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Introduction 

The use of different representations, visualizations, diagrams, manipulative materials are 

proposed to favour mathematics learning by assuming the supposition that such materials 

make up models of mathematics concepts and of the structures in which they are organised. It 

is supposed that the use of material representations is necessary, not only to communicate 

mathematical ideas but also for their own construction. However, the relations between 

mathematics and the real world are still conflictive1.   

Thus, Geometry is not the ‘measurement of the Earth’ as is etymologically established 

but a model of space, that is, a simplified representation which permits prediction and action. 

So, in mathematics the identification and description of mathematics objects are necessary, as 

is the recognition of their specific nature. “Any didactic theory, at one moment or another 

(unless it voluntarily wants to confine itself to a kind of naïve position), must clarify its 

ontological and epistemological position” (Radford, 2008, p. 221). 

Moreover, because “mathematical objects cannot be directly apprehended by the 

senses, the role of mediating signs (representations of some kind) is crucial in all 

mathematical activity, including its teaching and learning” (Presmeg, 2006, p. 19). 

Mathematics objects are abstract whereas diagrams are specific and perceptible. It is 

necessary not to confuse them but the synergy relations between both types of objects are not 

dealt with explicitly. Therefore, it is essential to have tools that allow the comprehensible 

description of mathematical activity (Iori, 2016). In fact, in learning, a key aspect is the 

difference between the ostensive representation of the geometric object (figure) and the 

object itself (as a set of properties). Thus, novice students who do not differentiate 

representation and object, for example, point out that a triangle has only one base 

(“horizontal segment”) and only one height (“from the horizontal segment to the opposite 

vertex”), or that a “rotated” square is just a rhombus (Figure 1).  
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Figure 1 

Ostensive representation of geometric objects 

 
 

In this paper we intend to progress in the identification of the objects involved in 

diagrammatic reasoning and in the description of its nature. To do this, we will use the 

semiotic and anthropological perspective proposed by the “onto-semiotic approach” (OSA) 

of mathematics knowledge and instruction (Font, Godino, & Gallardo, 2013; Godino, 

Burgos, & Gea, 2021).  

The issue for mathematics education then is what does it mean to know something about 

mathematical objects and how does the learner develop or construct that knowledge? The 

answer to this question will to some extent depend on the ontological and epistemological 

status that is ascribed to those mathematical objects. (Dörfler, 2002, p. 337) 

The epistemological and semiotic problem that interests us is to clarify the 

relationship between the visual, diagrammatic, or whatever other representation (ostensive 

objects) and immaterial, ideal or abstract mathematical objects (non-ostensive objects) that 

necessarily accompany them. We are also interested in clarifying the dialect between the 

different types of languages by being aware of the limitations of the diagrammatic 

representation that should be compensated by the sequential languages although recognising 

the epistemic and cognitive possibilities of the visual means of expression. The educational 

objective is to show that the application of the onto-semiotic configuration tool can help to 

understand the students’ difficulties in mathematics learning by revealing the network of 
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ostensive objects (material objects) and non-ostensive objects (immaterial objects) that 

intervene in mathematics activity and the synergic relations between the same. In the OSA 

ontology, the term ‘object’ is used in a broad meaning to refer to any entity involved some 

way in mathematical practice and that can be identified as a unit. The use of object is 

metaphoric, since a mathematical concept, is usually conceived as an ideal or abstract entity, 

and not something tangible, such as a rock, a drawing, or a manipulative (Godino et al., 

2021). 

In the following section we mention some characteristic features of the visualization 

and the diagrammatic reasoning that point out the problem described, that is the gap between 

the representation and the mathematics object represented. Then, we summarise the notion of 

onto-semiotic configuration of practices, objects, and processes which will be the theoretical 

tool that we will use to analyse the diagrammatic reasoning displayed when solving a 

problem about fractions using three different methods. Next, we highlight the synergic 

relations there are between the different types of languages and the non-ostensive objects 

necessarily overlapping in mathematics practice. In the final section, we include some 

reflections about the type of understanding, which the onto-semiotic approach of 

mathematics knowledge can provide to visualization, and diagrammatic reasoning in addition 

to some implications about the learning and training of mathematics teachers. 

 

Visualisation and Diagrammatic Reasoning 

 

Visualization and Types of Languages 

Arcavi (2003, p. 217) describes the visualization in very general terms:  

Visualization is the ability, the process and the product of creation, interpretation, use of and 

reflection upon pictures, images, diagrams, in our minds, on paper or with technological tools, 

with the purpose of depicting and communicating information, thinking about and developing 
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previously unknown ideas and advancing understandings.  

Likewise, this author considers that mathematics, as a human and cultural creation 

that deals with objects and entities which are very different from any physical phenomena, 

strongly supports visualization in its different forms and levels, not only in the field of 

geometry. Through visualization any organisation can be synoptically understood as a 

configuration making all that is not accessible to the human eye by providing a global 

apprehension of any organisation of relations (Duval, 2002). 

Godino et al. (2012) analyse the notion of visualization by applying the tools of the 

onto-semiotic approach of mathematics knowledge (Godino et al., 2007; Font et al., 2013) 

and propose to distinguish between the “visual practices” and the “non-visual practices” or 

symbolical/analytical. They focus their attention on whether the types of linguistic objects 

and artefacts considered to be visual that intervene in a practice, stake the visual perception. 

On the understanding that the symbolic representations (natural language or formal 

language), although they consist of visible inscriptions, are not considered as exactly visual 

inscriptions, but as analytical or sentential.  

The sequential languages (for example, symbolic logic, natural languages) only use 

the relation of linking to represent the relation between objects. To the contrary, spatial 

relations are used to represent other relations in the diagrams.  

The idea is that sentential languages are based on acoustic signals which are sequential in 

nature, and so must have a complex syntax in order to express certain relationships - whereas 

diagrams, being two-dimensional, are able to display some relationships without the 

intervention of a complex syntax. (Shin & Lemon, 2008, section 3)  

The Role of Diagrams in Mathematical Work 

Different conceptions are proposed about the use of diagrams in the works of research 

analysed in the field of mathematics education. Arcavi includes them as just another visual 

resource which coordinates with visualization; however according to the literature about 
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diagrammatic reasoning, the diagrams, understood in the framework of Peircean semiotics 

(Dörfler, 2005; Bakker & Hoffmann, 2005; Rivera, 2011), form an essential resource of 

mathematics reasoning in addition to other fields and scientific disciplines (Bechtel, 2017; 

Giardino, 2017; Shin & Lemon, 2008).   

