)a−1dt, (44)

with b−
:= t0 and b+

:= ∞. Now, we can apply Theorem 2 to F−(z) and Theorem 3 to F+(z). But the function h considered
in Theorems 2 and 3 does not depend on z, and now the function h in both integrals in F±(z) does. Then, we are introducing
here a new ingredient in the analysis: the function h and then the Taylor coefficients Ak in formulas (24) and (37) depend
on the asymptotic variable z. This fact does not have any influence on the convergence of those expansions, and formulas
(27) and (28) remain valid. But it has an effect on the asymptotic behavior of the terms of the expansions (24) and (37)
and the respective remainders Rn(z): formulas (10) are not longer valid. Therefore, when the function h in Theorems 2 and
3 is the function h given in (42), the asymptotic character of expansions (24) and (37) is not clear and must be proved. In
the following theorem we summarize this discussion providing a convergent expansion of the integral (41) and proving
its asymptotic character for large |z|.

Theorem 4. Consider the integral (41) with the parameters m, t0, η and the function h(t, z) defined above. Assume that
hypotheses H4 hold. Then, for n = 1, 2, 3, . . .,

F (z) = e−zf (t0)

{
1
m

n−1∑
k=0

[
A−

k (z) BR

(
k + 1
m

, ηz
)

+
A+

k (z)
(Λ+)λ+

B
(
k + λ+

m
,

ηz
(Λ+)m

)]
+ Rn(z)

}
, (45)

here R := 1− e−tm0 ; λ+
= 1 if t0 > 0 or λ+

= a if t0 = 0; |Λ+
| >

⏐⏐ m√log(2)
⏐⏐ /ε and arg(Λ+) = θ . On the other hand, A±

k (z)
are the Taylor coefficients of the function

h̃±(x, z) :=

(
−

log(1 − xm)
xm

) λ±

m −1
[
t0 ±

x
Λ±

(
−

log(1 − xm)
xm

) 1
m
]µ±

−1

h

(
t0 ±

x
Λ±

[
−

log(1 − xm)
xm

] 1
m

, z

)
(46)
11
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w

at x = 0, with Λ−
= λ−

= 1, µ−
= a and either, µ+

= a if t0 > 0, or µ+
= 1 if t0 = 0. The Taylor coefficients A±

k (z) can be
computed either, directly by using an algebraic manipulator, or by using the following formula:

A±

n (z) =

⌊
n
m ⌋∑

k=0

(−1)kB
( n+λ

±

m )
k (1)

(Λ±)n−km k!
(±1)n−km

(n − km)!
dn−km

dtn−km

[
tµ

±
−1h(t, z)

]
t=t0

, (47)

here B(α)
n (x) are the generalized Bernoulli polynomials.

The remainder Rn(z) is bounded by the sum of the first line of (27) with s = 1 and the third line of (27) with s = λ+.
herefore, expansion (45) is convergent. It is also an asymptotic expansion of F (z) for large |z|: the terms of the expansion

etween brackets inside the sum in (45) are of the order O
(
z

k
p −

k+1
m + z

k
p −

k+λ+
m

)
, and Rn(z) = O

(
z

n
p −

n+1
m + z

n
p −

n+λ+
m

)
, as

z| → ∞, where p > m denotes the first derivative of f (t) at t0 that does not vanish after the mth derivative (see Observation 2).

roof. Formulas (45)–(46) and the convergence rate of expansion (45) (given by the sum of the first line of (27) with
= 1 and the third line of (27) with s = λ+) follow from a direct application of Theorems 2 and 3: Using H4.2,
e can apply Theorem 2 to F−(z) in the second line of (43) with b = t0, s = 1, σ = a − ⌊ℜa⌋, h(t) replaced by