We found that research on diagrammatic reasoning presents a double conception of 

the notion of diagram. One wider conception in which any type of inscription that makes use 

of the spatial positioning in two or three dimensions (right, left; forward, backward; up, 

down; inclusion, intersection, separation; accumulation, …) is a diagram (geometric figures; 

cartesian graphs; matrixes; graphs; conceptual maps; organization charts; sketches and maps, 

…). Another more restricted conception requires us to be able to carry out specific 

transformations, combinations, and constructions with these representations according to 

certain specific syntactic and semantic rules. The parts which make up a diagram can be any 

type of inscription such as letters, numbers, special signs, or geometrical figures.  

Peirce includes the algebraic formulas in the notion of diagram since they are 

understood as icons of relations between their constituent elements. One feature which 

distinguishes the icons is when directly observing them, other facts relative to the objects 

which are different from those which are sufficient to determine their construction, can be 

discovered. This ability to reveal unexpected facts is precisely where the use of algebraic 

formulas lies and so its iconic-diagrammatic nature is what prevails. So, when we affirm: 

“the expression y = x2 − 2x +1 is a parabola” we are informing of the essential properties of 

the mathematics object. However, the letters of the algebraic expression, taken randomly, are 

not icons but indices: each letter is an index of quantity. To the contrary, the signs +, =, /, 

etc., are symbols in the sense of Peirce. 

As Filloy and colleagues point out “algebraic expressions are thus an example of the 

imbrication of three kinds of signs in mathematical writing: the letters are indices; the signs 
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+, =, etc. are symbols; and the expression taken as a whole is an icon” (Filloy et al., 2008, p. 

47). 

Diagrammatic reasoning 

Dörfler (2003, p. 41) identifies some of the characteristics of the diagrams and the 

diagrammatic reasoning: 

• Diagrammatic inscriptions have a structure consisting of a specific spatial 

arrangement of and spatial relationships among their parts and elements. 

• Based on this diagrammatic structure there are rule-governed operations on and with 

the inscriptions by transforming, composing, decomposing, combining them 

(calculations in arithmetic and algebra, constructions in geometry, derivations in 

formal logic). 

• Another type of conventionalized rule governs the application and interpretation of 

the diagram within and outside of mathematics, i.e., what the diagram can be taken to 

denote or model.  

• The diagrammatic inscriptions have a generic aspect, which permits to construct 

arbitrary instances of the same type of diagram. 

• Diagrammatic reasoning is a rule-based inventive and constructive manipulation of 

diagrams to investigate their properties and relationships. 

• Diagrammatic reasoning is not mechanistic or purely algorithmic, it is imaginative 

and creative. 

• In diagrammatic reasoning the focus is on the diagrammatic inscriptions irrespective 

of what their referential meaning might be. The objects of diagrammatic reasoning are 

the diagrams themselves and their already established properties. 

• Efficient and successful diagrammatic reasoning presupposes intensive and extensive 

experience with manipulating diagrams. A widespread ‘inventory’ of diagrams, their 
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properties and relationships support and occasions the creative and inventive usage of 

diagrams. 

Diagrammatic reasoning involves three steps (Bakker & Hoffmann, 2005, p. 340): the 

first step is to construct a diagram (or diagrams) by means of a representational system; the 

second step of diagrammatic reasoning is to experiment with the diagram (or diagrams); the 

third step is to observe the results of experimenting and reflect on them. Any experimentation 

with a diagram is being carried out within a system of representation and is a rule or activity 

situated within a practice. From this experimentation and observation, Peirce highlights that 

we can “discover unnoticed and hidden relations among the parts of a diagram” (CP 3.363). 

In this sense Rivera (2011), points out that “with the aid of diagrammatic reasoning, the focus 

switches to detecting, constructing, and establishing regularities and invariant relationships 

that eventually take the shape of concepts and theorems that are themselves diagrams in some 

other format” (Rivera, 2011, p. 229). 

Registers of Representation and Diagrams 

Duval (2006) attributes an essential role not only to the use of different systems of semiotic 

representation (SSR) for mathematics work but also to the treatment of the signs within each 

system and the conversion between different SSR:  

The role that signs play in mathematics is not to be substituted by objects but by other signs! 

What matters are not representations but their transformation. Unlike the other areas of 

scientific knowledge, signs and semiotic representation transformation are at the heart of 

mathematics activity. (Duval, 2006, p. 107) 

Dörfler (2005) recognises that the diagrams can make up a register of autonomous 

representation to represent and produce mathematics knowledge in certain specific fields, 

however it is not complete. It requires to be complemented by conceptual-verbal language to 

express notions like continuity and differentiability; impossibility that specific objects exist; 

or situations of the use of quantifiers for all, each one and there are.  
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The relations between the physical objects, the diagrams and other visualizations used 

in mathematics practice and mathematics objects (concepts, propositions, procedures, …) are 

conflictive. Radford (2003, p. 43) highlights the problem of the impossibility of any direct 

access to mathematical objects and the ensuing need for means to render them sensible. 

Duval (2006, p. 129) conceives the mathematics object as “the invariant of a set of 

phenomena or the invariant of some multiplicity of possible representations” and insists on 

not confusing the mathematics object with its different representations. This leads to 

explaining the cognitive paradox of mathematics learning:  

The crucial problem of mathematics comprehension for learners, at each stage of the 

curriculum, arises from the cognitive conflict between these two opposite requirements: how 

can they distinguish the represented object from the semiotic representation used if they 

cannot get access to the mathematical object apart from the semiotic representations? (Duval, 

2006, p. 107) 

Another problem related to the use of diagrams is that pointed out by Shin, & Lemon 

(2008, section 4.1), which consists of moving from what is particular to what is general:  

A central issue, if not the central issue, was the generality problem. The diagram that appears 

with a Euclidean proof provides a single instantiation of the type of geometric configurations 

the proof is about. Yet properties seen to hold in the diagram are taken to hold of all the 

configurations of the given type. What justifies this jump from the particular to the general? 

Diagrams and Abstract Objects 

Other authors (Bakker & Hoffmann, 2005), following Peirce, in addition to assigning a 

central role to the operations to be carried out on diagrammatic inscriptions assume an 

understanding of mathematics objects condensed in the hypostatic abstraction. According to 

this conception a certain characteristic of a set of objects is considered as a new object; a 

name is assigned to a specific predicate and thus creating an abstract object. "In mathematics, 

a collection is a hypostatic abstraction. And the cardinal numbers are hypostatic abstractions 
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derived from predicate of a collection” (Peirce, CP 5.535). 

To think of mathematics objects as qualities of collections of objects or invariants of a 

set of phenomena or representations, that are converted into new objects (abstracts) for the 

simple reason of having been given a name with specific terminology, is to adopt a position 

not exempt from philosophical, cognitive and also educational problems. This supposes not 

considering the linguistic revolution that Wittgenstein provided about mathematics activity 

and the resulting product of this activity.  Thus, from a formalist perspective, the 

mathematical object is its definition. The definition is not only a way of understanding or 

describing the object, “it is itself the object”. From Wittgenstein’s perspective, “language 

games” imply that the meaning of mathematical objects is conditioned by their use in a 

context. There is no longer a single answer to the question “what is such a mathematical 

object?”, and, consequently, the statements “Tom, Dick, or Harry knows what that 

mathematical object is” are meaningless. 

Sherry (2009) adopts an anthropological perspective on the role of diagrams in 

mathematics argumentation that differs from the Peircean semiotic perspective, according to 

which the diagrams are an essential means in the process of hypostatic abstraction. Sherry 

analyses the role of the diagrams in mathematics reasoning (geometric and numerical – 

algebraic) without resorting to the introduction of abstract objects and relying on a 

Wittgeinsteinian perspective of mathematics. “Recognizing that a diagram is just one among 

other physical objects is the crucial step in understanding the role of diagrams in 

mathematical argument” (Sherry, 2009, p. 65).  

The position of this author is based on observing the way in which mathematics is 

applied to specific objects. The experience with diagrams should provide the students with 

the opportunity to see the relationship, which is mutually determining between the 

construction of an inferential rule and the development of mathematics knowledge. This is a 
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question of avoiding recurring to abstract conceptions which are conceived in an empirical-

realistic way (hypostatic abstraction) to understand them as socially agreed grammatical 

rules, about the use of languages through which we describe our worlds (material or 

immaterial).  

 

Onto-Semiotic Configurations 

The OSA is a theoretical framework that has developed principles and methodological tools 

to address the epistemological, ontological, cognitive, instructional, and ecological problems 

inherent to the processes of teaching and learning mathematics (Godino et al., 2007; Font et 

al., 2013). “It is assumed that mathematics is a human activity (anthropological postulate) 

and that the entities involved in this activity come or emerge from the actions and discourse 

through which they are expressed and communicated (semiotic postulate)” (Font et al., 2013, 

p. 107).  

In this paper we use a specific OSA tool that allows for detailed analyses of mathematical 

activity. This is the onto-semiotic configuration (Figure 2), which helps to identify the objects 

and processes involved in the mathematical practices carried out to solve mathematical 

problems. The following typology of primary mathematics objects is proposed: 

• Languages (terms, expressions, notations, graphs) in different registers (written, oral, 

gesture, etc.). 

• Situations-problems (extra - mathematics applications, exercises). 

• Concepts - definition (introduced using definitions or descriptions) (straight-line, dot, 

number, average, function). 

• Propositions (statements about concepts). 

• Procedures (algorithms, operations, calculation techniques). 
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• Arguments (statements used to justify or explain the propositions and procedures, 

whether they are deductive or otherwise).  

Mathematical objects intervening in mathematical practices or emerging from them, 

depend on the language game in which they take part, and can be considered from the 

following dual dimensions or facets (Godino et al., 2007, p. 131). 

• Personal–institutional. Institutional objects emerge from systems of practices shared 

within an institution, while personal objects emerge from specific practices from a 

person.    

• Ostensive–non-ostensive. Mathematical objects (both at personal and institutional 

facets) are, in general, non-perceptible. However, they are used in public practices 

through their associated ostensive notations, symbols, graphs, etc. The distinction 

between ostensive and non-ostensive is relative to the language game in which they 

take part. Ostensive objects can also be thought, imagined by a subject or be implicit 

in the mathematical discourse (for example, the multiplication sign in algebraic 

notation). 

• Extensive–intensive (example–type). An extensive object is used as a particular case 

(a specific example, i.e., the function y = 2x + 1), of a more general class (i.e., the 

family of functions y = mx + n), which is an intensive object. This duality allows to 

focus the attention on the dialectic between the particular and the general, which is a 

key issue in the construction and application of mathematical knowledge. 

• Unitary–systemic. In some circumstances mathematical objects are used as unitary 

entities (they are supposed to be previously known), while in other circumstances they 

are seen as systems that could be decomposed to be studied.  

• Expression–content. They are the antecedent and consequent of semiotic functions. 

Mathematical activity is essentially relational, since the different objects described are 
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not isolated, but they are related in mathematical language and activity by means of 

semiotic functions. Each type of object can play the role of antecedent or consequent 

(signifier or signified) in the semiotic functions established by a subject (person or 

institution). 

These facets or dualities are grouped in pairs that are dually and dialectically 

complementary. The dualities as well as the objects can be analysed from the process-product 

perspective. The emergence of the primary objects (problems, definitions, propositions, 

procedures, and arguments) take place with the respective mathematics communication 

processes, problematization, definition, expression, procedure forming (algorithmization, 

routinization, …), and argumentation. On the other hand, the dualities lead to the following 

cognitive/epistemic processes: institutionalization-personalization; generalization-

particularization; analysis/splitting-synthesis/reification; materialization/precision-

idealization/abstraction; expression /representation-meaning. 