a−1
0 h(t0 − t, z)(1 − t/t0)a−σ = ta−1

0 h(t0 − t, z)(1 − t/t0)⌊ℜa⌋ and z replaced by ηz. On the other hand, using H4.3, we
can apply Theorem 3 to F+(z) in the second line of (43) with b = +∞, σ = 1, z replaced by ηz and either, s = 1 with
(t) replaced by h(t0 + t, z)(t0 + t)a−1 if t0 > 0, or s = a and h(t) replaced by h(t0 + t, z) if t0 = 0. Formula (47) follows
irectly from Lemma 1 in the Appendix.
In the remaining of this proof, we show the asymptotic character of (45). Firstly, expansion (45) is formally asymptotic:

rom Corollary 1 in the Appendix we have that, for k = 0, 1, 2, . . ., Ak(z) = O
(
z

k
p
)
, as |z| → ∞. And then, from the

asymptotic behavior of the beta and incomplete beta functions in the terms between brackets inside the sum in (45)
[7, eq. (5.12.1), (5.11.12)] and [6, eq. (8.17.2), (8.17.4), (8.18.3)], we find that the terms of the expansion between brackets

inside the sum in (45) are of the order O
(
z

k
p −

k+λ+
m + z

k
p −

k+1
m

)
as |z| → ∞.

Secondly, we study the order behavior of the remainder term Rn(z) in (45). As we have mentioned above, expansion
45) follows from formula F (z) = e−zf (t0)(F−(z)+ F+(z)) (see (43) and (44)), applying Theorem 2 to the integral F−(z) and
heorem 3 to the integral F+(z). Therefore,

Rn(z) = R−

n (z) + R+

n (z), (48)

here R±
n (z) are the remainders given in Theorems 2 and 3 for F+(z) and F−(z) respectively:

F±(z) =
1
m

n−1∑
k=0

A±

k (z)Φ
±

k (R±
; z) + R±

n (z), (49)

−
= R = 1 − e−tm0 , R+

= 1, and

Φ±

k (c; z) :=
1

(Λ±)λ±
Bc

(
k + λ±

m
,

ηz
(Λ±)m

)
, k = 0, 1, 2, . . . . 0 ≤ c ≤ 1. (50)

ow, the key point for the proof is an splitting of both integrals F±(z) at the point t = |z−1/p
|, for |z| > x0 large enough.

That is, we write F±(z) = F±

0 (z) + F±

1 (z), with

F±

0 (z) =

∫
|z−1/p

|

0
e−zηtmh(t0 ± t, z)(t0 ± t)a−1dt,

F±

1 (z) =

∫ b±

|z−1/p|

e−zηtmh(t0 ± t, z)(t0 ± t)a−1dt.

(51)

(For large enough |z| we have that |z−1/p
| ≤ t0 for positive t0.) The integral F−

0 (z) is of the form of F−(z) with t0 replaced
by |z−1/p

|. As well as the integral F+

0 (z) if we also replace h(t0 − t, z)(t0 − t)a−1 by h(t0 + t, z)(t0 + t)a−1. Therefore, we
can apply Theorems 2 or 3 to these two integrals and we get

F±

0 (z) =
1
m

n−1∑
k=0

A±

k (z)Φ
±

k (Rz; z) + R±

n,0(z), Rz := 1 − e−|z−m/p
|, (52)

ith Φ±

k (c; z) given in (50) and

R±

n,0(z) :=

∫ (Rz )1/m

(1 − xm)
η

(Λ±)m
z−1

xλ
±

−1r±

n (x, z)dx, (53)

0

12
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w

where r±
n (x, z) is the nth order Taylor remainder of h̃±(x, z) at x = 0.

Then, on the one hand, according to the splitting described above, we have

F±(z) = F±

0 (z) + F±

1 (z) =
1
m

n−1∑
k=0

A±

k (z)Φ
±

k (Rz; z) + R±

n,0(z) + F±

1 (z). (54)

n the other hand we have formula (49). From (49) and (54) we find that

R±

n (z) = Ψ ±

n (z) + R±

n,0(z) + F±

1 (z), (55)

ith

Ψ ±

n (z) :=
1
m

n−1∑
k=0

A±

k (z)[Φ
±

k (R±
; z) −Φ±

k (Rz; z)]. (56)

In the remaining of the proof we study the asymptotic behavior of every one of the three terms Ψ ±
n (z), R±

n,0(z)
and F±

1 (z) in the right hand side of formula (55), in order to find out the asymptotic behavior of R±
n (z), and then of

Rn(z) = R+
n (z) + R−

n (z).