Figure 2 

Onto-semiotic configuration of practices, objects, and processes 
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An abstract object (ideal or hypostatic) is understood in the OSA as an entity:  

• Immaterial (non-ostensive).  

• General (intensive).   

• That can be considered in the following way:  

⎯ unitary (as a rule) or systemic (onto-semiotic configuration of practices, objects 

and processes); 

⎯ personal (mental) or institutional (sociocultural); 

⎯ antecedent (signifying) or consequent (meaning) in a semiotic function. 

The process of abstraction by which the abstract objects emerge or are built entails the 

combination of other more basic cognitive-epistemic processes: generalization, idealization 

(understood as dematerialization), unitarization (reification), giving meaning, representation. 

This anthropological way of understanding abstraction, that is, the emergence of general and 

immaterial objects forming mathematical structures, has important consequences for 

mathematics education since mathematics learning should take place through a progressive 

participation of the students in the mathematics language games used in the heart of the 

mathematics practices communities (institutions or sociocultural groups). Thus, anthropology 

as “epistemology of use in context within a community” establishes that knowledge has an 

essentially social dimension. In this way, dialogue and social interaction take on an important 

role, in comparison with the mere manipulation and visualization of ostensive objects. 

The anthropological vision of Wittgenstein is assumed, according to which the 

concepts, propositions and mathematics procedures are no other than empirical propositions 

which have been socially reified as rules. Sherry clearly and synthetically describes this 

Wittgeinsteinian conception of mathematics objects:  

For an empirical proposition to harden into a rule, there must be overwhelming agreement 

among people, not only in their observations, but also in their reactions to them. This 
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agreement reflects, presumably, biological, and anthropological facts about human beings. An 

empirical proposition that has hardened into a rule very likely has practical value, 

underwriting inferences in commerce, architecture, etc. (Sherry, 2009, p 66)  

Behind diagrammatic reasoning, from the use of visualizations and manipulative 

teaching materials which help in mathematics learning, there is an implicit adoption of an 

empirical–realistic position about the nature of mathematics and which does not grant the 

essential role to language and to social interaction in the emergence of mathematics objects. 

To a certain extent, it is supposed that the mathematical object ‘is seen’, is hypostatically 

detached from empirical qualities of the collections of things. Faced with this position, 

coming from the epistemology and Peircean semiotics, the anthropological conception of 

mathematics is found and according to which concepts and mathematics propositions should 

be understood, not as hypostatic abstractions of noticeable quality, but as regulations of the 

operative and discursive practices carried out by people to describe and act in the social and 

empirical world in which we live.  

In previous research works, Godino and Cols. apply a semiotic analysis technique of 

mathematics practices through which the mathematics objects used in the practices are to be 

revealed. In Godino (2002) a first approximation to this technique is carried out by analysing 

a lesson from a textbook about the median; in Godino, Font, and Wilhelmi (2006) the onto-

semiotic analysis is carried out from a lesson about addition and subtraction; and in Godino, 

Font, Wilhelmi, and Lurduy (2011) the responses of a child to a task related to learning of 

tens are analysed. In this article, we summarize the semiotic analysis using Tables 1 to 3 to 

show the configuration of mathematics practices, objects and processes used when solving a 

problem on fractions. 
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Onto-Semiotic Configurations Implied in Diagrammatic Reasoning 

 

In this section we analyse the types of practices, objects and processes that are used when 

solving a problem about fractions by applying three procedures that involve the use of 

diagrammatic reasoning. We try to show that by accompanying visual-diagrammatic 

language the support of sequential-analytical language is necessary and together with the 

ostensive objects, inherent to both types of languages, a configuration of abstract objects 

which takes part in the mathematics practices, is always present. Likewise, we will show that 

solving the problem implies carrying out processes of particularization of abstract objects 

which have been previously shared and processes of materialization (construction and 

manipulation of diagrams).  

Martini cocktail problem (fraction of alcohol): 

A Martini is a cocktail which is made up of 5 parts gin and 1 part vermouth. Suppose that 2/5 

of the gin is alcohol and 1/6 of the vermouth. What percentage of alcohol does a Martini 

have? 

Solution 1: Use of Area Diagrams to Represent the Fractions 

The sequence of area diagrams of Figure 3 is explanatory of the problem-solving process for 

someone who knows the conventions assumed, as well as the concepts and procedures 

implied. However, the justification and explanation of the solution requires the following 

sequence of discursive and operative practices: 

1) The unitary quantity of Martini is represented by means of a square (Figure 3A) 

2) The square is divided vertically into 6 equal parts (Figure 3B). 

3) The fraction of gin is 5/6 of the square unit (red part, Figure 3B).  

4) The fraction of vermouth is 1/6 of the said square (white part, Figure 3B).  

5) The white rectangle that represents the quantity of vermouth is divided into 6 equal 

parts of which 1 part corresponds to the quantity of (1/6 of 6) (Figure 3C). 
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6) The quantity of alcohol of the gin is represented by the two blue columns in Figure 

3D (2/5 of 5). 

7) The quantities of alcohol in the gin and in the vermouth should be expressed in the 

same unit of measurement, so, the two blue rectangles that represent the quantity of 

alcohol in the gin should be divided horizontally into six equal parts (Figure 3E). 

8) The total quantity of alcohol in the Martini will be 12 + 1 = 13 small squares (Figure 

3E). 

9) The total quantity of Martini represented by the initial square should also be measured 

with the same unit of measurement with which the quantities of alcohol are measured, so 

the six horizontal lines are prolonged (Figure 3F). 

10) The fraction of Martini will be 13/36 (Figure 3F). 

11) Since the proportion of alcohol of the Martini is 13/36 ≈ 0,3611, the percentage 

(approximately) will be 36,11%. 

12)  Solution represented as follows, in Figure 3:  

 

Figure 3 

Area diagrams to solve the Martini problem 
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Source: Adapted from Giacomone et al. (2019, p. 25) 

 

In terms of Duval´s theory of semiotic representation registers, a conversion is begun, 

moving from the sequential register of natural language (task statement) to the graphic 
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register (area diagram); specific treatments are carried out within this register to finally move 

onto the sequential register once again: The fraction of alcohol of the Martini is 13/36. 