• Ψ ±
n (z). Note that the arguments of the two incomplete beta functions in the right hand side of (56) (see (50)) are the

same, the incomplete beta functions only differ in their index. Then, taking into account the integral representation
of the incomplete beta function [6, eq. (8.17.1)] we find that

Φ±

k (R±
; z) −Φ±

k (Rz; z) =
1

(Λ±)λ±

∫ R±

Rz
t
k+λ±

m −1(1 − t)
ηz

(Λ±)m
−1

dt.

Hence⏐⏐Φ±

k (R±
; z) −Φ±

k (Rz; z)
⏐⏐ ≤

1
|(Λ±)λ±

|

∫ 1

1−e−|z−m/p |

t
k+ℜλ±

m −1(1 − t)
ℜ

(
ηz

(Λ±)m

)
−1

dt.

Performing the change of variables t ↦→ u defined by t = 1 − e−|z−m/p
|u we find⏐⏐Φ±

k (R±
; z) −Φ±

k (Rz; z)
⏐⏐ ≤

1
|(Λ±)λ±

|

(
e−|z−m/p

|

)ℜ

(
ηz

(Λ±)m

)
×∫ 1

0
(1 − e−|z−m/p

|u)
k+ℜλ±

m −1u
ℜ

(
ηz

(Λ±)m

)
−1

du ≤
1

|(Λ±)λ±
|

1

ℜ

(
ηz

(Λ±)m

) e−ℜ

(
ηz

(Λ±)m

)
|z−

m
p |
.

(57)

It is proved in Corollary 1 in the Appendix that the coefficients A±

k (z) are polynomials in z of degree ⌊k/p⌋. Therefore,
from (56) and (57) we have that, ∀k = 0, 1, . . . , n − 1,

Ψ ±

n (z) = O
(
z⌊n/p⌋−1e

−ℜ

(
ηz

(Λ±)m

)
|z−

m
p |

)
, as |z| → ∞. (58)

• F±

1 (z). We have that f (t0 ± t) − f (t0) = ηtm + O(tp) as t → 0+ with η > 0, and therefore ∃ δ± > 0 independent on
t (and of course on z) such that

f (t0 ± t) − f (t0) −
η

2
tm > 0 for 0 < t < δ±. (59)

On the other hand, as t0 is an absolute minimum of f (t) on [0,∞), there exist ϵ± > 0 such that

f (t0 ± t) − f (t0) − ϵ± > 0 for t ≥ δ±. (60)

For large enough |z| we have that δ± > |z−1/p
|, and we can split the integral F±

1 (z) at t = δ± and write

F±

1 (z) = G±

1 (z) + G±

2 (z),

with

G±

1 (z) :=

∫ δ±

|z−1/p|

e−zηtme−zfm(t0±t)g(t0 ± t)(t0 ± t)a−1dt,

G±

2 (z) :=

∫ b±

e−zηtme−zfm(t0±t)g(t0 ± t)(t0 ± t)a−1dt.

δ±

13
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T
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f

Using f (t0 ± t) = f (t0) + ηtm + fm(t0 ± t) and (59) we find

|G±

1 (z)| ≤

∫ δ±

|z−1/p|

|e−z[f (t0±t)−f (t0)−ηtm/2]| |e−zηtm/2
|g(t0 ± t)(t0 ± t)a−1

|dt

≤

∫ δ±

|z−1/p|

e−ηtmℜz/2
|g(t0 ± t)(t0 ± t)a−1

|dt ≤ K̄
∫ δ±

|z−1/p|

e−ηtmℜz/2

≤ K̄
∫

∞

|z−1/p|

e−ηtmℜz/2
=

K
(ℜz)1/m

Γ

(
1
m
,
ηℜz

2|z
m
p |

)
,

with K and K̄ positive constants independent on |z|. From the asymptotic behavior of the incomplete gamma
function [6, eq. (8.11.2)] we deduce that