However as shown in the sequence of practices 1) to 9), the sequential register must 

accompany the graphic register. Likewise, the operative and discursive practices used are 

guided by the process of non-ostensive objects and processes that we reveal in the second 

column of Table 1. In the third column of this table, we indicated the role that each practice 

plays in the problem-solving process, in addition to its intentionality.  

 

Table 1 

Configuration of objects and meanings 

Textualized operative and 

discursive practices 

 

Non ostensive objects (concepts, 

propositions, procedures, 

arguments)  

Use and purpose of the 

practices  

Statement 

A Martini is a cocktail, which is 

made with 5 parts gin and 1 part 

vermouth.  

Concept: A whole unit of volume. 

Procedure: Composition of the 

whole unit from equal parts. 

Describe what a Martini is 

made of 

 

Suppose that 2/5 of the gin is 

alcohol and 1/6 of the vermouth 

also.  

Concept: fraction as part of a whole 

unit which is divided into equal 

parts of which one part is 

individualized. The case of the 

fractioned composition of the gin 

(2/5) and of the vermouth, is 

specified. 

Fix the fraction of alcohol in 

the gin and the vermouth as 

data. 

 

 

 

 

What percentage of alcohol does a 

Martini have?  

Concept: Whole unit; fraction, part 

of a whole unit divided into equal 

parts  

Express the problematic 

question of the task  

 

Solution 

1) The unit of Martini is 

represented by means of a square, 

(Figure 3A). 

Concept: unitary quantity.  

 

 

Particularize and materialize 

the concept of unit.  

 

2) The square is vertically divided 

into 6 equal parts, (Figure 3B). 

 

 

Procedure: division of the unit into 

equal parts. 

 

 

Action required to 

ostensively (by diagram) 

represent the composition of 

the Martini in the following 

practice, considering the 

statement.  

3) The fraction of gin is 5/6 of the 

square unit. (Figure 3B, red part). 

 

 

Concept: fraction as part of a whole 

divided into equal parts. 

Convention: the fraction is 

expressed in two equal ways, with 

an arithmetic diagram (5/6) and a 

graph diagram. 

Express in fractions the 

quantity of gin in the Martini.  
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4) The fraction of vermouth is 1/6 

of the square (Figure 3B, white 

part).  

 

 

Concept: fraction as part of a whole 

divided into equal parts. 

Convention: the fraction is 

expressed in two equal forms with 

an arithmetic diagram (1/6) and a 

graph. 

Express in fractions the 

quantity of vermouth in the 

Martini.  

 

 

 

5) The white rectangle that 

represents the quantity of vermouth 

(...) 

Procedure: division of a unit in 

equal parts. 

Concept: fraction as an operator. 

 

Express in fractions the 

quantity of alcohol in the 

vermouth.  

 

6) The quantity of alcohol in the 

gin (...) 

Concept: fraction as an operator. 

 

Express in fractions the 

quantity of alcohol in the 

vermouth.  

7) The quantities of alcohol in the 

gin and the vermouth should be 

expressed (...) 

Concept: unit of measurement; 

measurement. 

Procedure: measure an area with a 

given unit. 

Make possible the 

measurement of all the 

quantities with one same unit. 

This is done using natural 

arithmetic.  

8) The quantity of alcohol in the 

Martini will be 12 + 1 = 13 small 

squares (Figure 3E). 

Concept: volume magnitude 

(sumable). 

Procedures: counting and adding. 

Measure the quantity of 

alcohol in the Martini with 

natural numbers (13 units). 

9) The total quantity of Martini 

represented by the initial square (...)  

Procedure: measure an area with a 

given unit. 

Concept: Cartesian product of 

natural numbers. 

Make possible the 

measurement of all the 

quantities with one same unit. 

Using natural arithmetic.  

10) The fraction of alcohol of the 

Martini will be 13/36 (Figure 3F). 

 

Concept: fraction as part of a whole. 

Proposition The fraction of the 

alcohol in the Martini is 13/36. 

Argumentation: it is formed by the 

sequence of steps 1) to 10), 

supported by the use of arithmetic 

diagrams, of areas and of natural 

sequential language. 

Response to the fraction 

question posed.  

11) Since the proportion of alcohol 

in the Martini is 13/36 ≈ 0,3611, the 

percentage (approximate) will be 

36,11%. 

Concepts: rational number; 

proportionality; fraction; decimal 

and percentual approximation.  

Procedures: obtaining the decimal 

expression using the numerator and 

the denominator quotient; step to the 

percentual expression.  

Response to the problem and 

its justification in terms of 

percentual expression.  

 

In addition to the processes indicated in Table 1, the subject who solves the problem 

basing his/her reasoning on the use of area diagrams carries out processes of materialization 

of the concepts and operations with fractions implied in the statement and on the composition 

of the partial results that he/she obtains. The solution is finally found by using an arithmetic 

procedure of counting the units of fractions which have been represented in the last diagram 

by using the process of idealization (the ratio of the number of small blue squares to the total 

number of small squares is the fraction of alcohol of the Martini).  
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Solution 2: Use of a Hierarchical Diagram  

The tree diagram in Figure 4 explains the problem-solving process for someone who knows 

the conventions assumed as well as the concepts and procedures implied. However, the 

justification and explanation of the solution requires to carry out the following sequence of 

discursive and operative practices: 

1) The diagram constructed in Figure 4 expresses the splitting of a unit of volume of 

Martini in two parts, gin and vermouth at the first level, thus indicating the corresponding 

fraction in each connector.  

2) The splitting of the parts of gin and vermouth, which are now considered as unit 

quantities, in two parts, alcohol and not alcohol are expressed at the second level thus 

indicating the corresponding fraction in each connector. 

3) The fraction of alcohol of the gin is 2/5 of the quantity of gin; since this quantity is 

5/6 of the quantity of Martini, the fraction of alcohol in the Martini coming from the gin 

will be the ‘the fraction of the fraction’, that is,  

2

5
×

5

6
=

10

30
=

1

3
 

4) The fraction of alcohol of the vermouth is 1/6 of the quantity of vermouth; since this 

quantity is 1/6 of the quantity of the Martini, the fraction of alcohol in the Martini coming 

from the vermouth will be the ‘fraction of the fraction’, that is,  

1

6
×

1

6
=

1

36
 

5) The total fraction of alcohol in the Martini will be the sum of the fractions of alcohol 

coming from the gin and the vermouth, that is,  

1

3
+

1

36
=

13

36
 

6) Given that the fraction of alcohol in the Martini is 13/36 ≈ 0,3611, the percentage 

(approximate) will be 36,11%.  

 



 

 

 

21 

Figure 4 

Solution of the task using a tree diagram 

  

Fraction of alcohol: 

 
2

5
×

5

6
+

1

6
×

1

6
=

13

36
 

 

13/36 ≈ 0,3611  

 

Table 2 includes the configuration of objects and processes at stake in the solution of the 

problem using the tree diagram in Figure 4.  

 

Table 2 

Configuration of objects and meanings 

Textualized operative and 

discursive practices  

Non ostensive objects: concepts, 

propositions, procedures, 

arguments 

Use and purpose of the 

practices  

Statement 

(The same as the previous case) 

Solution 

1) The diagram constructed in 

Figure 4 expresses (…) at the first 

level (…) 

 

 

 

 

 

 

Concepts: first level of a diagram, 

connector, unit of quantity and 

fraction. 

Procedure: splitting of a whole 

into equal parts.  

Representation agreement: the 

fractions over the connectors refer 

to the fractionary relation between 

the quantities connected.  

Express in a fractioned diagram 

the quantity of gin and vermouth 

in the Martini.  

 

 

 

 

 

 

2) The splitting (…) is expressed 

at the second level (...) 

 

The same as practice 1.  Express in fractions the quantity 

of alcohol present in the gin and 

in the vermouth.  

3) The fraction of alcohol in the 

gin is 2/5 of the quantity of gin 

(...) 

 

 

 

 

Concepts: multiplication of 

fractions (fraction of a fraction); 

unit quantity. 

Procedures: multiplication of 

fractions; change of unit when 

changing from the first to the 

second level of the diagram (the 

Express in fractions the quantity 

of alcohol in the Martini which 

comes from the gin.  
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volume of gin and vermouth are 

now considered new units which 

are fractioned).  

 

 

 

4) The fraction of alcohol in the 

vermouth is 1/6 (...) 

 

Same as practice 3)  Express in fractions the quantity 

of alcohol in the Martini which 

comes from the vermouth.  

5) The total fraction of alcohol in 

the Martini will be (...) 

 

 

 

 

 

 

 

 

Concepts: sum of fraction. 

Procedures: sum of fractions with 

different denominator.  

Proposition: the fraction of 

alcohol in the Martini is 13/36.  

Argument: it is formed by the 

sequence of steps 1) to 5), 

supported by the use of arithmetic 

and hierarchical diagrams and by 

natural sequential language. 

Response in fractions to the 

problem. 

 

 

 

 

 

 

 

 

6) Given that the fraction of 

alcohol in the Martini is 13/36 ≈ 

0,3611, the percentage 

(approximate) will be 36,11%. 

 

Concepts: rational number; 

fraction; decimal and percentual 

approximation.  

Procedures: obtaining the 

decimal expression by the 

quotient of the numerator and the 

denominator, step to the 

percentual expression. 

Response to the problem and its 

justification in terms of 

percentual expression. 

 

The analysis of each one of the individualized practices in Table 2 can be done in 

more detail. Thus, in the first unit of the statement, the systematic application of the notion of 

the onto-semiotic configuration of practices, objects and processes leads us to recognise that 

the subject who reads the statement should carry out a process of interpretation (semiosis or 

attribution of the meaning) of the diagram ⅖, identifying the ‘concept of fraction’ understood 

here from an institutional point of view as a socially accepted rule: a whole unit is split into 

equal parts and one or several of these parts are individualized. To follow, a particularization 

process of the case should be carried out: the whole unit is divided into 5 parts and 2 are 

considered separately.  

In the first two units of the solution (the diagram in Figure 4) the subject should carry 

out a splitting process of the system of elements that make up the diagram, distinguishing 

three hierarchical levels, the units that make up the whole unit of each level, connectors, the 

fractions and the operations with fractions that should be carried out. A splitting process of 

the partial calculation carried out at each branch of the tree should also be carried out in order 
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to obtain the fraction of alcohol of the Martini and of the materialization of the calculation in 

the arithmetic-diagrammatic expression,  

2

5
×

5

6
+

1

6
×

1

6
=

13

36
 

The rest of the discursive and operative practices carried out which are necessarily 

supported by the sequential-natural language, are essential to establish the connection 

between both types of diagrams and explain that in the conditions of this problem the fraction 

of alcohol in the Martini is 13/36.  

The structure of the system of practices that must be carried out to solve a problem is 

shown in the hierarchical diagram in an iconic way. The fraction of fraction (multiplication of 

fractions) is reflected in the composition of the two inferior levels of the diagram (up, down) 

whilst the sum of resulting fractions is reflected in the lateral layout of the two branches (left, 

right).  

One feature which distinguishes the use of area diagrams with respect to the 

hierarchical diagram is that the meaning of the concept of fraction that is used in each case is 

different: in the areas the fraction intervenes as an operator of a quantity of area whereas in 

the tree diagram the fraction is the ratio between the parts of a generic whole which is divided 

into equal parts and the parts which are individualized. The procedure based on diagrams in 

areas has less generality traits than the hierarchical ones.  

Solution 3: Arithmetic Fractioning 

The problem can be solved without using graphic type diagrams, although the use of the 

fractioning expression (which in Peirce´s semiotic is also a diagram) is inevitable. The 

following sequence of operative and discursive practices establishes the justification and the 

explanation that the fraction of alcohol in the Martini is 13/36. 

1) The fraction of gin that the cocktail contains is 5/6, because the unit of volume of 

Martini has been divided into 6 equal parts and 5 correspond to the gin.  
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2) For the same reason the fraction of vermouth will be 1/6. 