G±

1 (z) = O
(
z

m−1
p −1e−

η
2 z

1− m
p
)
, as |z| → ∞. (61)

On the other hand

G±

2 (z) :=

∫ b±

δ±
e−zηtme−zfm(t0±t)g(t0 ± t)(t0 ± t)a−1dt =

∫ b±

δ±
e−z[f (t0±t)−f (t0)]g(t0 ± t)(t0 ± t)a−1dt.

And then,

|G±

2 (z)| ≤ e−ϵ±ℜz
∫ b±

δ±
e−ℜz[f (t0±t)−f (t0)−ϵ±]|g(t0 ± t)(t0 ± t)a−1

|dt.

Using (60), we find that, for ℜz > x0, e−ℜz[f (t0±t)−f (t0)−ϵ±] ≤ e−x0[f (t0±t)−f (t0)−ϵ±]. Taking also into account that the
last integral above, with ℜz replaced by x0, is convergent by hypothesis H4.4, we conclude that

|G±

2 (z)| ≤ Ke−ϵ±ℜz,

with K > 0 independent on |z|. From this formula and (61) we find

F1(z) = O
(
e−

η
2 z

1− m
p

+ e−zϵ±
)
, as |z| → ∞. (62)

• R±

n,0(z). Recall the integral representation of R±

n,0(z) given in (53). The factor r±
n (x, z) is the Taylor remainder of h̃±(x, z)

at x = 0. Then, r±
n (x, z) admits the Cauchy integral representation (12) with f (w) replaced by h̃±(w, z):

r±

n (x, z) =
xn

2π i

∮
C

h̃±(w, z)
wn(w − x)

dw, x ∈ D0(r),

for a certain r > 0 independent on |z|, and where we choose an integration path C that is a circle of center 0 and
radius 2|z−1/p

| (< r for large enough |z|), oriented in the positive sense. Since (see (52)) Rz := 1− e−|z−m/p
|
≃ |z−m/p

|

when |z| → ∞, for sufficiently large |z|, both points 0 and x are contained inside the circle C for any x ∈ [0, R1/m
z ].

ecall at this point that h̃±(w, z) is given in (46) and (42), and we can write

h̃±(w) = e−zwpψ(w)ϕ(w),

ith

ψ(w) := w−pfm(t0 ± t(w)), t(w) :=
w

Λ±

[
− log(1 − wm)

wm

] 1
m

,

ϕ(w) := g(t0 ± t(w))
(

−
log(1 − wm)

wm

)λ±/m−1

(t0 ± t(w))µ
±

−1.

he functions ψ(w) and ϕ(w) are analytic in the disk D0(r) that contains the circle C. Then, on the integration path C we
ave that

|h̃±(w, z)| ≤ e|z(2z−1/p)p| |ψ(w)|
|ϕ(w)| = e2

p
|ψ(w)|

|ϕ(w)| ≤ K̄ ,

or some constant K̄ > 0 independent on |z|. For w ∈ C we also have |w − x| ≥ |z−1/p
| and |w|

n
= 2n

|z−n/p
|. Then

|r±(x, z)| ≤ Kxn|zn/p|,
n

14
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with K > 0 independent on x and |z|. Then, from (53) we have

|R±

n,0(z)| ≤

∫ R1/mz

0
(1 − xm)

ℜ

(
ηz

(Λ±)m

)
−1

xℜλ±
−1

|r±

n (x, z)|dx

≤ K |zn/p|
∫ R1/mz

0
(1 − xm)

ℜ

(
ηz

(Λ±)m

)
−1

xn+ℜλ±
−1dx

= K |zn/p|BRz

(
n + ℜλ±

m
,ℜ

(
ηz

(Λ±)m

))
.