3) The alcohol contained in the gin is a fraction of the fraction of gin, in this case 2/5 of 

5/6.  

4) That is, 
2

5
×

5

6
=

10

30
=

1

3
 

5) The alcohol contained in the vermouth is a fraction of the fraction of vermouth, in this 

case 1/6 of 1/6.  

6) That is, 
1

6
×

1

6
=

1

36
 

7) The fraction of alcohol in the Martini will be the sum of the fractions of alcohol 

provided by the gin and by the vermouth.  

8) That is,  
1

3
+

1

36
=

13

36
 

9) Given that the fraction of alcohol of the Martini is 13/36 ≈ 0,3611, the percentage 

(approximate) will be 36,11%. 

In Table 3 we include the configuration of objects and processes that are involved in 

the solution of the problem using arithmetic fractioning.  

 

Table 3 

Configuration of objects and meanings 

Textualized operative and 

discursive practices  

Non ostensive objects: concepts, 

propositions, procedures, 

arguments 

Use and purpose of the practices  

Statement 

(The same as the previous case) 

1) The fraction of gin that the 

cocktail contains is 5/6, because 

the unit of volume of Martini 

has been divided into 6 equal 

parts and 5 correspond to the 

gin.  

 

Concept: fraction, as part of a 

whole. 

Proposition: the fraction of gin in 

the cocktail is 5/6. 

Argument: why the Martini has 

been divided into 6 equal parts 

and 5 correspond to the gin.  

Express in fractions the quantity 

of gin present in the Martini from 

the information about the 

problem.  

 

 

 

2) For the same reason the 

fraction of vermouth will be 1/6.  

 

 

Same as practice 1) Express in fractions the quantity 

of vermouth present in the Martini 

from the information given about 

the problem.  
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3) The alcohol contained in the 

gin is a fraction of the fraction 

of gin, in this case, 2/5 of 5/6. 

Concept: fraction of a fraction 

(multiplication of fractions). 

 

Establish the relation of alcohol 

present in the gin to justify 

practice 4.  

4) That is, 

 

 
2

5
×

5

6
=

10

30
=

1

3
  

 

 

 

 

 

 

Proposition: The fraction of 

alcohol in the gin is 1/3.  

Argument: why the new whole 

unit (5/6) is divided into 5 equal 

parts and 2 are taken.  

Procedure: multiplication of 

fractions; simplification of 

fractions. Concepts: rational 

number, prime fraction. 

Express in fractions the quantity 

of alcohol present in the gin.  

 

 

 

 

 

 

 

5) The alcohol contained in the 

vermouth is a fraction of the 

fraction of the vermouth, in this 

case, 1/6 of 1/6. 

Same as practice 3) Establish the relation of alcohol 

present in the vermouth to justify 

practice 6).  

 

6) That is, 
1

6
×

1

6
=

1

36
 

   

Same as practice 4) Express in fractions the quantity 

of alcohol present in the 

vermouth.  

7) The fraction of alcohol in the 

Martini will be the sum of the 

fractions of alcohol provided by 

the gin and the vermouth.  

Concept: sum of fractions 

 

Interpret the data obtained in the 

previous practices, in terms of the 

fractional response to the task to 

justify practice 9).  

8) That is, 
1

3
+

1

36
=

13

36
 Proposition: the fraction of 

alcohol of the Martini is 13/36. 

Argument: this is the result of the 

sum of the fractions obtained by 

applying the corresponding 

procedure (sum of fractions with a 

different denominator).  

Fractional response to the 

problem.  

 

 

 

 

9) Given that the fraction of 

alcohol of the Martini is 13/36 ≈ 

0,3611, the percentage 

(approximate) will be 36,11%. 

 

Concepts: rational number; 

fraction; decimal and percentual 

approximation. 

Procedures: obtaining the decimal 

expression using the quotient of 

the numerator and the 

denominator; move to percentual 

expression.  

Response to the problem and its 

justification in terms of percentual 

expression.  

 

The arithmetic fractionary solution depends more on sequential language as is shown 

in practices 1), 2), 3), 5) and 7). By attributing spatial characteristics to the fractionary 

representation and to the transformations done with them (the number below divides, and the 

number above multiplies; the denominators that are below and the numerators that are above, 

are multiplied) the fractionary arithmetic solution also uses diagrammatic reasoning 

(practices 4), 6) and 8).  
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Heuristic Power of the Solutions: Particularizations Versus Generalization  

In addition to the solutions studied in the previous sections, others which imply the use of 

different degrees and modalities of visualization, or mixed solutions that combine the 

diagrammatic solutions with fractionary arithmetics, can be elaborated. For example, a 

variant of the fractionary arithmetic solution could be the following. 

1) Let´s suppose that we prepare 36 liters of Martini.  

2) The quantity of gin will be (5
6⁄ ) (36) = 30. 

3) The quantity of vermouth, 36 − 30 = 6. 

4) The quantity of alcohol in the gin will be, (2
5⁄ )(30) = 12. 

5) The quantity of alcohol in the vermouth, (1
6⁄ )(6) = 1. 

6) The total quantity of alcohol in the Martini will be, 12 + 1 = 13. 

7) So, the fraction of alcohol in the Martini will be 13
36⁄ . 

With exception of the fraction expression, which incorporates the disposition of the 

numerator and the denominator as visual element by indicating the different role that each 

one plays in the mathematics practices, the rest of the mathematics practices depend on 

natural sequential language. The reasoning is based, nevertheless on the essential 

participation of the concept of fraction as operator and as the relation part-all.  

One variant of the task statement, which requires a substantial change in the modality 

of usable diagrams, is the following: 

Suppose that the Martini cocktail can be prepared with different proportions of gin 

and vermouth. We want to elaborate a rule (formula) which enables us to determine 

the fraction of alcohol in the Martini for each possible composition. It is supposed 

that the fractions of alcohol of the gin and the vermouth do not change (2/5 and 1/6, 

respectively). 
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In this case we hope to carry out the following sequence of operative and discursive 

practices supported using algebraic diagrams: 

1) We suppose that g/m indicates the fraction of gin in the Martini. 

2) The fraction of vermouth will be (m-g)/m. 

3) The fraction of alcohol in the Martini will be, 

𝐴 =  
2

5
×

𝑔

𝑚
+

1

6
×

(𝑚 − 𝑔)

𝑚
=  

7𝑔 + 5𝑚

30𝑚
=

7

30
(

𝑔

𝑚
) +

1

6
 

Generalizations can be obtained not only with algebraic diagrams, but the use of 

algebraic diagrams is one of the main paths in mathematical practices since they allow facing 

different types of mathematical problems and generalizations. In fact, this algebraic 

generalization can be implemented with the dynamic geometry software, GeoGebra (Figure 

5). 

Figure 5 

Generalization with GeoGebra: parameters and sliders 

 

 

Synergy Between the Diagrammatic and Sequential Languages 

In previous section, we have shown that there is a narrow overlapping between the objects 

that intervene in the mathematics activity, specifically between  
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• the diagrammatic-visual and the sequential languages,  

• the ostensive objects (materials) and the non ostensive (immaterial), 

• the extensive objects (particulars) and the intensive objects (general). 

The use of diagrams in mathematics practice should be accompanied by other means 

of non visual expressions to achieve the justification and explanation of the mathematics 

tasks and the operative and discursive practices implied when carrying them out. The genesis 

of mathematics knowledge is situated halfway between both languages where a mutual 

interrelation and reinterpretation is necessary. Furthermore, we have shown that the means of 

expression are empirical ‘artefacts’, which require the implicit use of a system of non-

ostensive objects of conceptual, propositional, and argumentative nature. We have also 

revealed some processes of particularization, generalization; splitting, composition; 

materialization, idealization which are used in the demonstrative-explanatory process carried 

out. 

Our analysis agrees with and supports Sherry´s position about the use of diagrams in 

mathematics work: what is most relevant, more than building a specific diagram, is the 

mathematics knowledge implied, which is not visible anywhere, and is not identified with the 

diagrams that are used for its representation and manipulation.  

No matter how carefully the diagrams are drawn, the result is not simply read of the diagram. 

The students may fail to see the implicit result in the diagrams, but the failure will not be 

because of deficiencies in the constructed diagrams, but rather because of an inability to grasp 

a conceptual relation. (Sherry, 2009, p. 68)  

So, Sherry summarises the role of the diagrams in mathematics reasoning in two 

aspects:  

In the first place, a diagram serves as the ground for synthesizing a mathematical rule from 

existing concepts and inference rules. The second role of a geometrical diagram is to warrant 

further inferences in virtue of its simple empirical characteristics. (Sherry, 2009, p. 69)  
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The diagram supports or makes possible the necessary process of particularization of 

the general rule; it makes the conceptual object intervene to participate in a practice from 

which another new conceptual object will emerge (in our example, the fraction which is the 

response to the problem posed).  

 

Final Reflections 

This paper complements others previously carried in the OSA framework where the role of 

representations in mathematics education and the potential use of considering the process of 

non-ostensive objects implicated in the use of these representations, is analysed (Font, 

Godino, & Contreras, 2008). In this case we also use the notion of onto-semiotic 

configuration of practices, objects, and processes to dialogue with the research carried out on 

diagrammatic reasoning and the use of visualizations. 

The way diagrams are understood has important consequences for mathematics 

education whenever the use of these resources penetrates all school mathematics activity. We 

consider that it is important to surpass ingenuous empiristic positions about the use of 

manipulatives and visualizations in the processes of mathematics teaching and learning: there 

is always a cohort of intervening non-material objects which are essential to solve these 

situations accompanying the necessary materializations that intervene in the situations-

problems and the corresponding mathematics practices. This onto-semiotic vision of 

mathematics practices does not come from an unaccessible world but from this social world 

in which we live and are involved in our daily practice. 

“The sign is a creation between individuals, a creation within a social milieu. 

Therefore, the item in question [the item to which a sign will refer] must first acquire 

interindividual significance, and only then can it become an object for sign formation” 

Voloshinov (1973, p. 22).  
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Visualization (in general materialization) is useful and necessary in mathematics 

practice, above all if it is diagrammatic and therefore metaphorically reflects the conceptual 

mathematics structures. However, this layer of material objects should not prevent seeing the 

layer of immaterial objects that really make up the conceptual system of institutional 

mathematics. Both layers are interwoven and to a certain extent are inseparable. There are 

complex dialectic relations between the ostensive and non ostensive objects since the activity 

of mathematics production and communication cannot be carried out without the synergic 

combination between both types of objects. 

Finally, it is important to note that this detailed epistemic analysis has robust 

implications for the mathematics teacher’s education. Diagrams are considered essential by 

many researchers and teachers, as these are fundamental for mathematical reasoning 

(Giardino, 2017; Kadunz, 2016, Wille, 2020), and for communication and problem solving in 

science (Hill et al., 2014; Roberts et al., 2008). Authors have evidenced that involving 

students in diagrammatic reasoning tasks strengthens connections between the different 

meanings of the mathematical concept represented (for example, fraction concept); 

nevertheless, the analysis of mathematical tasks and the different ways of approaching them 

is necessary to understand the potential difficulties and learning obstacles (Wittmann, 2021). 

Therefore, a challenging task for the teacher is the comprehensible description of the activity 

shown by the students and the construction of their knowledge when doing mathematics 

(Kadunz, 2016).  

In this sense, the mathematics teacher should have knowledge, understanding and 

competence to discriminate the different types of objects that intervene in school 

mathematics practice, based on the use of different systems of representations and being 

aware of the synergic relations between the same (Burgos, & Godino, 2022; Giacomone, 

Godino, Wilhelmi, & Blanco, 2018). He/she should be competent to design and manage 
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processes of materialization and idealization of the mathematics objects at the same time as 

the corresponding processes of particularization and generalization (Calle, Breda, & Font, 

2021). 
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Notes 

1The following affirmation is attributed to Einstein: “Whenever mathematics propositions 

which have something to do with reality are not certain and whenever they are certain they 

have nothing to do with reality”. 
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