Using the asymptotic behavior of the incomplete beta function [6, eq. (8.17.2), (8.17.4), (8.18.3)] we find

R±

n,0(z) = O
(
z

n
p −

n+λ±
m

)
, as |z| → ∞. (63)

Finally, from (55), (58), (62) and (63) it follows that

R±

n (z) = O
(
z

n
p −

n+λ±
m

)
+ exp. small terms, as |z| → ∞,

and then, from (48),

Rn(z) = O
(
z

n
p −

n+λ+
m + z

n
p −

n+λ−
m

)
+ exp. small terms, as |z| → ∞. □

Observation 1. Observe that the first term inside the brackets in expansion (45) (and also R−
n (z) defined in the proof of

Theorem 4) vanishes when t0 = 0 (only the ‘‘+’’ terms remain).

Observation 2. As it has been pointed out before Theorem 4, the ‘‘extra’’ dependence of the function h on the asymptotic
variable z introduces a new ingredient in the analysis that was not considered in Theorems 2 or 3. As it has been proved, this
fact does not have any influence in the convergence of the expansions nor in the asymptotic character of expansion (45). As it is
proved in Corollary 1 in the Appendix, the Taylor coefficients A±

k (z) are polynomials in z of degree ⌊
k
p⌋, where p > m denotes

he first derivative of f (t) at t0 that does not vanish after the mth derivative. The only effect of the dependence of A±

k (z) on the
arge variable z is that now, the asymptotic sequences A−

k (z)BR((k+1)/m, ηz) and A+

k (z)B((k+λ+)/m, ηz/(Λ+)m) in expansion
45) are no longer Poincaré sequences that decrease monotonically in the form z−k/m, but sequences that decreases in the form
f a sawtooth: we have, as |z| → ∞, A−

k (z)BR
( k+1

m , ηz
)

= O
(
z⌊k/p⌋− k+1

m

)
and A+

k (z)B
(

k+λ+

m ,
ηz

(Λ+)m

)
= O

(
z⌊k/p⌋− k+λ+

m

)
(see [1] for further details).

Example 4 (Parabolic Cylinder Function). Consider the following integral representation of the parabolic cylinder func-
tion [13, Eq. (12).5.1],

U(a, z) =
e−z2/4

Γ (a + 1/2)

∫
∞

0
ua−1/2e−

u2
2 −zudt, ℜa > −

1
2
.

ssume that z < 0 and perform the change of variable u ↦→ t , defined by u = −zt , to find the integral representation

U(a, z) =
(−z)a+1/2e−z2/4

Γ (a + 1/2)

∫
∞

0
ta−1/2e−z2f (t)dt,

ith f (t) =
t2
2 − t =

1
2 (t − 1)2 −

1
2 . The absolute minimum of f (t) occurs at t0 = 1 and f (t) equals its asymptotically

dominant part p(t) =
1
2 (t − 1)2 −

1
2 . Then, we split up the integral at t = 1 to find

U(a, z) =
(−z)a+1/2e−z2/4

Γ (a + 1/2)
(U1(a, z) + U2(a, z)) , (64)

ith

U1(a, z) := e
z2
2

∫ 1

0
ta−1/2e−z2 (t−1)2

2 dt = e
z2
2

∫ 1

0
(1 − t)a−1/2e−

z2
2 t2dt = e

z2
2 Ū1

(
a,

z2

2

)
, (65)

nd

U2(a, z) := e
z2
2

∫
∞

ta−1/2e−z2 (t−1)2
2 dt = e

z2
2

∫
∞

(t + 1)a−1/2e−
z2
2 t2dt = e

z2
2 Ū2

(
a,

z2
)
, (66)
1 0 2
15
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with Ūk

(
a, z2

2

)
, k = 1, 2, given in Examples 2 and 3. A convergent expansion for the parabolic cylinder function, that is

lso asymptotic for large z < 0, follows from (64), (65), (66) and the corresponding expansions for Ū1 and Ū2 given in
ormulas (33) and (40) respectively.

⨀
bservation 3. Many special functions of the mathematical physics admit an integral representation of the form (41) and
hen, this method can applied be to obtain new series representations of those functions that have also an asymptotic property
n a certain variable. This is subject of current research.
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ppendix. Computation of the Taylor coefficients A±

k (z)

Lemma 1. For any m ∈ N, let φ(t) be an analytic function in the region Sm(q, 0) defined in (23), for some q > 0. Consider the
function

φ̃(x) :=

(
−

log(1 − xm)
xm

)λ
φ

(
x
[
−

log(1 − xm)
xm

]1/m)
, λ ∈ C. (67)

hen, φ̃n, the nth Taylor coefficient of φ̃ at x = 0, is given by the formula

φ̃n =

⌊
n
m ⌋∑

k=0

(−1)k
B
(λ+1+ n

m )
k (1)

k!
φ(n−km)(0)
(n − km)!

, (68)

here B(α)
k (x) are the generalized Bernoulli polynomials of order α [10, Sec. 24.16], [11, Ch. VI], [12].

roof. The function φ̃(x) is analytic in the open disk D0(ρ), for a certain 0 < ρ < 1. From Cauchy’s formula for the nth
erivative of an analytic function we have

φ̃(n)(0) =
n!
2π i

∮
C

(
−

log(1 − xm)
xm

)λ
φ

(
x
[
−

log(1 − xm)
xm

]1/m) dx
xn+1 , (69)

here C is a circle of center 0 and radius ρ < 1 that does not contain any singularity of φ
(
x
[
−

log(1−xm)
xm

]1/m)
, and

riented in the positive sense. Consider the change of variables x ↦→ t given by t = x
[
−

log(1−xm)
xm

]1/m
with inverse

= t
(

1−e−tm

tm

)1/m
. We find

φ̃(n)(0) =
n!
2π i

∮
γ

φ(t)e−tm
(

−tm

e−tm − 1

)λ+1+ n
m dt

tn+1 , (70)

here γ is the image of C by this transformation, that is, the boundary of the region Sm((− log(1 − ρm))1/m, 0), which is
closed curve encircling t = 0 in the positive sense. Then, for small enough ρ, Sm((− log(1 − ρm))1/m, 0) ⊂ Sm(q, 0) and
auchy’s theorem implies that

φ̃(n)(0) =
dn

dtn

[
φ(t)e−tm

(
−tm

e−tm − 1

)λ+1+ n
m
]

t=0

. (71)

urthermore, we have that

dk

dtk

[
e−tm

(
−tm

e−tm − 1

)λ+1+ n
m
]

=

⎧⎨⎩0 if k ̸= 0 (mod m),

(−1)k/m k! B
(λ+1+ n

m )
k (1) if k = 0 (mod m),

(72)

t=0 (k/m)!

m

16
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which follows from the generating function of the generalized Bernoulli polynomials [10, Sec. 24.16], and the kth derivative
t x = 0 of a composite function of the form g(x) = f (xm). Then, (68) follows after applying Leibniz’s formula to the right
and side of (71). □

A formula for the Taylor coefficients A±
n (z) of the function h̃±(x, z) considered in Theorem 4 follows from this result

nd Leibniz’s formula for the derivative of a product. In particular, we have the following lemma.

orollary 1. Let f (t) and g(t) be analytic functions at t = t0. Define h(t, z) := e−zfm(t)g(t) and for any Λ±
∈ C consider the

function h̃±(x, z) defined in (46). Then, the nth coefficient A±
n (z) of the Taylor expansion of h̃±(x, z) at x = 0 is a polynomial

in z of degree ⌊
n
p ⌋, where p > m is the first non-zero derivative of f (t) at t = t0 after the mth derivative. This means that

A±
n (z) = O

(
z⌊n/p⌋

)
as |z| → ∞.

Proof. The Taylor coefficients of h̃±(x, z) are given by (47). There, the variable z only appears in the coefficients hj(z),
that are polynomials in z of degree ⌊j/p⌋, as shown in [1]. Taking into account the range of the index of summation we
conclude that A±

n (z) is a polynomial in z of degree ⌊n/p⌋. □
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